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ABSTRACT This paper investigates the critical issue of maintaining system stability for multipacket
reception (MPR) p-persistent carrier sense multiple access (CSMA) systems. When multiple users with
individual queues simultaneously transmit a packet to an access point (AP) via CSMA, the number of
successful transmissions and their identities are determined probabilistically in the MPR channel. Stability
signifies that none of the users’ queues grows unbounded. The stability region is a significant measure,
addressing all potential permutations of mean packet arrival rates for the users to maintain bounded queue
lengths. The work begins by considering a system with two users characterized by differing mean packet
arrival rates and (re)transmission probabilities. Subsequently, it examines an N-user system in which each
user shares an identical packet arrival rate and retransmission probability. A backoff algorithm is then
proposed for these N users to utilize in order to stabilize their queues. The paper concludes with numerical
studies illustrating the stability region as a function of user parameters, demonstrating how the proposed
backoff algorithm can be used to maximize throughput.

INDEX TERMS Stability region, multipacket reception (MPR), CSMA, 1IEEE 802.11.

I. INTRODUCTION
Demands on bandwidth, fuelled by social network services
(SNSs), streaming video services, YouTube, online gaming,
etc., have explosively grown in the past few decades. IEEE
802.11 wireless local area networks (WLANSs) have met those
demands in home, business, and public spaces while con-
suming large amounts of data via wireless cellular networks
has still been costly. The proliferation of WLAN-enabled
smartphones and tablet PCs has enabled users to enjoy the
internet anywhere easily.

In order to fulfill ever-increasing demands, IEEE
802.11 has evolved continually as IEEE 802.11a/b/g/n/ac/ax.

The associate editor coordinating the review of this manuscript and

approving it for publication was Byung-Seo Kim

For instance, the maximum data rate has been increased
from 11 Mbps to 54 Mbps and further up to 6.9 Gbps
with the introduction of downlink multi-user multi-input
multi-output (MU-MIMO) antenna and a higher high-order
modulation schemes in the physical layer [1]. In the medium
access control (MAC) layer, the random access protocol
of IEEE 802. 11 has still been based on carrier sense
multiple access (CSMA) protocol even as uplink traffic has
kept increasing due to SNSs, video conferencing, online
lectures, etc. So far, CSMA protocol works with a single
packet reception (SPR) channel; that is, none of them make
a successful transmission if more than one packets are
(re)transmitted at the same time. To cope with increasing
uplink traffic, IEEE 802.11ax introduces uplink MU-MIMO
so that upon simultaneous multiple packet transmissions,
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some of them can be successfully decoded, which is called
multipacket reception (MPR) channel [2], [3] in the literature.
Prior to 802.11ax, various MPR channels and MAC protocols
to support them have been proposed for CSMA system [9],
(101, [111, [12], [13], [14], [15], [16], [17], [18], [19], [20],
[24], [28], [29], [30], [31], [32], [33].

In the random access systems either slotted ALOHA [3],
[4], [5] or CSMA [6], [7], [8], where users have a queue to
buffer incoming packets, the system is said to be unstable,
if at least one user’s queue grows unbounded. It is thus an
essential question of how much an MPR channel can affect
the stability of users’ queueing process. It is also important to
control users’ retransmissions so that each user’s queue grows
finite for a given set of packet arrival rates of the users in the
system. To put it in another way, we can ask what the set of
the maximum allowable packet arrival rates of the users can
be so that a retransmission control scheme can exist in order
to stabilize the system. As the importance of MPR capability
for CSMA has risen, this work explores these questions for
CSMA systems with a generic MPR channel.

A. RELATED WORKS

Studies on MPR CSMA systems in the literature can be
classified into two groups such as synchronous [9], [10],
(111, [12], [13], [14], [15], [16], [17], [18], [19], [20], [24],
and asynchronous [28], [29], [30], [31], [32], [33]: In both
systems, the time is divided into sensing slots, when the
channel is idle. The users are synchronized at each sensing
slot and the packet transmission occurs just at the end of
an idle slot after the channel is sensed idle. In particular,
in synchronous systems, the packet transmissions are aligned
with slot boundary. However, in asynchronous systems, other
packet transmissions are assumed to be allowed even during
the ongoing packet transmissions.

This work focuses on the synchronous systems since
implementing the synchronous system might be relatively
easier than the asynchronous ones and more feasible in the
physical layer. In [9], under the assumption that the users
can hold only a packet, the maximum allowable packet
arrival rate is examined for the number of backlogged
users to grow finite in MPR CSMA. In such a case,
a packet and a user are not distinguishable. In contrast, our
work assumes that the number of users is finite, but they
have a queue of infinite length to hold incoming packets.
In [10], [11], and [12] it is examined how MIMO can
materialize MPR CSMA. In [13], it is proposed that the
users in CSMA exploit their channel state; that is, upon
idle channel, the users can access when their signal-to-
noise ratio (SNR) or channel state is above a threshold.
In [14], access fairness is examined for MPR CSMA systems
implemented by MIMO. Let us define M-MPR channel that
the users make a successful transmission if the number of
transmitting users is less than or equal to M. In [15], various
properties of CSMA systems with M -MPR channel have been
examined. For example, throughput increases superlinearly
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as M increases. Under the assumption of Poisson traffic
with mean aggregate rate G, an analytical throughput model
for slotted non-persistent CSMA is examined [16]. Some
queueing model of M/G/1 with vacations is applied to
the users’ queue in the MPR CSMA system in [17] such
that the condition for bounded access delay is analyzed.
Backoff algorithms are developed to maximize the system
throughput [18], [19]. New uplink and downlink protocols for
MU-MIMO CSMA are proposed in [20].

The performance of CSMA systems has been extensively
investigated using the mean field approximation (MFA) in
[21], [22], [23], and [24]. When all the users always have a
packet to send, i.e., in saturated condition, and the number
of users is large, the MFA can convert a discrete-time and
discrete-state Markov process of user backoff procedures in
IEEE 802.11, i.e., distributed coordination function (DCF),
into a set of ordinary differential equations (ODEs). The
solution of the ODEs is obtained as the form of a fixed
point from which the system’s performance can be estimated.
The MFA is often juxtaposed with Bianchi’s analysis [21],
[22], where the decoupling assumption has been made;
that is, the backoff processes of the users’ DCF become
independent or decoupled when all the users are saturated.
Especially, [22] used MFA to analyze the validity of Bianchi’s
analysis by determining the stability of the ODEs and
providing a stability condition. In [24], the stability region
of CSMA system with an MPR channel is examined with
MFA. In particular, multiple classes of users are considered:
The users in the same class have identical packet arrival
rates and transmission probabilities but not in different
classes.

Compared to [9], [10], [11], [12], [13], [14], [15], [16],
[171, [18], [19], and [20], this work investigates the stability
region of MPR CSMA systems with M -MPR capability when
the users have a queue of unlimited length. To do this, we use
the stochastic dominant systems to characterize the stability
region. Its advantage over the MFA is accurately charac-
terizing the systems’ stability region with two users having
different packet arrival rates and transmission probabilities,
called asymmetric users, or with three users in an S-ALOHA
system [26]. However, for systems with more than three
asymmetric users, the method of using stochastic dominant
systems suffers from the curse of dimensionality in queueing
analysis. While it has been demonstrated that the MFA works
well for a large number of (saturated) users, i.e., as the number
tends to infinity, it is not rigorously verified that its results can
be accurate for a few users. Note that in [27], the stability
region of S-ALOHA has been investigated by the MFA.
Together with the result in [24], we extend the result of the
stability region for two-user into finite users CSMA system
and demonstrate that our work can be a good complement to
the stability region obtained by the MFA [24].

B. CONTRIBUTIONS AND ORGANIZATION
The contributions of this work are summarized as follows:
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FIGURE 1. MPR CSMA with MPR capability M = 2.

« For the system with two asymmetric users, conditional
and unconditional stability regions are fully charac-
terized. Depending on the MPR channel and users’
parameters, it is shown how the stability region of the
system can change, e.g., when the stability region of
MPR CSMA can exceed that of an ideal TDMA system.
Fig. 4 in Section III visualizes this as one of the main
results of this work.

o The stability condition of the system with N sym-
metric users is examined. Then, in order to maximize
the system throughput under the stability condition,
a backoff algorithm is proposed based on Bayesian
estimation for the number of backlogged users. The
results demonstrate that the performance of the proposed
algorithm is quite close to that of the genie-aided
algorithm [36] using perfect knowledge of backlog size.
Furthermore, under environments with a time-varying
number of users and packet arrival rate, it is also
illustrated how well the proposed algorithm estimates
the actual backlog size.

Throughout this paper, a boldfaced lowercase letter
denotes a row vector, e.g., X = [x;], while a boldfaced
uppercase letter denotes a set. In addition, for probability x,
X denotes its complement, i.e, X = 1 — x, whereas for a set X
its complement is denoted by X = X¢. Moreover, |X| denotes
the cardinality of set X.

The organization of this paper is as follows.
In Section II, we introduce our system model and the
definitions of the stability regions. Section III provides the
stability analysis of the systems with two users and N users
by using stochastic dominant systems. We discuss numerical
studies in Section I'V. Finally, we give concluding remarks in
Section V.

Il. SYSTEM MODEL

A. MPR CSMA SYSTEMS

Suppose a slotted CSMA system in which time is equally
divided into a backoff (or sensing) slot of o usec, when the
channel is idle as shown in Fig. 1. There are a total of N users,
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each with a buffer of infinite length to store arriving packets.
Let us denote the index set of N usersby V' = {1,2,...,N}.
We assume that user i € A has packet arrivals according to a
Poisson process with a mean rate A; (packets/usec), and the
size of each packet is equal. According to p-persistent CSMA,
N users can communicate with an AP wirelessly as follows:
When sensing the channel idle, user i with a non-empty
queue (re)transmits its packet at the head of the queue with
probability p; until the packet is successfully transmitted.

1) A GENERIC MPR CHANNEL
Let us characterize an MPR channel of an AP as follows:
Let 7 be the index set of the users who make a packet
transmission in set A, and R denotes the index set of the users
whose packets are successfully decoded in set 7. We have
R € T C N.Letus denote the conditional probability g7
that the users of set R successfully transmit given that set 7 of
users transmit. For a two-user system, we specifically define
as follows:
e q1{1): user 1’s success probability when only user 1
transmits.
e g2)(2): user 2’s success probability when only user 2
transmits.
e q1,2/{1,2): the probability that only user 1’s transmission
is successful when both users transmit.
e q1,2/(1,2): the probability that only user 2’s transmission
is successful when both users transmit.
e q1,2){1,2): the probability that both users succeed when
both users transmit.
e q1,2/(1,2): the probability that both users fail when both
users transmit.

When two users transmit simultaneously, we have
(D

The probability gr 7 for this two-user system can be
expressed as

q1.2101.2y + q1.2101.2) + q1.211.2) + q1.201.2) = 1.

q1)(1,2y = q1,21{1,2) + q1,2)11,2y and (2)
q21(1,2) = q1,2/{1,2} + 41,2/{1,2}- 3)
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FIGURE 2. Strong and weak MPR channels.

Thus, gj)(1,2) is the probability that user i makes a successful
transmission, whether the other user succeeds or not.
Let us define ¥; and ¥, as

9 2 a2 g 9, & 92112} @)
q11{1} 9212}
When g3y < 1, it can represent a noisy channel. The

MPR-capable system is said to be strong or weak, if we have

Strong, for ¥y + ¥ > 1,
MPR = { Critical, for ¥ + 9 =1, 5)
Weak, for v+ 9, < 1,

which is depicted in in Fig. 2. Assuming that g;);;; = 1, and
using q1,2/(1,2+4q1,21{1,2) = 1 —q1,2/{1,2) —q1,2){1,2) in (1) and
(2), we can find an alternative characterization of the strong
MPR channel, i.e., 91 + ¥ > 1 as

q1.2/{1,2} > 41,2]{1,2}- (6)

This implies that when both users transmit, the channel is a
strong MPR if the probability of both successes is greater than
that of both failures. For the critical and weak MPR, we have
q1,2101,2) = q1.21(1,2)> and q1,2)(1,2) < q1,2)(1,2}, respectively.

Let us return to the MPR channel in Fig. 1, where
three users compete for channel access. In this system,
we assume that if more than two packets are transmitted
simultaneously, e.g., at instant #;3, a collision occurs; that
is, no one makes a successful transmission. Otherwise, the
users’ transmission becomes successful. In this case, we have
conditional probabilities gij;1y = g2 = @3} =
q1.2)(1,2) = q1,3{1,3) = ¢2,3]{2,3) = q1,2.3|{1,2,3) = 1, whereas
other conditional probabilities are zero.

We additionally assume that the successful packet trans-
mission period equals the collision period, denoted by T in
Fig. 1. This corresponds to the basic access of IEEE 802.11.
We can relate T upon success to IEEE 802.11 as follows:

T = Packet TX + SIFS + ACKTime + DIFS. @)
Similarly, upon collision, we have

T = Packet TX + ACK Time-out. (8)
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Note that Packet TX, SIFS, ACKTime, ACK Time-out, and
DIFS denote the duration of a packet transmission time, that
of short interframe space (SIFS), that of acknowledgment
(ACK), that of ACK time-out, and that of distributed
coordinate function interframe space (DIFS), respectively.

2) REALIZATION OF MPR CHANNEL WITH MIMO

We discuss how the strong and weak MPR channels can be
formed by investigating the MU-MIMO, one of the typical
transmission techniques to realize MPR. Suppose one AP has
two receive antennas and two users, each with one transmit
antenna. Let the channel between each transmit and receive
antenna pair be Rayleigh fading. Then, we have the following
two cases:

o If both the users transmit simultaneously, the received
SNR for user i (fori = 1, 2) at the AP has an exponential
distribution with mean w; when zero-forcing MIMO
decoding was performed [12]. Consequently, user i’s
success probability can be written as

Vi
qil{1,2y = exp (——l) , )
Wi
where y; is user i’s SNR threshold for successful
decoding at the AP.

o If only user i transmits, the received SNR at the AP has
Gamma distribution with the shape parameter value 2,
as described in [12]. Consequently, user i’s success
probability can be written as

qil(iy = (1 + ﬁ) - exp (—ﬁ) . (10)
i i

Now, we can obtain the following.

23! + “2 .
Yitur  v2t 2
As can be seen, depending on the choice of the threshold
of y;, the MPR channel can be strong or weak. For
example, if y; > u; for i = 1,2, it is weak MPR
channel.

It is notable that (9) is obtained by assuming that the AP is
able to estimate the two users’ channel gains perfectly, even
if they randomly transmit. If the simultaneously transmitting
users transmit pilot signals at the same resource, the AP
cannot estimate their channel gains, which may result in more
frequent decoding errors. If we denote such performance loss
by a(< 1) for simplicity, (9) can be rewritten as g;(1,2) =

9+ 0 = (11

a - exp (_pyTIl . Since a < 1, the weak MPR channel may
occur frequently in practice.

3) NON-ORTHOGONAL MULTIPLE ACCESS (NOMA) FOR
MPR

Another possible transmission technique that can realize the
MPR channel is the non-orthogonal multiple access (NOMA)
in the power domain. The users transmit their packet by
choosing one of two receive power levels P; and P>(< Pp)
with transmit power control. For NOMA random access,

VOLUME 11, 2023



Z. Cao et al.: How Much Benefit Can MPR Channel Bring to CSMA?

IEEE Access

each user can select one power level with probability %
[37], [38]. Only when two transmitting users select different
receive power levels each, which occurs with probability %,
the AP can decode both users’ packets by applying successive
interference cancellation (SIC). If the two users choose the
same power level, both users fail. Consequently, we have
qiin2 = % fori = l, 2. For qili = 1, we have

B+ =1, (12)

which is a critical MPR channel.

B. QUEUEING PROCESS

Since the length of idle slot (o) and that of a transmission
period such as a successful packet transmission slot and a
collision T are different, we define an embedded point in
this CSMA system as the end of a time epoch, where either
idleness or transmission is over. Let #; denote the time epoch
of an embedded point and Q;(#;) denote the queue length
process of the i user at the corresponding time epoch as
in Fig. 1. Then, the evolution of Q;(#;) over time can be
expressed as

Qi (k1) = [0i (k) — Ci ()T + Ailte1 — ), (13)

where [x]t = max{x, 0} and Ai(tx+1 — tr) denotes the
number of packet arrivals at the i user between 7, and tht1-
Particularly, the service process, C; (), is expressed as

1, with probability py ;,

Ci(tx) = [ (14)

0, with probability p; ;,
where p; ; denotes the packet transmission success probabil-
ity via random access.

We consider two cases for py ; as follows: The first case is
a two-user MPR CSMA system: If two users have at least one
packet to send, p; ; can be expressed as

Ps.i =Pi (qil(iyP3—i + qilti.3-iyP3—i) - (15)

Note that for i = 1 (or 2), we have 3 — i = 2 (or 1) in (15),
which indicates the other user.

The second case is an N-user system: In this case, p;;
depends on the physical layer. Let us assume an MPR channel
that if the number of simultaneously transmitting users is not
more than M, all of them make a successful transmission.
When N users have non-empty queue, user i’s transmission
is successful if

psi=pi Y, [Ip [] Pe (16)

TN\, jeT keTe\i
ITI=M~1
where N\i is the set \ except user i.

Let Q(tx) = [Qi(tx)] for i € {1,...,N} denote the
entire queueing process of N users in slotted CSMA systems.
According to (13), Q(#) is an N-dimensional Markov
process. Then, the queueing process (or system) Q(#x) is said
to be stable if the following holds:

tlim Pr[Q(t) <yl =F (y) and ylim Fy =1 (17
k—> 00 — Q0
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Because the existence of the limiting distribution as shown
in (17) implies the positive recurrence of the aperiodic and
irreducible Markov chain corresponding to Q(#), it implies
that, e.g., for a stable system with two users, we must have
Pr[Q1(t) = 0, Q2(t) = 0] > 0, Pr[Q1(%) = 0, Oa(%x) >
0] > 0 and Pr[Qi1(#%) > 0,02(t%) = 0] > 0 as 7 goes
to infinity. This means that none of the two users can be
saturated.

C. ANALYTICAL FRAMEWORK OF STABILITY REGION

This work makes use of the analytical framework in [6]: First,
we denote by A = [A;] and p = [p;] fori € {1,2,..., N} the
packet arrival rate vector and the (re)transmission probability
vector of the system with N users, in which X; and p; are the
mean packet arrival rate and the (re)transmission probability
of user i. The conditional and unconditional stability regions
can be defined as follows.

Definition 1. The conditional stability region subject to the
(re)transmission probability vector p is defined as a vector
set of having all possible combinations of A, denoted by Ap,
as long as (17) holds for a given p.

Definition 2. The (unconditional) stability region, denoted
by A, is defined as a vector set with all possible combinations
of A that satisfies (17) achieved by some vector p.

Unless otherwise specified, this paper refers to the stability
region as the unconditional one. Note that the difference
between Ap and A is that we can obtain A, for a given
p, whereas we have A if there exists some p of making A
feasible. Accordingly, we can express A as

A= |J A, (18)

pel0, 1]V

where the vector p € [0, 11V has its i element pi € [0,1]
forie{l,2,...,N}.

Suppose that system S has two users, say user 1 and user 2.
Let Q; (or Q2) denote user 1’s (or user 2’s) queue length.
Since Ci(t;) for i = 1,2 in (13) depends on each user’s
queue state, i.e., empty or not, it is not easy to obtain the
conditional stability region, Ap, by using a two-dimensional
Markov chain for the system with two users.

In order to facilitate our stability analysis on this original
system S, we introduce a stochastic dominant system as
a hypothetical auxiliary system [4]; we shall see that it is
relatively easier to obtain the conditional stability region
of the (stochastic) dominant systems, which is denoted by
Al”;, because it enables us to circumvent the analysis of the
two-dimensional Markov chain.

Let S7 (or S3) denote a dominant system, in which user
1 (or user 2) is designated as a dominant user in the system.
The role of the dominant user 1 (or user 2) in S} (or S3)
is to continue to transmit dummy packets with probability p;
(or pp) even if Qp (or Q) = 0, while it transmits the real
packet at the head of its queue if Q; (or Q2) > 0. Note
that the dummy packet also occupies the transmission time
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and can collide with the other user’s dummy or real packet
transmissions. In addition to S f and S;‘, we can have another
dominant system denoted by S, in which both users continue
to transmit dummy packets when their queues are empty.

The physical difference between the original system S
and the dominant system S is that the packet transmission
of dominant user i can collide with that of the other
non-dominant user 1 more often in the dominant system
than original system S, because dominant user i transmits
either real packets if Q; > 0, or dummy packets when
Q; = 0. Thus, Q1 and Q7 in the dominant systems would
be at least larger than those in S at the embedded points if the
queueing process starts with the users having identical initial
conditions on their queues in both systems. More details are
found in [6]. The dominant system can also make it simple
to analyze the queueing process of the non-dominant user
because the state of the queue of the dominant user is always
non-empty. More specifically, as we do not need to consider
the state of the dominant user’s queue, the queueing analysis
for the non-dominant user is reduced to an M /G/1 queueing
analysis.

To obtain the conditional stability region of a dominant
system, let A;’;i denote the conditional stability region of the
corresponding dominant system, Sl?" fori = 0,1, 2, whose
definition follows that of Ap. The overall conditional stability
region A;‘, of the dominant systems is the union of the stability
regions of each dominant system:

2
Af = U A (19)
i=0

In comparison with the original system, we can have
Ap 2 A (20)

This implies that the conditional stability region of the
dominant systems is a subset or an identical set of the original
system for the mean packet arrival rates due to dummy
packet transmissions. After obtaining A:;, we can find Ap
by utilizing the indistinguishableness property between the
original system S and the dominant systems [4], [6]: As the
mean packet arrival rate A; increases in the dominant systems
so that the dummy packets are completely replaced with the
real packets, the original and stochastic dominant systems
are not distinguishable, i.e., identical. At the boundary, if the
dominant system is unstable, then the original system is also
unstable. Thus, the equality holds in (20). In what follows,
we obtain A;i fori =0, 1, 2, respectively.

lIl. STABILITY OF MPR CSMA SYSTEMS

Let us consider S(’)‘, where both users are designated as
dominant users, i.e., both users keep on transmitting real or
dummy packets. Therefore, in calculating one user’s packet
transmission success probability, denoted by p; ; fori =1, 2,
it is unnecessary to take into account the other user’s queue
state, i.e., empty or non-empty. Thus, we can write p;; as
in (15).
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By applying Loynes’ theorem [34], which shows that a
queueing system is stable only if the mean packet arrival rate
to user i is less than its service rate, we have

Li; <ps; for i=1,2, 21

where L denotes the average time between two consecutive
embedded points, i.e., L = E[ty4+1 — #x]. We can obtain L as

L =pip0 +1 =pip)T, (22)

which is also independent of both users’ queue states. The
left-hand side (LHS) of (21) indicates the average number of
arriving packets to user i during L, while the right-hand side
(RHS) represents the average number of packets successfully
transmitted. Using (21), the following lemma finds the
conditional stability region of the dominant system S .

Lemma 1. The conditional stability region of stochastic
dominant system Sj in (19) is expressed as

Apo = {1, M)h < Ap, A2 < By, (23)

where Ay and By, are given as

_quuy pi(1 = 91p2)

A 24
PTT 1-thip e
and
1 -9
By = 92112y p2( __2&71)_ 25)
I 1-cpip

The variable c is defined as ¢ = Z.

Proof: See Appendix A. ]

The following lemma investigates the conditional stability
region of the remaining dominant systems.

Lemma 2. The conditional stability regions of stochastic
dominant systems S} and S5 in (19) are expressed respec-
tively as

Ap = {0, MM < ap (A2), A2 < Bpl, (26)
and
Ap s ={(a, 22)lh < Ap, 22 < Bp, (A1)} (27)

In (26) and (27), oap,(A2) and By,(A1) are respectively
expressed as

q1{1}p1 1 1 %
)=y l—ﬁlf’(ﬁl_l—ﬁlz)l—ﬁzpl
(28)
and

q21(2)P2 1 1 %
b0 =7 1—ﬁ26’(ﬁ2_1—ﬁza)1_51p2
(29)
Proof: See Appendix B. [ ]
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FIGURE 3. Conditional stability region of a two-user p-persistent CSMA
system.

The region of A* .0 is depicted as a small rectangle in Fig. 3,
where the region of A* 2 is also shown. Note that 8,,(A1) is
the service rate of the user 2’s queue. When A1 = 0 in (29),
or mg = 1, Bp,(A1) can be

P292|{2} q2|{2} P2 max
A =BJ*, (30
R ey s e xR

in which B** is the service rate of user 2’s queue when
user 1 always has nothing to send.
Similarly, the upper-bound of «,, (17) is given by

p14q1){1} _ iy P
pio +piT T 1-pic

apl ()"2) =< = A;)I:axv (31)
where the equality holds when the probability of user 2’s
queue length is zero, i.e., ¢g = 1 due to A, = 0. This is given
in (57) in Appendix C. As illustrated in Fig. 3, it is easy to
check that A* C Ap ! andA 0 S A;‘)’z. Therefore, we have

U A*
Smce we obtamed the conditional stability region of the
dominant systems thus far, let us move to that of the original
system.

Theorem 1. Given retransmission probability vector p, the
conditional stability region of a two-user p-persistent CSMA
system can be obtained as

Ap = {01 22101, 22) 2 (0,0), Gur, 22) lies below

the curve y = g(A1) for 0 < Ay < A;ax}’
(32)

where

:8[72()‘1)’
AM)=1 <
sC0) [ﬁm(m,

for 0 < X < Ap,

for Ap < xp < .Ag’lax,

(33)
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with
oy \T
5 Qi) (1—v2p1) ( — (=P l)m)
ﬂpl()‘l) = . .
T 1 —91(1 —po)
(34
Proof: See Appendix D. [ ]

We turn to find the (unconditional) stability region for
p € [0, 17V: The stability region A of the original system
is obtained from the conditional stability region by

A= U A} (35)

Before proceeding further, let A} denote the stability region
of S} for i € {0, 1, 2}. The following theorem shows how A7}
fori € {0, 1, 2} is related to each other.

Theorem 2. The stability region of the original system with
two users and that of the dominant systems are identical; that
is, we have for all i € {0, 1, 2},

A=A"=Ar= ] A}

pel0,1]2
U {00200 < Ap 22 < B0} (36)
pel0,12
Proof: See Appendix E. [ |

In contrast with A* ; for i € {0, 1, 2}, which has a distinct
region, A7 is 1dent1cal to each other, since A} can be achieved
by using vector p € [0, 1]. While A is the union of all A}’s,
A is also identical to any of A}. We shall depict A for some
specific two-user CSMA systems in Section IV. It is also
notable that the stability region for two classes of users is
obtained by the MFA in [21], [22], and [24], which assumed
that the users’ queueing process becomes decoupled when
they are saturated. Theorem 2 validates that their assumption
is true for the stability region of two-user system.

The following theorem finds the stability region explicitly.

Theorem 3. The stability region of a two-user MPR CSMA
system is described as
A = {(A1, 22)I(A1, 22) = (0, 0),
(A1, Ap) lies below the curve Ay = h(A1)}, 37N

in which for v + 9> > 1 (strong-reception capability) we
have

h(x1)
QR (Y2 MT  for0 <y < 2
_1 T Toquqy T
% mT
922) 92 (1 M ) for QU021 _ 5 dli)
T 2 q1in) T r
(38)

In particular, for Ay = w in (38), we have h(L1) =

q2){2} _ q2){1,2}
T V2= "
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For ¥1 4+ 9> < 1 (weak-reception capability), the envelope
is found as

9212} 1—@ MmT
M qu

h(r1) = J(A1), foruy < A1 < uy,
%&(1_ MT) foruy < iy < L1
T 9 aum /)’ - T’
(39)

in which uy and up are given in (82) and (86) in Appendix F.
respectively. In (39), J(A1) is expressed as

q1i{1} 1 MmT
J(A) = . [ 1% DAL
A== 1= 0102 [\/E\/ (91 4 02 + D192¢)

q1){1}

2
—_ MmT
— Jct1+c(1—
q1){1}

Proof: See Appendix F. ]
Notice that the stability region of the strong and weak MPR
channels includes linear boundaries in A and A,. However,
they have different slopes due to #; 4+ v > 1 for the
strong MPR and ¢ + ¢ < 1 for the weak MPR. Fig. 4
sketches the unconditional stability region of CSMA system
with the strong, weak, and no MPR channels according to
Theorem 3. In particular, the stability region of CSMA system
without MPR channel is found in [6]; that is, (A1 + A2)T +
2J0Txihy = 1 for qijq1} = g22) = 1. It shows how much
an MPR channel can enlarge the stability region of CSMA
systems. This will be discussed again in Section IV.

As a remark, from the results in [24] and [27] and
Theorems 2 and 3, we can extend the stability region of the
two-user system into the N-user system with multiple classes
without rigorous proof for further discussion; its validity
should be further investigated as future work.

Remark 1. Suppose J classes (or group) of users, each
of which has N; users with identical arrival rate A; and
(re)transmission probability p; forj € {1,2, ..., J}. Let q; be
the probability that i packets are successfully received when
i packets are transmitted at the same time, in which we have
qi = 0 fori > M. Thus, nign,+ny+...+n, indicates that n;
packets from class i are successfully transmitted when the sum
of the packets from all classes, i.e., nj +ny +---+n; <M,
are transmitted. The boundary of the stability region for this
system, denoted by B, is the boundary of the following set S:

5= {0 = ot
oP;+T( —Py)
where Py is the probability of the idle channel:
J
pr=]]a-p)V. (41)
j=1

Note that S; denotes the average number of packets from
class j that are successfully transmitted during the average
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FIGURE 4. Unconditional stability region of a two-user p-persistent CSMA
system.

renewal period.:
I N,
Sj= Z njqn +--+ny H (nf)p:‘ll(l _Pi)Ni_”i-
ny+--+n; <M i=1 !
0<n;j<M
(42)
For M = 2, we can relate g1 = qijy1y = q2j{2) and

92 = q1(1,2) = q2){1,2)- This remark will be discussed in
Section IV.

A. STABILITY REGION FOR N SYMMETRIC USERS, N > 2
In this section, let us consider the MPR CSMA system, where
N users have the same packet arrival rate and employ an
identical retransmission probability p. As in [15] and [32],
we assume a specific but widely adopted MPR channel that
as long as the number of transmitting users is less than or
equal to M, the users make a successful transmission.

Theorem 4. Fora symmetric N-user CSMA system, i.e., .. =
Ai, and p = p; for all i, the system is stable, if we have

A< Omalx1 Hu (p, N)/N, (43)
<p<

where H(p, N) is expressed as

Hu(p,N)
XL i) p)
oBY(p) +T XM BY () +T (1 - T4y B ()
(44)

in which ‘Biv (p) denotes a binomial distribution with
parameters, N and p, i.e., %fcv(p) = (llg)pk(l — VK for
0 <k < N. Otherwise, the system is unstable.
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Algorithm 1 Pseudo-Bayesian Backoff Algorithm
1. Initialize g = 0, vp = 1,0 = 0.99, and do the following

at tx.
2. if the current slot is idle or success then
3. vy =max (vy_, — x5 +m—mp,0)

4. else if Collision then
5. Ve = Vi + E(_X;C[,M)
6. end if

mp
7. Ay =0k, + (1 — Q)W
k k—1

8. vtk = vtk + )\'tk
9. py = min(xy; /vy, 1).

TABLE 1. The values of x;,, E(xy,, M), and ©(x) for different M’s.

M | T 2 3 4 5

o, 03046 09318 18166 2.6601 34753
Tni(p,15) | 0.7451 1.1439 1.6068 2.1672 2.8072
© (25, [ 07375 11278 15580 2.0587 2.6136
E(zy,, M) | 1.8022 2.3363 2.6491 29521 3.2660

Proof: The numerator in (44) shows the average number
of packets successfully transmitted, whereas the denominator
is the average renewal cycle. Accordingly, H(p, N) represents
the throughput of symmetric N-user system conditioned on
p, when all the users have a packet to send, i.e., stochastic
dominant system. The overall inputs to this system should be
less than the throughput for the stochastic dominant system
to be stable. Then, the conditional stability region of a
symmetric CSMA system is expressed as

®, =N\ <Hy(p,N). (45)

In this system, the stochastic dominant system becomes
unstable if NA > H(p, N). Finally, the original system would
be indistinguishable from the stochastic dominant system as
the arrival rate becomes closer to each user’s throughput. The
unconditional stability region is now expressed as (43). W

In order to investigate the asymptotic analysis for (43), let
x = pN denote the average transmission attempt. As N goes
to infinity, this system is stable if

Oykx) < maleim Hy(x/N,N)
M .
- _ g
e+ TIM i)+ T (1 —M ¢i(x))

i i 00
x (6—=—T)e™*+T

(40)

We can maximize @,/ (x) with respect to x. Let x;{jl be
the maximizer of (46). Table 1 presents xj;;, and @y (x},).
We compare the maximum of Hy(p, 15) for N = 15, i.e.,
throughput with 15 users with respect to p. It can be seen
that @y (xy,) for a large population is slightly lower than
Hum(p, 15) for a small population. Additionally, E(xy,, M)
is used in Algorithm 1, which will be discussed in the next
section.
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FIGURE 5. Conditional stability region and its validation, p; = p, = 0.5.

B. BACKOFF ALGORITHM FOR N-USER SYSTEM

Suppose n, backlogged users present in the system at
embedded point #;. We want the users to employ a backoff
algorithm in order to control (re)transmission probability p
of maximizing throughput H (p, ns, ). To do this, each user
should know n;, to realize throughput-optimal p. However,
it is very hard for them to know it. In the backoff algorithm
presented in Algorithm 1, the AP estimates its mean value,
i.e., E[n; ], which is denoted by v, , and then broadcasts
throughput-optimal p;, at the embedded point #;. Then, the
backlogged users can use py, . The derivation for each update
equation on vy, is detailed in Appendix G. Here, we discuss
how it works.

Once they sense the channel idle, the users with a
non-empty queue (re)transmit their packet with probability
Di_,» which has been broadcast at embedded time #;_; by the
AP. Notice that the AP can broadcast this only at embedded
points since the users read the downlink broadcast message
once sensing the channel. Users who transmit the last packet
in their queue add one bit to it, say b, € {0, 1}, to inform
the AP that their queue becomes empty. If they make a
successful transmission, the AP adds up b,s. The sum of
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FIGURE 6. Conditional stability regions subject to user’s parameters.

TABLE 2. MAC layer parameters.

o 9 usec SIFS 16 psec
DIFS 34 psec ACKTime 44 psec
Packet TX : 100 bytes | 64 usec ACK Time-out | 94 psec

these bits is denoted by my. This shows how many users’
queue becomes empty, which should be subtracted from the
backlog estimation as in line 3. Notice that if the users make
a successful transmission, but their queue is not empty, they
are still backlogged users.

Depending on the channel outcome, the AP updates vy, as
shown in lines 3 and 5. In line 5 of Algorithm 1 and in Table 1,
E (xy;) is a correction factor for vy, upon collision.

Let b, be the time epoch when at least one user with the last
packet in its queue successfully transmits it. Thus, the interval
by, — by, , indicates the time period that m; > 0 occurs. In
line 7, the system estimates the mean rate at which a user
with an empty queue has a packet to send, which increases
the backlog size. The parameter 6 is a weighting factor that

balances the previously estimated and newly observed rates
based on the recent backlog size. Here, it is notable that the

leaving rate out of the system would be equal to the joining
rate to the system in steady-state.

IV. NUMERICAL RESULTS
In our numerical studies, to set 7 and o, we use (7) and the
values in Table 2, where MAC layer parameters for IEEE
802.11a/g are listed when the transmission data rate at the
physical layer is set to 24 Mbps. When normalizing the
system parameter by 7, we have ¢ = 0.057. Regarding
simulation for queueing performance, each simulation run
time is 107 (sec), and the mean of five time-averaged results
are presented.

Understanding conditional stability region: In Figs. 5-6,

we examine and simulate the conditional stability region as
qi|{1,2) increases.
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FIGURE 7. Stability region of MPR CSMA system.

First, consider A; = 0.2 in Fig. 5(a), which is derived
from (32). As long as A is less than 0.7 for gqy(1,2) =
q2)(1,2y = 0.3, the conditional stability region means that both
users’ queue length will remain finite. If g1)(1,2) and g2(1,2;
are changed from 0.3 to 0.75, their queue remains finite as
Mg increases up to 0.815. This behavior is further illustrated
in Fig. 5(b), where user 2’s queue length grows explosively
as A approaches 0.7 for qij12y = qou,2y = 03 or A
approaches 0.8 for g1)11,2y = ¢2/(1,2) = 0.75. Notably, this
behavior in simulation aligns with our analytical results from
the conditional stability regions in Fig. 5(a).

Let us recall in Figs. 5(a) and 6 that A, = BJ** for
A = 0and Ay = Ag}ax for ., = 0. In Fig. 6(a), we set
q{1,2y = q2)q1,2y = 0.3 and p; = p» = 0.1 and increase

p1 and pp up to 1. As either or both p; and p; become
small, A[’,nlax and B,‘gﬁx decrease. This shrunk the conditional
stability region. If gy)(1,2) and g)(2) are increased to 0.75 in
Fig. 6(b), the conditional stability region become much large.
For g3(12) = 0.1 in Fig. 6(d), i.e., user 2’s transmission
becomes less successful upon both users’ transmission,
the conditional stability region of user 2 gets significantly
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FIGURE 8. Stability region of MPR CSMA system for two groups of users.

TABLE 3. Comparison of x7,, and ©y,(x) in MPR S-ALOHA.

M ] 1 2 3 3 5
o, T 1618 22605 2.9451 3.6395
Of,(¢3,) [ 03679 0.84 13711 19424 2.5435

smaller. In Fig. 6(c), if only p» decreases back to 0.5, user 2’s
region gets further lowered.

Characterization of stability region: Fig. 7 depicts the
stability region as g;1,2) for i € {1,2} increases. For
comparison, we consider the stability region of an (ideal)
time division multiple access (TDMA) system with optimal
time-sharing of a slot as

¢mp = U {1, 22)IA1 < Oquy, Az < gy (1 — O)},
0<b<1
(47)

where § denotes the time proportion of a slot assigned to user
1. As expected, when ¢;(1,2) increases, the stability region
becomes larger, particularly for the region for A1 = Ajp.
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FIGURE 9. Queueing delay with different M’s (N = 15).

Note that even for the systems without MPR, as ¢ —
0, i.e., instantaneous channel sensing capability and zero
redundancy of channel sensing, its stability region becomes
equal to that of ideal TDMA [6]. When MPR channel
becomes stronger in Fig. 7(b), the rectangular region for
0 < A < 1 fori e {1,2} is the stability region.
Especially, if g1, > q1){1,2), the region for user 2 is
slightly increased. From [4] and [6], the stability region of
CSMA (without MPR) is much larger than that of S-ALOHA.
However, Fig. 7(b) shows that when the strong MPR channel
is considered in CSMA system, its stability region might
not be much different from the strong MPR S-ALOHA.
In other words, advanced signal processing capability in
the physical layer might enhance a low throughput of S-
ALOHA. For strong-MPR CSMA with a very small number
of users, sensing might not significantly improve the system
throughput.

In Fig. 8, we depict the boundary of the stability region
of the systems with two groups of users as in [24] and [27],
based on Remark 1. Each group has N; users who utilize
retransmission probability p; for i € {1, 2}. Furthermore,
we assume M = 2, g1 = 1, and g = 0.3 as a weak MPR
in Fig. 8(a), and ¢ = 0.75 as a strong MPR in Fig. 8(b),
respectively. As N; increases, generally, the stability region
gets shrunk. For N; = 10, the boundary of the stability region
becomes a straight line both in weak and strong MPR channel.
The boundary point of each axis indicates the maximum
arrival rate that each group can accommodate under stability
when the other group does not transmit at all. Moreover, for
a strong MPR channel, the boundary of the stability region
with N; = 3 is slightly larger than that with N; = 1 as any of
N;iA; — 0. The reason is that for the strong MPR channel
with go = 0.75, only two users are insufficient to fully
exploit MPR channel capacity. More precisely, for a two-user
system with A; = 0, only one user can make a successful
transmission. However, as N; increases slightly, if one group
of users may not attempt to transmit at all, more than one
user in another group can enjoy successful transmissions.
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FIGURE 10. Queueing delay with different population sizes.

Interestingly, for the strong MPR channel, as N increases, the
stability region of MPR CSMA becomes that of ideal TDMA
in (47).

Effect of MPR capability M: In order to validate Theo-
rem 4, i.e., the stability condition for N symmetric users,
as MPR capability M increases, we observe the average
queueing delay for N = 15, where the users employ
Algorithm 1. As a benchmark system, we consider a genie-
aided (GA) system [36], where the AP can get the exact
backlog size n;,, instead of estimation on E[n,, ]. Thus, the
GA system can yield the lowest queueing delay.

For each M, the maximum throughput or stability condi-
tion @y (x};) is given in Table 1. As A goes closer to @ (x};)
in Fig. 9, the queueing delay rises explosively. It can be
seen that the proposed algorithm keeps the system stable
reasonably well. Let us compare the throughput of MPR
CSMA with MPR S-ALOHA. For M-MPR capability, the
throughput of MPR S-ALOHA for a large population can be
expressed as

M

0}, =D igix), (48)

i=1
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where x = Np. Table 3 shows the maximizer x, for (48) and
the maximum of (48) with xj,. For a large population, as M
increases, the difference between the maximum throughput
of MPR CSMA and that of MPR S-ALOHA seems to be
vanishing.

Effect of population size: In Figs. 10(a)-10(b), we consider
the average queueing delay by increasing the number of users
for M = 2 and 3. Notice that for the GA system that
has perfect knowledge of the backlog size, even though the
population size changes, the performance remains almost the
same since it makes use of the exact backlog information.
However, as the population size increases from 15 to 25,
the queueing delay slightly increases with the proposed
algorithm.

Fig. 11 depicts the estimated backlog size by the proposed
algorithm and the exact backlog size for M = 3. The system
starts with N = 10 and A = 0.14 (the packet arrival rate per
user). At + = 2000, ten more users join, but A is reduced to
0.07. Further, at t = 4000, five users leave the system, while
A decreases, as shown in Fig. 11. At ¢ = 6000, A increases.
We can see that the proposed algorithm properly tracks the
true backlog size, even as the population and packet arrival
rates change over time.

V. CONCLUSION

This work characterized the stability regions of MPR p-
persistent CSMA systems using the stochastic dominant sys-
tem. The first result is that we showed how the stability could
be enlarged or shrunk according to the users’ parameters for
the systems with two asymmetric users. If the MPR channel
is weak, ie., q12/01,2) < q1,21,27 < 1, an optimized
CSMA without an MPR channel might be as good as weak-
MPR CSMA. Moreover, for strong-MPR CSMA, we came
to the conclusion that channel sensing could be relaxed since
S-ALOHA with the same MPR capability could show a
performance close to it. A second result is that we obtained
the stability condition of the system with N symmetric
users and developed the queue-stabilizing backoff algorithm.
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It was demonstrated that the proposed algorithm ensures the
stability of the system.

APPENDIX A PROOF OF LEMMA 1
We can find (23) by the renewal reward theorem [35]; that is,
L represents the expected cycle length of a renewal, while p; ;
indicates the average reward obtained during L. From (21),
we have
Ps1 _ 4Py + 411120102
L T (cp1p2 + 1 = PiP2)
_ quy pi(1 —91p2)
I 1-c-pip
This means that the packet arrival rate for user 1 should not
be greater than throughput per renewal cycle. Similarly, for
user 2, we can find
Ps2 _ 42123P2P1 + 92112102
L T ($p\P2 + 1 —Pipa)
_ @y p2( — Bap1)
T 1-¢-pyp

A<

=A. (49

A < —=

By. (50)

APPENDIX B PROOF OF LEMMA 2
In system S5, where user 2 transmits dummy packet, user 1’s
queue can be stabilized if A; < .Ap. Since user 1 is not a
dominant user in SJ, user 2’s packet transmission is interfered
by user 1 only when Q1 > 0. To observe this event explicitly,
let us denote by m the probability that user 1’s queue is empty
at an embedded point, which is given by (56) in Appendix C.
Suppose that user 1’s queue is stable, which represents
w9 > 0. Then, the packet transmission success of user 2
occurs with probability goj2)p270 + ps, 270, which shows
the dependence on the state of user 1’s queue. By applying
Loynes’ theorem, we have

Q2|(2}P270 + Ps,2T00
wo(pro + pa2T) + oL
where the numerator represents the probability that a packet
transmission of user 2 is successful and the denominator
shows the average time between two consecutive embedded
points seen by user 2.

When substituting g in (56) into (51) and rearranging (51)
with respect to A, we can write the RHS of (51) as a function
of A1 by (52), as shown at the bottom of the next page.

Similarly, for stochastic dominant system S, where
user 1 is a dominant user, we can obtain A*,1 by

Ay < = Bp, (A1), (S

Ap = {0, 2)Ih < ap,(R2), A2 < Bp},
in which a), (A2) is expressed as

q11{13p1¢0 + Ps. 290
¢o(P1o +p1T) + oL
Note that ¢g is the probability that user 2’s queue length is
zero at an embedded point. This ¢q is also given by (57)
in Appendix C. The same argument for conditional stability
region S5 can be applied to S}.

Ap, (A2) =

(53)
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APPENDIX C QUEUEING BEHAVIOR FOR USER 1 IN S;‘
We assume that k packets arrive at user 1’s queue according
to a Poisson distribution with the mean rate A1 (packets/usec)
during x wsec. Since it takes o (usec) for an idle channel
and T (usec) otherwise, user 1’s queue is an M/G/1 queueing
system. Using Pollaczek-Khinchine (PK) formula for M/G/1
queueing system, we can write the probability generating
function (PGF) for the queue length distribution as

1 —2)B*((1 — M=
l_[(Z):( )B(( ))0’ (54)
B*(1 —2)A) —z
where 7 is the probability of the empty queue, and B*(s)
denotes the Laplace transform of the service time distribution

for user 2’s queue. We can find it as

+k i
B*(s) = ps,1e STZ (l r )(P1P2€ )

i=0 k=0

Il
=
=
3
M2
e
bl
S
S
%)
Q
~
|

e—sT
- Ps 1 . (59
L= [Pipae + (1 = PP = pie™") |
From lim,_, 1 IT (z) = 1, we have mg as
— LA
o = Pt = 20 . (56)

Ps,t — LA+ (pao +paT)ry
Since a stable system has wo > 0, we have A1 < p, 1/L in
(56); this agrees with Loynes’ theorem. Similarly using PK
formula, we can also obtain the steady-state probability that
user 2’s queue is empty in S; as
ps2 — Lo

¢o = ——— . 67
ps2 — LAy + (o +p1T)rs

APPENDIX D PROOF OF THEOREM 1
We can rewrite Ap as

Ap=A; 1 As,
= {(A1, M)A < Ap, A2 < Bp, (A1)}
Ui a1 < 0, (h2). 22 < Byl (59)

where (26) and (27) are used for A;‘, 1 and Ap 5, respectively.

Since we have Ap < p,(X2) and By < B,,(A1), A is
upper-bounded by $,,(A1) for A1 < Ap; on the other hand,
for Ap < A1 < @p,(A2), A2 is upper-bounded by Bp,. Note that
the maximum of «,, (A2) can be Ag‘lax. From A1 < ap,(A2)
in (53), i.e.,

)"1 < ap|()"2)
1 1 2ol
— q1|{1}P1 S (791 _ _ _) QZE]
T 1 —pc I —pic) 1-92p

(59)
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By solving (90) with respect to A, we can obtain another
upper-bound for A, as

Y (1 5.y mT
q2\{(2} (I =Dap1) (1 (I =pc 41\(1)P1)

A 8, (A1) =
2= PG =" 1= o1(1-p0)
(60)
Therefore, we have
x2 < min (B (). By) = Bp G- (61)

Summarizing the above, we have Ap that is the region below
the following curve:

Bpa(k1), if 0 <A1 < Ap,

3 i max (62)
Bp k1), if Ap <M < A

g = [

APPENDIX E PROOF OF THEOREM 2
We can obtain A3 and A, respectively, as

A= | {00200 < Ap a2 < B0} (63)
pel0, 172
and
Ay = U (G < Ap. 22 < By} (64)
pel0, 112

From A; < Ay in the above, by rewriting (25) with respect to
P1, we obtain

rMT( —pye
TA=p0) <1 (65)
g1 — %1p2) — M Tpyc
Consequently, we have
MT (1 —poc
1T(1 —pyo) <1 66)

g1 = 91p2) — M Tpyc
By solving the above inequality with respect to A1, we have
quy(1 = 91p2)
< —.
T

For Ag, since By is a decreasing function of p; for 0 < p; and
p2 < 1, the maximum value of A, i.e., Bp, is achieved at
the minimum value of p; which is constrained by (65). Thus,
substituting the LHS of (65) into B}, we obtain

A2 < Bp (A1), (68)

by (67)

which indicates that Ajj can be expressed as (63). This proves

A{ = A3. Similarly, we can also prove A} = Ag. Therefore,

we have
A=Aj=A]=A5=A" (69)

APPENDIX F PROOF OF THEOREM 3

From (36), for a given A, it can be seen that A is

upper-bounded by B,,(A1). In order to maximize A, =

Bp, (A1), we can obtain the following equivalent maximization
problem:

maximize f,,(A1)
P2

subjectto 0 < pr» < min(l, py,), (70)

where the constraint is from (67):

—nmT
= q1{1} Ml (71
q11{1y91
. . . . dﬂpz()\l) _
To find the solution of (70), we first need to find = 0.

The expression of % is given by (72), as shown at the
bottom of the next page.
Here, let us write the numerator of (72), i.e., f (p2):

f(p2) =c(1 —91p2)*

MmT —
+ 2 (dac+ T2 — e +TTpD) . (73)
q1i{1}

If f(p2) = 0, Bp,(A1) is an increasing function of p; and,
otherwise, B,,(A1) is a decreasing function of p».
We consider the following two conditions.

A. STRONG MPR CHANNEL: #; + 9, > 1
In (72), f (p2) is rewritten as

f(2) =C[(1 —91p2) + —{ (@ =1
q1i{1}

+t Qe+ @ -Top))| a9

112102051 — Q21 23P1P2T A1 + q2111,2iP1P2(P20 + p2THAg

ﬁpz()\l) =

(P20 + paT)ps,1

_ q@p2(quyPa + qui0,2302) — @2p2T A + q21(1,2)p2(Pr0 + paT)Hr

(P20 + p2T)(q11(11P2 + q1141,2)P2)

MmT
_ qQ21{21P2 1 %2 qii{1y

MT

T 1 —pyc
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ALy ) (52)

1—=91py (1 —p20)(1 — P 1p2)
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MT

For
qi|{1y

< 1, the following inequality holds:
MTc = 5 B
f(p2) > m (I =D1p2)” + (P2c = 1)

c _ —
+ P2 (2020 + @02 = D1)p2)

MTe _ c+epa c
= [(1920—191172) (—) +p22— (C+CP2)]
q1){1} ¢ ¢

_ MTc (c+Ep2
q11{1} ¢

) (92cPy + (91 + 02 — D) p2) .
(75)

It can be observed that if ¢ + 9> > 1 (strong MPR), f(p2)
is always greater than zero, so is ’(’12 l); that is, Bp, (A1) is
an increasing function of p» for 0 < p» < 1. Therefore, the
maximum value of B,,(A1) can be found for p» = 1. When
plugging p» = 1 into (29), we have the first equation of (38).
This is valid if we can see if p, > 1 from (71):

pu=T =TSy <
g1
On the other hand, if p,, < 1, then the maximum of B,,(11)
occurs at p» = p,. Substituting p» = p,, into (29), we have
the second equation of (38). Note that A; can not be larger
than q” L due to p, > 0. Therefore, we have (38).

1412}
—=. 76
T (76)

B. WEAK MPR CHANNEL: ¥ + ¥, < 1
First, we prove that f(p;) is a decreasing function of p; in a
range of 0 < pp < 1:

d — MmT MmT  —
f(pz)zz(cﬁerﬂz L Ez?l)pz
dp> q1( q11(1

_ MT _
+2c| =0+ c
q1){1)
_ MT
=2 —ct1(1 = P1p2) + P2
q1{1}
_MT —
c v1p2
q1\{1}
— — MmT _
<2cO (= (1 =F1p2) + 2
q1{1}

< =2c9 (1 =91p2) (1 =¢py)
<0, (77)

c(cp2 +¢)

In (77), the first inequality results from the fact that ¥p <
1 — ¥ and the second inequality is obtained from py < p,.

It is easy to check that f(p») is larger than zero for p, = 0:

MmT
l—— (-9 78
£ o= o 0)z0. a9

On the other hand, for p, = 1, we have

MmT
)| v} — 1

(I—1v —
P2= 1 C]ll{

Y+ ). (79)
Notice that f(p2)|p,=1 in (79) can be larger or smaller than
zero. Thus, we consider two cases:

A.]T < Cl? .
. = T—wopoc. In this case, we have

f@2)lp,=1 = 0. While f(p2) is a decreasing function of
p2 for 0 < pp < 1 as proved by (77), we always have
Sf(P2) > Oin this case. From (72) it shows that B,, (A1)
is an increasing function of p,. Hence, the maximum
value occurs at po = min (1, p,,). Notice that

MT c?
| py = D01 N e — 0
1—-v — 1 -
=h[1=(+9)]
_ 1—(01+92)+91 ¢ < O, (80)
1 -9 -

where in the first inequality we have used our

assumption 2L < o

p quy — 1= 1+0)+01c”
According to (80), the maximum value of 8,,(A1) can
be found at p» = min(p,, 1) = 1. Consequently,

we have

9212} %2 MT
A)===—11-—" , (81)
P T ( D g

which is the first equation of (39). This is valid for A; <
u1, where u; comes from our assumption for (;‘I]HT) <
61912 61912

1= +92)+ ¢ = D1+ +0c’

,[92
w o= Y (82)
T 9+ 0+ dic

2) % > %;Hﬂlc Opposite to the previous case,
this case corresponds to f (p2)|p,=1 < 0. Sincef(p2)isa
decreasing function of p; in the interval p; € [0, 1] and
we already obtained f (p2)|p,=0 > 0 and f(p2)|p,=1 <

0, there exists one value of p; that satisfies f(py) =

dBp, (M) _ qrip2 { c MmT ) MmT s }
& N ‘11\{1} (1 =31p2  qupy (1 = 91p2)*(1 — € p)?
aaps €1 = F102% + 922 e+ op)? = AL (e +cap)
ST - ﬂlpz)z(l —tpy)?

_ 2 f2)

T (1-91p2)2(1—¢py)?
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Let p5 denote the value at which f(p2) = 0. It is found
as

( B2 +v“2MC) Je'D

q1){1

Py = ) (83)
0 +192q)”11|T(C —Cﬁl)
where D is expressed as
_ MTeE\?
D=c|—-01+1
qi|{1y
—  MTc o
—|:cz91+ ! (z?zc—ﬁl)]
q1i{1}
MmT
x [ 14 (e —1) . (84)
qii(1}

For p5 < py < 1, we can see that p; maximizes
Bp, (A1). Substituting p5 into (29) yields the following

q11{1}
¥c)?

Bp, (& (191 + v + 1911920)

D= =T -

relation:
MmT
ﬁ\/ !
q11{1}
2

— _ mT N
—jcdr+c|l— = J(M)
q11{1}

(85)
for uy < A1 < up. Notice that from p5 < p,, we can
find u, as

D1+ 0y + e 0
1y = quy 1+ 02+ cth 2 (86)

T 9 + 02 + Vac

Finally, at p» = p,, referring to the second equation of

(38), we have
MmT

Bpa (1) = - —) ; (87)
a1

922} U2 (
T 9,

forup < A < %

APPENDIX G DERIVATION OF BACKOFF ALGORITHM

Let N be the random variable for the number of backlogged
users at a slot in the system. The joint probability that a slot is
found idle and n backlogged users in the system is expressed
as

.\ 1— n
Pr[I,N = n] = By(p)dn(v) = weﬂ’ (88)
n
The marginal probability of an idle slot is found by
s A
Pr[l] = ZPr[[, N=n]=e"". (89)
n=0

The a posteriori probability that the system has n backlogged
users given an idle slot is obtained as

Pr(N = nll] = gu(v(1 = p)). (90)
By substituting p = x*/v into (90), we have
E[N|I] = v — x*, 1)

119424

which implies that we only need to subtract x* from the
previously estimated mean number of backlogged users after
an idle backoff slot is observed.

Let us consider that m packets are successfully transmitted.

Pr[S = m, N = n] = B (0)d(v)
n _ v _
=( )p’"(l —p)T e (92)
m n:

As before, we can find the marginal probability of m
successful packet transmissions as

m
= m] = Z Pr[S n) = @:1? e, (93)

The a posteriori probability for this is found as

. Pr[S = m, N =
PriIN=n|S =m] = il " ]
Pr[S = m]
iy VL) S DTN
T (m—m)! '

After m successful packet transmissions in a slot, the
conditional expectation is

E[N|S = m] = inPr[N =n|S =m] = (1 —pv+m.
o (95)
Using p = x*/v, we have
E[N|S =m] = v — x* +m. (96)

Here, we need to subtract m from (96), which is given in
line 3 in Algorithm 1.

When a collision occurs, the joint probability is expressed
as

Pr[C,N =n] = Pr[N =n] —Pr[I,N = n]
- ZPr[S =m,N = n] 97)
1
From (97), the expectation for N is obtained as
E[N, C] = E[N] — E[N, ] ZIE[N S =m]
:v—(l — pe P
B Z wpy" L pvepT
(m — 1)' m!
M-—1
wp)™ _,, wp)™ _,,
=v—(1—p)vz ep—vpz m!ep
m=0 m=0
M
opM
=v(l—z¢m(vp))+vp A’;! e (98)
m=0
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Using (89), (93), (97), we have the probability of collision:

M
Pr[C]:l—Pr[[]—ZPr[S:m]
m=1
N S U2 _
—1 Z e =1 qumwp) (99)

m=0

Upon a collision, we approximate the resulting distribution
of the number of backlogged users by a Poisson distribution
with mean E[N|C]:

. ) v
E[N|C] = v+ P¢M(Mp)
L—e™ =" ¢i(vp)
k *
ot %@) (100)
1= ¢ix™)
i=0
where p = x* /v is used. We define constant E(x*, M) as
*k *k
E@*,M) = % (101)
1= i)
i=0
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