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Abstract—Nowadays real-time traffic signal control is a 
crucial issue with potential benefits in the fields of traffic control, 
environmental pollution, and energy utilization. In the literature, 
few related studies have been done with dynamic evolutionary 
algorithms. In this paper, we proposed a strategy using 
Collaborative Evolutionary-Swarm Optimization (CESO), which 
is able to track time-varying optimal solutions effectively. We use 
the simulator of urban mobility (SUMO), a popular traffic 
simulator to generate traffic flows. A grid traffic network is 
designed with several scenarios to simulate changes of traffic 
flows captured by traffic monitors. We test different traffic 
changes in the network using the proposed strategy and compare 
its performance with a traditional evolutionary algorithm. 
Experimental results show that our algorithm can obtain 
promising configuration of traffic light cycles and reduce the 
average delay time of all vehicles in various scenarios.  

Keywords-dynamic algorithms, real-time traffic signal control, 
Collaborative Evolutionary-Swarm Optimization (CESO). 

I.  INTRODUCTION 
Traffic congestion is a common problem around the world. 

Since it is serious and closely related to many other problems 
like pollution, energy dissipation, and public safety, different 
methods have been developed to solve it. Traffic signal control 
is a cost-effective method that can bring substantial reductions 
in traffic delay [1], [2].   Considering large traffic flows and the 
increasing number of intersections, the control of traffic lights 
becomes more and more complicated. As evolutionary 
computation performs well in solving complex problems, many 
researchers have utilized them to optimize cycle program of 
traffic lights [2]-[11]. 

In this regard, current research efforts can be divided into 
two categories. In the first category, models with different 
assumptions of traffic flows are proposed to simulate the real 
traffic scene [3]-[7]. Researchers incorporate related algorithms 
into their models to calculate cycle program of traffic lights. 
Although these methods can obtain reasonable results, building 
a model that is suitable to any given traffic flow is difficult and 
sometimes impossible due to the uncertainty and complexity of 
real-world situations. Therefore, these methods are limited in 
scope. 

On the other hand, some researchers employ simulators to 
simplify their model design and automatically generate needed 
traffic flows for their experiments [8]-[11]. These methods are 
practical and yet economical, since real traffic tests involve 

high operational costs and human resources. In addition, traffic 
simulators provide visual interfaces of traffic flows for 
researchers. In general, researchers use previously gathered 
data of traffic flows or self-designed instances as input. 
Accordingly, several modified algorithms are adopted to 
generate feasible solutions under certain evaluation criteria. 
However, in most cases, the input only represents several 
typical situations such as AM or PM rush hours or specific 
traffic flow patterns, and many algorithms spend a long time to 
reach an acceptable solution. Since the number and the path of 
vehicles vary all the time, the current acceptable schedule may 
become inferior in the next time-period.  

This paper employs dynamic evolutionary computation 
since the control of traffic lights can be seen as a dynamic 
optimization problem (DOP) where traffic conditions change 
over time. In recent years, many modified evolutionary 
algorithms have been applied to solve DOPs. Compared with 
traditional evolutionary computation, these algorithms show 
desirable performance in solving problems in dynamic 
environments. All above has motivated us to propose a strategy 
based on Collaborative Evolutionary-Swarm Optimization [12] 
to find changing optimal cycle program of traffic lights. The 
reasons why we use this algorithm are listed as follows. First, 
the algorithm is originally designed for dynamic environments. 
This is a desirable property for time-varying traffic scenarios. 
Second, this algorithm is easy to implement than several 
existing dynamic evolutionary algorithms [13], [14]. Third, the 
population tracking the global optimum is composed of a 
particle swarm complied with PSO rules, while PSO is a 
famous algorithm which has shown fast convergence to 
suitable solutions. Thus it can respond to real-time 
requirements of dynamic environments rapidly. 

The rest of this paper is organized as follows. In Section II, 
related algorithms and configuration in SUMO are presented. 
In section III, the details of the proposed strategy are described. 
Section IV describes experimental settings and corresponding 
results. Finally, conclusions are drawn in section V. 

II. RELATED WORK 

A. Particle Swarm Optimization(PSO) 
Particle swarm optimization is a well-known population- 

based algorithm [15], which was first intended for simulating 
the social behavior of a bird flock or fish school. The movements 
of the particles are guided by their own best known position as 
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well as the best known position of the entire swarm. In each 
generation, the jth dimension of each particle is updated 
according to the following equations: 

vj j j
i i ix x= +                                         (1) 

( ) ( )1 1 2 2
j j j j j j

i i i i iv v c r p x c r g xω= + − + −                 (2) 
Where xi is the position of particle i, � is the inertia weight 
which controls the influence degree of the previous velocity to 
the current velocity. pi is the best solution of particle i, g is the 
global best particle. r1 and r2 are random numbers uniformly 
distributed in [0, 1]. c1 and c2 are the acceleration coefficients 
that determine the influence of pi and g to particle i, 
respectively. 

B. Differential Evolution(DE) 
DE [16] is population-based stochastic algorithm designed 

for global optimization. For each target vector Xi, G, i=1, 2, …, 
NP, a mutant vector Vi, G+1 is generated by           

    , 1 1, 2, 3,( )i G r G r G r GV X F X X+ = + ⋅ −             (3) 

where random integers r1, r2, r3 {1, 2, …, NP} are mutually 
different and F controls the amplification of (Xr2, G –Xr3, G). In 
order to increase the diversity of the population, a trial vector 
ui,G+1 is generated according to 
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where Cr is the crossover probability and jrand is a uniformly 
distributed integer value [1, D] which ensures that ui, G+1 
gets at least one parameter from Vi, G+1. Then, a selection 
operator is performed if and only if the trial individual yields a 
better result than (the target individual) in the value of the 
fitness function, which is given by 
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C. Collaborative Evolutionary-Swarm Optimization(CESO) 
CESO is a simple method for tracking moving optima in 

dynamic environments by combining the search abilities of an 
evolutionary algorithm for multimodal optimization and a 
particle swarm optimization algorithm. It uses two populations 
of equal size. The first population used by CESO, called the 
CRDE population, is evolved by Crowding Differential 
Evolution (CDE) [17] algorithm which is a very efficient 
method for detecting multiple optima in static environments. 
The only modification of CDE to the original DE is the 
individual replacement. Usually, the parent producing the 
offspring is substituted, whereas in CDE the offspring replaces 
the most similar individual among the population. The 
similarity measure used is Euclidean distance between two 
candidate solutions. On the other hand, the second population 
called SWARM is a particle swarm updated according to PSO 
rules as mentioned in (1) and (2). An exponential crossover 
scheme is used in the original CESO algorithm [17]. We use 
the binomial crossover scheme as (4) in the modified CESO 
algorithm described in section III. 

The best individuals of CRDE and SWARM are denoted by 
cbest and gbest. In order to detect changes, cbest is re-
evaluated: it is considered that a change takes place if the new 
fitness value differs from the old one. The process of CESO is 
described as follows: 

Step 1. Randomly initialize SWARM and CRDE; 

Step 2. If a change appears or the distance � between the best 
individuals of two populations is less than a threshold 
value th, go to step 3; otherwise, go to step 4.  

Step 3. The CRDE individuals replace the SWARM population. 

Step 4. Update SWARM and CRDE and evaluate populations. 

Step 5. If gbest is better than cbest, gbest replaces cbest; 
otherwise, go to step 6. 

Fig. 1. The designed network and a set of traffic lights which are numbered 
1-20 in an intersection. 

TABLE I  
DETAILS OF EIGHT PHASES 

 
Phase States(1-20) 

1 GGGGGGrrrrGGGGGGrrrr 
2 yyyyGGrrrryyyyGGrrrr 
3 rrrrGGrrrrrrrrGGrrrr 
4 rrrryyrrrrrrrryyrrrr 
5 rrrrrrGGGGrrrrrrGGGG 
6 rrrrrryyGGrrrrrryyGG 
7 rrrrrrrrGGrrrrrrrrGG 
8 rrrrrrrryyrrrrrrrryy 
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Step 6. If final condition is not satisfied, go to step 2; otherwise 
the algorithm stops. 

The diversity of the search is maintained by the CRDE and the 
SWARM actually acts as a local search operator. When a 
change is detected in the environment or the distance between 
cbest and gbest is smaller than a threshold value th, the CRDE 
population will replace the SWARM population. By re-starting 
the search with particles scattered over the search space, the 
SWARM presents a good potential to locate the global 
optimum. At the end of iteration gbest replaces cbest if it is has 
a better fitness value. If cbest is replaced by gbest, it goes to 
step 3 and the SWARM is replaced by the CRDE. In this way, 
the SWARM will not easily get trapped in the local optimum 
of the current environment. 

D.  Configuration in SUMO 
SUMO is an open source traffic simulation package 

including net import and demand modeling components [18]. 
We designed a grid-like network as shown in Fig. 1, which has 
nine intersections. An edge between two intersections is 250 m 
with three lanes in it. Each intersection contains a set of traffic 
lights and eight phases. Each phase shows the corresponding 
color states of all the traffic lights and the phase duration of 
this state. G and r mean a green light and a red light 
respectively. A yellow light is marked by y, in this state, 
vehicles will start to decelerate if far away from the junction, 
otherwise they pass.  

Different cycle programs of traffic lights are tested in a 
simulation. In this study, at the beginning of each simulation, 
vehicles are uniformly distributed among the map with their 
maximum possible speeds (determined by their positions, 
traffic rules and distances). They have their trips defined by 
starting edges and destination edges. After a while, a new 
scenario captured by traffic monitors emerges and the 
corresponding optimal cycle program of traffic lights changes. 

III. THE  PROPOSED STRATEGY 
This section describes the optimization strategy using 

modified CESO algorithm. Implementations of the solution 
encoding, the fitness function, the optimization procedure and 
the design reasons are presented. 

A. Solution Encoding 
The global staging of traffic lights has been encoded via a 

vector of integers. In this representation, phase duration of 
phase 1 and 5 of each intersection are sequentially stored in the 
vector (18 dimensions), that is, (p11, p15, …, p91, p95) in a vector 
(pij means the phase duration of phase j of intersection i).  The 
rest (phase 2-4 and 6-8) use fixed phase durations and are not 
recorded in the vector. The reason for this representation is as 
follows. Since we aim to reduce the average delay time of all 
vehicles in the map, intuitively, phases which contain fewer 
green lights should be shortened. It can be seen that phase 1 
and 5 contain more green lights (G) than other phases. For 
traffic safety, phase 2-4 and phase 6-8 cannot be removed, so 
we fix it to a certain time (in this paper 3s). 

B. Fitness Function 
As mentioned above, each vector codifies the cycle 

program of the traffic light programs. The fitness function is  

totalTf
V

=                (6) 

where Ttotal is the total delay time of a scenario and V is the 
total vehicles. We use this criterion since the average delay 
time has a significant impact on traffic congestion.  

C. Optimization Procedure 
The optimization procedure is shown in Fig. 2. The 

optimization part is conducted by a modified CESO algorithm 
with details described below.  

1) Two populations (SWARM and CRDE) are randomly 
initialized with a set of integer values. These values 
are set within [5, 15] N since a too large value may 
result in prolonged delay time of one direction, 
whereas a too small value may cause security 
problems. Different combinations of phase durations 
will bring different traffic conditions. 

2) SWARM is reinitialized when gbest is equal to cbest 
rather than estimating the distance between cbest and 
gbest. In this way, the algorithm avoids the setting of 
threshold value th and the SWARM has more time to 
explore. In addition, SWARM is also updated when a 
new scenario emerges. Different from the original 
algorithm, we do not need to test whether a change 
happens. 

TABLE II  
SIMULATION AND CESO PARAMETERS 
 

Parameter Value 
Simulation time 100s 
Simulation area 0.5625km2 
Vehicle speed 0-5m/s 

Number of traffic lights in a node 20 
Maximum number of evaluations 3000 

Individuals in a population 10 
Individual size 18 

Acceleration coefficients c1 and c2 1.49445 
Inertia weight w 0.729 

Crossover probability Cr 0.9 
Mutation constant F 0.5 

 

TABLE III  
 DIFFERENT TRAFFIC CHANGES 

 
Instance Number of vehicles 

I1 500,589,667,725,770 
I2 770,725,667,589,500 
I3 589,500,725,667,770 
I4 500,540,589,667,725,770 
I5 770,725,667,589,540,500 
I6 589,500,540,725,667,770 
I7 500,540,565,589,631,667,701,725,749,770 
I8 770,749,725,701,667,631,589,565,540,500 
I9 589,500,725,540,667,749,565,701,631,770 
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3) The position of an individual of SWARM has been 
modified to deal with integer values. Thus, (1) is 
changed to: 

  ( ), 1 , , 1vi t i t i tx x+ +� �= +� 	                          (7) 

When the new individual is generated, it is transferred to 
SUMO for updating the cycle program. After the simulation, it 
returns several files necessary to compute the average delay 
time of the scenario. A new scenario emerges after P FEs, 
where positions and number of vehicles change. In other words, 
P is the number of  FEs needed to calculate the cycle program 
of the current scenario. The generated optimal cycle program is 
trasferred to the traffic system. Then the algorithm waits for the 
appearance of a new scenario (it is ignored when we conduct 
the experiments for convenience). Due to economic constraints, 
we obtain the new scenario by software rather than captured by 
new  traffic monitors. New vehicles of starting and arriving and 
the information of previous scenario are taken into account 
when constructing the new scenario. Presumably, it is close to 
real-world situations, where the solution of the new scenario is 
related to the previous one. It is an ideal property for using 

dynamic evolutionary algorithms as they are designed for 
problems using previous information to calculate fitness 
function. In fact, as suggested in [19], if a change of the 
problem results in a totally new fitness landscape, nothing will 
beat a simple restart policy, since there is no information to 
transfer from one environment to another. 

IV.  EXPERIMENTAL STUDY 

A. Experimental  Setup  
The simulation is carried out using the traffic simulator 

SUMO release 0.19.0 for windows. The experiments were 
performed on Intel Core i3-3240 CPU 3.40GHz, 4GB RAM, 
and VS2012. The population size (SWARM or CRDE) was set 
to 10 individuals performing 150 iteration steps, resulting in 
3000 FEs per run. The remaining parameters are listed in Table 
II.  Acceleration coefficients c1 and c2 were set to 1.49445 and 
inertia weight  was set to 0.729 as recommended in [20]. The 
maximum velocity of each dimension of SWARM was set to 
20% of the variable range. The number of scenarios per 
independent run was set to 5,6,10 respectively, in other words, 

TABLE IV  
 MEDIAN FITNESS VALUES OBTAINED BY OUR CESO AND PSO FOR INSTANCES OF FIVE SCENARIOS 

 
Instance algorithm scenario 

1 2 3 4 5 
I1 CESO 10.53 13.58 13.61 16.21 16.26 

PSO 10.48 13.60 13.65 16.49 16.60 
I2 CESO 16.65 16.34 13.54 13.58 10.35 

PSO 16.60 16.49 13.65 13.60 10.48 
I3 CESO 13.43 10.23 16.05 13.51 16.50 

PSO 13.60 10.48 16.49 13.65 16.60 
 

TABLE V  
 MEDIAN FITNESS VALUES OBTAINED BY OUR CESO AND PSO FOR INSTANCES OF SIX SCENARIOS 

 
Instance algorithm scenario 

1 2 3 4 5 6 
I4 CESO 10.71 12.1 13.56 13.60 16.05 16.39 

PSO 10.53 12.63 13.60 13.69 16.54 16.80 
I5 CESO 16.60 16.41 13.44 13.53 12.28 10.74 

PSO 16.80 16.54 13.69 13.60 12.63 10.53 
I6 CESO 13.35 10.51 12.10 16.18 13.65 16.49 

PSO 13.69 10.53 12.63 16.54 13.69 16.80 
 
 

TABLE VI  
MEDIAN FITNESS VALUES OBTAINED BY OUR CESO AND PSO FOR INSTANCES OF TEN SCENARIOS 

 
Instance algorithm scenario 

1 2 3 4 5 6 7 8 9 10 
I7 CESO 10.74 12.31 12.58 13.35 14.19 13.59 14.01 16.31 14.33 16.53 

PSO 10.55 12.88 12.91 13.68 14.12 13.76 14.86 16.63 14.11 16.94 
I8 CESO 16.78 14.08 16.56 14.86 13.70 14.74 13.66 12.62 12.23 10.64 

PSO 16.94 14.11 16.63 14.86 13.76 14.12 13.68 12.91 12.88 10.55 
I9 CESO 13.74 10.63 16.37 12.15 13.68 14.08 12.89 14.73 14.69 16.71 

PSO 13.68 10.55 16.63 12.88 13.76 14.11 12.91 14.86 14.12 16.94 
 

  
Fig. 2. Flowchart of the modified CESO algorithm. 
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the new scenario emerged every 600, 500, 300 FEs. Different 
traffic changes are presented in Table III. 

Besides, we also use PSO to compare with our strategy. For 
a fair comparison, the population size was set to 10 performing 
the same FEs between scenario changes. Acceleration 
coefficients c1, c2 and inertia weight w were set to the same as 
those in SWARM. It also uses (7) to deal with integer values.  

B. Results and Discussions 
Table IV-VI contains the median fitness values obtained by 

the proposed strategy for all instances. Additionally, the 
median fitness values obtained by PSO are also provided for 
every instance in order to permit comparisons. In these tables, 
we can observe that the proposed strategy obtained better 

fitness values than PSO for most of the scenarios. Relatively 
poor results occasionally appear. In fact, small changes in the 
number and position of vehicles may cause a big change in the 
optimal cycle program of traffic lights, which may lead to the 
poor performance of the proposed strategy as it uses previous 
information for the calculation of the current scenario. But 
typically two adjacent scenarios are relevant and the proposed 
strategy exhibits much stronger search ability in finding 
solutions to adjacent scenarios. 

To give an insight into the performance of the two 
algorithms, the convergence curves are given in Fig. 3. Results 
were obtained based on 30 independent runs for every instance. 
In this figure, we can see that the proposed strategy converges 
faster than PSO most of the time for all instances.  
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Fig. 3. Convergence curves of best fitness values (median out of 30 runs) of CESO and PSO. 
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In addition, the performance of two algorithms on instances 
of five scenarios I1-I3 is further compared by the boxplots 
shown in Fig. 4. It can be seen that, for these instances, the 
results of the proposed strategy are better than PSO most of the 
time. To summarize, by using a dynamic algorithm, the 
proposed strategy can obtain better results than PSO in terms of 
average delay time of all vehicles in various scenarios. 

V. CONCLUSION 
In this paper, an optimization strategy is proposed using a 

Collaborative Evolutionary-Swarm Optimization (CESO) 
algorithm that can find time-varying optimal cycle program of 
traffic lights effectively.   A popular traffic simulator SUMO is 
adopted to generate traffic flows and evaluate solutions. Nine 
instances of different traffic changes are tested. For universality, 
we designed ascending sequence, descending sequence and 
random sequence of number of vehicles captured by traffic 
monitors. Experimental results show that our strategy obtains 
better results than PSO in terms of the average delay time of all 
vehicles in various scenarios. Specifically, the proposed 
strategy is better than PSO most of the time. 
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Fig. 4. Boxplots of two algorithms on I1, I2, I3. 
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