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Abstract—Vaccination is one of the most promising methods to 
control the epidemic spread by protecting the most vulnerable 
population and reducing the number of susceptible population 
who are exposed to the virus. However, the vaccine doses are 
usually limited and can only be supplied during the epidemic 
outbreak. How to distribute the vaccines to different 
populations to reduce the total number of infectious people is 
important to the public health. In this paper, a DE algorithm is 
proposed to solve the problem by searching for the optimal 
strategy to distribute the limited vaccines to different age 
groups of population. The performance of the algorithm is 
compared with three strategies in the literature. The results 
show that the proposed algorithm can offer more effective 
vaccine distributions significantly. 

Keywords- Differential evolution, optimization, vaccine 
distribution

I. INTRODUCTION

According to the statistics from the Health & Disease 
Control Center, millions of people lose their lives because of 
infectious diseases [1]. When the outbreak of an infectious 
disease emerged, people often use protection means to avoid 
infection. Isolation and vaccination are the two most used 
means. Isolation can reduce the contacts of crowds but 
influence routine activities. Vaccination, which is regarded 
as an effective way for reducing the diffusion of an epidemic 
disease, is highly recommended [2][3]. After vaccinated, one 
will be immune to a disease for a period of time which is 
supposed to cover the whole epidemic of the disease or even 
a whole life. However, the production of vaccination is 
sometimes limited and costly at the initial outbreak of a 
disease. How to design a vaccine distribution strategy for 
minimizing the infected population is highly demanding. 

At present, a vaccination scheme for distribution mainly 
concentrates on the people who appear to be the most 
vulnerable to the disease, such as children aged between six 
months and less than six years, or the elderly over 65 years 
with chronic illnesses, healthcare workers, etc. However, if 
we can estimate the infectious feature of the disease and the 

activities of the people, a better vaccination scheme can be 
designed. Mossong et al. [4] pointed out that social contacts 
between different groups are relevant to the spread of 
infectious disease, thus a population is divided into groups 
according to their ages. People in different age groups have 
different vulnerability to a disease [5]. In this paper, we will 
analyze the data from history and build an optimization 
model of the vaccine distribution for each age group of 
people. 

The objective of the optimization problem is to minimize 
the total infectious population since the outbreak of the 
disease until the epidemic seized. In the literature, vaccine 
distribution mainly focuses on the transmissibility and 
infection risk of the disease and the vulnerability of people 
[6]-[8]. Longini and Halloran [9] proposed a strategy for the 
distribution of influenza vaccine to high-risk groups. Patel et 
al. [10] proposed a genetic algorithm to find the optimal 
vaccine distributions to minimize the number of illnesses or 
deaths in the population. Tuite and his partners [11] used a 
transmission model to explain spatial spread of disease and 
identify optimal control interventions. 

For solving the vaccine distribution optimization problem, 
we propose to use the differential evolution (DE) algorithm 
[12][13] to enhance the effectiveness of vaccine protection. 
DE is a type of evolutionary algorithms which are inspired 
by the natural evolution of the survival of the fittest. DE has 
shown promising performance in searching nonlinear and 
multimodal space. In this paper, a DE algorithm for 
optimizing the vaccine distribution strategy is proposed and a 
series of simulations have been made for analyzing the 
performance of the algorithm. 

The rest of the paper is constructed as follows. Section II 
introduces the epidemic transmission model of the infectious 
disease. The implementation of the proposed algorithm is 
presented in Section III. Numerical experiments are shown in 
Section IV. Conclusions are made in Section V. 

II. BACKGROUND

In this section, the epidemic transmission model 
considered in this paper will be introduced. The composition 
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of the population who are susceptible to the disease will then 
be analyzed. 

A. Epidemic Transmission Model 
In the literature, various epidemic transmission models 

have been proposed based on the features of the disease. We 
only focus on the transmission model of H1N1 influenza 
[1][14] in this paper for analyzing the performance of the 
proposed vaccine distribution algorithm. Note that the 
algorithm can also be applied in the other transmission 
models. 

Fig. 1 illustrates a schematic of the transmission model of 
influenza pandemic with time-dependent vaccination. 
Suppose the vaccinated individuals will be immune to the 
disease during the pandemic. The stage progression of the 
individuals can be classified as follows. The subscript i
indicates the group of population to which the individuals 
belong. 

Susceptible
(S)

Exposed
(E)

Infected
(I)

Recovered
(R)

Case-confirmed
(C)

Hospitalized
(H)

Dead
(D)

Vaccinated 
(V)

Figure 1. Schematic illustration of the epidemic transmission model. 

� Susceptible (S): Initially all individuals in the population 
are susceptible to the disease. During the progress of the 
epidemic, some susceptible individuals will be 
vaccinated, who are excluded from the potential 
infectious population. Some individuals will be exposed 
to the disease due to their contact activities with the 
infectious exposures, i.e., they will experience a period of 
latency under the risk of virus infection denoted by i� .

� Exposed (E): The individuals exposed to the disease have 
the probability to be confirmed in clinics or hospitals, or 
they are infected without being noticed. The probability 
of the exposed individuals to be infected by the disease is 
denoted by i� .

� Case-confirmed (C): The cases-confirmed rate of the 
exposed individuals is i� .

� Hospitalized (H): Some of the infectious confirmed 
individuals will be hospitalized by the rate i� .

� Dead (D): Case-confirmed individuals have the rate i�
to be dead. 

� Infected (I): The rate of the exposed individuals 
developed to the infectious stage without being 
confirmed is )1( i�� .

� Recovered (R): Some of the infectious individuals will 
self-recover with the rate i� .

� Vaccinated (V): The vaccinated individuals )(tvi	  at 
each time t are supposed to be immune to the disease 
immediately. 

The above epidemic transmission model can also be 
described by the following system of nonlinear differential 
equations. 

)())()(()( tvtvtStS iiiii 	�	��
 ��               (1) 

)())()(()( tEtvtStE iiiiii �� �	�
�                (2) 
)()()()( tCtEtC iiii iii ���� ��
�                   (3) 

)()( tCtH iii �
�                                (4) 

)()( tCtD iii �
�                                 (5) 
)()()1()( 1 tItEtI iiiiii ��� ��
 �

�                   (6) 

)()( tItR iii �
�                                  (7) 
The infection rate i�  for group i relates to the virus 
transmission variable �, the vulnerability of the population 

i� , the average number cij of contacts between different age 
groups i and j, the number Ij of infectious individuals and the 
number Pj of individuals in group j [14]. The computation of 

i�  is 
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where n is the number of age groups. 

B. Age Groups of Population 
According to Chowell et al. [15], the whole population 

can be divided into several groups for better evaluating their 
risk to be infected by the epidemic disease. For example, 0-5 
yr, 6-12 yr, 13-19 yr, 20-39 yr, 40-59 yr, >=60 yr. Because 
individuals in different age groups have different contact 
rates, their risk to be infected are statistically different. 

Since the supply of vaccine doses is limited, a good 
vaccine distribution strategy is to distribute vaccine doses to 
the individuals with the highest risk in order to reduce the 
number of infected individuals during the pandemic. In the 
following sections, we will propose a DE algorithm to search 
for the optimal vaccine distribution strategy to control the 
epidemic. 

III. THE PROPOSED DE ALGORITHM

In this section, the implementation of the proposed DE 
algorithm to address the vaccine distribution problem will 
be described. Fig. 2 shows the flowchart of the DE 
algorithm, which includes initialization, mutation, crossover, 
and selection operations. The variable G represents the 
counter of generations of the algorithm. 

A. Initialization 
Each individual in the DE algorithm is encoded as the 

relative percentages of the vaccine for the n age groups 
respectively, i.e., },...,,{ 21

G
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G
k

G
k

G
k xxxX 
 , k=1,2,…,m, where 

m is the number of individuals in the population. Note that 
we have 

1
1


 


n

i
G
kix                                     (9) 

and ]1,0[�G
kix . The individuals in the initial population are 

randomly generated and they satisfy the above constraint. 
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Figure 2. Flowchart of the DE algorithm. 
The objective function is the total number of the 

infectious population since the outbreak of the disease until 
the epidemic seizes. The smaller the total number of the 
infectious population, the better the individual is. 

B. The Mutation Operation 
After initialization, the mutation operation will be used to 

produce a mutant vector G
kV  with respect to each individual 

G
kX  in the current population in the Gth generation, and 
G
kX is called the target vector, k=1,2,…,m. G

kV  is generated 
via a mutation strategy. In this paper, G

kV is computed by 
)()(

54321
G
kr

G
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G
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G
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G
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G
k XXFXXFXV ������
       (10) 

The indices r1, r2, r3, r4, r5 are different uniform random 
integer numbers generated in the range [1, m]. The scaling 
factor F is a positive predefined parameter for scaling the 
different vector. 

C. The Crossover Operation 
After the mutation operation, each pair of target vector 

G
kX  and its corresponding mutant vector G

kV  will be used to 
generate a trial vector ),...,,( 21

G
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G
k

G
k

G
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 , and the process 

is called crossover. The uniform crossover is defined as 

�
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otherwise,
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where rand(0,1) is a uniform random value in the range (0,1), 
k=1,2,…,m, i=1,2,…,n. The crossover rate CR is a 
predefined parameter in the range [0,1). 

D. The Selection Operation 
After mutation and crossover, the newly generated 

individuals will be evaluated. DE compares the objective 
value of each trial vector and its corresponding target vector 
in the current population. Since the objective of the problem 
is to minimize the total number of the infectious population, 
if the objective function value of the trial vector satisfies 

)()( G
k

G
k XfUf � , the target vector will be replaced by the 

trial vector and join in the population of the next generation. 
Otherwise, the target vector will be reserved in the next 
generation. The selection operation is defined by 

�
�
� �


�
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IV. EXPERIMENTS

In the experimental section, the performance of the 
proposed DE algorithm will be compared with some vaccine 
distribution strategies in the literature. The 2009 Hong Kong 
H1N1 influenza pandemic data [1][16] will be used in the 
simulation. The age groups of population considered in the 
experiment are A1(5-14 yr), A2(15-19 yr), A3(20-29 yr), 
A4(30-39 yr), A5(40-49 yr), and A6(50-59 yr). The virus 
transmission variable � =0.015841. Fig. 3 illustrates the 
number of population in each age group, and the parameter 
values i� , i�  , i� , i�  for each age group in the epidemic 
transmission model, i=1,2,…,6. The parameters i� =0.25,

i� =0.17 are the same for the six age groups. 
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Figure 3. Illustration of the parameter values in the six age groups. 

The numbers of contacts in Equation (8) are shown in Fig. 
4. It can be observed that the diagonal values are always 
larger than those in the same row or column, which means 
that the people in the same groups contact very frequently. 
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Figure 4. Illustration of the contact rates between the six age groups. 
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A. Algorithms for Comparison 
In the literature, the vaccine distribution strategy is 

generally made according to the vulnerability of the 
population, the transmissibility of the disease, or the 
hospitalization and mortality rate of the disease. The 
vaccinate distribution proportion for each age group for the 
three strategies (S1 to S3) are introduced. 
� Strategy 1 (S1): Based on Vulnerability 

The vaccine distribution strategy focuses on the 
infectious vulnerability i� . The number of vaccine doses 
for each population group is proportional to their infectious 
vulnerabilities. The vaccination proportion pi for each age 
group Ai is 

 



 6

1

)(

j j

i
i tp

�

� , i = 1,2,...,6                    (13) 

� Strategy 2 (S2): Based on Transmissibility 
More vaccine doses will be given to the individuals with 

a higher contact frequency. The vaccination proportion pi for 
each age group Ai is 
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It can be observed that the above two strategies do not 
depend on the time of the epidemic development. 
� Strategy 3 (S3): Based on Hospitalization and Mortality 

This strategy considers the number of the hospitalized 
infection cases Hi(t) and the dead cases Di(t) at time t. The 
vaccination proportion pi for each age group Ai is 
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�
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1
))()((

)()()(

j jj
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i

tDtH

tDtHtp , i = 1,2,...,6           (15) 

B. Experimental Settings 
Besides the features of the virus infection that would 

affect epidemic spreading, the vaccine coverage and 
releasing time can also influence the total number of 
infectious population. For the purpose of evaluation, we 
choose four releasing days to simulate vaccine distributions 
to control the epidemic. They are 
� after 1 day of an infection outbreak (T=1)
� after 50 days of an infection outbreak (T=50)
� after 100 days of an infection outbreak (T=100) 
� after 150 days of an infection outbreak (T=150) 

The number of vaccination doses is 500,000. Suppose 
they are all successfully injected to the susceptible 
individuals on the same day and the vaccinated people are 
immune to the disease immediately. 

Four sets of initial values are tested in the experiment for 
analyzing the performance of the algorithms. 

Simulation 1: Si(0) = 99.94%, Ei(0) = 0.06% 
Simulation 2: Si(0) = 99.96%, Ei(0) = 0.04% 
Simulation 3: Si(0) = 99.98%, Ei(0) = 0.02% 
Simulation 4: Si(0) = 99.96%, Ii(0) = 0.04% 
The other values are initially set as 0%. The population 

size in the proposed DE algorithm is 20, and the function 
evaluations before termination is 1000. The default 
parameter values F and CR are set as F=0.5, CR=0.4.

C. Results and Analysis 
The proposed DE algorithm is compared with the other 

three vaccine distribution strategies S1, S2, S3 in the four 
simulations with different vaccination dates. Fig. 5 to Fig. 8 
illustrate the infection dynamic curves. Without vaccination, 
the development of the epidemic is similar to a Gaussian 
distribution curve and the peak of infectious population 
appears in the range of 150 to 200 days. 
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Figure 5. Infection dynamics curves for Simulation 1. 
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Figure 6. Infection dynamics curves for Simulation 2. 
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Figure 7. Infection dynamics curves for Simulation 3.
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Figure 8. Infection dynamics curves for Simulation 4.

According to the figures, it is obvious that vaccination 
can ameliorate epidemic spreading by reducing the total 
infectious population at the peak of an infection outbreak. 
Generally speaking, the vaccination programs started on the 
earlier days of epidemic spreading can delay the appearance 
of the infection peaks. No matter in which simulation, the 
proposed DE algorithm has the best result compared to the 
other three methods. DE also has the lowest peak and the 
peak appears the latest. 

In the case of the vaccination started on day 1, there are 
no obvious infection outbreaks for all the prioritization 
strategies. The case on day 50 has a similar result as on day1. 
However, in the cases of the vaccination started on day 100 
and day 150, there are obvious infection outbreaks, and the 
latest day has the highest peak. Especially for the case of the 
vaccine releasing time set to day 150, the effect of the 
epidemic control by vaccination is not as effective as the 
other cases. Nevertheless, it still has a better outcome by the 
proposed DE algorithm in reducing the total infection 
population. 

V. CONCLUSIONS

In this paper, the problem of finding the optimal 
distribution strategy to determine the number of vaccine 
doses to different age groups of population is considered. 
The objective of the problem is to minimize the infection 
population during the pandemic. Although there are several 
prioritization strategies in the literature to solve the problem, 
the proposed DE algorithm can obtain the best results. A 
series of simulations have been used to test the performance 
of the DE algorithm. The results show that the DE algorithm 
is very promising in solving the vaccine distribution problem. 
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