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Multicast routing (MR) is a technology for delivering network data from some source node(s) to a group of destination nodes.
The objective of the minimum cost MR (MCMR) problem is to find an optimal multicast tree with the minimum cost for MR.
This problem is NP complete. In order to tackle the problem, this paper proposes a novel algorithm termed the minimum cost
multicast routing ant colony optimization (MCMRACO). Based on the ant colony optimization (ACO) framework, the artificial
ants in the proposed algorithm use a probabilistic greedy realization of Prim’s algorithm to construct multicast trees. Moving
in a cost complete graph (CCG) of the network topology, the ants build solutions according to the heuristic and pheromone
information. The heuristic information represents problem-specific knowledge for the ants to construct solutions. The pheromone
update mechanisms coordinate the ants’ activities by modulating the pheromones. The algorithm can quickly respond to the changes
of multicast nodes in a dynamic MR environment. The performance of the proposed algorithm has been compared with published
results available in the literature. Results show that the proposed algorithm performs well in both static and dynamic MCMR

problems.

1. Introduction

Multicast routing (MR) is one of the most important com-
munication network routing technologies. It first appeared
in ARPANET as selective broadcasting from a single source
node to a subset of the other nodes in the network [1].
Different from unicast routing, MR sends only one data
copy from the source node(s) to multiple destination nodes.
Since MR is resource efficient, it has been implemented in
most of the modern communication networks, including
overlay multicast protocols [2-4], wireless networks [5-
7], and satellite networks [8, 9]. These networks support
multicast applications such as distributed data processing,
internet telephone, interactive multimedia conferencing, and
real-time video broadcasting [4].

Different multicast applications have different definitions
of the cost, such as minimum bandwidth [3, 5, 7] and
minimum energy [6]. The objective of the minimum cost
MR (MCMR) problem is to find an optimal multicast tree

with minimum cost for MR. Such a tree is termed a Steiner
minimal tree (SMT) in graphs [10]. Finding the SMT has been
proven to be NP complete [11].

Various algorithms have been tried for solving the
MCMR problem. Traditional heuristic algorithms [12-15] use
greedy strategies to construct a feasible multicast tree, but
they lack effective guidance to improve the results. Geo-
graphic [7] and distributed algorithms [6] are only based on
the information from neighbors or nodes within a constant
hop distance to compute multicast paths. However, it may be
difficult to build an efficient multicast tree without complete
information [2]. Computational intelligence (CI) methods
such as neural networks (NNs) and genetic algorithms (GAs)
have been applied to MCMR. Gelenbe et al. [16] proposed a
random neural network (RNN) to optimize a multicast tree.
The RNN essentially enumerated the results by iteratively
adding the most potential node to the tree. Leung et al.
[17] proposed a GA to train the population of individuals
by simulating natural evolution. Each individual represented



a multicast tree indirectly through an encoding scheme.
Except for the evaluation of the fitness of individuals, no tree
construction information was utilized in the evolutionary
process of the GA.

In recent years, ant colony optimization (ACO) [18-20]
has become an important CI method. ACO is inspired by the
foraging behavior of natural ants. ACO dispatches a colony
of artificial ants to cooperatively search for the optimum of
the optimization problem represented on a graph. Each ant
in ACO incrementally builds a solution according to the con-
struction information in a stochastic way [18]. ACO has been
applied successfully to various combinatorial optimization
problems, such as the traveling salesman [19, 20], constraint
satisfaction [21], allocation problems [22], scheduling [23-
27], data mining [28, 29], water distribution systems [30],
power electronic circuit design [31], and networks [32-37].
Using ACO for MR optimization is a promising research field,
which is still under development. Singh et al. [38] proposed
an ant algorithm for MR optimization. In their algorithm, one
ant was initially placed at every node in the multicast group
and started to move to the other node via an edge. If an ant
stepped on a node that had been visited by another ant, it
merged into the latter ant. When only one ant was left, the
edges passed by the ants forming a multicast tree. The authors
had tested three different sequences for moving the ants from
one node to another and found that the random approach was
the best. However, their algorithm still could not always find
the optimal solutions of some of their test cases. Shen and
Jaikaeo [39] and Shen et al. [40] applied swarm intelligence
to a multicast protocol by connecting nodes in a multicast
group through a designated node. Each node in the multicast
group periodically sent a packet that behaved like an ant to
explore different paths to the designated node. The designated
node was not statically assigned and its location influenced
the optimality of the multicast tree.

In order to make better use of ACO, this paper pro-
poses a novel minimum cost multicast routing ant colony
optimization (MCMRACO) algorithm for solving MCMR
problems. The algorithm has the following features. (1) Based
on the ACO framework, the proposed algorithm adopts
a probabilistic greedy realization of Prim’s algorithm [41]
for the ants to construct multicast trees. (2) Moving in
a cost complete graph (CCG) of the network topology,
the ants build solutions according to the heuristic and
pheromone information. (3) The heuristic information is
designed to represent problem-specific knowledge for the
ants to construct solutions and to bias the selection of
nodes in the multicast group. (4) Representing the ants’
construction experience, pheromones are modulated by the
local and global pheromone update mechanisms. The local
pheromone update is applied after each ant has made a
construction step, whereas the global pheromone update
reinforces the pheromones in the best multicast tree after each
iteration. Hence, the algorithm can quickly respond to the
changes of multicast nodes in a dynamic MR environment.
Utilizing heuristic and pheromone information effectively,
the proposed MCMRACO is more suitable for solving
MCMR problems than the other heuristic and CI algorithms.
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The comparison results show that the algorithm works
successfully in both static and dynamic MCMR problems.

The rest of the paper is organized as follows. In Section 2,
background information for the proposed algorithm is pre-
sented. Section 3 describes the implementation and main
techniques of the proposed MCMRACO algorithm. In
Section 4, the proposed algorithm is tested on static and
dynamic MCMR problems. Its performance is compared with
the published results available in the literature. Section 5
concludes this paper and discusses some issues for future
research.

2. Background

This section is composed of three parts. In the first part,
the MCMR optimization problem is formally defined. Then
a method for transforming a network graph into a CCG is
illustrated. The third part describes the ACO framework.

2.1. Definition of the MCMR Optimization Problem. In an
MCMR optimization problem, a network graph is denoted
as G = (Vg, Eg), where V; is the set of nodes in the network
and E is the set of edges which connect the nodes in V. The
set V; is divided into three subsets Vg, Vp,, and V;, where Vg
is the set of source nodes, V, is the set of destination nodes,
and V; is the set of intermediate nodes. V; = V5 UV}, is the
set of nodes in a multicast group. Intermediate nodes can be
used for relaying multicast traffic, but they do not belong to
the multicast group. In backbone IP networks, the nodes in
V; generally are routers. Each edge e € E has a positive cost
value c(e) that measures the quality of the edge. If there is
no edge between two nodes in Vg, the corresponding cost is
denoted as co. The optimization objective of the problem is
to find a tree T' = (V) + Vy, Ey) that minimizes the cost for
connecting the nodes in V), and that satisfies the multicast
constraints . Formally, the MCMR problem is defined as

minimize Z c(e), T satisfies the constraints in (), )
e€Ey

where V € V] is a subset of the intermediate nodes, Ey € Eg
is a subset of the edges in the network graph.

Figure 1 shows an example of MR in a network with twelve
nodes and some edges. Node 1 is the source node. The black
solid nodes 2, 4, 6, 12 are the destination nodes. A multicast
tree connecting the multicast nodes via the intermediate
nodes 5 and 7 is shown in the figure. In this paper, a multicast
group has only one source node and multiple destination
nodes.

2.2. Cost Complete Graph (CCG). The network graph is
usually a noncomplete but connected graph. The edges in a
network graph are termed physical edges. In a CCG, however,
each pair of nodes is connected by a logical edge with the
minimum cost between the two nodes. One of the classical
algorithms for transforming a network graph into a CCG is
Floyd’s algorithm [42]. The pseudocode of the algorithm is
shown in Algorithm 1. The input cost matrix of the network
graph is denoted by Cyy,_|,y,,|» where its element ¢;; is the cost
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Floyd’s Algorithm

from node i to node j
For i:=1 to |V
For j:=1 to |V
Gj = Gj
If ¢; = 00
0 = -1;
Else
0 = Js
End If
End For
End For
For k :=1 to |V|
For i:=1 to |V |
For j:=1 to |V]

Gj = G + Gjs
0ij = Ojks
End If
End For
End For

End For

Input:  Cjy_ v [6;]: the cost matrix of the network graph
Output: E\VGIXIVG\ [;]: the cost matrix of the cost complete graph (CCG)
Oy, ixjvg| [0;]: records the next node on the minimum cost route

Ifi#jand G +G; <

ALGORITHM I: Pseudocode of Floyd’s algorithm.

—> Directions

@ Destination nodes

= Data packets O Intermediate nodes

@ Source node

FIGURE 1: An example of multicast routing. The source node and the
destination nodes belong to a multicast group. The heavy black lines
indicate the multicast tree.

of the edge connecting nodes i and j(i,j = 1,2,...,[Vg).
The output of the Floyd’s algorithm consists of two matrixes.
One is the cost matrix EIVGIXIVGI of the CCG, where the value
of its elements ¢;; denotes the minimum cost from node i to
node j. The other is Oy, .y, | where each element o;; records

the next node of node i on the minimum cost route from

node i to node j in the network graph. Figure 2(a) presents
an undirected network graph. The values in the figure indicate
the cost of the corresponding physical edges. Suppose Q) = &
and take the edges (b, b,) and (b, b,) as examples. Nodes b,
and b, are not adjacent, but they are connected via node b,
or b, or nodes b, b, by. In the CCG (Figure 2(b)), nodes b,
and b, are logically adjacent with ¢,,, = G, = 2.5 and
Opp, = Opp = bs. For nodes by and b, although they are
already adjacent, there is a shorter path via nodes by and b.
S0 G,p, = G, = 1.5, whereas 0, = bs, 05,5, = bs.

The CCG of the network is obtained before the proposed
MCMRACO algorithm starts. Generally, the CCG is main-
tained by the network routers or a central network controlling
apparatus. For example, in [2], master multicast routers are
used to deal with all the multicast-related tasks. They gather
routing information, make MR decisions, and manage the
other routers to perform MR. The proposed MCMRACO
algorithm can be implemented by the master multicast router
to find a high-quality multicast tree for MR.

2.3. Ant Colony Optimization. Once the CCG is available, the
ants can be dispatched to construct multicast trees. The ants
in ACO can move in parallel or sequentially to construct their
solutions [18]. Before introducing the proposed algorithm,
the ACO framework is briefly presented.

The ACO algorithm used in this paper is ant colony
system (ACS) [20], which is characterized by its state tran-
sition rule and the pheromone update mechanisms. At each
iteration, a colony of ants is dispatched to search for solutions.
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FIGURE 2: An example of transforming edge (b, b,) and edge (b;, b,) in the CCG. (a) The original undirected graph showing the physical edges
and the edge cost. (b) The graph showing the transformed edges (b, b,) and (b, b,) and the corresponding edge cost in the CCG.

Choosing an edge for the completion of the solution is termed
a construction step. Each ant makes every construction step
according to the state transition rule. After an ant makes a
construction step, the local pheromone update is applied to
the selected edge. The local pheromone update reduces the
chances for the other ants to choose the same edge repetitively
and thus ensures diversity in the search. After every ant
has constructed a complete solution, the global pheromone
update mechanism is applied to the edges of the best-so-far
solution in order to intensify the attraction of the edges.

Figure 3 illustrates the ants’ behavior in one iteration by
showing the local and global pheromone update operations
on the edges of a graph. When the ants are moving, the
pheromones on the visited edges are changed by the local
pheromone update, resulting in the reduction of pheromones.
After all the ants have completed their solutions, the global
pheromone update reinforces the pheromones on the edges
of the best-so-far solution. In a complex search environment
with multiple ramifications, the previous mechanisms were
shown to be able to find high-quality solutions [18].

3. ACO for Minimum Cost Multicast Routing

In this section, the minimum cost multicast routing ant
colony optimization (MCMRACO) algorithm is proposed
for solving the unconstrained MCMR problems. A complete
flowchart of the algorithm is shown in Figure 4(a).

3.1. Prim’s Algorithm, Pheromone, and Heuristic Mechanisms.
The ant’s construction behavior in MCMRACO is similar
to the generation of a minimum spanning tree (MST) by
Prim’s algorithm [41]. Suppose that V is the set of nodes in an
undirected connected graph and W is a set containing only
one node. The classical Prim’s algorithm continuously moves
a node d from V — W to W, provided that s € W and the
cost of edge (s, d) is minimum. In the proposed algorithm,
the selection criterion for the next node is not simply based
on the cost of the edges but is based on the product of the
pheromone and heuristic values.

The pheromone and heuristic values of an edge (s,d)
are denoted by 7(s,d) and #(s,d), respectively. The initial

pheromone value is 7, = 1/c(Txyp)> Where ¢ (Tkyp) is the
cost of the initial tree generated by the Kou-Markowsky-
Berman (KMB) method [12].

The heuristic value 7(s, d) of the edge connecting nodes s
and d is a function of the cost of the edge (s, d) and the type
of the node d, that is

Y ifdev,
Csd
nisd)=1 " @)
—, otherwise,
Csd

where p (4 > 1) is a reinforcement rate to the nodes in the
multicast group. Heuristic values represent the quality of the
candidate edges. Lower cost edges in the CCG are preferred.
Moreover, multicast nodes have higher probabilities to be
selected than intermediate nodes. If 4 — oo, the ants
perform similarly to KMB, which only considers multicast
nodes during the construction. If ¢ = 1, the ants cannot
differentiate multicast nodes from the intermediate nodes. So
the value of i influences the ants’ sensitivity to the multicast
nodes in the network.

3.2. The Ants’ Search Behavior. In this subsection, we describe
an ant’s search behavior step by step. The corresponding
flowchart is shown in Figure 4(b).

Step 1 (initialization). Initially, an ant k is placed on a
randomly chosen multicast node s. The visited node set of

ant k is denoted by W® = {s}. The unvisited node set is
u® = VG—W(k). The product of the pheromone and heuristic
values for every unvisited node i € U® is computed as

@ = max ((58) -1 (1-1)). 3)
Thatis, w; = 7(s,i) - (s, 1) as w® = {s}. By using y; to denote
the corresponding visited node that connects to node i € U*)

with the maximum product, we have

xi = arg max (7 (jui) -1 (1)) = s (4)
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Source

Source

———. An ant's route

—— The pheromone on the edge

FIGURE 3: An illustration of the ants’ behavior in one iteration. The thickness of the edges denotes the pheromone density. (a) The distribution
of pheromones from the last iteration. (b) When the three ants are moving, the pheromones on the passed edges are changed by the local
pheromone update, resulting in the reduction of pheromones. (c) The global pheromone update reinforces the pheromones on the edges of

the best-so-far solution.

Step 2 (exploitation or exploration). Based on the state
transition rule [20], the ant probabilistically chooses to do
exploitation or exploration, which is controlled by

arg maxw,, if g <q, (exploitation)
reu®

©)

D, otherwise (biased exploration),

where ¢, is a predefined parameter in [0, 1] controlling the
proportion of exploitation to exploration, g is a uniform
random number in [0, 1), and D is a random number selected
according to a probability distribution as (6). If g < g, the ant
will choose the next unvisited node d that has the maximum
product of the pheromone and heuristic values. This is called
the exploitation step. Otherwise, the next node d is chosen
according to (6), which is called the exploration step.
% ifdeu®
Yreut @ (6)
0, otherwise.

P (d) =

Step 3 (edge extension and local pheromone update). When
an ant is building a solution, the pheromone values on the
visited edges are reduced. After choosing the next node d, ant
k moves from node s = x,; to node d. Since the ant moves in
the CCG, the logical edge (s, d) can be extended to a physical
route (by, by, by, ..., b,), where by = s, b, = d, b = 0, 4

and / = 1,...,y — L. The edges (b)) (i = 0,...,y,j =
0,...,v¥,i# j) have the pheromones updated by

(b)) (D) o O

where p € (0,1) is the pheromone evaporation rate. The
larger the value of p, the more pheromones are evaporated
on the edges that the ant has just passed. The lower boundary
of the pheromone value is set as 7,,;, = 7, so that the updated
value will not be smaller than the initial pheromone value.
The unvisited nodes in by, b,, ..., b, are marked as visited by

moving them from U® to W,

Step 4 (has the ant finished the mission?). Ifan ant has visited
all the multicast nodes (V,; < W®), the ant has finished
constructing a multicast tree. Otherwise, for all i € U(k),
update the values of w; and y; as
w— max (7(ji) -n(ji)).
]E{Xi’bl’bzwwbw}
(8)
xie—arg max (7(ji) n(ji)).
je{Xby by }

Then return to Step 2 for a further search.

3.3. Redundancy Trimming. After an ant has finished
building a multicast tree connecting all multicast nodes,
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/// Ant k randomly chooses
/ a multicast node s
Start
Initialize the -
parameters o
&
)/ X;=s
/
/
/
/
/
/
/
/
/
(]
j=9
2
Select a next node d by Select a next node d by <
exploitation exploration
[ J
Ant k constructs a multicast
tree based on a probabilistic
Prim’s method
l \ Extend the edge (s, d) as by, by, - -+, by,) «
Y and mark the nodes as visited by ant k &
Perform redundancy \ T »
trimming to the ant’s tree K
Perform local pheromone update |
\\
\
—h
\
\
Apply global pheromone update N
lto the best tree that has ever been found \
\\ T
k No
(o G
i =1 + 1

Step 4

Any nodej
in {by, by, - -+, by } satisfies
(1) -1 1) > w;

Xi=j
w; = 7(j,1) - n(j, 1)

(a) (b)

FIGURE 4: Flowchart of the proposed minimum cost multicast routing ant colony optimization (MCMRACO).

is smaller than that of the tree built by the ant, the ant’s

solution is replaced by the MST.
Secondly, check for useless intermediate nodes. Delete the

one-degree intermediate nodes and their connected edges.

the tree must be checked for redundancy. The flowchart of

this process is given in Figure 5.
Firstly, apply the classical Prim’s algorithm to the visited

nodes in the network graph. If the cost of the generated MST
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Tj: a tree built by an ant k

!

Tysr: use the nodes in Ty

to generate an MST

Redundant nodes exist ?

Titim : delete the redundant
nodes and edges

l

Tk — Ttrim

End

FIGURE 5: Flowchart of the redundancy trimming.

3.4. Global Pheromone Update. After all the m ants have fin-
ished the tree construction, the ants” solutions are evaluated
and the best-so-far tree is updated. The global pheromone
update is applied only to the best-so-far tree. The pheromone
values on the edges (i, j) of the best-so-far (bsf) tree T, are
updated as

1(i,j) — (L-p)-7(i, j) + - A1, 9)

where At = 1/(c(Tyg5))c (Th¢) is the cost of Ty and « is the
pheromone reinforcement rate with o > p.

Moreover, the pheromone values on some logical edges
in the tree Ty are also updated. If the extended physical
route between a pair of nodes i and j(i,j € Ty) is
(by by> by, ..., b,), which satisfies by = i, b, = j, b, = 05, ;»
r=1...,y-1L(b,b+1) €Ty, 1=0,1,...,y—1,andy > 1
is the number of edges in the route, then the new pheromone
value of edge (i, j) becomes

y-1
(i, j) «— M (10)

The updated pheromone value of edge (i, j) is in accordance
with the average pheromone value of the corresponding
physical edges in the tree.

3.5. The Complexity and Convergence of MCMRACO. The
time complexity of the proposed MCMRACO can be esti-
mated by counting the number of multicast trees that are
generated during the optimization process. In each iteration
of MCMRACO, a colony of m ants construct m trees and the
classical Prim’s algorithm is performed m times for redun-
dancy trimming. As the time complexity for constructing a
multicast tree is O(|VG|2) and 2m trees are constructed in
each iteration, the time complexity of MCMRACO is approx-
imately O(2nm|V|*), where n is the predefined maximum
iteration number.

According to [43], the convergence condition for the
proposed algorithm is to satisfy 0 < T, < Tpax < 100,
where 7, and 7,,,, are the lower and upper boundaries of
the pheromone value, respectively. Although the heuristic
and pheromone mechanisms have been redesigned in the
proposed algorithm, the convergence of the algorithm is still
maintained. The lower boundary of the pheromone value is
Toin = To > 0. The upper boundary of the pheromone value
is (et/p) - (1 /c(Topt)), where c(Topt) is the cost of the optimal
tree. Furthermore, every ant in MCMRACO builds a feasible
multicast solution. Therefore, the proposed MCMRACO can
converge to an optimal solution.

4. Experiments and Discussions

The experiments in this paper are composed of two parts. The
first part is the experiment on the static MR cases, whereas
the second part is the one on the dynamic MR cases. All the
results in the experiments are computed by a computer with
CPU Pentium IV 2.8 GHZ, memory 256 MB.

4.1. Static Multicast Routing Cases. The static MR cases are
the Steiner problems in group B from the OR-Library [44].
The eighteen problems are tabulated in Table 1, with the graph
size from 50 to 100. In the table, |V| stands for the number
of nodes, |V,,| is the number of multicast nodes, |E| is the
number of physical edges in the graph, and c(T,,) is the
cost of the optimal tree. The performance of the proposed
algorithm is compared with the KMB heuristic algorithm in
[12], the random neural network (RNN) algorithm in [16], the
genetic algorithm (GA) in [17], and the ant algorithm in [38].

Firstly, the parameter settings of the proposed MCM-
RACO algorithm are analyzed. The proposed algorithm
has five parameters, which are the number of ants m, the
reinforcement rate to destination nodes p, the proportion
of exploitation ¢, the pheromone evaporation rate p, and
the pheromone reinforcement rate «. The number of ants m
depends on the number of nodes in the network. More ants
may perform better in a large network, but it will take longer
time in one iteration. If the number of ants is not enough,
the algorithm may be trapped easily in suboptimal results.
The value m = 50 is suitable for most of the networks in our
empirical study.

The other four parameters y, g, p, and « are analyzed by
testing 4t = 5,6, ...,19,g, = 0.2,0.3,0.4,0.5,0.6,0.7,0.8, 0.85,
0.9,0.95, p = 0.1,0.2,...,0.5, and & = 0.1,0.2,...,1.1 with
a > p. Each combination of parameter values (u, gy, p, &)
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FIGURE 6: Average performance of MCMRACO with different parameter values in solving the static MR cases. (a) Average value of ® with
¢ =5,6,...,19. (b) Average value of ® with g, = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95. (c) Average value of ® with p = 0.1,0.2,...,0.5.

(d) Average value of ® with @ = 0.1,0.2,..., 1.1.

is termed a parameter configuration. Each configuration is
tested in ten independent runs by MCMRACO on each of
the eighteen instances. Each run of MCMRACO terminates
when it cannot find a better result in three consecutive
iterations. The performance of MCMRACO by configuration
0 on instance i is measured as

® (0,i) = 1000 - t, (11)

where ¢ is the successful percentage and  denotes the average
time in seconds of the ten independent runs by configuration
0 on instance i for obtaining the optimal solution.

Figure 6 shows the average performance of MCMRACO
with different parameter values in solving some static MR
instances. Each point in the figure is drawn as follows. For

example, the total measurements of the performance ® for
¢ = 5 of B9 are 31235.4. When u equals to 5, there are
10 choices for g, and 45 choices for the combinations of
(p, «). So the total configuration number of (i, q,, p, &) with
¢ = 5 is 450. The average measurement of performance
O® for y = 5 of BY is thus computed as 31235.4/450 =
69.412, which has been plotted as a point in Figure 6(a).
Only the instances that cannot be solved successfully by the
KMB algorithm are considered in the figure. The curves show
that the parameter values have similar influences on different
instances. (1) The successful percentage increases when the
value of y becomes bigger. It means that the ants should have
a strong bias towards the multicast nodes. (2) The desirable
value of g is in the range of [0.6,0.9]. The results indicate
that the probability for performing exploitation is better to
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TaBLE 1: Eighteen Steiner B test cases.

No. Vgl |Egl [Vl (Topo)
1 50 63 9 82
2 50 63 13 83
3 50 63 25 138
4 50 100 9 59
5 50 100 13 61
6 50 100 25 122
7 75 94 13 11
8 75 94 19 104
9 75 94 38 220
10 75 150 13 86
11 75 150 19 88
12 75 150 38 174
13 100 125 17 165
14 100 125 25 235
15 100 125 50 318
16 100 200 17 127
17 100 200 25 131
18 100 200 50 218

be higher than that of the exploration. (3) With « > p, the
influences for choosing different values of « and p are quite
small for the same instance.

After analyzing the influence of different parameter val-
ues, the values of the four parameters y, q,, p, and « are
selected based on a statistically sound approach, that is, a
racing algorithm termed F-Race [45]. According to the results
by F-Race, the parameter values of the proposed MCMRACO
are setasm =50, u = 19,9, = 0.8, p = 0.3, and & = 0.5.

The results for solving the Steiner B instances are tab-
ulated in Table 2. As there is no stochastic factor in KMB
and RNN, the results are unique in different runs. The
ant algorithm in [38], the GA in [17], and the proposed
MCMRACO are probabilistic algorithms, so they are tested
ten times independently for each instance. If the results are
equal to the optima, they are bold in the table.

The results show that KMB only solves seven instances
successfully, whereas RNN obtains eleven successful results
out of the eighteen instances. The ant algorithm in [37] can
find the best multicast trees of the instances at least once
except for B16 and B18. However, it can only achieve 100%
success in eight instances. GA terminates when it cannot
find a better result in twenty consecutive generations with a
population size of 50. Note that the termination condition
of GA is more stringent than the one used in [17] but
is looser than that of MCMRACO. The results show that
GA can find the optima of all the eighteen instances, but
it can only solve eleven instances with 100% success. The
proposed MCMRACO has the best performance among the
algorithms, for it can solve all the static instances with 100%
success. To further study the performance of the algorithms,
a dynamic environment is designed in the next subsection.

4.2. Dynamic Multicast Routing Cases. Nodes in the network
may join or leave the multicast group. Suppose the network
topology is stable without failure. We design the following
dynamic scenario to test the stability of the algorithm. When
the multicast nodes are changed, the algorithm is invoked to
find a new multicast tree.

Suppose that v multicast nodes in the multicast group
leave and v new nodes join the group alternatively, forming
a dynamic situation. Note that the nodes in the multicast
group remain unchanged when the algorithm is still running.
Initially, there is a network G = (Vg Eg) including a
multicast group V,,(0) € V. At time 1, v multicast nodes are
chosen randomly to become intermediate nodes, indicating
that v nodes leave the multicast group. Then the multicast
group becomes V,,(1) = V,,(0) — AV,,(1) and a multicast
tree T(1) is computed. At time 2, v intermediate nodes are
chosen randomly to become multicast nodes, indicating that
v nodes join the multicast group. Then the multicast group
becomes V);(2) = V(1) + AV;(2) and a new multicast tree
T(2) is computed. Given the value of v, the nodes in the
multicast group are changed 2K times and the objective of
the experiment is to minimize the total cost of the multicast
trees. The formal definition is

2K
D, = minz Z c(e),
i=1 e€E(i)
T (i) = (Vi () + Vo (), E(D),
Vi () = Vi (i = 1) = AV, (),

i=1,2,...,2K,
iti=1,3,5...,2K -1,

ifi=2,4,6,...,2K,
(12)

Vi (@) = Viy (i = 1) + AV} (3)

where V(i) € Vg5 — Vy, (i), E(i) € Eg. AV,,(i) is the set of
the v randomly chosen multicast nodes to leave the multicast
group when i = 1,3,5,..., 2K — 1. AV;(i) is the set of the
v randomly chosen intermediate nodes to join the multicast
group when i = 2,4,6,...,2K.

There are eighteen dynamic multicast routing instances,
which use the static Steiner B instances as their initial
MR networks, respectively. For each instance, the values
v=12,...,|Vyl - 3 are tested. When the value of v grows,
the multicast group becomes more and more unstable.

The proposed MCMRACO takes advantage of
pheromones to encode a memory about the ants’ search
process. After the search for a multicast tree is finished, the
pheromones are still maintained in the network, reflecting
the previous routing information. Once the multicast
nodes are changed, the ants’ construction is restarted. The
pheromones still bias the ants to select the previous edges. As
the ants reduce pheromones on edges by the local pheromone
update, the influences of the obsolete routing information
decrease.

The results of the summation cost of the 2K multi-
cast trees, which are computed by MCMRACO, RNN, and
GA, are denoted by @™, (D(VR), and (D(VG), respectively.

The comparison result of the tree cost between RNN and
MCMRACO is denoted by 8%, whereas the one between GA
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TABLE 2: Optimization results for the static experiment.

No. c (Topt) KMB RNN Ant GA MCMRACO
Best Mean Best Mean Best Mean

1 82 82 82 82 82 82 82 82 82
2 83 88 83 83 83 83 83 83 83
3 138 138 138 138 138 138 138 138 138
4 59 64 59 59 59 59 59 59 59
5 61 61 61 61 61 61 61 61 61
6 122 127 122 — — 122 122 122 122
7 111 11 111 — — 111 111 111 111
8 104 104 104 104 104 104 104 104 104
9 220 221 220 220 220 220 220 220 220
10 86 91 87 86 874 86 86 86 86
11 88 92 90 88 89 88 88.2 88 88
12 174 174 174 — — 174 174 174 174
13 165 175 175 165 167.3 165 165.8 165 165
14 235 237 237 235 235.3 235 237.3 235 235
15 318 318 318 318 318 318 318.6 318 318
16 127 135 135 132 133 127 127.3 127 127
17 131 134 132 — — 131 131.1 131 131
18 218 221 219 224 225.5 218 218.4 218 218

and MCMRACO is denoted by 6©). The definitions of 6
and 6@ are

(R) (M) G) (M)
®) _ (Dv ~ (Dv G _ (Dv ~ q)v ) (13)
(DEW) (DgW)

Table 3 lists the tree cost of MCMRACO and the compar-
ison results of the eighteen initial MR networks when v = 1,
L(IVml=3)/2+ 1], [Vy,| —3,and K = 100. As the comparison
results are all positive, the proposed MCMRACO can obtain
multicast trees with less cost than RNN and GA. Figure 7
shows the comparison results of the tree cost with B18 as the
initial MR network when the values of v are changed from
1 to 47. The differences between RNN and MCMRACO are
always larger than those between GA and MCMRACO. The
figure presents that the proposed MCMRACO can steadily
achieve better results than RNN and GA.

When the multicast group is changed, the time used for
finding the solution is the response delay. The time needed by
RNN is determined by its enumeration subset. The smaller
the multicast group, the more nodes that may be used for
enumeration, resulting in longer computation time. However,
for GA and MCMRACO, the time used for a small group is
generally shorter than a large group in the same termination
condition. Figure 8 illustrates the average time used by RNN,
GA, and MCMRACO with different values of v when the
initial multicast network is BI8. The curves show that the
average time needed by GA and MCMRACO reduces as the
value of v becomes bigger, but the time used by RNN is
growing upwards.

Table 4 tabulates the average time used for finding a
multicast solution in the 18 instances when = 1, [(|V),] -
3)/2 + 1], |Vl — 3. Although the average time used by

>
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FIGURE 7: Comparison results of the tree cost between RNN and
MCMRACO and between GA and MCMRACO with different
values of v when the initial MR network is B18.
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FIGURE 8: Average time delay of RNN, GA, and MCMRACO with
different values of v when the initial MR network is B18.
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TABLE 3: Comparison results of the tree cost for the dynamic ex-

1

TABLE 4: Computation time delay for the dynamic experiment.

periment. - -
Time (microsecond)
No. v o™ 5® 5@ No. Y RNN GA MCMRACO
1 16381 1.33% 0.00% 1 4.69 17.42 742
1 4 12570 0.99% 0.00% 1 4 5.00 15.08 5.39
6 10426 0.55% 0.00% 6 5.08 14.07 5.00
1 17345 1.32% 0.00% 1 4.38 19.92 8.60
2 6 17553 1.88% 0.01% 2 6 4.61 18.60 734
10 14399 1.51% 0.03% 10 4.85 16.80 6.02
1 25656 0.27% 0.00% 1 3.05 33.05 14.06
3 12 23588 0.45% 0.01% 3 12 3.52 28.83 12.27
22 17162 0.41% 0.02% 22 4.22 23.44 8.91
1 10756 1.78% 0.01% 1 5.08 16.88 6.10
4 4 9243 1.36% 0.02% 4 4 5.32 15.00 4.92
6 7736 1.31% 0.00% 6 5.39 14.30 4.30
1 12687 1.14% 0.00% 1 4.69 20.71 8.44
5 6 10374 1.33% 0.03% 5 6 5.00 18.05 7.03
10 8320 0.91% 0.02% 10 5.16 16.17 5.47
1 22206 0.43% 0.04% 1 3.36 35.78 13.91
6 12 18168 0.62% 0.04% 6 12 3.91 29.77 11.80
22 13142 0.69% 0.02% 22 4.45 23.91 8.52
1 22392 0.64% 0.02% 1 15.08 2742 13.28
7 6 18322 1.66% 0.04% 7 6 15.55 24.61 11.25
10 14574 1.22% 0.06% 10 16.02 22.03 8.91
1 25664 1.48% 0.00% 1 13.75 36.25 17.42
8 9 22945 1.16% 0.02% 8 9 14.53 31.33 15.08
16 17236 0.68% 0.02% 16 15.47 26.80 11.48
1 44687 0.41% 0.01% 1 9.14 68.05 30.16
9 18 38390 0.51% 0.02% 9 18 10.94 56.48 26.56
35 26371 0.40% 0.04% 35 13.05 43.91 18.29
1 16525 1.11% 0.11% 1 15.63 27.74 11.88
10 6 13361 2.63% 0.08% 10 6 16.10 24.54 10.00
10 10803 2.02% 0.19% 10 16.64 22.11 7.89
1 16823 0.81% 0.08% 1 14.38 35.86 15.86
11 9 15501 1.90% 0.19% 1 9 15.16 31.80 14.22
16 11748 2.03% 0.14% 16 15.86 26.96 10.71
1 31642 0.63% 0.02% 1 10.47 68.44 28.99
12 18 27443 0.89% 0.08% 12 18 12.11 56.72 24.92
35 19069 0.79% 0.06% 35 13.99 44.38 17.50
1 30795 1.90% 0.25% 1 40.16 42.11 22.74
13 8 25326 3.03% 0.08% 13 8 36.48 36.25 19.69
14 21049 2.91% 0.11% 14 38.20 32.97 16.49
1 40368 0.97% 0.13% 1 31.10 59.85 33.60
14 12 33929 1.45% 0.18% 14 12 33.05 49.84 27.50
22 24475 1.03% 0.24% 22 35.40 40.94 20.16
1 62009 0.84% 0.09% 1 21.95 116.88 51.80
15 24 52308 1.13% 0.10% 15 24 26.02 91.96 45.32
47 35118 0.81% 0.06% 47 30.31 69.92 30.39
1 19557 1.71% 0.25% 1 35.08 42.50 21.18
16 8 17001 2.06% 0.38% 16 8 36.33 38.52 18.68
14 13228 1.81% 0.26% 14 37.50 33.36 14.53
1 24107 1.08% 0.17% 1 31.64 58.44 30.47
17 12 18215 1.18% 0.15% 17 12 33.75 47.74 25.63
22 13003 1.12% 0.20% 22 35.78 39.46 18.36
1 45115 0.68% 0.23% 1 22.27 121.09 53.44
18 24 36000 0.67% 0.27% 18 24 2711 91.10 42.50
47 24589 0.69% 0.15% 47 31.49 70.00 29.61
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RNN is shorter than that of MCMRACO in some cases, the
results obtained by MCMRACO are always better than those
of RNN (as Table 3). Moreover, MCMRACO performs faster
than RNN in instances Nos. 7,10, 13, 14, 16, and 17. For GA and
MCMRACO, the results show that even if GA takes longer
time than MCMRACO, the results obtained by GA are still
worse than those of the proposed algorithm. For example,
the proposed MCMRACO uses only 7.42 microseconds (ms)
on average to find the result of instance No. 1 when v = 1,
whereas the GA needs 17.42 ms. For the instance No. 18 when
v = 47, the proposed MCMRACO uses only 29.61 ms to
obtain the result, whereas GA needs 70.00 ms and the result
is still 0.15% worse than the proposed algorithm. Overall, the
proposed MCMRACO performs better than RNN and GA in
solving the MCMR problems.

5. Conclusion

This paper proposes a minimum cost multicast routing ant
colony optimization (MCMRACO) algorithm for solving
the minimum cost multicast routing (MCMR) problems.
Different from the traditional algorithms for MCMR, the
proposed MCMRACO utilizes the ant colony optimization
(ACO) technique to search for an optimal multicast tree in
the network graph. The artificial ants in the algorithm are
based on a modified Prim’s algorithm to build a tree. The
heuristic information represents problem-specific knowledge
for the ants to construct solutions, whereas the pheromones
on edges reserve the previous routing information. By
designing effective heuristic and pheromone mechanisms,
the proposed MCMRACO is very competitive for solving
MCMR problems. The performance of MCMRACO has
been compared with the published results available in the
literature. The comparison results show that the proposed
MCMRACO works successfully in both static and dynamic
MCMR cases. The proposed algorithm is protocol indepen-
dent so that it can be implemented conveniently in different
network environments. Extending the proposed algorithm to
heterogeneous networks is a promising future research topic.
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