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ABSTRACT 
Differential evolution (DE) has been demonstrated to be one of 
the most promising evolutionary algorithms (EAs) for global 
numerical optimization. DE mainly differs from other EAs in that 
it employs difference of the parameter vectors in mutation 
operator to search the objective function landscape. Therefore, the 
performance of a DE algorithm largely depends on the design of 
its mutation strategy. In this paper, we propose a new kind of DE 
mutation strategies whose greediness degree can be adaptively 
adjusted. The proposed mutation strategies utilize the information 
of top t solutions in the current population. Such a greedy strategy 
is beneficial to fast convergence performance. In order to adapt 
the degree of greediness to fit for different optimization scenarios, 
the parameter t is adjusted in each generation of the algorithm by 
an adaptive control scheme. This way, the convergence 
performance and the robustness of the algorithm can be enhanced 
at the same time. To evaluate the effectiveness of the proposed 
adaptive greedy mutation strategies, the approach is applied to 
original DE algorithms, as well as DE algorithms with parameter 
adaptation. Experimental results indicate that the proposed 
adaptive greedy mutation strategies yield significant performance 
improvement for most of cases studied. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search – Heuristic methods 

General Terms 
Algorithms 

 

Keywords 
Adaptive control, differential evolution (DE), evolutionary 
algorithm (EA), global optimization, mutation strategy 

1. INTRODUCTION 
Differential evolution (DE), which was first proposed by Storn 
and Price in 1995 [1][2], is a simple and powerful evolutionary 
algorithm (EA) for global numerical optimization. During the last 
few years, DE has been successfully applied to a variety of real-
world problems from diverse domains of science and engineering 
[3]−[6]. Similar to other EAs, DE employs three general 
evolutionary operators, i.e. mutation, crossover, and selection in 
each generation to evolve the population. In these three operators, 
the mutation operator which utilizes difference of parameter 
vectors to explore the search space mainly makes DE differs from 
other EAs. Therefore, how to design efficient mutation strategies 
for DE so as to improve the performance of the algorithm has 
become a significant and promising research topic in DE. 

The five original and most frequently used DE mutation strategies 
in the literature were proposed by Storn and Price [3][4]. Among 
them, two mutation strategies, namely, DE/rand/1 and DE/rand/2 
are performed in a random manner. For example, in the DE/rand/1 
mutation, all the three parent vectors are selected randomly from 
the current population. Such mutation strategies with high degree 
of randomness are good at exploring and able to locate different 
promising regions of the search space. However, they may be 
poor at exploitation of the solutions and cause slow convergence 
of the algorithm [7]. On the contrary, the other three mutation 
strategies, namely, DE/best/1, DE/best/2, and DE/current-to-
best/1 incorporate the best solution information. The best 
parameter vector with the best fitness value in the population is 
selected as one of the parent vectors involved in mutation. Such 
greedy mutation strategies can help improving the convergence 
performance. Nevertheless, due to the exploitative tendency, the 
population may lose its diversity too early and reduce its 
exploration ability to search new region of the search space. This 
way, individuals of the population are more likely to be trapped in 
some local optima, especially when solving complex multimodal 
problems. 
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As the above analysis shows, different DE strategies have 
different performance characteristics and are suitable for solving 
different optimization problems [8]−[10]. In addition, to optimize 
a specific problem, different phases of the optimization process 
also require different mutation strategies. Therefore, many 
researchers employed the concept of combing different mutation 
strategies in an ensemble and proposed enhanced DE algorithms 
such as SaDE [11], EPSDE [12], SaJADE [13], and CoDE [14], 
etc. The mutation strategies in the ensemble approach have 
distinct characteristics, so that they can be adaptively selected to 
exhibit distinct performance for different optimization phases 
when dealing with a particular problem. 

In this paper, instead of utilizing the ensemble approach, we 
propose a new kind of mutation strategies whose greediness 
degree can be adaptively adjusted to fit for different optimization 
scenarios. Different from the original DE algorithm, in our 
approach, one of the parents involved in the mutation is randomly 
selected from the top t solutions in the current population. This 
greedy strategy benefits from fast convergence performance, and 
the new introduced parameter t controls the greediness degree. To 
adapt the greediness degree to the requirements of different 
problem scenarios, we design a simple yet efficient adaptive 
control scheme for adjusting the value of parameter t. 
Consequently, the proposed mutation strategies can provide fast 
convergence performance while maintaining the reliability of the 
algorithm at a high level. Moreover, the approach can be easily 
applied to other advanced DE variants with minimal changes. 

To validate the effectiveness of our proposed adaptive greedy 
mutation strategies on DE, our approach is compared with the 
original DE algorithm with different mutation strategies. In 
addition, the proposed adaptive greedy mutation strategies are 
also applied to other DE variant with parameter adaptation. 
Experimental results show that our proposed adaptive greedy 
mutation strategies are able to enhance the performance of the 
original DE and the advanced DE with parameter adaptation for 
most of the cases studied. 

The rest of this paper is organized as follows. Section 2 reviews 
the DE algorithm and the related works on variants of DE 
mutation strategies. Section 3 describes the proposed adaptive 
greedy mutation strategies in detail. In Section 4, experiments are 
carried out on benchmark functions to verify the influence of our 
proposed approach. Finally, Section 5 draws the conclusions. 

2. DE ALGORITHM AND RELATED 
WORKS 

2.1 Differential Evolution (DE) Algorithm 
DE is a population-based stochastic algorithm designed for global 
numerical optimization. Similar to other EAs, DE searches for a 
global optimum in the feasible solution space with a population of 

parameter vectors },...,2,1],,...,,[{ ,,,2,,1,, NPixxx gDigigigi x , 

where g denotes the current generation, D is the dimension of the 
search space, and NP is the population size. In generation g=0, the 
jth component of the ith vector can be initialized as 

)()1,0(rand min,max,min,0,, jjjji xxxx               (1) 

where rand(0,1) is a uniform random number on the interval [0,1], 
and jxmin, , jxmax,  are the prescribed minimum and maximum 

bounds of the jth dimension, respectively. After initialization, DE 
enters an evolutionary process which includes mutation, crossover, 
and selection operations. 

Mutation: In each generation g, the mutation operation is applied 
to each individual gi,x  (also called target vector) to create its 

corresponding mutant vector gi,v . The six most frequently used 

mutation strategies are listed as follows. 

 DE/rand/1: 

)( ,3,21, grgr,grgi F xxxv                     (2) 

 DE/best/1: 

)( ,2,1,best, grgrggi F xxxv                    (3) 

 DE/rand/2: 

)()( ,5,4,3,2,1, grgrgrgrgrgi FF xxxxxv      (4) 

 DE/best/2: 

)()( ,4,3,2,1,best, grgrgrgrggi FF xxxxxv    (5) 

 DE/current-to-rand/1: 

)()( ,3,2,,1,, grgrgigrgigi FF xxxxxv        (6) 

 DE/current-to-best/1: 

)()( ,2,1,,best,, grgrgiggigi FF xxxxxv      (7) 

It can be seen that the mutant vector gi,v  is generated by 

combing a base vector with one or two scaled difference vectors. 
In the above equations, the indices r1, r2, r3, r4, and r5 are distinct 
integers randomly selected from the range [1, NP], and all are 
different from the index i. g,bestx  is the vector with the best 

fitness value in the current generation. The factor F is a positive 
control parameter for amplifying the difference vectors. 

Crossover: In order to enhance population diversity, a crossover 
operation exchanges some components of the mutant vector gi,v  

with the target vector gi,x  to generate a trial vector gi,u . The 

process can be expressed as 





 


otherwise  ,

or    rand(0,1) if  ,

,,

rand,,
,,

gji

gji
gji x

jjCRv
u          (7) 

where rand(0,1) is a uniformly distributed random number as 
before. jrand is an integer randomly generated from the range 

],1[ D , which is used to ensure the trial vector has at least one 
component different from the target vector. The crossover 
probability CR is another control parameter that determines the 
fraction of vector components inherited from the mutant vector. 

Selection: To decide whether the target or the trial vector can 
survive to the next generation, the selection operation is finally 
performed. For a minimization problem, the vector with the lower 
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fitness value enters the next generation, which can be expressed 
as follows: 





 

 otherwise  ,

)()(  if  ,

,

,,,
1,

gi

gigigi
gi

ff

x

xuu
x                 (8) 

where )(xf  is the objective function for the minimization 
problem. 

The above three operators are repeated until the algorithm meets a 
termination criteria, such as a maximum iteration number or a 
maximum number of fitness evaluations. 

2.2 Variants of DE Mutation Strategies 
In addition to the six most frequently used mutation strategies 
mentioned in Section 2.1, a lot of other variants have been 
proposed to further improve the performance of DE. Fan and 
Lampinen [15] proposed a trigonometric mutation to increase the 
convergence speed of DE. Kaelo and Ali [16] proposed a hybrid 
mutation operator which uses the attraction-repulsion technique of 
an electromagnetism-like algorithm. In order to balance the 
exploration and exploitation capabilities of DE, many researchers 
designed variants of some greedy mutation strategies [17]−[19]. 
These variants utilize the information of multiple good solutions 
instead of the single best solution in the entire population. 
However, the greediness degree of these variants remains 
unchanged during the evolution. 

Besides developing new DE mutation strategies, some researchers 
investigated DE mutation frameworks that can be applied to 
different DE variants. For example, Epitropakis et al. [20] 
proposed a mutation framework in which the probability of 
selecting an individual to become a parent is inversely 
proportional to its distance from the individual undergoing 
mutation. Gong and Cai [21] proposed a kind of ranking-based 
mutation framework, where some of the parents in the mutation 
operator are proportionally selected according to their rankings in 
the current population. Cai and Wang [22] proposed a DE 
mutation framework that exploits the neighborhood and direction 
information of the population. 

Unlike the above methods, some DE variants such as SaDE [11], 
EPSDE [12], SaJADE [13], and CoDE [14] employed an 
ensemble of different mutation strategies. In the ensemble 
approach, a pool of mutation strategies competes to produce 
successful offspring population. The mutation strategies present in 
a pool have diverse characteristics, so that they can exhibit 
distinct performance characteristics during different phases of the 
evolution, when optimizing a specific problem [5]. 

3. DE MUTATION STRATEGIES WITH 
ADAPTIVE GREEDINESS DEGREE 
CONTROL 
In this section, we propose the adaptive greedy mutation 
strategies, where one of the parent vectors in the mutation is 
randomly selected from the top t solutions in the current 
population. Next, we discuss which parent vector in the mutation 
should be selected from the top t solutions and how to adaptively 
adjust the value of parameter t. 

3.1 Vector Selection 
Before performing mutation in each generation, we first find out 
the current top t solutions based on the fitness values. Then, the 
base vector in the mutation strategy is randomly selected from the 
current top t solutions, while the other vectors in the mutation are 
selected randomly as the original DE algorithm. Note that if the 
base vector in a mutation strategy is the target vector (e.g. 
DE/current-to-best/1), instead of the base vector, the terminal 
point of the difference vector is randomly chosen as one of the 
current top t solution. 

By incorporating the vector selection scheme into the six original 
mutation strategies mentioned in Section 2.1, we develop three 
novel adaptive greedy variants as follows: 

 DE/atbest/1: 

)( ,2,1,best, grgr
t

ggi F xxxv                     (9) 

 DE/atbest/2: 

)()( ,4,3,2,1best,, grgrgrgr
t

ggi FF xxxxxv   (10) 

 DE/current-to-atbest/1: 

)()( ,2,1,best,, grgrgi
t

,ggigi FF xxxxxv     (11) 

where t
g,bestx  is randomly chosen as one of the current top t 

solutions, t = 1, 2, …, NP. Among them, DE/atbest/1 is derived 
from DE/rand/1 and DE/best/1, DE/atbest/2 is derived from 
DE/rand/2 and DE/best/2, and DE/current-to-atbest/1 is derived 
from DE/current-to-rand/1 and DE/current-to-best/1. Note that 
tuning the parameter t can control the greediness degree of the 
search process. In the following subsection, we describe how to 
adjust the value of parameter t. 

3.2 Adaptive Control Scheme for Parameter t 
To adapt the greediness degree to the requirements of different 
problem scenarios, we design a simple yet efficient scheme to 
adaptively adjust the value of parameter t. Each individual in the 
initial population is associated with an integer value of t which is 
randomly selected from the range [1, NP]. In the mutation process, 
each target vector produces mutant vector using its own value of 
parameter t. Then the crossover operator is applied to each pair of 
mutant vector and target vector to generate a trial vector. If the 
generated trial vector produced is better than the target vector, the 
value of parameter t is retained with trial vector which becomes 
the target vector in the next generation. Otherwise, if the trial 
vector is worse than the target vector, the target vector is 
randomly reinitialized with a new value of parameter t. This 
adaptive control scheme allows better values of parameter t to be 
more likely to survive and offspring would be produced by these 
better parameter values in the future generations. 

3.3 DE With Adaptive Greedy Mutation 
Strategy 
Combining the proposed adaptive greedy mutation strategy with 
DE, the DE algorithm using mutation strategy with adaptive 
greediness degree control (AGDE) is developed. Figure 1 
illustrates the flowchart of the AGDE algorithm. It can be seen 
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that AGDE maintains the simple structure of the original DE 
algorithm. In addition, since information of good solutions is 
utilized in the mutation, the algorithm benefits from fast 
convergence. The robustness of the AGDE can be further 
enhanced by the adaptive greediness control scheme. Moreover, 
the adaptive greedy mutation strategies are also able to integrate 
into other DE variants with minimal changes. 

 

 

Figure 1. Flowchart of the AGDE algorithm. 

 

4. EXPERIMENTAL RESULTS 

4.1 Benchmark Functions 
In this section, experiments are carried out to validate the 
performance of the proposed AGDE algorithms. We employ 25 
benchmark functions from CEC 2005 special session on real-
parameter optimization [23] as the test suite. Based on their 
characteristics, these functions can be divided into the four classes: 
1) unimodal functions (F1–F5); 2) basic multimodal functions 
(F6–F12); 3) expanded multimodal functions (F13–F14); and 4) 
hybrid composition functions (F15–F25). More details of this 
benchmark suite can be found in [23]. 

4.2 Experimental Setup 
In the experiments, we first test the influence of our approach on 
different mutation strategies in original DE. The performance of 
three AGDEs proposed in Section 3 (i.e. DE/atbest/1, DE/atbest/2 
and DE/current-to-atbest/1) is compared with their respective 
original algorithms. Then, we validate the effectiveness of the 
proposed mutation strategies on an advanced DE variant, namely, 
jDE [24]. jDE uses a self-adaptive approach to adapt the 
parameter values of F and CR, so that it can obtain promising 
results among various mutation strategies. To make a fair 
comparison, we employ the parameter settings for all of the 
compared DE algorithms as follows: 

1) Function dimension: D = 30; 

2) Population size: NP = 100 [7][10][24][25]; 

3) Function evaluations (FEs): FEs = 300 000; 

4) Number of runs (NumR): NumR = 25. 

To measure the performance of the algorithms, we calculate the 
average and standard deviation of the function error value f(x) − 
f(x ), where x is the best solution of each run and x  is the global 
optimum of the benchmark function. For clarity, the results of the 
best algorithms are highlighted in boldface for each benchmark 
function. Moreover, we apply the paired Wilcoxon signed-rank 
test [26] to evaluate the statistical significant differences between 
two algorithms. Bases on the test, we mark the results with “+”, 
“=”, and “−”, which indicate that the performance of our proposed 
algorithm is significantly better than, equal to, and worse than the 
corresponding algorithm, respectively. 

4.3 Effects on Original DE With Different 
Mutation strategies 
In this section, we evaluate the effectiveness of our proposed 
different mutation strategies in the original DE. Six mutation 
strategies [see (2)–(7)] are compared with their corresponding 
adaptive greedy variants [see (9)–(11)] in the experiment. As 
suggested in most of the literatures [2][24][27][28], the original 
DE algorithm set the values of F and CR to 0.5 and 0.9, 
respectively. The experimental results of DE/atbest/1, 
DE/atbest/2, and DE/current-to-atbest/1 compared with their 
respective original algorithms are shown in Table 1, Table 2, and 
Table 3, respectively. From these results, we can find that, for the 
majority of the test functions, the AGDE algorithms achieve 
significantly better error values compared with their 
corresponding original DE algorithms. 

1) For the unimodal functions F1–F5, it can be found that all the 
three AGDEs obtain significant better results than their 
corresponding original DEs on most of these functions. The only 
exception is that the performance of DE/atbest/2 is deteriorated 
on 4 out of the 5 functions when compared with DE/best/2.  

2) For the basic multimodal functions F6–F12, regardless of the 
mutation strategy used, the adaptive greedy DE variants 
consistently outperform the original DEs in most of the cases (23 
out of 42). In the remaining 19 cases, AGDEs provide 13 similar 
results and 6 worse results compared with their corresponding 
original DEs, respectively. 

3) For the expanded multimodal functions F13–F14, the adaptive 
greedy approach does not yield great performance improvement. 
The AGDEs exhibits improvement performance in 4 out of 12 
cases, while in 4 cases the proposed scheme deteriorates the 
performance. 

4) For the hybrid composition functions F15–F25, the AGDEs 
exhibit significant improvement on most of these functions, 
although they are very difficult to solve for most optimization 
algorithms. In all the 66 cases, AGDEs are significantly better 
than original DEs in 48 cases and worse than them in only one 
case. In particular, DE/atbest/1 and DE/current-to-atbest/1 are 
significantly better than DE/best/1 and DE/current-to-best/1 on all 
of the 11 functions, respectively. 
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Table 1. Effects on DE/rand/1 and DE/best/1 in Original DE 

Fun. 
DE/rand/1 

Mean (Std.) 
DE/best/1 

Mean (Std.) 
DE/atbest/1 
Mean (Std.) 

F1 0.00E+00 (0.00E+00) = 5.21E−13 (3.67E−12) + 0.00E+00 (0.00E+00) 
F2 2.81E−05 (1.87E−05) + 2.26E−12 (1.66E−12) + 7.96E−14 (2.78E−14) 
F3 3.84E+05 (2.58E+05) + 1.72E+04 (1.02E+04) − 8.35E+04 (4.98E+04) 
F4 1.74E−02 (2.07E−02) + 3.78E+02 (7.13E+02) + 2.33E−09 (8.99E−09) 
F5 5.78E+01 (4.58E+01) + 2.10E+03 (7.31E+02) + 4.78E+01 (6.53E+01) 
F6 8.19E−02 (1.80E−01) + 1.44E+00 (1.86E+00) + 4.78E−01 (1.29E+00) 
F7 1.08E−03 (2.96E−03) = 2.09E−02 (2.21E−02) + 1.15E−02 (1.17E−02) 
F8 2.10E+01 (4.90E−02) = 2.10E+01 (3.17E−02) = 2.09E+01 (6.27E−02) 
F9 1.31E+02 (2.37E+01) + 1.08E+02 (2.51E+01) + 1.69E+01 (4.07E+00) 
F10 1.81E+02 (1.05E+01) + 1.48E+02 (3.52E+01) = 1.48E+02 (2.97E+01) 
F11 3.94E+01 (1.01E+00) + 2.21E+01 (1.93E+00) − 3.83E+01 (5.99E+00) 
F12 1.29E+03 (1.67E+03) = 2.89E+03 (3.82E+03) = 2.17E+03 (2.54E+03) 
F13 1.53E+01 (1.01E+00) + 6.92E+00 (2.34E+00) = 8.62E+00 (4.31E+00) 
F14 1.33E+01 (1.40E−01) = 1.20E+01 (6.53E−01) − 1.32E+01 (2.00E−01) 
F15 4.08E+02 (4.45E+01) = 4.73E+02 (8.70E+01) + 4.04E+02 (4.45E+01) 
F16 2.12E+02 (9.97E+00) + 3.28E+02 (1.29E+02) + 1.26E+02 (1.05E+02) 
F17 2.25E+02 (1.36E+01) = 3.02E+02 (1.22E+02) + 2.20E+02 (4.39E+01) 
F18 9.00E+02 (3.83E+01) + 9.67E+02 (4.66E+01) + 8.85E+02 (4.28E+01) 
F19 9.04E+02 (1.33E+00) + 9.65E+02 (2.64E+01) + 8.77E+02 (4.81E+01) 
F20 9.04E+02 (1.07E+00) + 9.63E+02 (3.73E+01) + 8.94E+02 (3.50E+01) 
F21 5.00E+02 (1.67E−13) = 7.56E+02 (3.03E+02) + 5.00E+02 (1.56E−13) 
F22 9.08E+02 (1.05E+01) + 1.05E+03 (4.32E+01) + 8.99E+02 (1.26E+01) 
F23 5.34E+02 (3.20E−04) = 1.04E+03 (1.90E+02) + 5.34E+02 (3.56E−04) 
F24 2.00E+02 (2.84E−14) = 8.54E+02 (4.92E+02) + 2.00E+02 (2.84E−14) 
F25 2.09E+02 (1.25E−01) = 7.89E+02 (5.52E+02) + 2.09E+02 (1.61E−02) 

+/=/− 14/11/0 18/4/3 − 
“+”, “=”, and “−” indicate that the performance of our proposed algorithm is 
respectively better than, equal to, and worse than the corresponding algorithm 
according to the Wilcoxon signed-rank test at 05.0 . 

 

 

Table 2. Effects on DE/rand/2 and DE/best/2 in Original DE 

Fun. 
DE/rand/2 

Mean (Std.) 
DE/best/2 

Mean (Std.) 
DE/atbest/2 
Mean (Std.) 

F1 7.88E−01 (3.04E−01) + 6.59E−14 (1.85E−14) + 2.96E−14 (2.83E−14) 
F2 7.59E+03 (2.05E+03) + 2.64E−13 (8.34E−14) − 2.72E+00 (9.40E−01) 
F3 5.32E+07 (1.35E+07) + 1.46E+05 (7.24E+04) − 9.23E+05 (2.25E+05) 
F4 1.58E+04 (2.45E+03) + 1.31E−04 (3.89E−04) − 4.97E+01 (1.16E+01) 
F5 8.13E+03 (6.36E+02) + 1.07E+02 (2.03E+02) − 8.54E+02 (1.18E+02) 
F6 4.89E+03 (1.74E+03) + 4.78E−01 (1.30E+00) − 6.01E+00 (1.37E+01) 
F7 6.97E+00 (2.74E+00) + 1.11E−02 (9.20E−03) + 2.87E−06 (1.47E−06) 
F8 2.09E+01 (5.63E−02) = 2.10E+01 (4.76E−02) + 2.09E+01 (5.23E−02) 
F9 2.16E+02 (1.08E+01) + 1.82E+02 (1.51E+01) = 1.92E+02 (8.87E+00) 
F10 2.41E+02 (1.06E+01) + 1.97E+02 (1.28E+01) = 2.04E+02 (9.12E+00) 
F11 3.96E+01 (1.08E+00) + 3.98E+01 (7.92E−01) + 3.94E+01 (7.92E−01) 
F12 5.25E+05 (6.62E+04) + 1.28E+03 (2.36E+03) − 2.26E+05 (1.46E+05) 
F13 2.06E+01 (8.38E−01) + 1.55E+01 (1.41E−01) − 1.71E+01 (1.17E−01) 
F14 1.35E+01 (1.33E−01) = 1.33E+01 (2.16E−01) = 1.33E+01 (2.99E−01) 
F15 4.06E+02 (6.84E+00) = 3.89E+02 (1.02E+02) = 3.88E+02 (4.13E+01) 
F16 2.69E+02 (1.27E+01) + 3.18E+02 (9.97E+01) + 2.28E+02 (1.36E+01) 
F17 3.02E+02 (1.65E+01) + 3.44E+02 (1.14E+02) + 2.57E+02 (1.25E+01) 
F18 9.40E+02 (4.00E+00) + 9.08E+02 (3.03E+00) = 9.07E+02 (2.73E−01) 
F19 9.40E+02 (3.03E+00) + 9.08E+02 (3.49E+01) − 9.07E+02 (5.20E−01) 
F20 9.39E+02 (3.92E+01) + 8.99E+02 (3.52E+01) = 9.07E+02 (7.35E−01) 
F21 5.00E+02 (1.11E−01) + 5.48E+02 (1.10E+02) + 5.00E+02 (1.72E−13) 
F22 1.02E+03 (1.36E+01) + 9.31E+02 (1.88E+01) = 9.30E+02 (7.19E+00) 
F23 5.35E+02 (4.68E−01) = 6.17E+02 (1.62E+02) + 5.34E+02 (3.62E−04) 
F24 2.00E+02 (1.31E−01) + 2.00E+02 (9.26E−13) = 2.00E+02 (2.84E−14) 
F25 2.29E+02 (3.60E+00) + 2.47E+02 (1.60E+02) + 2.09E+02 (1.58E−01) 

+/=/− 21/4/0 9/8/8 − 
“+”, “=”, and “−” indicate that the performance of our proposed algorithm is 
respectively better than, equal to, and worse than the corresponding algorithm 
according to the Wilcoxon signed-rank test at 05.0 . 

 

Table 3. Effects on DE/current-to-rand/1 and DE/current-to-
best/1 in Original DE 

Fun. 
DE/current-to-rand/1 

Mean (Std.) 
DE/current-to-best/1 

Mean (Std.) 

DE/current-to-
atbest/1 

Mean (Std.) 
F1 6.57E+03 (1.31E+03) + 1.89E+03 (1.05E+03) + 1.71E+03 (6.08E+02) 
F2 6.91E+03 (1.57E+03) + 4.60E+03 (2.36E+03) + 3.28E+03 (1.26E+03) 
F3 3.81E+06 (2.06E+06) + 6.19E+06 (4.51E+06) + 2.67E+06 (1.30E+06) 
F4 3.09E+03 (1.49E+03) + 6.30E+02 (6.48E+02) + 2.51E+02 (3.04E+02) 
F5 5.84E+03 (1.16E+03) + 8.52E+03 (1.53E+03) + 4.79E+03 (1.06E+03) 
F6 1.10E+09 (4.76E+08) + 1.43E+08 (1.31E+08) − 2.39E+08 (2.14E+08) 
F7 3.35E+03 (3.67E+02) + 2.42E+03 (5.77E+02) + 1.67E+03 (3.45E+02) 
F8 2.09E+01 (8.18E−02) = 2.10E+01 (4.11E−02) = 2.09E+01 (4.60E−02) 
F9 1.54E+02 (1.11E+01) + 8.43E+01 (2.25E+01) = 8.54E+01 (5.56E+01) 
F10 1.78E+02 (1.35E+01) + 1.19E+02 (2.72E+01) − 1.57E+02 (2.82E+01) 
F11 3.91E+01 (9.69E−01) + 1.47E+01 (1.79E+00) − 3.32E+01 (9.62E+00) 
F12 2.64E+04 (1.37E+04) + 3.43E+04 (2.11E+04) + 1.53E+04 (9.15E+03) 
F13 1.38E+01 (8.82E−01) + 4.90E+00 (3.19E+00) − 1.22E+01 (1.07E+00) 
F14 1.27E+01 (3.09E−01) + 1.20E+01 (3.72E−01) − 1.24E+01 (2.84E−01) 
F15 4.78E+02 (8.69E+01) + 4.92E+02 (9.00E+01) + 4.18E+02 (1.17E+02) 
F16 1.86E+02 (1.13E+01) + 2.46E+02 (1.64E+02) + 1.54E+02 (1.35E+02) 
F17 2.07E+02 (2.21E+01) = 2.78E+02 (1.49E+02) + 2.10E+02 (7.17E+01) 
F18 9.23E+02 (4.51E+01) = 9.92E+02 (3.36E+01) + 9.23E+02 (5.12E+01) 
F19 9.13E+02 (4.44E+01) = 1.00E+03 (2.93E+01) + 9.04E+02 (5.67E+01) 
F20 9.03E+02 (4.60E+01) = 9.98E+02 (2.17E+01) + 9.25E+02 (4.75E+01) 
F21 1.03E+03 (1.32E+02) + 1.07E+03 (2.02E+02) + 8.87E+02 (2.26E+02) 
F22 9.38E+02 (1.48E+01) + 1.02E+03 (3.93E+01) + 9.27E+02 (1.10E+01) 
F23 1.00E+03 (1.49E+02) + 1.13E+03 (1.12E+02) + 9.58E+02 (1.73E+02) 
F24 6.96E+02 (9.76E+01) + 9.34E+02 (2.59E+02) + 3.51E+02 (1.27E+02) 
F25 1.09E+03 (2.82E+02) + 1.44E+03 (5.46E+01) + 7.97E+02 (4.59E+02) 

+/=/− 20/5/0 18/2/5 −
“+”, “=”, and “−” indicate that the performance of our proposed algorithm is 
respectively better than, equal to, and worse than the corresponding algorithm 
according to the Wilcoxon signed-rank test at 05.0 . 

 

Overall, based on the results and analysis, it can be seen that our 
proposed adaptive greedy approach is able to improve the 
performance of the original algorithm with different mutation 
strategies. In the next subsection, we will test the influence of the 
adaptive greedy mutation on advanced DE variant with parameter 
adaptation. 

4.4 Effects on jDE With Different Mutation 
strategies 
In order to study the effect of our approach more 
comprehensively, we further incorporate the adaptive greedy 
mutation strategies into an advanced DE variant, namely, jDE, 
which uses a self-adaptive approach to adapt the values of F and 
CR throughout the evolutionary process. The experimental results 
are shown in Tables 4–6. It can be found that, for the majority of 
the test functions, the adaptive greedy jDEs provide significantly 
better results compared with their corresponding jDEs. For 
example, jDE/atbest/1 significantly improves the performance of 
jDE/best/1 on 19 out of 25 functions but only loses on 3 functions. 
jDE/current-to-atbest/1 significantly outperforms jDE/current-to-
rand/1 on 15 functions, whereas worse than it on only one 
function. 

In general, from results shown in Tables 4–6, we can conclude 
that our proposed adaptive greedy mutation strategies are also 
capable of improving the performance of the advanced DE variant 
with parameter adaptation. 
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Table 4. Effects on DE/rand/1 and DE/best/1 in jDE 

Fun. 
jDE/rand/1 
Mean (Std.) 

jDE/best/1 
Mean (Std.) 

jDE/atbest/1 
Mean (Std.) 

F1 0.00E+00 (0.00E+00) = 1.05E−13 (6.87E−14) + 0.00E+00 (0.00E+00) 
F2 3.29E−06 (3.59E−06) + 1.28E−12 (1.24E−12) + 2.59E−13 (1.49E−13) 
F3 1.91E+05 (7.94E+04) + 9.74E+03 (7.18E+03) − 5.11E+04 (3.25E+04) 
F4 1.67E−01 (3.49E−01) + 4.37E+02 (5.60E+02) + 1.51E−03 (3.82E−03) 
F5 1.10E+03 (4.65E+02) − 3.05E+03 (5.58E+02) + 1.64E+03 (4.09E+02) 
F6 2.01E+01 (2.36E+01) + 1.12E+00 (1.79E+00) = 1.59E+00 (1.95E+00) 
F7 1.22E−02 (9.57E−03) = 2.32E−02 (2.22E−02) + 1.54E−02 (1.33E−02) 
F8 2.09E+01 (4.91E−02) = 2.10E+01 (2.82E−02) = 2.09E+01 (3.36E−02) 
F9 0.00E+00 (0.00E+00) = 6.90E+01 (1.70E+01) + 0.00E+00 (0.00E+00) 
F10 5.60E+01 (7.35E+00) + 9.28E+01 (1.67E+01) + 3.49E+01 (1.11E+01) 
F11 2.86E+01 (2.11E+00) + 2.41E+01 (2.78E+00) − 2.67E+01 (2.97E+00) 
F12 1.51E+04 (7.10E+03) + 1.59E+03 (2.15E+03) + 1.06E+03 (1.58E+03) 
F13 1.71E+00 (1.78E−01) + 3.44E+00 (1.26E+00) + 1.65E+00 (1.07E−01) 
F14 1.30E+01 (1.82E−01) = 1.23E+01 (2.98E−01) − 1.29E+01 (2.22E−01) 
F15 3.47E+02 (8.92E+01) = 3.97E+02 (6.40E+01) = 3.60E+02 (8.49E+01) 
F16 8.90E+01 (6.78E+01) + 1.85E+02 (8.94E+01) + 7.97E+01 (7.19E+01) 
F17 1.33E+02 (1.70E+01) + 2.53E+02 (1.28E+02) + 8.67E+01 (6.85E+01) 
F18 9.06E+02 (1.82E+00) = 9.52E+02 (2.16E+01) + 9.08E+02 (2.24E+01) 
F19 9.07E+02 (1.76E+00) = 9.47E+02 (2.22E+01) + 9.12E+02 (3.77E+00) 
F20 9.02E+02 (2.01E+01) = 9.56E+02 (2.21E+01) + 9.08E+02 (2.23E+01) 
F21 5.00E+02 (1.33E−13) = 6.83E+02 (2.69E+02) + 5.00E+02 (1.64E−13) 
F22 9.05E+02 (8.35E+00) = 9.70E+02 (3.76E+01) + 9.05E+02 (1.11E+01) 
F23 5.34E+02 (3.01E−04) = 7.47E+02 (2.44E+02) + 5.34E+02 (5.04E−01) 
F24 2.00E+02 (2.84E−14) = 3.27E+02 (3.42E+02) + 2.00E+02 (2.84E−14) 
F25 2.10E+02 (3.62E−01) + 2.95E+02 (2.81E+02) + 2.09E+02 (3.47E−02) 

+/=/− 11/13/1 19/3/3 − 
“+”, “=”, and “−” indicate that the performance of our proposed algorithm is 
respectively better than, equal to, and worse than the corresponding algorithm 
according to the Wilcoxon signed-rank test at 05.0 . 

 

 

Table 5. Effects on DE/rand/2 and DE/best/2 in jDE 

Fun. 
jDE/rand/2 
Mean (Std.) 

jDE/best/2 
Mean (Std.) 

jDE/atbest/2 
Mean (Std.) 

F1 0.00E+00 (0.00E+00) = 6.14E−14 (1.54E−14) + 0.00E+00 (0.00E+00) 
F2 2.23E−03 (4.77E−03) + 5.07E−13 (1.65E−13) = 3.55E−13 (3.05E−13) 
F3 2.73E+05 (1.63E+05) + 1.22E+04 (8.56E+03) − 6.23E+04 (3.43E+04) 
F4 6.71E+00 (2.04E+01) + 3.34E+00 (7.48E+00) + 1.77E−04 (3.11E−04) 
F5 7.25E+02 (3.81E+02) = 2.13E+03 (6.71E+02) + 8.91E+02 (4.12E+02) 
F6 1.54E+01 (1.19E+01) + 1.92E+00 (2.00E+00) + 4.99E−01 (1.08E+00) 
F7 4.14E−03 (4.76E−03) − 1.27E−02 (1.34E−02) = 1.30E−02 (9.34E−03) 
F8 2.09E+01 (4.46E−02) = 2.09E+01 (5.15E−02) = 2.09E+01 (4.15E−02) 
F9 0.00E+00 (0.00E+00) = 1.12E+01 (9.61E+00) + 0.00E+00 (0.00E+00) 
F10 6.62E+01 (9.32E+00) + 7.16E+01 (1.58E+01) + 4.61E+01 (9.12E+00) 
F11 2.83E+01 (1.91E+00) = 2.52E+01 (3.00E+00) − 2.82E+01 (1.41E+00) 
F12 2.27E+04 (4.94E+03) + 2.70E+03 (4.24E+03) − 1.25E+04 (8.99E+03) 
F13 1.81E+00 (1.55E−01) + 1.87E+00 (2.17E−01) + 1.74E+00 (1.60E−01) 
F14 1.31E+01 (2.26E−01) = 1.28E+01 (2.90E−01) = 1.30E+01 (2.30E−01) 
F15 2.70E+02 (1.76E+02) − 3.81E+02 (8.03E+02) = 3.84E+02 (5.43E+01) 
F16 9.67E+01 (1.92E+01) + 1.44E+02 (8.78E+01) + 7.65E+01 (2.21E+01) 
F17 1.57E+02 (1.56E+01) + 1.58E+02 (1.11E+02) + 1.23E+02 (2.25E+01) 
F18 9.08E+02 (1.51E+00) = 9.16E+02 (4.05E+01) + 9.08E+02 (1.91E+00) 
F19 9.07E+02 (1.40E+00) = 9.11E+02 (1.73E+01) + 9.08E+02 (1.84E+00) 
F20 9.07E+02 (1.24E+00) = 9.21E+02 (2.93E+01) + 9.08E+02 (2.49E+00) 
F21 5.00E+02 (1.07E−13) = 6.30E+02 (2.47E+02) + 5.00E+02 (1.65E−13)
F22 9.23E+02 (8.36E+00) + 9.46E+02 (2.28E+01) + 9.03E+02 (9.93E+00) 
F23 5.34E+02 (2.59E−04) = 7.23E+02 (2.66E+02) + 5.34E+02 (2.78E−04)
F24 2.00E+02 (6.25E−13) = 2.00E+02 (9.17E−13) = 2.00E+02 (2.84E−14)
F25 2.09E+02 (2.73E−01) + 2.11E+02 (1.20E+00) = 2.09E+02 (2.31E−01)

+/=/− 11/12/2 15/7/3 − 
“+”, “=”, and “−” indicate that the performance of our proposed algorithm is 
respectively better than, equal to, and worse than the corresponding algorithm 
according to the Wilcoxon signed-rank test at 05.0 . 

 

Table 6. Effects on DE/current-to-rand/1 and DE/current-to-
best/1 in jDE 

Fun. 
jDE/current-to-rand/1 

Mean (Std.) 
jDE/current-to-best/1 

Mean (Std.) 

jDE/current-to-
atbest/1 

Mean (Std.) 
F1 1.14E−14 (2.27E−14) + 5.23E−14 (1.85E−14) + 0.00E+00 (0.00E+00) 
F2 1.50E+01 (3.82E+01) + 1.96E−12 (4.77E−12) − 8.83E−02 (4.18E−01) 
F3 4.64E+05 (2.62E+05) + 3.99E+04 (7.85E+04) − 1.63E+05 (9.16E+04) 
F4 9.05E+01 (7.87E+01) + 8.58E−01 (8.12E−01) − 7.57E+00 (2.29E+01) 
F5 2.81E+03 (3.89E+02) + 2.30E+03 (7.24E+02) = 2.29E+03 (5.41E+02) 
F6 3.34E+01 (2.38E+01) + 1.31E+01 (2.89E+01) = 1.30E+00 (1.50E+00) 
F7 1.29E−02 (1.10E−02) + 2.21E−02 (2.78E−02) + 8.36E−03 (1.16E−02) 
F8 2.09E+01 (5.19E−02) = 2.09E+01 (8.74E−02) = 2.09E+01 (4.12E−02) 
F9 1.50E−12 (6.12E−12) + 5.00E−14 (1.85E−14) + 0.00E+00 (0.00E+00) 
F10 3.76E+01 (6.61E+00) + 4.80E+01 (1.08E+01) + 3.51E+01 (6.57E+00) 
F11 2.50E+01 (1.37E+00) = 2.53E+01 (1.14E+00) + 2.50E+01 (1.71E+00) 
F12 9.40E+03 (3.03E+03) + 2.49E+03 (4.19E+03) − 5.06E+03 (2.76E+03) 
F13 1.66E+00 (1.82E−01) = 1.69E+00 (1.79E−01) = 1.70E+00 (1.59E−01) 
F14 1.28E+01 (1.99E−01) + 1.27E+01 (2.37E−01) + 1.26E+01 (2.83E−01) 
F15 2.15E+02 (9.32E+01) − 3.52E+02 (1.42E+02) + 3.04E+02 (1.36E+01) 
F16 6.57E+01 (1.14E+01) + 1.74E+02 (1.51E+02) + 7.00E+01 (6.79E+01) 
F17 1.04E+02 (2.28E+01) + 2.02E+02 (1.52E+02) + 9.31E+01 (2.95E+01) 
F18 8.75E+02 (5.65E+01) = 8.87E+02 (5.51E+01) = 8.91E+02 (5.10E+01) 
F19 8.71E+02 (5.83E+01) = 9.19E+02 (2.53E+01) + 8.84E+02 (5.29E+00) 
F20 8.86E+02 (534E+01) = 8.89E+02 (5.58E+01) = 8.90E+02 (5.08E+01) 
F21 5.00E+02 (1.51E−13) = 6.29E+02 (2.43E+02) + 5.00E+02 (1.61E−13) 
F22 9.26E+02 (1.01E+01) = 9.27E+02 (2.04E+01) + 9.21E+02 (1.15E+01) 
F23 5.35E+02 (1.93E+00) + 6.30E+02 (2.13E+02) + 5.34E+02 (6.50E−01) 
F24 2.00E+02 (1.03E−12) = 2.00E+02 (1.35E−12) = 2.00E+02 (2.84E−14) 
F25 2.12E+02 (7.86E−01) + 2.61E+02 (1.93E+02) + 2.11E+02 (6.81E−01) 

+/=/− 15/9/1 14/7/4 − 
“+”, “=”, and “−” indicate that the performance of our proposed algorithm is 
respectively better than, equal to, and worse than the corresponding algorithm 
according to the Wilcoxon signed-rank test at 05.0 . 

5. CONCLUSION 
In this paper, adaptive greedy mutation strategies have been 
proposed for the DE algorithm. The proposed strategies utilize the 
information of top t solutions in the population. To adapt the 
greediness degree to fit for different optimization scenarios, an 
adaptive control scheme has been proposed for adjusting the value 
of parameter t. The adaptive greedy mutation strategies have been 
applied to the original DE and jDE. Experiments have been 
conducted on 25 benchmark functions from CEC 2005. The 
results demonstrate the effectiveness of the adaptive greedy 
mutation strategies to improve the overall performance. 

The applications of the proposed strategies to other state-of-the-
art DE variants will be studied in future work. The extension of 
the proposed strategies to multi-objective and dynamic 
optimization will be another future direction. 
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