
Differential Evolution Using Mutation Strategy With
Adaptive Greediness Degree Control

Wei-Jie Yu a, Jing-Jing Li b (Corresponding Author), Jun Zhang c and Meng Wan d
a Department of Psychology, Sun Yat-sen University

a Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education
a Engineering Research Center of Supercomputing Engineering Software, Ministry of Education

b School of Computer Science, South China Normal University
c School of Advanced Computing, Sun Yat-sen University

d Center for Science and Technology Development, Ministry of Education
jingjing.li1124@gmail.com

ABSTRACT
Differential evolution (DE) has been demonstrated to be one of
the most promising evolutionary algorithms (EAs) for global
numerical optimization. DE mainly differs from other EAs in that
it employs difference of the parameter vectors in mutation
operator to search the objective function landscape. Therefore, the
performance of a DE algorithm largely depends on the design of
its mutation strategy. In this paper, we propose a new kind of DE
mutation strategies whose greediness degree can be adaptively
adjusted. The proposed mutation strategies utilize the information
of top t solutions in the current population. Such a greedy strategy
is beneficial to fast convergence performance. In order to adapt
the degree of greediness to fit for different optimization scenarios,
the parameter t is adjusted in each generation of the algorithm by
an adaptive control scheme. This way, the convergence
performance and the robustness of the algorithm can be enhanced
at the same time. To evaluate the effectiveness of the proposed
adaptive greedy mutation strategies, the approach is applied to
original DE algorithms, as well as DE algorithms with parameter
adaptation. Experimental results indicate that the proposed
adaptive greedy mutation strategies yield significant performance
improvement for most of cases studied.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search – Heuristic methods

General Terms
Algorithms

Keywords
Adaptive control, differential evolution (DE), evolutionary
algorithm (EA), global optimization, mutation strategy

1. INTRODUCTION
Differential evolution (DE), which was first proposed by Storn
and Price in 1995 [1][2], is a simple and powerful evolutionary
algorithm (EA) for global numerical optimization. During the last
few years, DE has been successfully applied to a variety of real-
world problems from diverse domains of science and engineering
[3]−[6]. Similar to other EAs, DE employs three general
evolutionary operators, i.e. mutation, crossover, and selection in
each generation to evolve the population. In these three operators,
the mutation operator which utilizes difference of parameter
vectors to explore the search space mainly makes DE differs from
other EAs. Therefore, how to design efficient mutation strategies
for DE so as to improve the performance of the algorithm has
become a significant and promising research topic in DE.

The five original and most frequently used DE mutation strategies
in the literature were proposed by Storn and Price [3][4]. Among
them, two mutation strategies, namely, DE/rand/1 and DE/rand/2
are performed in a random manner. For example, in the DE/rand/1
mutation, all the three parent vectors are selected randomly from
the current population. Such mutation strategies with high degree
of randomness are good at exploring and able to locate different
promising regions of the search space. However, they may be
poor at exploitation of the solutions and cause slow convergence
of the algorithm [7]. On the contrary, the other three mutation
strategies, namely, DE/best/1, DE/best/2, and DE/current-to-
best/1 incorporate the best solution information. The best
parameter vector with the best fitness value in the population is
selected as one of the parent vectors involved in mutation. Such
greedy mutation strategies can help improving the convergence
performance. Nevertheless, due to the exploitative tendency, the
population may lose its diversity too early and reduce its
exploration ability to search new region of the search space. This
way, individuals of the population are more likely to be trapped in
some local optima, especially when solving complex multimodal
problems.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
GECCO '14, July 12–16, 2014, Vancouver, BC, Canada
Copyright 2014 ACM 978-1-4503-2662-9/14/07…$15.00.
http://dx.doi.org/10.1145/2576768.2598236

73

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2576768.2598236&domain=pdf&date_stamp=2014-07-12

As the above analysis shows, different DE strategies have
different performance characteristics and are suitable for solving
different optimization problems [8]−[10]. In addition, to optimize
a specific problem, different phases of the optimization process
also require different mutation strategies. Therefore, many
researchers employed the concept of combing different mutation
strategies in an ensemble and proposed enhanced DE algorithms
such as SaDE [11], EPSDE [12], SaJADE [13], and CoDE [14],
etc. The mutation strategies in the ensemble approach have
distinct characteristics, so that they can be adaptively selected to
exhibit distinct performance for different optimization phases
when dealing with a particular problem.

In this paper, instead of utilizing the ensemble approach, we
propose a new kind of mutation strategies whose greediness
degree can be adaptively adjusted to fit for different optimization
scenarios. Different from the original DE algorithm, in our
approach, one of the parents involved in the mutation is randomly
selected from the top t solutions in the current population. This
greedy strategy benefits from fast convergence performance, and
the new introduced parameter t controls the greediness degree. To
adapt the greediness degree to the requirements of different
problem scenarios, we design a simple yet efficient adaptive
control scheme for adjusting the value of parameter t.
Consequently, the proposed mutation strategies can provide fast
convergence performance while maintaining the reliability of the
algorithm at a high level. Moreover, the approach can be easily
applied to other advanced DE variants with minimal changes.

To validate the effectiveness of our proposed adaptive greedy
mutation strategies on DE, our approach is compared with the
original DE algorithm with different mutation strategies. In
addition, the proposed adaptive greedy mutation strategies are
also applied to other DE variant with parameter adaptation.
Experimental results show that our proposed adaptive greedy
mutation strategies are able to enhance the performance of the
original DE and the advanced DE with parameter adaptation for
most of the cases studied.

The rest of this paper is organized as follows. Section 2 reviews
the DE algorithm and the related works on variants of DE
mutation strategies. Section 3 describes the proposed adaptive
greedy mutation strategies in detail. In Section 4, experiments are
carried out on benchmark functions to verify the influence of our
proposed approach. Finally, Section 5 draws the conclusions.

2. DE ALGORITHM AND RELATED
WORKS

2.1 Differential Evolution (DE) Algorithm
DE is a population-based stochastic algorithm designed for global
numerical optimization. Similar to other EAs, DE searches for a
global optimum in the feasible solution space with a population of

parameter vectors },...,2,1],,...,,[{ ,,,2,,1,, NPixxx gDigigigi x ,

where g denotes the current generation, D is the dimension of the
search space, and NP is the population size. In generation g=0, the
jth component of the ith vector can be initialized as

)()1,0(rand min,max,min,0,, jjjji xxxx  (1)

where rand(0,1) is a uniform random number on the interval [0,1],
and jxmin, , jxmax, are the prescribed minimum and maximum

bounds of the jth dimension, respectively. After initialization, DE
enters an evolutionary process which includes mutation, crossover,
and selection operations.

Mutation: In each generation g, the mutation operation is applied
to each individual gi,x (also called target vector) to create its

corresponding mutant vector gi,v . The six most frequently used

mutation strategies are listed as follows.

 DE/rand/1:

)(,3,21, grgr,grgi F xxxv  (2)

 DE/best/1:

)(,2,1,best, grgrggi F xxxv  (3)

 DE/rand/2:

)()(,5,4,3,2,1, grgrgrgrgrgi FF xxxxxv  (4)

 DE/best/2:

)()(,4,3,2,1,best, grgrgrgrggi FF xxxxxv  (5)

 DE/current-to-rand/1:

)()(,3,2,,1,, grgrgigrgigi FF xxxxxv  (6)

 DE/current-to-best/1:

)()(,2,1,,best,, grgrgiggigi FF xxxxxv  (7)

It can be seen that the mutant vector gi,v is generated by

combing a base vector with one or two scaled difference vectors.
In the above equations, the indices r1, r2, r3, r4, and r5 are distinct
integers randomly selected from the range [1, NP], and all are
different from the index i. g,bestx is the vector with the best

fitness value in the current generation. The factor F is a positive
control parameter for amplifying the difference vectors.

Crossover: In order to enhance population diversity, a crossover
operation exchanges some components of the mutant vector gi,v

with the target vector gi,x to generate a trial vector gi,u . The

process can be expressed as





 


otherwise ,

or rand(0,1) if ,

,,

rand,,
,,

gji

gji
gji x

jjCRv
u (7)

where rand(0,1) is a uniformly distributed random number as
before. jrand is an integer randomly generated from the range

],1[D , which is used to ensure the trial vector has at least one
component different from the target vector. The crossover
probability CR is another control parameter that determines the
fraction of vector components inherited from the mutant vector.

Selection: To decide whether the target or the trial vector can
survive to the next generation, the selection operation is finally
performed. For a minimization problem, the vector with the lower

74

fitness value enters the next generation, which can be expressed
as follows:





 

 otherwise ,

)()(if ,

,

,,,
1,

gi

gigigi
gi

ff

x

xuu
x (8)

where)(xf is the objective function for the minimization
problem.

The above three operators are repeated until the algorithm meets a
termination criteria, such as a maximum iteration number or a
maximum number of fitness evaluations.

2.2 Variants of DE Mutation Strategies
In addition to the six most frequently used mutation strategies
mentioned in Section 2.1, a lot of other variants have been
proposed to further improve the performance of DE. Fan and
Lampinen [15] proposed a trigonometric mutation to increase the
convergence speed of DE. Kaelo and Ali [16] proposed a hybrid
mutation operator which uses the attraction-repulsion technique of
an electromagnetism-like algorithm. In order to balance the
exploration and exploitation capabilities of DE, many researchers
designed variants of some greedy mutation strategies [17]−[19].
These variants utilize the information of multiple good solutions
instead of the single best solution in the entire population.
However, the greediness degree of these variants remains
unchanged during the evolution.

Besides developing new DE mutation strategies, some researchers
investigated DE mutation frameworks that can be applied to
different DE variants. For example, Epitropakis et al. [20]
proposed a mutation framework in which the probability of
selecting an individual to become a parent is inversely
proportional to its distance from the individual undergoing
mutation. Gong and Cai [21] proposed a kind of ranking-based
mutation framework, where some of the parents in the mutation
operator are proportionally selected according to their rankings in
the current population. Cai and Wang [22] proposed a DE
mutation framework that exploits the neighborhood and direction
information of the population.

Unlike the above methods, some DE variants such as SaDE [11],
EPSDE [12], SaJADE [13], and CoDE [14] employed an
ensemble of different mutation strategies. In the ensemble
approach, a pool of mutation strategies competes to produce
successful offspring population. The mutation strategies present in
a pool have diverse characteristics, so that they can exhibit
distinct performance characteristics during different phases of the
evolution, when optimizing a specific problem [5].

3. DE MUTATION STRATEGIES WITH
ADAPTIVE GREEDINESS DEGREE
CONTROL
In this section, we propose the adaptive greedy mutation
strategies, where one of the parent vectors in the mutation is
randomly selected from the top t solutions in the current
population. Next, we discuss which parent vector in the mutation
should be selected from the top t solutions and how to adaptively
adjust the value of parameter t.

3.1 Vector Selection
Before performing mutation in each generation, we first find out
the current top t solutions based on the fitness values. Then, the
base vector in the mutation strategy is randomly selected from the
current top t solutions, while the other vectors in the mutation are
selected randomly as the original DE algorithm. Note that if the
base vector in a mutation strategy is the target vector (e.g.
DE/current-to-best/1), instead of the base vector, the terminal
point of the difference vector is randomly chosen as one of the
current top t solution.

By incorporating the vector selection scheme into the six original
mutation strategies mentioned in Section 2.1, we develop three
novel adaptive greedy variants as follows:

 DE/atbest/1:

)(,2,1,best, grgr
t

ggi F xxxv  (9)

 DE/atbest/2:

)()(,4,3,2,1best,, grgrgrgr
t

ggi FF xxxxxv  (10)

 DE/current-to-atbest/1:

)()(,2,1,best,, grgrgi
t

,ggigi FF xxxxxv  (11)

where t
g,bestx is randomly chosen as one of the current top t

solutions, t = 1, 2, …, NP. Among them, DE/atbest/1 is derived
from DE/rand/1 and DE/best/1, DE/atbest/2 is derived from
DE/rand/2 and DE/best/2, and DE/current-to-atbest/1 is derived
from DE/current-to-rand/1 and DE/current-to-best/1. Note that
tuning the parameter t can control the greediness degree of the
search process. In the following subsection, we describe how to
adjust the value of parameter t.

3.2 Adaptive Control Scheme for Parameter t
To adapt the greediness degree to the requirements of different
problem scenarios, we design a simple yet efficient scheme to
adaptively adjust the value of parameter t. Each individual in the
initial population is associated with an integer value of t which is
randomly selected from the range [1, NP]. In the mutation process,
each target vector produces mutant vector using its own value of
parameter t. Then the crossover operator is applied to each pair of
mutant vector and target vector to generate a trial vector. If the
generated trial vector produced is better than the target vector, the
value of parameter t is retained with trial vector which becomes
the target vector in the next generation. Otherwise, if the trial
vector is worse than the target vector, the target vector is
randomly reinitialized with a new value of parameter t. This
adaptive control scheme allows better values of parameter t to be
more likely to survive and offspring would be produced by these
better parameter values in the future generations.

3.3 DE With Adaptive Greedy Mutation
Strategy
Combining the proposed adaptive greedy mutation strategy with
DE, the DE algorithm using mutation strategy with adaptive
greediness degree control (AGDE) is developed. Figure 1
illustrates the flowchart of the AGDE algorithm. It can be seen

75

that AGDE maintains the simple structure of the original DE
algorithm. In addition, since information of good solutions is
utilized in the mutation, the algorithm benefits from fast
convergence. The robustness of the AGDE can be further
enhanced by the adaptive greediness control scheme. Moreover,
the adaptive greedy mutation strategies are also able to integrate
into other DE variants with minimal changes.

Figure 1. Flowchart of the AGDE algorithm.

4. EXPERIMENTAL RESULTS

4.1 Benchmark Functions
In this section, experiments are carried out to validate the
performance of the proposed AGDE algorithms. We employ 25
benchmark functions from CEC 2005 special session on real-
parameter optimization [23] as the test suite. Based on their
characteristics, these functions can be divided into the four classes:
1) unimodal functions (F1–F5); 2) basic multimodal functions
(F6–F12); 3) expanded multimodal functions (F13–F14); and 4)
hybrid composition functions (F15–F25). More details of this
benchmark suite can be found in [23].

4.2 Experimental Setup
In the experiments, we first test the influence of our approach on
different mutation strategies in original DE. The performance of
three AGDEs proposed in Section 3 (i.e. DE/atbest/1, DE/atbest/2
and DE/current-to-atbest/1) is compared with their respective
original algorithms. Then, we validate the effectiveness of the
proposed mutation strategies on an advanced DE variant, namely,
jDE [24]. jDE uses a self-adaptive approach to adapt the
parameter values of F and CR, so that it can obtain promising
results among various mutation strategies. To make a fair
comparison, we employ the parameter settings for all of the
compared DE algorithms as follows:

1) Function dimension: D = 30;

2) Population size: NP = 100 [7][10][24][25];

3) Function evaluations (FEs): FEs = 300 000;

4) Number of runs (NumR): NumR = 25.

To measure the performance of the algorithms, we calculate the
average and standard deviation of the function error value f(x) −
f(x), where x is the best solution of each run and x is the global
optimum of the benchmark function. For clarity, the results of the
best algorithms are highlighted in boldface for each benchmark
function. Moreover, we apply the paired Wilcoxon signed-rank
test [26] to evaluate the statistical significant differences between
two algorithms. Bases on the test, we mark the results with “+”,
“=”, and “−”, which indicate that the performance of our proposed
algorithm is significantly better than, equal to, and worse than the
corresponding algorithm, respectively.

4.3 Effects on Original DE With Different
Mutation strategies
In this section, we evaluate the effectiveness of our proposed
different mutation strategies in the original DE. Six mutation
strategies [see (2)–(7)] are compared with their corresponding
adaptive greedy variants [see (9)–(11)] in the experiment. As
suggested in most of the literatures [2][24][27][28], the original
DE algorithm set the values of F and CR to 0.5 and 0.9,
respectively. The experimental results of DE/atbest/1,
DE/atbest/2, and DE/current-to-atbest/1 compared with their
respective original algorithms are shown in Table 1, Table 2, and
Table 3, respectively. From these results, we can find that, for the
majority of the test functions, the AGDE algorithms achieve
significantly better error values compared with their
corresponding original DE algorithms.

1) For the unimodal functions F1–F5, it can be found that all the
three AGDEs obtain significant better results than their
corresponding original DEs on most of these functions. The only
exception is that the performance of DE/atbest/2 is deteriorated
on 4 out of the 5 functions when compared with DE/best/2.

2) For the basic multimodal functions F6–F12, regardless of the
mutation strategy used, the adaptive greedy DE variants
consistently outperform the original DEs in most of the cases (23
out of 42). In the remaining 19 cases, AGDEs provide 13 similar
results and 6 worse results compared with their corresponding
original DEs, respectively.

3) For the expanded multimodal functions F13–F14, the adaptive
greedy approach does not yield great performance improvement.
The AGDEs exhibits improvement performance in 4 out of 12
cases, while in 4 cases the proposed scheme deteriorates the
performance.

4) For the hybrid composition functions F15–F25, the AGDEs
exhibit significant improvement on most of these functions,
although they are very difficult to solve for most optimization
algorithms. In all the 66 cases, AGDEs are significantly better
than original DEs in 48 cases and worse than them in only one
case. In particular, DE/atbest/1 and DE/current-to-atbest/1 are
significantly better than DE/best/1 and DE/current-to-best/1 on all
of the 11 functions, respectively.

76

Table 1. Effects on DE/rand/1 and DE/best/1 in Original DE

Fun.
DE/rand/1

Mean (Std.)
DE/best/1

Mean (Std.)
DE/atbest/1
Mean (Std.)

F1 0.00E+00 (0.00E+00) = 5.21E−13 (3.67E−12) + 0.00E+00 (0.00E+00)
F2 2.81E−05 (1.87E−05) + 2.26E−12 (1.66E−12) + 7.96E−14 (2.78E−14)
F3 3.84E+05 (2.58E+05) + 1.72E+04 (1.02E+04) − 8.35E+04 (4.98E+04)
F4 1.74E−02 (2.07E−02) + 3.78E+02 (7.13E+02) + 2.33E−09 (8.99E−09)
F5 5.78E+01 (4.58E+01) + 2.10E+03 (7.31E+02) + 4.78E+01 (6.53E+01)
F6 8.19E−02 (1.80E−01) + 1.44E+00 (1.86E+00) + 4.78E−01 (1.29E+00)
F7 1.08E−03 (2.96E−03) = 2.09E−02 (2.21E−02) + 1.15E−02 (1.17E−02)
F8 2.10E+01 (4.90E−02) = 2.10E+01 (3.17E−02) = 2.09E+01 (6.27E−02)
F9 1.31E+02 (2.37E+01) + 1.08E+02 (2.51E+01) + 1.69E+01 (4.07E+00)
F10 1.81E+02 (1.05E+01) + 1.48E+02 (3.52E+01) = 1.48E+02 (2.97E+01)
F11 3.94E+01 (1.01E+00) + 2.21E+01 (1.93E+00) − 3.83E+01 (5.99E+00)
F12 1.29E+03 (1.67E+03) = 2.89E+03 (3.82E+03) = 2.17E+03 (2.54E+03)
F13 1.53E+01 (1.01E+00) + 6.92E+00 (2.34E+00) = 8.62E+00 (4.31E+00)
F14 1.33E+01 (1.40E−01) = 1.20E+01 (6.53E−01) − 1.32E+01 (2.00E−01)
F15 4.08E+02 (4.45E+01) = 4.73E+02 (8.70E+01) + 4.04E+02 (4.45E+01)
F16 2.12E+02 (9.97E+00) + 3.28E+02 (1.29E+02) + 1.26E+02 (1.05E+02)
F17 2.25E+02 (1.36E+01) = 3.02E+02 (1.22E+02) + 2.20E+02 (4.39E+01)
F18 9.00E+02 (3.83E+01) + 9.67E+02 (4.66E+01) + 8.85E+02 (4.28E+01)
F19 9.04E+02 (1.33E+00) + 9.65E+02 (2.64E+01) + 8.77E+02 (4.81E+01)
F20 9.04E+02 (1.07E+00) + 9.63E+02 (3.73E+01) + 8.94E+02 (3.50E+01)
F21 5.00E+02 (1.67E−13) = 7.56E+02 (3.03E+02) + 5.00E+02 (1.56E−13)
F22 9.08E+02 (1.05E+01) + 1.05E+03 (4.32E+01) + 8.99E+02 (1.26E+01)
F23 5.34E+02 (3.20E−04) = 1.04E+03 (1.90E+02) + 5.34E+02 (3.56E−04)
F24 2.00E+02 (2.84E−14) = 8.54E+02 (4.92E+02) + 2.00E+02 (2.84E−14)
F25 2.09E+02 (1.25E−01) = 7.89E+02 (5.52E+02) + 2.09E+02 (1.61E−02)

+/=/− 14/11/0 18/4/3 −
“+”, “=”, and “−” indicate that the performance of our proposed algorithm is
respectively better than, equal to, and worse than the corresponding algorithm
according to the Wilcoxon signed-rank test at 05.0 .

Table 2. Effects on DE/rand/2 and DE/best/2 in Original DE

Fun.
DE/rand/2

Mean (Std.)
DE/best/2

Mean (Std.)
DE/atbest/2
Mean (Std.)

F1 7.88E−01 (3.04E−01) + 6.59E−14 (1.85E−14) + 2.96E−14 (2.83E−14)
F2 7.59E+03 (2.05E+03) + 2.64E−13 (8.34E−14) − 2.72E+00 (9.40E−01)
F3 5.32E+07 (1.35E+07) + 1.46E+05 (7.24E+04) − 9.23E+05 (2.25E+05)
F4 1.58E+04 (2.45E+03) + 1.31E−04 (3.89E−04) − 4.97E+01 (1.16E+01)
F5 8.13E+03 (6.36E+02) + 1.07E+02 (2.03E+02) − 8.54E+02 (1.18E+02)
F6 4.89E+03 (1.74E+03) + 4.78E−01 (1.30E+00) − 6.01E+00 (1.37E+01)
F7 6.97E+00 (2.74E+00) + 1.11E−02 (9.20E−03) + 2.87E−06 (1.47E−06)
F8 2.09E+01 (5.63E−02) = 2.10E+01 (4.76E−02) + 2.09E+01 (5.23E−02)
F9 2.16E+02 (1.08E+01) + 1.82E+02 (1.51E+01) = 1.92E+02 (8.87E+00)
F10 2.41E+02 (1.06E+01) + 1.97E+02 (1.28E+01) = 2.04E+02 (9.12E+00)
F11 3.96E+01 (1.08E+00) + 3.98E+01 (7.92E−01) + 3.94E+01 (7.92E−01)
F12 5.25E+05 (6.62E+04) + 1.28E+03 (2.36E+03) − 2.26E+05 (1.46E+05)
F13 2.06E+01 (8.38E−01) + 1.55E+01 (1.41E−01) − 1.71E+01 (1.17E−01)
F14 1.35E+01 (1.33E−01) = 1.33E+01 (2.16E−01) = 1.33E+01 (2.99E−01)
F15 4.06E+02 (6.84E+00) = 3.89E+02 (1.02E+02) = 3.88E+02 (4.13E+01)
F16 2.69E+02 (1.27E+01) + 3.18E+02 (9.97E+01) + 2.28E+02 (1.36E+01)
F17 3.02E+02 (1.65E+01) + 3.44E+02 (1.14E+02) + 2.57E+02 (1.25E+01)
F18 9.40E+02 (4.00E+00) + 9.08E+02 (3.03E+00) = 9.07E+02 (2.73E−01)
F19 9.40E+02 (3.03E+00) + 9.08E+02 (3.49E+01) − 9.07E+02 (5.20E−01)
F20 9.39E+02 (3.92E+01) + 8.99E+02 (3.52E+01) = 9.07E+02 (7.35E−01)
F21 5.00E+02 (1.11E−01) + 5.48E+02 (1.10E+02) + 5.00E+02 (1.72E−13)
F22 1.02E+03 (1.36E+01) + 9.31E+02 (1.88E+01) = 9.30E+02 (7.19E+00)
F23 5.35E+02 (4.68E−01) = 6.17E+02 (1.62E+02) + 5.34E+02 (3.62E−04)
F24 2.00E+02 (1.31E−01) + 2.00E+02 (9.26E−13) = 2.00E+02 (2.84E−14)
F25 2.29E+02 (3.60E+00) + 2.47E+02 (1.60E+02) + 2.09E+02 (1.58E−01)

+/=/− 21/4/0 9/8/8 −
“+”, “=”, and “−” indicate that the performance of our proposed algorithm is
respectively better than, equal to, and worse than the corresponding algorithm
according to the Wilcoxon signed-rank test at 05.0 .

Table 3. Effects on DE/current-to-rand/1 and DE/current-to-
best/1 in Original DE

Fun.
DE/current-to-rand/1

Mean (Std.)
DE/current-to-best/1

Mean (Std.)

DE/current-to-
atbest/1

Mean (Std.)
F1 6.57E+03 (1.31E+03) + 1.89E+03 (1.05E+03) + 1.71E+03 (6.08E+02)
F2 6.91E+03 (1.57E+03) + 4.60E+03 (2.36E+03) + 3.28E+03 (1.26E+03)
F3 3.81E+06 (2.06E+06) + 6.19E+06 (4.51E+06) + 2.67E+06 (1.30E+06)
F4 3.09E+03 (1.49E+03) + 6.30E+02 (6.48E+02) + 2.51E+02 (3.04E+02)
F5 5.84E+03 (1.16E+03) + 8.52E+03 (1.53E+03) + 4.79E+03 (1.06E+03)
F6 1.10E+09 (4.76E+08) + 1.43E+08 (1.31E+08) − 2.39E+08 (2.14E+08)
F7 3.35E+03 (3.67E+02) + 2.42E+03 (5.77E+02) + 1.67E+03 (3.45E+02)
F8 2.09E+01 (8.18E−02) = 2.10E+01 (4.11E−02) = 2.09E+01 (4.60E−02)
F9 1.54E+02 (1.11E+01) + 8.43E+01 (2.25E+01) = 8.54E+01 (5.56E+01)
F10 1.78E+02 (1.35E+01) + 1.19E+02 (2.72E+01) − 1.57E+02 (2.82E+01)
F11 3.91E+01 (9.69E−01) + 1.47E+01 (1.79E+00) − 3.32E+01 (9.62E+00)
F12 2.64E+04 (1.37E+04) + 3.43E+04 (2.11E+04) + 1.53E+04 (9.15E+03)
F13 1.38E+01 (8.82E−01) + 4.90E+00 (3.19E+00) − 1.22E+01 (1.07E+00)
F14 1.27E+01 (3.09E−01) + 1.20E+01 (3.72E−01) − 1.24E+01 (2.84E−01)
F15 4.78E+02 (8.69E+01) + 4.92E+02 (9.00E+01) + 4.18E+02 (1.17E+02)
F16 1.86E+02 (1.13E+01) + 2.46E+02 (1.64E+02) + 1.54E+02 (1.35E+02)
F17 2.07E+02 (2.21E+01) = 2.78E+02 (1.49E+02) + 2.10E+02 (7.17E+01)
F18 9.23E+02 (4.51E+01) = 9.92E+02 (3.36E+01) + 9.23E+02 (5.12E+01)
F19 9.13E+02 (4.44E+01) = 1.00E+03 (2.93E+01) + 9.04E+02 (5.67E+01)
F20 9.03E+02 (4.60E+01) = 9.98E+02 (2.17E+01) + 9.25E+02 (4.75E+01)
F21 1.03E+03 (1.32E+02) + 1.07E+03 (2.02E+02) + 8.87E+02 (2.26E+02)
F22 9.38E+02 (1.48E+01) + 1.02E+03 (3.93E+01) + 9.27E+02 (1.10E+01)
F23 1.00E+03 (1.49E+02) + 1.13E+03 (1.12E+02) + 9.58E+02 (1.73E+02)
F24 6.96E+02 (9.76E+01) + 9.34E+02 (2.59E+02) + 3.51E+02 (1.27E+02)
F25 1.09E+03 (2.82E+02) + 1.44E+03 (5.46E+01) + 7.97E+02 (4.59E+02)

+/=/− 20/5/0 18/2/5 −
“+”, “=”, and “−” indicate that the performance of our proposed algorithm is
respectively better than, equal to, and worse than the corresponding algorithm
according to the Wilcoxon signed-rank test at 05.0 .

Overall, based on the results and analysis, it can be seen that our
proposed adaptive greedy approach is able to improve the
performance of the original algorithm with different mutation
strategies. In the next subsection, we will test the influence of the
adaptive greedy mutation on advanced DE variant with parameter
adaptation.

4.4 Effects on jDE With Different Mutation
strategies
In order to study the effect of our approach more
comprehensively, we further incorporate the adaptive greedy
mutation strategies into an advanced DE variant, namely, jDE,
which uses a self-adaptive approach to adapt the values of F and
CR throughout the evolutionary process. The experimental results
are shown in Tables 4–6. It can be found that, for the majority of
the test functions, the adaptive greedy jDEs provide significantly
better results compared with their corresponding jDEs. For
example, jDE/atbest/1 significantly improves the performance of
jDE/best/1 on 19 out of 25 functions but only loses on 3 functions.
jDE/current-to-atbest/1 significantly outperforms jDE/current-to-
rand/1 on 15 functions, whereas worse than it on only one
function.

In general, from results shown in Tables 4–6, we can conclude
that our proposed adaptive greedy mutation strategies are also
capable of improving the performance of the advanced DE variant
with parameter adaptation.

77

Table 4. Effects on DE/rand/1 and DE/best/1 in jDE

Fun.
jDE/rand/1
Mean (Std.)

jDE/best/1
Mean (Std.)

jDE/atbest/1
Mean (Std.)

F1 0.00E+00 (0.00E+00) = 1.05E−13 (6.87E−14) + 0.00E+00 (0.00E+00)
F2 3.29E−06 (3.59E−06) + 1.28E−12 (1.24E−12) + 2.59E−13 (1.49E−13)
F3 1.91E+05 (7.94E+04) + 9.74E+03 (7.18E+03) − 5.11E+04 (3.25E+04)
F4 1.67E−01 (3.49E−01) + 4.37E+02 (5.60E+02) + 1.51E−03 (3.82E−03)
F5 1.10E+03 (4.65E+02) − 3.05E+03 (5.58E+02) + 1.64E+03 (4.09E+02)
F6 2.01E+01 (2.36E+01) + 1.12E+00 (1.79E+00) = 1.59E+00 (1.95E+00)
F7 1.22E−02 (9.57E−03) = 2.32E−02 (2.22E−02) + 1.54E−02 (1.33E−02)
F8 2.09E+01 (4.91E−02) = 2.10E+01 (2.82E−02) = 2.09E+01 (3.36E−02)
F9 0.00E+00 (0.00E+00) = 6.90E+01 (1.70E+01) + 0.00E+00 (0.00E+00)
F10 5.60E+01 (7.35E+00) + 9.28E+01 (1.67E+01) + 3.49E+01 (1.11E+01)
F11 2.86E+01 (2.11E+00) + 2.41E+01 (2.78E+00) − 2.67E+01 (2.97E+00)
F12 1.51E+04 (7.10E+03) + 1.59E+03 (2.15E+03) + 1.06E+03 (1.58E+03)
F13 1.71E+00 (1.78E−01) + 3.44E+00 (1.26E+00) + 1.65E+00 (1.07E−01)
F14 1.30E+01 (1.82E−01) = 1.23E+01 (2.98E−01) − 1.29E+01 (2.22E−01)
F15 3.47E+02 (8.92E+01) = 3.97E+02 (6.40E+01) = 3.60E+02 (8.49E+01)
F16 8.90E+01 (6.78E+01) + 1.85E+02 (8.94E+01) + 7.97E+01 (7.19E+01)
F17 1.33E+02 (1.70E+01) + 2.53E+02 (1.28E+02) + 8.67E+01 (6.85E+01)
F18 9.06E+02 (1.82E+00) = 9.52E+02 (2.16E+01) + 9.08E+02 (2.24E+01)
F19 9.07E+02 (1.76E+00) = 9.47E+02 (2.22E+01) + 9.12E+02 (3.77E+00)
F20 9.02E+02 (2.01E+01) = 9.56E+02 (2.21E+01) + 9.08E+02 (2.23E+01)
F21 5.00E+02 (1.33E−13) = 6.83E+02 (2.69E+02) + 5.00E+02 (1.64E−13)
F22 9.05E+02 (8.35E+00) = 9.70E+02 (3.76E+01) + 9.05E+02 (1.11E+01)
F23 5.34E+02 (3.01E−04) = 7.47E+02 (2.44E+02) + 5.34E+02 (5.04E−01)
F24 2.00E+02 (2.84E−14) = 3.27E+02 (3.42E+02) + 2.00E+02 (2.84E−14)
F25 2.10E+02 (3.62E−01) + 2.95E+02 (2.81E+02) + 2.09E+02 (3.47E−02)

+/=/− 11/13/1 19/3/3 −
“+”, “=”, and “−” indicate that the performance of our proposed algorithm is
respectively better than, equal to, and worse than the corresponding algorithm
according to the Wilcoxon signed-rank test at 05.0 .

Table 5. Effects on DE/rand/2 and DE/best/2 in jDE

Fun.
jDE/rand/2
Mean (Std.)

jDE/best/2
Mean (Std.)

jDE/atbest/2
Mean (Std.)

F1 0.00E+00 (0.00E+00) = 6.14E−14 (1.54E−14) + 0.00E+00 (0.00E+00)
F2 2.23E−03 (4.77E−03) + 5.07E−13 (1.65E−13) = 3.55E−13 (3.05E−13)
F3 2.73E+05 (1.63E+05) + 1.22E+04 (8.56E+03) − 6.23E+04 (3.43E+04)
F4 6.71E+00 (2.04E+01) + 3.34E+00 (7.48E+00) + 1.77E−04 (3.11E−04)
F5 7.25E+02 (3.81E+02) = 2.13E+03 (6.71E+02) + 8.91E+02 (4.12E+02)
F6 1.54E+01 (1.19E+01) + 1.92E+00 (2.00E+00) + 4.99E−01 (1.08E+00)
F7 4.14E−03 (4.76E−03) − 1.27E−02 (1.34E−02) = 1.30E−02 (9.34E−03)
F8 2.09E+01 (4.46E−02) = 2.09E+01 (5.15E−02) = 2.09E+01 (4.15E−02)
F9 0.00E+00 (0.00E+00) = 1.12E+01 (9.61E+00) + 0.00E+00 (0.00E+00)
F10 6.62E+01 (9.32E+00) + 7.16E+01 (1.58E+01) + 4.61E+01 (9.12E+00)
F11 2.83E+01 (1.91E+00) = 2.52E+01 (3.00E+00) − 2.82E+01 (1.41E+00)
F12 2.27E+04 (4.94E+03) + 2.70E+03 (4.24E+03) − 1.25E+04 (8.99E+03)
F13 1.81E+00 (1.55E−01) + 1.87E+00 (2.17E−01) + 1.74E+00 (1.60E−01)
F14 1.31E+01 (2.26E−01) = 1.28E+01 (2.90E−01) = 1.30E+01 (2.30E−01)
F15 2.70E+02 (1.76E+02) − 3.81E+02 (8.03E+02) = 3.84E+02 (5.43E+01)
F16 9.67E+01 (1.92E+01) + 1.44E+02 (8.78E+01) + 7.65E+01 (2.21E+01)
F17 1.57E+02 (1.56E+01) + 1.58E+02 (1.11E+02) + 1.23E+02 (2.25E+01)
F18 9.08E+02 (1.51E+00) = 9.16E+02 (4.05E+01) + 9.08E+02 (1.91E+00)
F19 9.07E+02 (1.40E+00) = 9.11E+02 (1.73E+01) + 9.08E+02 (1.84E+00)
F20 9.07E+02 (1.24E+00) = 9.21E+02 (2.93E+01) + 9.08E+02 (2.49E+00)
F21 5.00E+02 (1.07E−13) = 6.30E+02 (2.47E+02) + 5.00E+02 (1.65E−13)
F22 9.23E+02 (8.36E+00) + 9.46E+02 (2.28E+01) + 9.03E+02 (9.93E+00)
F23 5.34E+02 (2.59E−04) = 7.23E+02 (2.66E+02) + 5.34E+02 (2.78E−04)
F24 2.00E+02 (6.25E−13) = 2.00E+02 (9.17E−13) = 2.00E+02 (2.84E−14)
F25 2.09E+02 (2.73E−01) + 2.11E+02 (1.20E+00) = 2.09E+02 (2.31E−01)

+/=/− 11/12/2 15/7/3 −
“+”, “=”, and “−” indicate that the performance of our proposed algorithm is
respectively better than, equal to, and worse than the corresponding algorithm
according to the Wilcoxon signed-rank test at 05.0 .

Table 6. Effects on DE/current-to-rand/1 and DE/current-to-
best/1 in jDE

Fun.
jDE/current-to-rand/1

Mean (Std.)
jDE/current-to-best/1

Mean (Std.)

jDE/current-to-
atbest/1

Mean (Std.)
F1 1.14E−14 (2.27E−14) + 5.23E−14 (1.85E−14) + 0.00E+00 (0.00E+00)
F2 1.50E+01 (3.82E+01) + 1.96E−12 (4.77E−12) − 8.83E−02 (4.18E−01)
F3 4.64E+05 (2.62E+05) + 3.99E+04 (7.85E+04) − 1.63E+05 (9.16E+04)
F4 9.05E+01 (7.87E+01) + 8.58E−01 (8.12E−01) − 7.57E+00 (2.29E+01)
F5 2.81E+03 (3.89E+02) + 2.30E+03 (7.24E+02) = 2.29E+03 (5.41E+02)
F6 3.34E+01 (2.38E+01) + 1.31E+01 (2.89E+01) = 1.30E+00 (1.50E+00)
F7 1.29E−02 (1.10E−02) + 2.21E−02 (2.78E−02) + 8.36E−03 (1.16E−02)
F8 2.09E+01 (5.19E−02) = 2.09E+01 (8.74E−02) = 2.09E+01 (4.12E−02)
F9 1.50E−12 (6.12E−12) + 5.00E−14 (1.85E−14) + 0.00E+00 (0.00E+00)
F10 3.76E+01 (6.61E+00) + 4.80E+01 (1.08E+01) + 3.51E+01 (6.57E+00)
F11 2.50E+01 (1.37E+00) = 2.53E+01 (1.14E+00) + 2.50E+01 (1.71E+00)
F12 9.40E+03 (3.03E+03) + 2.49E+03 (4.19E+03) − 5.06E+03 (2.76E+03)
F13 1.66E+00 (1.82E−01) = 1.69E+00 (1.79E−01) = 1.70E+00 (1.59E−01)
F14 1.28E+01 (1.99E−01) + 1.27E+01 (2.37E−01) + 1.26E+01 (2.83E−01)
F15 2.15E+02 (9.32E+01) − 3.52E+02 (1.42E+02) + 3.04E+02 (1.36E+01)
F16 6.57E+01 (1.14E+01) + 1.74E+02 (1.51E+02) + 7.00E+01 (6.79E+01)
F17 1.04E+02 (2.28E+01) + 2.02E+02 (1.52E+02) + 9.31E+01 (2.95E+01)
F18 8.75E+02 (5.65E+01) = 8.87E+02 (5.51E+01) = 8.91E+02 (5.10E+01)
F19 8.71E+02 (5.83E+01) = 9.19E+02 (2.53E+01) + 8.84E+02 (5.29E+00)
F20 8.86E+02 (534E+01) = 8.89E+02 (5.58E+01) = 8.90E+02 (5.08E+01)
F21 5.00E+02 (1.51E−13) = 6.29E+02 (2.43E+02) + 5.00E+02 (1.61E−13)
F22 9.26E+02 (1.01E+01) = 9.27E+02 (2.04E+01) + 9.21E+02 (1.15E+01)
F23 5.35E+02 (1.93E+00) + 6.30E+02 (2.13E+02) + 5.34E+02 (6.50E−01)
F24 2.00E+02 (1.03E−12) = 2.00E+02 (1.35E−12) = 2.00E+02 (2.84E−14)
F25 2.12E+02 (7.86E−01) + 2.61E+02 (1.93E+02) + 2.11E+02 (6.81E−01)

+/=/− 15/9/1 14/7/4 −
“+”, “=”, and “−” indicate that the performance of our proposed algorithm is
respectively better than, equal to, and worse than the corresponding algorithm
according to the Wilcoxon signed-rank test at 05.0 .

5. CONCLUSION
In this paper, adaptive greedy mutation strategies have been
proposed for the DE algorithm. The proposed strategies utilize the
information of top t solutions in the population. To adapt the
greediness degree to fit for different optimization scenarios, an
adaptive control scheme has been proposed for adjusting the value
of parameter t. The adaptive greedy mutation strategies have been
applied to the original DE and jDE. Experiments have been
conducted on 25 benchmark functions from CEC 2005. The
results demonstrate the effectiveness of the adaptive greedy
mutation strategies to improve the overall performance.

The applications of the proposed strategies to other state-of-the-
art DE variants will be studied in future work. The extension of
the proposed strategies to multi-objective and dynamic
optimization will be another future direction.

6. ACKNOWLEDGMENTS
This work was supported in part by the National High-
Technology Research and Development Program (863 Program)
of China No.2013AA01A212, in part by the NSFC for
Distinguished Young Scholars 61125205, in part by the NSFC
No. 61332002, No.61300044 and No. 61170220.

7. REFERENCES
[1] R. M. Storn and K. V. Price, “Differential evolution-a simple

and efficient adaptive scheme for global optimization over

78

continuous spaces,” TR-95-012, 1995 [Online]. Available:
http://icsi.berkeley.edu/~storn/litera.html.

[2] R. M. Storn and K. V. Price, “Differential evolution-a simple
and efficient heuristic for global optimization over
continuous spaces,” J. Global Optim., vol. 11, pp. 341–359,
1997.

[3] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential
Evolution: A Practical Approach to Global Optimization.
Berlin, Germany: Springer-Verlag, 2005.

[4] K. V. Price, “An introduction to differential evolution,” in
New Ideas in Optimization, D. Corne, M. Dorigo, and V.
Glover, Eds. London, U.K.: McGraw-Hill, 1999, pp. 79–108.

[5] S. Das and P. N. Suganthan, “Differential evolution: a survey
of the state-of-the-art,” IEEE Trans Evol. Comput., vol. 15,
no. 1, pp. 4–31, Feb. 2011.

[6] F. Neri and V. Tirronen, “Recent advances in differential
evolution: A survey and experimental analysis,” Artif. Intell.
Rev., vol. 33, no. 1/2, pp. 61–106, Feb. 2010.

[7] N. Noman and H. Iba, “Accelerating differential evolution
using an adaptive local search,” IEEE Trans. Evol. Comput.,
vol. 12, no. 1, pp. 107–125, Feb. 2008.

[8] D. K. Tasoulis, V. P. Plagianakos, and M. N. Vrahatis,
“Clustering in evolutionary algorithms to efficiently compute
simultaneously local and global minima,” in Proc. IEEE
CEC, vol. 2. 2005, pp. 1847–1854.

[9] M. G. Epitropakis, V. P. Plagianakos, and M. N. Vrahatis,
“Balancing the exploration and exploitation capabilities of
the differential evolution algorithm,” in Proc. IEEE CEC,
2008, pp. 2686–2693.

[10] M. G. Epitropakis, D. K. Tasoulis, N. G. Pavlidis, V. P.
Plagianakos, and M. N. Vrahatis, “Enhancing differential
evolution utilizing proximitybased mutation operators,”
IEEE Trans Evol. Comput., vol. 15, no. 1, pp. 99–119, Feb.
2011.

[11] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential
evolution algorithm with strategy adaptation for global
numerical optimization,” IEEE Trans. Evol. Comput., vol. 13,
no. 2, pp. 398–417, Apr. 2009.

[12] R. Mallipeddi, P. Suganthan, Q. Pan, and M. Tasgetiren,
“Differential evolution algorithm with ensemble of
parameters and mutation strategies,” Appl. Soft Comput., vol.
11, no. 2, pp. 1679–1696, Mar. 2011.

[13] W. Gong, Z. Cai, C. X. Ling, and H. Li, “Enhanced
differential evolution with adaptive strategies for numerical
optimization,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 41, no. 2, pp. 397–413, Apr. 2011.

[14] Y. Wang, Z. Cai, and Q. Zhang, “Differential evolution with
composite trial vector generation strategies and control
parameters,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp.
55–66, Feb. 2011.

[15] H. Y. Fan and J. Lampinen, “A trigonometric mutation
operator to differential evolution,” J. Global Optim., vol. 27,
no. 1, pp. 105–129, 2003.

[16] P. Kaelo and M. M. Ali, “Differential evolution algorithms
using hybrid mutation,” Comput. Optimization Appl., vol. 37,
pp. 231–246, Jun. 2007.

[17] S. Das, A. Abraham, U. K. Chakraborty, and A. Konar,
“Differential evolution using a neighborhood-based mutation
operator,” IEEE Trans. Evol. Comput., vol. 13, no. 3, pp.
526–553, Jun. 2009.

[18] J. Q. Zhang and A. C. Sanderson, “JADE: Adaptive
differential evolution with optional external archive,” IEEE
Trans. Evol. Comput., vol. 13, no. 5, pp. 945–958, Oct. 2009.

[19] S. M. Islam, S. Das, S. Ghosh, S. Roy, and P. N. Suganthan,
“An adaptive differential evolution algorithm with novel
mutation and crossover strategies for global numerical
optimization,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 42, no. 2, pp. 397–413, Apr. 2012.

[20] M. G. Epitropakis, D. K. Tasoulis, N. G. Pavlidis, V. P.
Plagianakos, and M. N. Vrahatis, “Enhancing differential
evolution utilizing proximitybased mutation operators,”
IEEE Trans Evol. Comput., vol. 15, no. 1, pp. 99–119, Feb.
2011.

[21] W. Gong and Z. Cai, “Differential evolution with ranking-
based mutation operators,” IEEE Trans. Cybern.,vol. 43, no.
6, pp. 2066–2081, Dec. 2013.

[22] Y. Cai and J. Wang, “Differential evolution with
neighborhood and direction information for numerical
optimization,” IEEE Trans. Cybern., vol. 43, no. 6, pp.
2202–2215, Dec. 2013.

[23] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen,
A. Auger, and S. Tiwari, “Problem definitions and evaluation
criteria for the CEC 2005 special session on real-parameter
optimization,” Nanyang Technol. Univ., Singapore,
KanGAL Rep. No. 2005005, May 2005, IIT Kanpur, India.

[24] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer,
“Self-adapting control parameters in differential evolution: A
comparative study on numerical benchmark problems,” IEEE
Trans. Evol. Comput., vol. 10, no. 6, pp. 646–657, Dec.
2006.

[25] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama,
“Opposition based differential evolution,” IEEE Trans. Evol.
Comput., vol. 12, no. 1, pp. 64–79, Feb. 2008.

[26] J. Derrac, S. Garc´ıa, D. Molina, and F. Herrera, “A practical
tutorial on the use of nonparametric statistical tests as a
methodology for comparing evolutionary and swarm
intelligence algorithms,” Swarm Evol. Comput., vol. 1, no. 1,
pp. 3–18, Mar. 2011.

[27] J. Rönkkönen, S. Kukkonen, and K. V. Price, “Real-
parameter optimization with differential evolution,” in Proc.
IEEE Congr. Evol. Comput., 2005, pp. 506–513.

[28] U. K. Chakraborty, Advances in Differential Evolution.
Berlin, Germany: Springer, 2008.

79

