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ABSTRACT This paper investigates the critical issue of maintaining system stability for multipacket
reception (MPR) p-persistent carrier sense multiple access (CSMA) systems. When multiple users with
individual queues simultaneously transmit a packet to an access point (AP) via CSMA, the number of
successful transmissions and their identities are determined probabilistically in the MPR channel. Stability
signifies that none of the users’ queues grows unbounded. The stability region is a significant measure,
addressing all potential permutations of mean packet arrival rates for the users to maintain bounded queue
lengths. The work begins by considering a system with two users characterized by differing mean packet
arrival rates and (re)transmission probabilities. Subsequently, it examines an N -user system in which each
user shares an identical packet arrival rate and retransmission probability. A backoff algorithm is then
proposed for these N users to utilize in order to stabilize their queues. The paper concludes with numerical
studies illustrating the stability region as a function of user parameters, demonstrating how the proposed
backoff algorithm can be used to maximize throughput.

INDEX TERMS Stability region, multipacket reception (MPR), CSMA, IEEE 802.11.

I. INTRODUCTION
Demands on bandwidth, fuelled by social network services
(SNSs), streaming video services, YouTube, online gaming,
etc., have explosively grown in the past few decades. IEEE
802.11wireless local area networks (WLANs) havemet those
demands in home, business, and public spaces while con-
suming large amounts of data via wireless cellular networks
has still been costly. The proliferation of WLAN-enabled
smartphones and tablet PCs has enabled users to enjoy the
internet anywhere easily.

In order to fulfill ever-increasing demands, IEEE
802.11 has evolved continually as IEEE 802.11a/b/g/n/ac/ax.

The associate editor coordinating the review of this manuscript and

approving it for publication was Byung-Seo Kim .

For instance, the maximum data rate has been increased
from 11 Mbps to 54 Mbps and further up to 6.9 Gbps
with the introduction of downlink multi-user multi-input
multi-output (MU-MIMO) antenna and a higher high-order
modulation schemes in the physical layer [1]. In the medium
access control (MAC) layer, the random access protocol
of IEEE 802. 11 has still been based on carrier sense
multiple access (CSMA) protocol even as uplink traffic has
kept increasing due to SNSs, video conferencing, online
lectures, etc. So far, CSMA protocol works with a single
packet reception (SPR) channel; that is, none of them make
a successful transmission if more than one packets are
(re)transmitted at the same time. To cope with increasing
uplink traffic, IEEE 802.11ax introduces uplink MU-MIMO
so that upon simultaneous multiple packet transmissions,
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some of them can be successfully decoded, which is called
multipacket reception (MPR) channel [2], [3] in the literature.
Prior to 802.11ax, variousMPR channels andMAC protocols
to support them have been proposed for CSMA system [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[24], [28], [29], [30], [31], [32], [33].
In the random access systems either slotted ALOHA [3],

[4], [5] or CSMA [6], [7], [8], where users have a queue to
buffer incoming packets, the system is said to be unstable,
if at least one user’s queue grows unbounded. It is thus an
essential question of how much an MPR channel can affect
the stability of users’ queueing process. It is also important to
control users’ retransmissions so that each user’s queue grows
finite for a given set of packet arrival rates of the users in the
system. To put it in another way, we can ask what the set of
the maximum allowable packet arrival rates of the users can
be so that a retransmission control scheme can exist in order
to stabilize the system. As the importance of MPR capability
for CSMA has risen, this work explores these questions for
CSMA systems with a generic MPR channel.

A. RELATED WORKS
Studies on MPR CSMA systems in the literature can be
classified into two groups such as synchronous [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [24],
and asynchronous [28], [29], [30], [31], [32], [33]: In both
systems, the time is divided into sensing slots, when the
channel is idle. The users are synchronized at each sensing
slot and the packet transmission occurs just at the end of
an idle slot after the channel is sensed idle. In particular,
in synchronous systems, the packet transmissions are aligned
with slot boundary. However, in asynchronous systems, other
packet transmissions are assumed to be allowed even during
the ongoing packet transmissions.

This work focuses on the synchronous systems since
implementing the synchronous system might be relatively
easier than the asynchronous ones and more feasible in the
physical layer. In [9], under the assumption that the users
can hold only a packet, the maximum allowable packet
arrival rate is examined for the number of backlogged
users to grow finite in MPR CSMA. In such a case,
a packet and a user are not distinguishable. In contrast, our
work assumes that the number of users is finite, but they
have a queue of infinite length to hold incoming packets.
In [10], [11], and [12] it is examined how MIMO can
materialize MPR CSMA. In [13], it is proposed that the
users in CSMA exploit their channel state; that is, upon
idle channel, the users can access when their signal-to-
noise ratio (SNR) or channel state is above a threshold.
In [14], access fairness is examined for MPR CSMA systems
implemented by MIMO. Let us define M -MPR channel that
the users make a successful transmission if the number of
transmitting users is less than or equal to M . In [15], various
properties of CSMA systemswithM -MPR channel have been
examined. For example, throughput increases superlinearly

as M increases. Under the assumption of Poisson traffic
with mean aggregate rate G, an analytical throughput model
for slotted non-persistent CSMA is examined [16]. Some
queueing model of M/G/1 with vacations is applied to
the users’ queue in the MPR CSMA system in [17] such
that the condition for bounded access delay is analyzed.
Backoff algorithms are developed to maximize the system
throughput [18], [19]. New uplink and downlink protocols for
MU-MIMO CSMA are proposed in [20].

The performance of CSMA systems has been extensively
investigated using the mean field approximation (MFA) in
[21], [22], [23], and [24]. When all the users always have a
packet to send, i.e., in saturated condition, and the number
of users is large, the MFA can convert a discrete-time and
discrete-state Markov process of user backoff procedures in
IEEE 802.11, i.e., distributed coordination function (DCF),
into a set of ordinary differential equations (ODEs). The
solution of the ODEs is obtained as the form of a fixed
point from which the system’s performance can be estimated.
The MFA is often juxtaposed with Bianchi’s analysis [21],
[22], where the decoupling assumption has been made;
that is, the backoff processes of the users’ DCF become
independent or decoupled when all the users are saturated.
Especially, [22] usedMFA to analyze the validity of Bianchi’s
analysis by determining the stability of the ODEs and
providing a stability condition. In [24], the stability region
of CSMA system with an MPR channel is examined with
MFA. In particular, multiple classes of users are considered:
The users in the same class have identical packet arrival
rates and transmission probabilities but not in different
classes.

Compared to [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], and [20], this work investigates the stability
region ofMPRCSMA systems withM -MPR capability when
the users have a queue of unlimited length. To do this, we use
the stochastic dominant systems to characterize the stability
region. Its advantage over the MFA is accurately charac-
terizing the systems’ stability region with two users having
different packet arrival rates and transmission probabilities,
called asymmetric users, or with three users in an S-ALOHA
system [26]. However, for systems with more than three
asymmetric users, the method of using stochastic dominant
systems suffers from the curse of dimensionality in queueing
analysis. While it has been demonstrated that the MFA works
well for a large number of (saturated) users, i.e., as the number
tends to infinity, it is not rigorously verified that its results can
be accurate for a few users. Note that in [27], the stability
region of S-ALOHA has been investigated by the MFA.
Together with the result in [24], we extend the result of the
stability region for two-user into finite users CSMA system
and demonstrate that our work can be a good complement to
the stability region obtained by the MFA [24].

B. CONTRIBUTIONS AND ORGANIZATION
The contributions of this work are summarized as follows:
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FIGURE 1. MPR CSMA with MPR capability M = 2.

• For the system with two asymmetric users, conditional
and unconditional stability regions are fully charac-
terized. Depending on the MPR channel and users’
parameters, it is shown how the stability region of the
system can change, e.g., when the stability region of
MPR CSMA can exceed that of an ideal TDMA system.
Fig. 4 in Section III visualizes this as one of the main
results of this work.

• The stability condition of the system with N sym-
metric users is examined. Then, in order to maximize
the system throughput under the stability condition,
a backoff algorithm is proposed based on Bayesian
estimation for the number of backlogged users. The
results demonstrate that the performance of the proposed
algorithm is quite close to that of the genie-aided
algorithm [36] using perfect knowledge of backlog size.
Furthermore, under environments with a time-varying
number of users and packet arrival rate, it is also
illustrated how well the proposed algorithm estimates
the actual backlog size.

Throughout this paper, a boldfaced lowercase letter
denotes a row vector, e.g., x = [xi], while a boldfaced
uppercase letter denotes a set. In addition, for probability x,
x denotes its complement, i.e, x = 1− x, whereas for a set X
its complement is denoted byX = Xc. Moreover, |X| denotes
the cardinality of set X.
The organization of this paper is as follows.

In Section II, we introduce our system model and the
definitions of the stability regions. Section III provides the
stability analysis of the systems with two users and N users
by using stochastic dominant systems. We discuss numerical
studies in Section IV. Finally, we give concluding remarks in
Section V.

II. SYSTEM MODEL
A. MPR CSMA SYSTEMS
Suppose a slotted CSMA system in which time is equally
divided into a backoff (or sensing) slot of σ µsec, when the
channel is idle as shown in Fig. 1. There are a total ofN users,

each with a buffer of infinite length to store arriving packets.
Let us denote the index set of N users byN = {1, 2, . . . ,N }.
We assume that user i ∈ N has packet arrivals according to a
Poisson process with a mean rate λi (packets/µsec), and the
size of each packet is equal. According to p-persistent CSMA,
N users can communicate with an AP wirelessly as follows:
When sensing the channel idle, user i with a non-empty
queue (re)transmits its packet at the head of the queue with
probability pi until the packet is successfully transmitted.

1) A GENERIC MPR CHANNEL
Let us characterize an MPR channel of an AP as follows:
Let T be the index set of the users who make a packet
transmission in setN , andR denotes the index set of the users
whose packets are successfully decoded in set T . We have
R ⊆ T ⊆ N . Let us denote the conditional probability qR|T
that the users of setR successfully transmit given that set T of
users transmit. For a two-user system, we specifically define
as follows:

• q1|{1}: user 1’s success probability when only user 1
transmits.

• q2|{2}: user 2’s success probability when only user 2
transmits.

• q1,2|{1,2}: the probability that only user 1’s transmission
is successful when both users transmit.

• q1,2|{1,2}: the probability that only user 2’s transmission
is successful when both users transmit.

• q1,2|{1,2}: the probability that both users succeed when
both users transmit.

• q1,2|{1,2}: the probability that both users fail when both
users transmit.

When two users transmit simultaneously, we have

q1,2|{1,2} + q1,2|{1,2} + q1,2|{1,2} + q1,2|{1,2} = 1. (1)

The probability qR|T for this two-user system can be
expressed as

q1|{1,2} = q1,2|{1,2} + q1,2|{1,2} and (2)

q2|{1,2} = q1,2|{1,2} + q1,2|{1,2}. (3)
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FIGURE 2. Strong and weak MPR channels.

Thus, qi|{1,2} is the probability that user i makes a successful
transmission, whether the other user succeeds or not.

Let us define ϑ1 and ϑ2 as

ϑ1 ≜
q1|{1,2}
q1|{1}

, and ϑ2 ≜
q2|{1,2}
q2|{2}

. (4)

When qi|{i} < 1, it can represent a noisy channel. The
MPR-capable system is said to be strong or weak, if we have

MPR =


Strong, for ϑ1 + ϑ2 > 1,
Critical, for ϑ1 + ϑ2 = 1,
Weak, for ϑ1 + ϑ2 < 1,

(5)

which is depicted in in Fig. 2. Assuming that qi|{i} = 1, and
using q1,2|{1,2}+q1,2|{1,2} = 1−q1,2|{1,2}−q1,2|{1,2} in (1) and
(2), we can find an alternative characterization of the strong
MPR channel, i.e., ϑ1 + ϑ2 > 1 as

q1,2|{1,2} > q1,2|{1,2}. (6)

This implies that when both users transmit, the channel is a
strongMPR if the probability of both successes is greater than
that of both failures. For the critical and weak MPR, we have
q1,2|{1,2} = q1,2|{1,2}, and q1,2|{1,2} < q1,2|{1,2}, respectively.
Let us return to the MPR channel in Fig. 1, where

three users compete for channel access. In this system,
we assume that if more than two packets are transmitted
simultaneously, e.g., at instant tk+3, a collision occurs; that
is, no one makes a successful transmission. Otherwise, the
users’ transmission becomes successful. In this case, we have
conditional probabilities q1|{1} = q2|{2} = q3|{3} =

q1,2|{1,2} = q1,3|{1,3} = q2,3|{2,3} = q1,2,3|{1,2,3} = 1, whereas
other conditional probabilities are zero.

We additionally assume that the successful packet trans-
mission period equals the collision period, denoted by T in
Fig. 1. This corresponds to the basic access of IEEE 802.11.
We can relate T upon success to IEEE 802.11 as follows:

T = Packet TX + SIFS + ACKTime + DIFS. (7)

Similarly, upon collision, we have

T = Packet TX + ACK Time-out. (8)

Note that Packet TX, SIFS, ACKTime, ACK Time-out, and
DIFS denote the duration of a packet transmission time, that
of short interframe space (SIFS), that of acknowledgment
(ACK), that of ACK time-out, and that of distributed
coordinate function interframe space (DIFS), respectively.

2) REALIZATION OF MPR CHANNEL WITH MIMO
We discuss how the strong and weak MPR channels can be
formed by investigating the MU-MIMO, one of the typical
transmission techniques to realize MPR. Suppose one AP has
two receive antennas and two users, each with one transmit
antenna. Let the channel between each transmit and receive
antenna pair be Rayleigh fading. Then, we have the following
two cases:

• If both the users transmit simultaneously, the received
SNR for user i (for i = 1, 2) at the AP has an exponential
distribution with mean µi when zero-forcing MIMO
decoding was performed [12]. Consequently, user i’s
success probability can be written as

qi|{1,2} = exp
(

−
γi

µi

)
, (9)

where γi is user i’s SNR threshold for successful
decoding at the AP.

• If only user i transmits, the received SNR at the AP has
Gamma distribution with the shape parameter value 2,
as described in [12]. Consequently, user i’s success
probability can be written as

qi|{i} =

(
1 +

γi

µi

)
· exp

(
−

γi

µi

)
. (10)

Now, we can obtain the following.

ϑ1 + ϑ2 =
µ1

γ1 + µ1
+

µ2

γ2 + µ2
. (11)

As can be seen, depending on the choice of the threshold
of γi, the MPR channel can be strong or weak. For
example, if γi > µi for i = 1, 2, it is weak MPR
channel.

It is notable that (9) is obtained by assuming that the AP is
able to estimate the two users’ channel gains perfectly, even
if they randomly transmit. If the simultaneously transmitting
users transmit pilot signals at the same resource, the AP
cannot estimate their channel gains, which may result in more
frequent decoding errors. If we denote such performance loss
by a(≤ 1) for simplicity, (9) can be rewritten as qi|{1,2} =

a · exp
(
−

γi
µi

)
. Since a ≤ 1, the weak MPR channel may

occur frequently in practice.

3) NON-ORTHOGONAL MULTIPLE ACCESS (NOMA) FOR
MPR
Another possible transmission technique that can realize the
MPR channel is the non-orthogonal multiple access (NOMA)
in the power domain. The users transmit their packet by
choosing one of two receive power levels P1 and P2(< P1)
with transmit power control. For NOMA random access,
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each user can select one power level with probability 1
2

[37], [38]. Only when two transmitting users select different
receive power levels each, which occurs with probability 1

2 ,
the AP can decode both users’ packets by applying successive
interference cancellation (SIC). If the two users choose the
same power level, both users fail. Consequently, we have
qi|1,2 =

1
2 for i = 1, 2. For qi|i = 1, we have

ϑ1 + ϑ2 = 1, (12)

which is a critical MPR channel.

B. QUEUEING PROCESS
Since the length of idle slot (σ ) and that of a transmission
period such as a successful packet transmission slot and a
collision T are different, we define an embedded point in
this CSMA system as the end of a time epoch, where either
idleness or transmission is over. Let tk denote the time epoch
of an embedded point and Qi(tk ) denote the queue length
process of the ith user at the corresponding time epoch as
in Fig. 1. Then, the evolution of Qi(tk ) over time can be
expressed as

Qi (tk+1) = [Qi (tk) − Ci (tk)]+ + λi(tk+1 − tk ), (13)

where [x]+ = max{x, 0} and λi(tk+1 − tk ) denotes the
number of packet arrivals at the ith user between tk and tk+1.
Particularly, the service process, Ci (tk), is expressed as

Ci(tk ) =

{
1, with probability ps,i,
0, with probability ps,i,

(14)

where ps,i denotes the packet transmission success probabil-
ity via random access.

We consider two cases for ps,i as follows: The first case is
a two-user MPR CSMA system: If two users have at least one
packet to send, ps,i can be expressed as

ps,i =pi
(
qi|{i}p3−i + qi|{i,3−i}p3−i

)
. (15)

Note that for i = 1 (or 2), we have 3 − i = 2 (or 1) in (15),
which indicates the other user.

The second case is an N -user system: In this case, ps,i
depends on the physical layer. Let us assume anMPR channel
that if the number of simultaneously transmitting users is not
more than M , all of them make a successful transmission.
When N users have non-empty queue, user i’s transmission
is successful if

ps,i = pi
∑

T ⊆N \i,
|T |≤M−1

∏
j∈T

pj
∏

k∈T c\i

pk , (16)

where N \i is the set N except user i.
Let Q(tk ) = [Qi(tk )] for i ∈ {1, . . . ,N } denote the

entire queueing process of N users in slotted CSMA systems.
According to (13), Q(tk ) is an N -dimensional Markov
process. Then, the queueing process (or system)Q(tk ) is said
to be stable if the following holds:

lim
tk→∞

Pr [Q(tk ) < y] ≡ F (y) and lim
y→∞

F (y) = 1. (17)

Because the existence of the limiting distribution as shown
in (17) implies the positive recurrence of the aperiodic and
irreducible Markov chain corresponding to Q(tk ), it implies
that, e.g., for a stable system with two users, we must have
Pr[Q1(tk ) = 0,Q2(tk ) = 0] > 0, Pr[Q1(tk ) = 0,Q2(tk ) >

0] > 0 and Pr[Q1(tk ) > 0,Q2(tk ) = 0] > 0 as tk goes
to infinity. This means that none of the two users can be
saturated.

C. ANALYTICAL FRAMEWORK OF STABILITY REGION
This work makes use of the analytical framework in [6]: First,
we denote by λ = [λi] and p = [pi] for i ∈ {1, 2, . . . ,N } the
packet arrival rate vector and the (re)transmission probability
vector of the system with N users, in which λi and pi are the
mean packet arrival rate and the (re)transmission probability
of user i. The conditional and unconditional stability regions
can be defined as follows.

Definition 1. The conditional stability region subject to the
(re)transmission probability vector p is defined as a vector
set of having all possible combinations of λ, denoted by 3p,
as long as (17) holds for a given p.

Definition 2. The (unconditional) stability region, denoted
by3, is defined as a vector set with all possible combinations
of λ that satisfies (17) achieved by some vector p.

Unless otherwise specified, this paper refers to the stability
region as the unconditional one. Note that the difference
between 3p and 3 is that we can obtain 3p for a given
p, whereas we have 3 if there exists some p of making 3

feasible. Accordingly, we can express 3 as

3 =

⋃
p∈[0,1]N

3p, (18)

where the vector p ∈ [0, 1]N has its ith element pi ∈ [0, 1]
for i ∈ {1, 2, . . . ,N }.
Suppose that system S has two users, say user 1 and user 2.

Let Q1 (or Q2) denote user 1’s (or user 2’s) queue length.
Since Ci(tk ) for i = 1, 2 in (13) depends on each user’s
queue state, i.e., empty or not, it is not easy to obtain the
conditional stability region, 3p, by using a two-dimensional
Markov chain for the system with two users.

In order to facilitate our stability analysis on this original
system S, we introduce a stochastic dominant system as
a hypothetical auxiliary system [4]; we shall see that it is
relatively easier to obtain the conditional stability region
of the (stochastic) dominant systems, which is denoted by
3∗

p, because it enables us to circumvent the analysis of the
two-dimensional Markov chain.

Let S∗

1 (or S∗

2 ) denote a dominant system, in which user
1 (or user 2) is designated as a dominant user in the system.
The role of the dominant user 1 (or user 2) in S∗

1 (or S∗

2 )
is to continue to transmit dummy packets with probability p1
(or p2) even if Q1 (or Q2) = 0, while it transmits the real
packet at the head of its queue if Q1 (or Q2) > 0. Note
that the dummy packet also occupies the transmission time
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and can collide with the other user’s dummy or real packet
transmissions. In addition to S∗

1 and S∗

2 , we can have another
dominant system denoted byS∗

0 , in which both users continue
to transmit dummy packets when their queues are empty.

The physical difference between the original system S
and the dominant system S∗

i is that the packet transmission
of dominant user i can collide with that of the other
non-dominant user 1 more often in the dominant system
than original system S, because dominant user i transmits
either real packets if Qi > 0, or dummy packets when
Qi = 0. Thus, Q1 and Q2 in the dominant systems would
be at least larger than those in S at the embedded points if the
queueing process starts with the users having identical initial
conditions on their queues in both systems. More details are
found in [6]. The dominant system can also make it simple
to analyze the queueing process of the non-dominant user
because the state of the queue of the dominant user is always
non-empty. More specifically, as we do not need to consider
the state of the dominant user’s queue, the queueing analysis
for the non-dominant user is reduced to anM/G/1 queueing
analysis.

To obtain the conditional stability region of a dominant
system, let 3∗

p,i denote the conditional stability region of the
corresponding dominant system, S∗

i for i = 0, 1, 2, whose
definition follows that of3p. The overall conditional stability
region3∗

p of the dominant systems is the union of the stability
regions of each dominant system:

3∗
p =

2⋃
i=0

3∗
p,i. (19)

In comparison with the original system, we can have

3p ⊇ 3∗
p. (20)

This implies that the conditional stability region of the
dominant systems is a subset or an identical set of the original
system for the mean packet arrival rates due to dummy
packet transmissions. After obtaining 3∗

p, we can find 3p
by utilizing the indistinguishableness property between the
original system S and the dominant systems [4], [6]: As the
mean packet arrival rate λi increases in the dominant systems
so that the dummy packets are completely replaced with the
real packets, the original and stochastic dominant systems
are not distinguishable, i.e., identical. At the boundary, if the
dominant system is unstable, then the original system is also
unstable. Thus, the equality holds in (20). In what follows,
we obtain 3∗

p,i for i = 0, 1, 2, respectively.

III. STABILITY OF MPR CSMA SYSTEMS
Let us consider S∗

0 , where both users are designated as
dominant users, i.e., both users keep on transmitting real or
dummy packets. Therefore, in calculating one user’s packet
transmission success probability, denoted by ps,i for i = 1, 2,
it is unnecessary to take into account the other user’s queue
state, i.e., empty or non-empty. Thus, we can write ps,i as
in (15).

By applying Loynes’ theorem [34], which shows that a
queueing system is stable only if the mean packet arrival rate
to user i is less than its service rate, we have

Lλi < ps,i for i = 1, 2, (21)

where L denotes the average time between two consecutive
embedded points, i.e., L = E[tk+1 − tk ]. We can obtain L as

L = p1p2σ + (1 − p1p2)T , (22)

which is also independent of both users’ queue states. The
left-hand side (LHS) of (21) indicates the average number of
arriving packets to user i during L, while the right-hand side
(RHS) represents the average number of packets successfully
transmitted. Using (21), the following lemma finds the
conditional stability region of the dominant system S∗

0 .

Lemma 1. The conditional stability region of stochastic
dominant system S∗

0 in (19) is expressed as

3∗

p,0 = {(λ1, λ2)|λ1 < Ap, λ2 < Bp}, (23)

where Ap and Bp are given as

Ap =
q1|{1}
T

p1(1 − ϑ1p2)
1 − c p1p2

(24)

and

Bp =
q2|{2}
T

p2(1 − ϑ2p1)
1 − c p1p2

. (25)

The variable c is defined as c ≜ σ
T .

Proof: See Appendix A.

The following lemma investigates the conditional stability
region of the remaining dominant systems.

Lemma 2. The conditional stability regions of stochastic
dominant systems S∗

1 and S∗

2 in (19) are expressed respec-
tively as

3∗

p,1 = {(λ1, λ2)|λ1 < αp1 (λ2), λ2 < Bp}, (26)

and

3∗

p,2 = {(λ1, λ2)|λ1 < Ap, λ2 < βp2 (λ1)}. (27)

In (26) and (27), αp1 (λ2) and βp2 (λ1) are respectively
expressed as

αp1 (λ2) =
q1|{1}p1
T

 1
1 − p1c

+

(
ϑ1 −

1
1 − p1c

) λ2T
q2|{2}

1− ϑ2p1


(28)

and

βp2 (λ1) =
q2|{2}p2
T

 1
1 − p2c

+

(
ϑ2 −

1
1 − p2c

) λ1T
q1|{1}

1−ϑ1p2

 .

(29)

Proof: See Appendix B.
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FIGURE 3. Conditional stability region of a two-user p-persistent CSMA
system.

The region of3∗

p,0 is depicted as a small rectangle in Fig. 3,
where the region of 3∗

p,2 is also shown. Note that βp2 (λ1) is
the service rate of the user 2’s queue. When λ1 = 0 in (29),
or π0 = 1, βp2 (λ1) can be

βp2 (λ1) ≤
p2q2|{2}

p2σ + p2T
=
q2|{2}
T

·
p2

1 − p2c
= Bmax

p2 , (30)

in which Bmax
p2 is the service rate of user 2’s queue when

user 1 always has nothing to send.
Similarly, the upper-bound of αp1 (λ2) is given by

αp1 (λ2) ≤
p1q1|{1}

p1σ + p1T
=
q1|{1}
T

·
p1

1 − p1c
= Amax

p1 , (31)

where the equality holds when the probability of user 2’s
queue length is zero, i.e., φ0 = 1 due to λ2 = 0. This is given
in (57) in Appendix C. As illustrated in Fig. 3, it is easy to
check that3∗

p,0 ⊆ 3∗

p,1 and3∗

p,0 ⊆ 3∗

p,2. Therefore, we have
3∗

p = 3∗

p,1
⋃

3∗

p,2.
Since we obtained the conditional stability region of the

dominant systems thus far, let us move to that of the original
system.

Theorem 1. Given retransmission probability vector p, the
conditional stability region of a two-user p-persistent CSMA
system can be obtained as

3p =

{
(λ1, λ2)|(λ1, λ2) ≥ (0, 0), (λ1, λ2) lies below

the curve λ2 = g(λ1) for 0 ≤ λ1 < Amax
p1

}
,

(32)

where

g(λ1) =

{
βp2 (λ1), for 0 ≤ λ1 < Ap,

β̃p1 (λ1), for Ap ≤ λ1 < Amax
p1 ,

(33)

with

β̃p1 (λ1) =
q2|{2}
T

·

(
1 − ϑ2p1

) (
1 − (1 − p1c)

λ1T
q1|{1}p1

)
1 − ϑ1(1 − p1c)

.

(34)

Proof: See Appendix D.
We turn to find the (unconditional) stability region for

p ∈ [0, 1]N : The stability region 3 of the original system
is obtained from the conditional stability region by

3 =

⋃
p∈[0,1]2

3∗
p. (35)

Before proceeding further, let 3∗
i denote the stability region

of S∗
i for i ∈ {0, 1, 2}. The following theorem shows how 3∗

i
for i ∈ {0, 1, 2} is related to each other.

Theorem 2. The stability region of the original system with
two users and that of the dominant systems are identical; that
is, we have for all i ∈ {0, 1, 2},

3 = 3∗
= 3∗

i =

⋃
p∈[0,1]2

3∗
p,i

=

⋃
p∈[0,1]2

{
(λ1, λ2)|λ1 < Ap, λ2 < βp2 (λ1)

}
. (36)

Proof: See Appendix E.
In contrast with 3∗

p,i for i ∈ {0, 1, 2}, which has a distinct
region,3∗

i is identical to each other, since3∗
i can be achieved

by using vector p ∈ [0, 1]. While 3 is the union of all 3∗
i ’s,

3 is also identical to any of 3∗
i . We shall depict 3 for some

specific two-user CSMA systems in Section IV. It is also
notable that the stability region for two classes of users is
obtained by the MFA in [21], [22], and [24], which assumed
that the users’ queueing process becomes decoupled when
they are saturated. Theorem 2 validates that their assumption
is true for the stability region of two-user system.

The following theorem finds the stability region explicitly.

Theorem 3. The stability region of a two-user MPR CSMA
system is described as

3 = {(λ1, λ2)|(λ1, λ2) ≥ (0, 0),

(λ1, λ2) lies below the curve λ2 = h(λ1)}, (37)

in which for ϑ1 + ϑ2 ≥ 1 (strong-reception capability) we
have

h(λ1)

=


q2|{2}
T

(
1 −

ϑ2

ϑ1
·

λ1T
q1|{1}

)
, for 0 ≤ λ1 ≤

q1|{1,2}
T

,

q2|{2}
T

ϑ2

ϑ1

(
1 −

λ1T
q1|{1}

)
, for

q1|{1,2}
T

< λ1 <
q1|{1}
T

.

(38)

In particular, for λ1 =
q1|{1,2}
T in (38), we have h(λ1) =

q2|{2}
T ϑ2 =

q2|{1,2}
T .
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For ϑ1 +ϑ2 < 1 (weak-reception capability), the envelope
is found as

h(λ1) =



q2|{2}
T

(
1 −

ϑ2

ϑ1
·

λ1T
q1|{1}

)
, for 0 ≤ λ1 ≤ u1,

J (λ1), for u1 < λ1 < u2,
q2|{2}
T

ϑ2

ϑ1

(
1 −

λ1T
q1|{1}

)
, for u2 ≤ λ1 <

q1|{1}
T

,

(39)

in which u1 and u2 are given in (82) and (86) in Appendix F.
respectively. In (39), J (λ1) is expressed as

J (λ1) =
q1|{1}
T

·
1

(1 − ϑ1c)2

{
√
c

√
λ1T
q1|{1}

(
ϑ1 + ϑ2 + ϑ1ϑ2c

)
−

√
cϑ1 + c

(
1 −

λ1T
q1|{1}

)}2

.

Proof: See Appendix F.
Notice that the stability region of the strong and weakMPR

channels includes linear boundaries in λ1 and λ2. However,
they have different slopes due to ϑ1 + ϑ2 > 1 for the
strong MPR and ϑ1 + ϑ2 < 1 for the weak MPR. Fig. 4
sketches the unconditional stability region of CSMA system
with the strong, weak, and no MPR channels according to
Theorem 3. In particular, the stability region of CSMA system
without MPR channel is found in [6]; that is, (λ1 + λ2)T +

2
√

σTλ1λ2 = 1 for q1|{1} = q2|{2} = 1. It shows how much
an MPR channel can enlarge the stability region of CSMA
systems. This will be discussed again in Section IV.

As a remark, from the results in [24] and [27] and
Theorems 2 and 3, we can extend the stability region of the
two-user system into the N -user system with multiple classes
without rigorous proof for further discussion; its validity
should be further investigated as future work.

Remark 1. Suppose J classes (or group) of users, each
of which has Nj users with identical arrival rate λj and
(re)transmission probability pj for j ∈ {1, 2, . . . , J}. Let qi be
the probability that i packets are successfully received when
i packets are transmitted at the same time, in which we have
qi = 0 for i > M. Thus, niqn1+n2+···+nJ indicates that ni
packets from class i are successfully transmitted when the sum
of the packets from all classes, i.e., ni + n2 + · · · + nJ ≤ M,
are transmitted. The boundary of the stability region for this
system, denoted by B, is the boundary of the following set S:

S =

{
(Njλj)|Njλj =

Sj
σPI + T (1 − PI )

}
, (40)

where PI is the probability of the idle channel:

PI =

J∏
j=1

(1 − pj)Nj . (41)

Note that Sj denotes the average number of packets from
class j that are successfully transmitted during the average

FIGURE 4. Unconditional stability region of a two-user p-persistent CSMA
system.

renewal period:

Sj =

∑
n1+···+nJ≤M

0≤nj≤M

njqn1+···+nJ

J∏
i=1

(
Ni
ni

)
pnii (1 − pi)Ni−ni .

(42)

For M = 2, we can relate q1 = q1|{1} = q2|{2} and
q2 = q1|{1,2} = q2|{1,2}. This remark will be discussed in
Section IV.

A. STABILITY REGION FOR N SYMMETRIC USERS, N > 2
In this section, let us consider theMPRCSMA system, where
N users have the same packet arrival rate and employ an
identical retransmission probability p. As in [15] and [32],
we assume a specific but widely adopted MPR channel that
as long as the number of transmitting users is less than or
equal toM , the users make a successful transmission.

Theorem 4. For a symmetric N-user CSMA system, i.e., λ =

λi, and p = pi for all i, the system is stable, if we have

λ < max
0≤p≤1

HM (p,N )/N , (43)

whereH(p,N ) is expressed as

HM (p,N )

=

∑M
i=1 iB

N
i (p)

σBN
0 (p) + T

∑M
i=1 BN

i (p) + T
(
1 −

∑M
k=0 BN

k (p)
) ,

(44)

in which BN
k (p) denotes a binomial distribution with

parameters, N and p, i.e., BN
k (p) =

(N
k

)
pk (1 − p)N−k for

0 ≤ k ≤ N. Otherwise, the system is unstable.
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Algorithm 1 Pseudo-Bayesian Backoff Algorithm
1. Initialize λ0 = 0, ν0 = 1, θ = 0.99, and do the following
at tk .
2. if the current slot is idle or success then
3. νtk = max

(
νtk−1 − x∗

M + m− mb, 0
)

4. else if Collision then
5. νtk = νtk−1 + 4(x∗

M ,M )
6. end if
7. λtk = θλtk−1 + (1 − θ )

mb
btk − btk−1

8. νtk = νtk + λtk
9. ptk = min(x∗

M/νtk , 1).

TABLE 1. The values of x∗

M , 4(x∗

M , M), and 2(x) for different M’s.

Proof: The numerator in (44) shows the average number
of packets successfully transmitted, whereas the denominator
is the average renewal cycle. Accordingly,H(p,N ) represents
the throughput of symmetric N -user system conditioned on
p, when all the users have a packet to send, i.e., stochastic
dominant system. The overall inputs to this system should be
less than the throughput for the stochastic dominant system
to be stable. Then, the conditional stability region of a
symmetric CSMA system is expressed as

2p = Nλ < HM (p,N ). (45)

In this system, the stochastic dominant system becomes
unstable if Nλ ≥ H(p,N ). Finally, the original system would
be indistinguishable from the stochastic dominant system as
the arrival rate becomes closer to each user’s throughput. The
unconditional stability region is now expressed as (43).
In order to investigate the asymptotic analysis for (43), let

x = pN denote the average transmission attempt. As N goes
to infinity, this system is stable if

2M (x) < max
x

lim
N→∞

HM (x/N ,N )

≈ max
x

∑M
i=1 iφi(x)

σe−x + T
∑M

i=1 φi(x) + T
(
1 −

∑M
i=0 φi(x)

)
= max

x

∑M
i=1 iφi(x)

(σ − T )e−x + T
. (46)

We can maximize 2M (x) with respect to x. Let x∗
M be

the maximizer of (46). Table 1 presents x∗
M and 2M (x∗

M ).
We compare the maximum of HM (p, 15) for N = 15, i.e.,
throughput with 15 users with respect to p. It can be seen
that 2M (x∗

M ) for a large population is slightly lower than
HM (p, 15) for a small population. Additionally, 4(x∗

M ,M )
is used in Algorithm 1, which will be discussed in the next
section.

FIGURE 5. Conditional stability region and its validation, p1 = p2 = 0.5.

B. BACKOFF ALGORITHM FOR N-USER SYSTEM
Suppose ntk backlogged users present in the system at
embedded point tk . We want the users to employ a backoff
algorithm in order to control (re)transmission probability p
of maximizing throughput HM (p, ntk ). To do this, each user
should know ntk to realize throughput-optimal p. However,
it is very hard for them to know it. In the backoff algorithm
presented in Algorithm 1, the AP estimates its mean value,
i.e., E[ntk ], which is denoted by νtk , and then broadcasts
throughput-optimal ptk at the embedded point tk . Then, the
backlogged users can use ptk . The derivation for each update
equation on νtk is detailed in Appendix G. Here, we discuss
how it works.

Once they sense the channel idle, the users with a
non-empty queue (re)transmit their packet with probability
ptk−1 , which has been broadcast at embedded time tk−1 by the
AP. Notice that the AP can broadcast this only at embedded
points since the users read the downlink broadcast message
once sensing the channel. Users who transmit the last packet
in their queue add one bit to it, say be ∈ {0, 1}, to inform
the AP that their queue becomes empty. If they make a
successful transmission, the AP adds up bes. The sum of
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FIGURE 6. Conditional stability regions subject to user’s parameters.

TABLE 2. MAC layer parameters.

these bits is denoted by mb. This shows how many users’
queue becomes empty, which should be subtracted from the
backlog estimation as in line 3. Notice that if the users make
a successful transmission, but their queue is not empty, they
are still backlogged users.

Depending on the channel outcome, the AP updates νtk as
shown in lines 3 and 5. In line 5 of Algorithm 1 and in Table 1,
4(x∗

M ) is a correction factor for νtk upon collision.
Let btk be the time epochwhen at least one user with the last

packet in its queue successfully transmits it. Thus, the interval
btk − btk−1 indicates the time period that mb > 0 occurs. In
line 7, the system estimates the mean rate at which a user
with an empty queue has a packet to send, which increases
the backlog size. The parameter θ is a weighting factor that
balances the previously estimated and newly observed rates
based on the recent backlog size. Here, it is notable that the
leaving rate out of the system would be equal to the joining
rate to the system in steady-state.

IV. NUMERICAL RESULTS
In our numerical studies, to set T and σ , we use (7) and the
values in Table 2, where MAC layer parameters for IEEE
802.11a/g are listed when the transmission data rate at the
physical layer is set to 24 Mbps. When normalizing the
system parameter by T , we have σ = 0.057. Regarding
simulation for queueing performance, each simulation run
time is 107 (sec), and the mean of five time-averaged results
are presented.

Understanding conditional stability region: In Figs. 5-6,
we examine and simulate the conditional stability region as
qi|{1,2} increases.

FIGURE 7. Stability region of MPR CSMA system.

First, consider λ1 = 0.2 in Fig. 5(a), which is derived
from (32). As long as λ2 is less than 0.7 for q1|{1,2} =

q2|{1,2} = 0.3, the conditional stability region means that both
users’ queue length will remain finite. If q1|{1,2} and q2|{1,2}
are changed from 0.3 to 0.75, their queue remains finite as
λ2 increases up to 0.815. This behavior is further illustrated
in Fig. 5(b), where user 2’s queue length grows explosively
as λ approaches 0.7 for q1|{1,2} = q2|{1,2} = 0.3 or λ

approaches 0.8 for q1|{1,2} = q2|{1,2} = 0.75. Notably, this
behavior in simulation aligns with our analytical results from
the conditional stability regions in Fig. 5(a).

Let us recall in Figs. 5(a) and 6 that λ2 = Bmax
p2 for

λ1 = 0 and λ1 = Amax
p1 for λ2 = 0. In Fig. 6(a), we set

q1|{1,2} = q2|{1,2} = 0.3 and p1 = p2 = 0.1 and increase
p1 and p2 up to 1. As either or both p1 and p2 become
small, Amax

p1 and Bmax
p2 decrease. This shrunk the conditional

stability region. If q1|{1,2} and q2|{2} are increased to 0.75 in
Fig. 6(b), the conditional stability region become much large.
For q2|{1,2} = 0.1 in Fig. 6(d), i.e., user 2’s transmission
becomes less successful upon both users’ transmission,
the conditional stability region of user 2 gets significantly
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FIGURE 8. Stability region of MPR CSMA system for two groups of users.

TABLE 3. Comparison of x∗

M , and 2M (x) in MPR S-ALOHA.

smaller. In Fig. 6(c), if only p2 decreases back to 0.5, user 2’s
region gets further lowered.

Characterization of stability region: Fig. 7 depicts the
stability region as qi|{1,2} for i ∈ {1, 2} increases. For
comparison, we consider the stability region of an (ideal)
time division multiple access (TDMA) system with optimal
time-sharing of a slot as

CTD =

⋃
0≤θ̂≤1

{(λ1, λ2)|λ1 < θ̂q1|{1}, λ2 < q2|{2}(1 − θ̂ )},

(47)

where θ̂ denotes the time proportion of a slot assigned to user
1. As expected, when qi|{1,2} increases, the stability region
becomes larger, particularly for the region for λ1 = λ2.

FIGURE 9. Queueing delay with different M’s (N = 15).

Note that even for the systems without MPR, as σ →

0, i.e., instantaneous channel sensing capability and zero
redundancy of channel sensing, its stability region becomes
equal to that of ideal TDMA [6]. When MPR channel
becomes stronger in Fig. 7(b), the rectangular region for
0 ≤ λi ≤ 1 for i ∈ {1, 2} is the stability region.
Especially, if q2|{1,2} > q1|{1,2}, the region for user 2 is
slightly increased. From [4] and [6], the stability region of
CSMA (withoutMPR) is much larger than that of S-ALOHA.
However, Fig. 7(b) shows that when the strong MPR channel
is considered in CSMA system, its stability region might
not be much different from the strong MPR S-ALOHA.
In other words, advanced signal processing capability in
the physical layer might enhance a low throughput of S-
ALOHA. For strong-MPR CSMA with a very small number
of users, sensing might not significantly improve the system
throughput.

In Fig. 8, we depict the boundary of the stability region
of the systems with two groups of users as in [24] and [27],
based on Remark 1. Each group has Ni users who utilize
retransmission probability pi for i ∈ {1, 2}. Furthermore,
we assume M = 2, q1 = 1, and q2 = 0.3 as a weak MPR
in Fig. 8(a), and q2 = 0.75 as a strong MPR in Fig. 8(b),
respectively. As Ni increases, generally, the stability region
gets shrunk. For Ni = 10, the boundary of the stability region
becomes a straight line both inweak and strongMPR channel.
The boundary point of each axis indicates the maximum
arrival rate that each group can accommodate under stability
when the other group does not transmit at all. Moreover, for
a strong MPR channel, the boundary of the stability region
with Ni = 3 is slightly larger than that with Ni = 1 as any of
Niλi → 0. The reason is that for the strong MPR channel
with q2 = 0.75, only two users are insufficient to fully
exploit MPR channel capacity. More precisely, for a two-user
system with λi = 0, only one user can make a successful
transmission. However, as Ni increases slightly, if one group
of users may not attempt to transmit at all, more than one
user in another group can enjoy successful transmissions.
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FIGURE 10. Queueing delay with different population sizes.

Interestingly, for the strong MPR channel, as N increases, the
stability region of MPR CSMA becomes that of ideal TDMA
in (47).

Effect of MPR capabilityM : In order to validate Theo-
rem 4, i.e., the stability condition for N symmetric users,
as MPR capability M increases, we observe the average
queueing delay for N = 15, where the users employ
Algorithm 1. As a benchmark system, we consider a genie-
aided (GA) system [36], where the AP can get the exact
backlog size ntk , instead of estimation on E[ntk ]. Thus, the
GA system can yield the lowest queueing delay.

For each M , the maximum throughput or stability condi-
tion2M (x∗

M ) is given in Table 1. As λ goes closer to2M (x∗
M )

in Fig. 9, the queueing delay rises explosively. It can be
seen that the proposed algorithm keeps the system stable
reasonably well. Let us compare the throughput of MPR
CSMA with MPR S-ALOHA. For M -MPR capability, the
throughput of MPR S-ALOHA for a large population can be
expressed as

2
†
M (x) =

M∑
i=1

iφi(x), (48)

FIGURE 11. Estimation by the proposed backoff algorithm.

where x = Np. Table 3 shows the maximizer x∗
M for (48) and

the maximum of (48) with x∗
M . For a large population, as M

increases, the difference between the maximum throughput
of MPR CSMA and that of MPR S-ALOHA seems to be
vanishing.

Effect of population size: In Figs. 10(a)-10(b), we consider
the average queueing delay by increasing the number of users
for M = 2 and 3. Notice that for the GA system that
has perfect knowledge of the backlog size, even though the
population size changes, the performance remains almost the
same since it makes use of the exact backlog information.
However, as the population size increases from 15 to 25,
the queueing delay slightly increases with the proposed
algorithm.

Fig. 11 depicts the estimated backlog size by the proposed
algorithm and the exact backlog size for M = 3. The system
starts with N = 10 and λ = 0.14 (the packet arrival rate per
user). At t = 2000, ten more users join, but λ is reduced to
0.07. Further, at t = 4000, five users leave the system, while
λ decreases, as shown in Fig. 11. At t = 6000, λ increases.
We can see that the proposed algorithm properly tracks the
true backlog size, even as the population and packet arrival
rates change over time.

V. CONCLUSION
This work characterized the stability regions of MPR p-
persistent CSMA systems using the stochastic dominant sys-
tem. The first result is that we showed how the stability could
be enlarged or shrunk according to the users’ parameters for
the systems with two asymmetric users. If the MPR channel
is weak, i.e., q1,2|{1,2} < q1,2|{1,2} ≤ 1, an optimized
CSMA without an MPR channel might be as good as weak-
MPR CSMA. Moreover, for strong-MPR CSMA, we came
to the conclusion that channel sensing could be relaxed since
S-ALOHA with the same MPR capability could show a
performance close to it. A second result is that we obtained
the stability condition of the system with N symmetric
users and developed the queue-stabilizing backoff algorithm.
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It was demonstrated that the proposed algorithm ensures the
stability of the system.

APPENDIX A PROOF OF LEMMA 1
We can find (23) by the renewal reward theorem [35]; that is,
L represents the expected cycle length of a renewal, while ps,i
indicates the average reward obtained during L. From (21),
we have

λ1 <
ps,1
L

=
q1|{1}p1p2 + q1|{1,2}p1p2
T
(
cp1p2 + 1 − p1p2

)
=
q1|{1}
T

p1(1 − ϑ1p2)
1 − c · p1p2

≡ Ap. (49)

This means that the packet arrival rate for user 1 should not
be greater than throughput per renewal cycle. Similarly, for
user 2, we can find

λ2 <
ps,2
L

=
q2|{2}p2p1 + q2|{1,2}p1p2
T
(

σ
T p1p2 + 1 − p1p2

)
=
q2|{2}
T

p2(1 − ϑ2p1)
1 − c · p1p2

≡ Bp. (50)

APPENDIX B PROOF OF LEMMA 2
In system S∗

2 , where user 2 transmits dummy packet, user 1’s
queue can be stabilized if λ1 < Ap. Since user 1 is not a
dominant user inS∗

2 , user 2’s packet transmission is interfered
by user 1 only when Q1 > 0. To observe this event explicitly,
let us denote byπ0 the probability that user 1’s queue is empty
at an embedded point, which is given by (56) in Appendix C.
Suppose that user 1’s queue is stable, which represents

π0 > 0. Then, the packet transmission success of user 2
occurs with probability q2|{2}p2π0 + ps,2π0, which shows
the dependence on the state of user 1’s queue. By applying
Loynes’ theorem, we have

λ2 <
q2|{2}p2π0 + ps,2π0

π0(p2σ + p2T ) + π0L
= βp2 (λ1), (51)

where the numerator represents the probability that a packet
transmission of user 2 is successful and the denominator
shows the average time between two consecutive embedded
points seen by user 2.

When substituting π0 in (56) into (51) and rearranging (51)
with respect to λ1, we can write the RHS of (51) as a function
of λ1 by (52), as shown at the bottom of the next page.

Similarly, for stochastic dominant system S∗

1 , where
user 1 is a dominant user, we can obtain 3∗

p,1 by

3∗

p,1 = {(λ1, λ2)|λ1 < αp1 (λ2), λ2 < Bp},

in which αp1 (λ2) is expressed as

αp1 (λ2) =
q1|{1}p1φ0 + ps,2φ0

φ0(p1σ + p1T ) + φ0L
. (53)

Note that φ0 is the probability that user 2’s queue length is
zero at an embedded point. This φ0 is also given by (57)
in Appendix C. The same argument for conditional stability
region S∗

2 can be applied to S∗

1 .

APPENDIX C QUEUEING BEHAVIOR FOR USER 1 IN S∗

2
We assume that k packets arrive at user 1’s queue according
to a Poisson distribution with the mean rate λ1 (packets/µsec)
during x µsec. Since it takes σ (µsec) for an idle channel
and T (µsec) otherwise, user 1’s queue is an M/G/1 queueing
system. Using Pollaczek-Khinchine (PK) formula for M/G/1
queueing system, we can write the probability generating
function (PGF) for the queue length distribution as

5(z) =
(1 − z)B∗((1 − z)λ)π0

B∗((1 − z)λ) − z
, (54)

where π0 is the probability of the empty queue, and B∗(s)
denotes the Laplace transform of the service time distribution
for user 2’s queue. We can find it as

B∗(s) = ps,1e−sT
∞∑
i=0

∞∑
k=0

(
i+ k
k

) (
p1p2e

−sσ )i
×

((
1 − p1p2 − ps,1)e−sT

))k
= ps,1e−sT

∞∑
n=0

(
n
k

) (
p1p2e

−sσ )n−k
×

((
1 − p1p2 − ps,1)e−sT

))k
=

ps,1e−sT

1 −

[
p1p2e−sσ +

(
1 − p1p2 − ps,1)e−sT

) ] . (55)

From limz→1 5 (z) = 1, we have π0 as

π0 =
ps,1 − Lλ1

ps,1 − Lλ1 + (p2σ + p2T )λ1
. (56)

Since a stable system has π0 > 0, we have λ1 < ps,1/L in
(56); this agrees with Loynes’ theorem. Similarly using PK
formula, we can also obtain the steady-state probability that
user 2’s queue is empty in S1 as

φ0 =
ps,2 − Lλ2

ps,2 − Lλ2 + (p1σ + p1T )λ2
. (57)

APPENDIX D PROOF OF THEOREM 1
We can rewrite 3p as

3p = 3∗

p,1

⋃
3∗

p,2

= {(λ1, λ2)|λ1 < Ap, λ2 < βp2 (λ1)}⋃
{(λ1, λ2)|λ1 < αp1 (λ2), λ2 < Bp}, (58)

where (26) and (27) are used for 3∗

p,1 and 3∗

p,2, respectively.
Since we have Ap ≤ αp1 (λ2) and Bp ≤ βp2 (λ1), λ2 is

upper-bounded by βp2 (λ1) for λ1 < Ap; on the other hand,
forAp ≤ λ1 < αp1 (λ2), λ2 is upper-bounded byBp. Note that
the maximum of αp1 (λ2) can be Amax

p1 . From λ1 < αp1 (λ2)
in (53), i.e.,

λ1 < αp1 (λ2)

=
q1|{1}p1
T

 1
1 − p1c

+

(
ϑ1 −

1
1 − p1c

) λ2T
q2|{2}

1 − ϑ2p1

 .

(59)
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By solving (90) with respect to λ2, we can obtain another
upper-bound for λ2 as

λ2 < β̃p1 (λ1) ≡
q2|{2}
T

·

(1 − ϑ2p1)
(
1 − (1 − p1c)

λ1T
q1|{1}p1

)
1 − ϑ1(1 − p1c)

.

(60)

Therefore, we have

λ2 ≤ min
(
β̃p1 (λ1),Bp

)
= β̃p1 (λ1). (61)

Summarizing the above, we have 3p that is the region below
the following curve:

g(λ1) =

{
βp2 (λ1), if 0 ≤ λ1 < Ap,

β̃p1 (λ1), if Ap ≤ λ1 < Amax
p1 .

(62)

APPENDIX E PROOF OF THEOREM 2
We can obtain 3∗

2 and 3∗

0, respectively, as

3∗

2 =

⋃
p∈[0,1]2

{
(λ1, λ2)|λ1 < Ap, λ2 < βp2 (λ1)

}
(63)

and

3∗

0 =

⋃
p∈[0,1]2

{
(λ1, λ2)|λ1 < Ap, λ2 < Bp

}
. (64)

From λ1 < Ap in the above, by rewriting (25) with respect to
p1, we obtain

λ1T (1 − p2c)

q1|{1}(1 − ϑ1p2) − λ1Tp2c
< p1 ≤ 1. (65)

Consequently, we have

λ1T (1 − p2c)

q1|{1}(1 − ϑ1p2) − λ1Tp2c
< 1. (66)

By solving the above inequality with respect to λ1, we have

λ1 <
q1|{1}(1 − ϑ1p2)

T
. (67)

For3∗

0, sinceBp is a decreasing function of p1 for 0 ≤ p1 and
p2 ≤ 1, the maximum value of λ2, i.e., Bp, is achieved at
the minimum value of p1 which is constrained by (65). Thus,
substituting the LHS of (65) into Bp, we obtain

λ2 < βp2 (λ1), (68)

which indicates that3∗

0 can be expressed as (63). This proves
3∗

0 = 3∗

2. Similarly, we can also prove 3∗

1 = 3∗

0. Therefore,
we have

3 = 3∗

0 = 3∗

1 = 3∗

2 = 3∗. (69)

APPENDIX F PROOF OF THEOREM 3
From (36), for a given λ1, it can be seen that λ2 is
upper-bounded by βp2 (λ1). In order to maximize λ2 =

βp2 (λ1), we can obtain the following equivalent maximization
problem:

maximize
p2

βp2 (λ1)

subject to 0 ≤ p2 ≤ min(1, pu), (70)

where the constraint is from (67):

pu =
q1|{1} − λ1T

q1|{1}ϑ1
. (71)

To find the solution of (70), we first need to find
dβp2 (λ1)
dp2

= 0.

The expression of
dβp2 (λ1)
dp2

is given by (72), as shown at the
bottom of the next page.

Here, let us write the numerator of (72), i.e., f (p2):

f (p2) = c(1 − ϑ1p2)2

+
λ1T
q1|{1}

(
ϑ2(c+ cp2)2 − (c+ c ϑ1p22)

)
. (73)

If f (p2) ≥ 0, βp2 (λ1) is an increasing function of p2 and,
otherwise, βp2 (λ1) is a decreasing function of p2.
We consider the following two conditions.

A. STRONG MPR CHANNEL: ϑ1 + ϑ2 ≥ 1
In (72), f (p2) is rewritten as

f (p2) =c
[
(1 − ϑ1p2)2 +

λ1T
q1|{1}

{
(ϑ2c− 1)

+ p2
c
c

(
2ϑ2c+ (cϑ2 − ϑ1)p2

) }]
. (74)

βp2 (λ1) =
q2|{2}p2ps,1 − q2|{2}p1p2Tλ1 + q2|{1,2}p1p2(p2σ + p2T )λ1

(p2σ + p2T )ps,1

=
q2|{2}p2(q1|{1}p2 + q1|{1,2}p2) − q2|{2}p2Tλ1 + q2|{1,2}p2(p2σ + p2T )λ1

(p2σ + p2T )(q1|{1}p2 + q1|{1,2}p2)

=
q2|{2}p2
T

 1
1 − p2c

+

ϑ2
λ1T
q1|{1}

1 − ϑ1p2
−

λ1T
q1|{1}

(1 − p2c)(1 − ϑ1p2)

 . (52)
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For λ1T
q1|{1}

< 1, the following inequality holds:

f (p2) ≥
λ1Tc
q1|{1}

{
(1 − ϑ1p2)2 + (ϑ2c− 1)

+ p2
c
c

(
2ϑ2c+ (cϑ2 − ϑ1)p2

)}
=

λ1Tc
q1|{1}

{
(ϑ2c−ϑ1p2)

(
c+cp2
c

)
+p2ϑ2

c
c

(c+ cp2)
}

=
λ1Tc
q1|{1}

(
c+ cp2

c

) (
ϑ2cp2 + (ϑ1 + ϑ2 − 1) p2

)
.

(75)

It can be observed that if ϑ1 + ϑ2 ≥ 1 (strong MPR), f (p2)
is always greater than zero, so is

dβp2 (λ1)
dp2

; that is, βp2 (λ1) is
an increasing function of p2 for 0 ≤ p2 ≤ 1. Therefore, the
maximum value of βp2 (λ1) can be found for p2 = 1. When
plugging p2 = 1 into (29), we have the first equation of (38).
This is valid if we can see if pu ≥ 1 from (71):

pu =
q1|{1} − λ1T

q1|{1}ϑ1
≥ 1 ⇒ λ1 ≤

q1|{1,2}
T

. (76)

On the other hand, if pu < 1, then the maximum of βp2 (λ1)
occurs at p2 = pu. Substituting p2 = pu into (29), we have
the second equation of (38). Note that λ1 can not be larger
than q1|{1}

T due to pu > 0. Therefore, we have (38).

B. WEAK MPR CHANNEL: ϑ1 + ϑ2 < 1
First, we prove that f (p2) is a decreasing function of p2 in a
range of 0 ≤ p2 ≤ 1:

df (p2)
dp2

= 2
(
cϑ

2
1 + ϑ2

λ1T
q1|{1}

c2 −
λ1T
q1|{1}

c ϑ1

)
p2

+ 2c
(

−ϑ1 + ϑ2
λ1T
q1|{1}

c
)

= 2
(

− cϑ1(1 − ϑ1p2) + ϑ2
λ1T
q1|{1}

c(cp2 + c)

− c
λ1T
q1|{1}

ϑ1p2

)
≤ 2cϑ1

(
−
(
1 − ϑ1p2

)
+

λ1T
q1|{1}

c p2

)
≤ −2cϑ1

(
1 − ϑ1p2

) (
1 − c p2

)
≤ 0. (77)

In (77), the first inequality results from the fact that ϑ2 <

1 − ϑ1 and the second inequality is obtained from p2 < pu.

It is easy to check that f (p2) is larger than zero for p2 = 0:

f (p2)
∣∣
p2=0 = c

(
1 −

λ1T
q1|{1}

(1 − ϑ2c)
)

≥ 0. (78)

On the other hand, for p2 = 1, we have

f (p2)
∣∣
p2=1 = cϑ2

1 −
λ1T
q1|{1}

(1 − ϑ1 − ϑ2 + ϑ1c) . (79)

Notice that f (p2)|p2=1 in (79) can be larger or smaller than
zero. Thus, we consider two cases:

1) λ1T
q1|{1}

≤
cϑ2

1
1−(ϑ1+ϑ2)+ϑ1c

: In this case, we have
f (p2)|p2=1 ≥ 0. While f (p2) is a decreasing function of
p2 for 0 ≤ p2 ≤ 1 as proved by (77), we always have
f (p2) ≥ 0 in this case. From (72) it shows that βp2 (λ1)
is an increasing function of p2. Hence, the maximum
value occurs at p2 = min (1, pu). Notice that

1 − pu =

λ1T
q1|{1}

− ϑ1

1 − ϑ1
≤

cϑ2
1

1−(ϑ1+ϑ2)+ϑ1c
− ϑ1

1 − ϑ1

=

−ϑ1[1−(ϑ1+ϑ2)]
1−(ϑ1+ϑ2)+ϑ1c

1 − ϑ1
≤ 0, (80)

where in the first inequality we have used our

assumption λ1T
q1|{1}

≤
cϑ2

1
1−(ϑ1+ϑ2)+ϑ1c

.
According to (80), the maximum value of βp2 (λ1) can
be found at p2 = min(pu, 1) = 1. Consequently,
we have

βp2 (λ1) ≤
q2|{2}
T

(
1 −

ϑ2

ϑ1
·

λ1T
q1|{1}

)
, (81)

which is the first equation of (39). This is valid for λ1 ≤

u1, where u1 comes from our assumption for λ1T
q1|{1}

≤

cϑ2
1

1−(ϑ1+ϑ2)+ϑ1c
=

cϑ2
1

ϑ1+ϑ2+ϑ1c
:

u1 =
q1|{1}
T

cϑ2
1

ϑ1 + ϑ2 + ϑ1c
. (82)

2) λ1T
q1|{1}

>
cϑ2

1
1−(ϑ1+ϑ2)+ϑ1c

: Opposite to the previous case,
this case corresponds to f (p2)|p2=1 < 0. Since f (p2) is a
decreasing function of p2 in the interval p2 ∈ [0, 1] and
we already obtained f (p2)|p2=0 > 0 and f (p2)|p2=1 <

0, there exists one value of p2 that satisfies f (p2) = 0.

dβp2 (λ1)
dp2

=
q2|{2}p2
T

{
c

(1 − c p2)2
+

λ1T
q1|{1}

ϑ2

(1 − ϑ1p2)2
+

λ1T
q1|{1}

−c− ϑ1 cp22
(1 − ϑ1p2)2(1 − c p2)2

}

=
q2|{2}p2
T

c(1 − ϑ1p2)2 + ϑ2
λ1T
q1|{1}

(c+ cp2)2 −
λ1T
q1|{1}

(c+ c αp22)

(1 − ϑ1p2)2(1 − c p2)2

=
q2|{2}p2
T

f (p2)

(1 − ϑ1p2)2(1 − c p2)2
. (72)
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Let p◦

2 denote the value at which f (p2) = 0. It is found
as

p◦

2 =

−c
(
−ϑ1 + ϑ2

λ1T
q1|{1}

c
)

−
√
c
√
D

cϑ1
2
+ ϑ2

λ1T
q1|{1}

(c2 − c ϑ1)
, (83)

where D is expressed as

D = c
(

−ϑ1 + ϑ2
λ1Tc
q1|{1}

)2

−

[
cϑ

2
1 +

λ1Tc
q1|{1}

(
ϑ2c− ϑ1

)]
×

(
1 + (ϑ2c− 1)

λ1T
q1|{1}

)
. (84)

For p◦

2 < pu < 1, we can see that p◦

2 maximizes
βp2 (λ1). Substituting p

◦

2 into (29) yields the following
relation:

βp2 (λ1) ≤
q1|{1}

T (1 − ϑ1c)2

{
√
c

√
λ1T
q1|{1}

(
ϑ1 + ϑ2 + ϑ1ϑ2c

)
−

√
cϑ1 + c

(
1 −

λ1T
q1|{1}

)}2

≜ J (λ1)

(85)

for u1 < λ1 < u2. Notice that from p◦

2 < pu, we can
find u2 as

u2 =
q1|{1}
T

·
ϑ1 + ϑ2 + cϑ1ϑ2

ϑ1 + ϑ2 + ϑ2c
. (86)

Finally, at p2 = pu, referring to the second equation of
(38), we have

βp2 (λ1) ≤
q2|{2}
T

ϑ2

ϑ1

(
1 −

λ1T
q1|{1}

)
, (87)

for u2 ≤ λ1 <
q1|{1}
T .

APPENDIX G DERIVATION OF BACKOFF ALGORITHM
Let N̂ be the random variable for the number of backlogged
users at a slot in the system. The joint probability that a slot is
found idle and n backlogged users in the system is expressed
as

Pr[I , N̂ = n] = Bn
0(p)φn(ν) =

((1 − p)ν)n

n!
e−ν . (88)

The marginal probability of an idle slot is found by

Pr[I ] =

∞∑
n=0

Pr[I , N̂ = n] = e−pν . (89)

The a posteriori probability that the system has n backlogged
users given an idle slot is obtained as

Pr[N̂ = n|I ] = φn(ν(1 − p)). (90)

By substituting p = x∗/ν into (90), we have

E[N̂|I ] = ν − x∗, (91)

which implies that we only need to subtract x∗ from the
previously estimated mean number of backlogged users after
an idle backoff slot is observed.

Let us consider thatm packets are successfully transmitted.

Pr[S = m, N̂ = n] = Bn
m(p)φn(ν)

=

(
n
m

)
pm(1 − p)n−m

νn

n!
e−ν . (92)

As before, we can find the marginal probability of m
successful packet transmissions as

Pr[S = m] =

∞∑
n=m

Pr[S = m, N̂ = n] =
(pν)m

m!
e−pν . (93)

The a posteriori probability for this is found as

Pr[N̂ = n|S = m] =
Pr[S = m, N̂ = n]

Pr[S = m]

=
((1 − p)ν)n−m

(n− m)!
e−(1−p)ν . (94)

After m successful packet transmissions in a slot, the
conditional expectation is

E[N̂|S = m] =

∞∑
n=m

nPr[N̂ = n|S = m] = (1 − p)ν + m.

(95)

Using p = x∗/ν, we have

E[N̂|S = m] = ν − x∗
+ m. (96)

Here, we need to subtract mb from (96), which is given in
line 3 in Algorithm 1.

When a collision occurs, the joint probability is expressed
as

Pr[C, N̂ = n] = Pr[N̂ = n] − Pr[I , N̂ = n]

−

M∑
m=1

Pr[S = m, N̂ = n]. (97)

From (97), the expectation for N̂ is obtained as

E[N̂,C] = E[N̂] − E[N̂, I ] −

M∑
m=1

E[N̂, S = m]

= ν − (1 − p)νe−pν

−

M∑
m=1

(
(νp)m

(m− 1)!
+
pν(νp)m

m!

)
e−pν

= ν − (1 − p)ν
M∑
m=0

(νp)m

m!
e−pν − νp

M−1∑
m=0

(νp)m

m!
e−pν

= ν

(
1 −

M∑
m=0

φm(νp)

)
+ νp

(νp)M

M !
e−pν . (98)
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Using (89), (93), (97), we have the probability of collision:

Pr[C] = 1 − Pr[I ] −

M∑
m=1

Pr[S = m]

= 1 −

M∑
m=0

(νp)m

m!
e−νp

= 1 −

M∑
m=0

φm(νp). (99)

Upon a collision, we approximate the resulting distribution
of the number of backlogged users by a Poisson distribution
with mean E[N̂|C]:

E[N̂|C] = ν +
νpφM (νp)

1 − e−νp
−

M∑
i=1

φi(νp)

= ν +
x∗φM (x∗)

1 −

M∑
i=0

φi(x∗)

, (100)

where p = x∗/ν is used. We define constant 4(x∗,M ) as

4(x∗,M ) =
x∗φM (x∗)

1 −

M∑
i=0

φi(x∗)

. (101)
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