
A Set-Based Discrete Differential Evolution
Algorithm

Yu Liu, Wei-Neng Chen (corresponding author), Zhi-Hui Zhan, Ying Lin, Yue-Jiao Gong, and Jun Zhang
Department of Computer Science, Sun Yat-sen University

Key Laboratory of Machine Intelligence and Sensor Network, Ministry of Education
Key Laboratory of Software Technology, Education Department of Guangdong Province, P.R. China

junzhang@ieee.org

Abstract—The TSP problem is considered as classical discrete
optimization grouping problem, which is widely used in practice,
but it is real a difficult NP problem. Simultaneously differential
evolution (DE) algorithm has been proven to be a powerful
optimization algorithm. Since the mutation process of DE
contains a series of arithmetic operators operating on continuous
space, few algorithms based on DE solve this problem nicely and
the advantages of DE in continuous space cannot be used to solve
TSP. To take full advantages of the strengths of DE, this paper
proposes a set-based DE (S-DE) which completely follows the
procedure of the original DE. We present a representation
scheme to characterize the discrete problem space and by
redefining its basic concept and all related operators in mutation,
DE can operate directly on the original set space of the discrete
optimization problems instead of performing a space
transformation. In that way, the searching features of DE in
continuous space is kept. In experiment, we test the performance
of our proposed S-DE and the results show it is very promising.

Keywords-component; Discrete; Differential algorithm; Set-
based; COP; TSP

I. INTRODUCTION

Differential Evolution (DE) turns out to be a simple yet
powerful algorithm for real parameter optimization since it was
proposed by Storn and Price [1] in 1995. DE is a kind of
evolutionary algorithms(EA). Similar to the other EAs, it is a
population-based stochastic search technique using mutation,
crossover, and selection operators at each generation to search
the optimum of the problem. By employing this simple and
efficient mutation scheme, DE has shown very promising
performance in numerical optimizations [2-3] and obtained a
series of favorable achievements in the real parameter
optimization competitions [4-5]. Due to the success of DE in
continuous space, increasingly researchers have been attracted
to extend DE to discrete space.

Since many operators in mutation are defined in continuous
space, the application of DE in the domain of combinatorial
optimization problems (COP) in discrete space is difficult and
unusual. Over the past decade, a variety of attempts have been
made to apply DE algorithms to solve the discrete optimization
problems. In general, these methods can be classified into
mainly three categories. The first type is to perform a space
transformation based on the continuous relaxation approach [6-
8]. These discrete DE algorithms still optimize in the

continuous space, but the solutions obtained are converted to
discrete ones before the objective function evaluations. The
binary relaxation approach [6], rank-based relaxation approach
[7], and round down relaxation approach [8] are presented
respectively to transform a continuous solution into a discrete
one. These relaxation approaches are reasonable if the discrete
variables are numerical or a certain order among the variables
may be established. But regarding the problems involving the
categorical discrete variables, no implicit order exists among
the variables, those methods are no longer effective. The
second type is to define each individual as a permutation of
numbers [9-12]. The traditional discrete DEs based on
permutation vector introduce a swap operator [9-11] or a
construction and destruction procedure [12] into the mutation
schemes. However, these methods deviate from the basic idea
of the original DE's mutation schemes that add the differential
vector to the base vector. The third type of discrete DE is
incorporated with some problem-dependent local search
methods [13-16]. This type of algorithms is also called hybrid
discrete DE algorithms.

Although a variety of discrete DE algorithms have been
proposed, most of the approaches applying the DE to discrete
domain took inspirations from the mutation and crossover of
DE, but did not follow it exactly. So the advantages of DE in
searching the optimum solution in continuous space cannot be
fully extended to discrete space. Meanwhile, the hybrid discrete
DE algorithms are usually difficult to be extended to solve
other COPs because they are designed for specific problems.

In order to extend DE to the discrete space for COPs and
keep the searching features of DE in continuous space, a set-
based DE is proposed in this paper. The inspiration comes from
the set-based PSO [17]. As the same as PSO, DE is also a kind
of population-based stochastic optimization algorithm and it
also belongs to Evolutionary Algorithm(EA). More importantly,
DE shows better performance than PSO for real parameter
optimization and the set-based method never change the
searching features of algorithms in continuous space, so it is
reasonable that we use the same method to extend DE to
discrete space. In set-based DE, we define the domain of COPs
in the universal set, every candidate solution corresponds to a
crisp subset of the universal set. During every iteration, the
individual sets and the trial sets are still the feasible solutions
while the mutant sets are intermediate variables instead of
feasible solutions. All related operators in mutation are

2013 IEEE International Conference on Systems, Man, and Cybernetics

978-1-4799-0652-9/13 $31.00 © 2013 IEEE

DOI

1347

2013 IEEE International Conference on Systems, Man, and Cybernetics

978-1-4799-0652-9/13 $31.00 © 2013 IEEE

DOI 10.1109/SMC.2013.233

1347

2013 IEEE International Conference on Systems, Man, and Cybernetics

978-1-4799-0652-9/13 $31.00 © 2013 IEEE

DOI 10.1109/SMC.2013.233

1347

Authorized licensed use limited to: Hanyang University. Downloaded on November 27,2023 at 06:57:13 UTC from IEEE Xplore. Restrictions apply.

procedure S-DE
initialization;
while terminal condition not met

for each individual set i(i=1,2,...,NP)
mutation;
crossover;
selection;

end for
end while

end procedure

redefined on crisp sets to enable S-DE to follow the structure of
the original DE which brings a huge benefit that our proposed
S-DE can keep the searching feature of the original DE in
continuous space. In the experiment, we compared our
proposed S-DE with ACS[24], MMAS [25], S-CLPSO [17]
and some improved DE in TSP. The result shows our proposed
S-DE is very promising.

The rest of this paper is organized as follows. In Section 2,
a review on the original DE is made. In Section 3, the set-based
DE is proposed. The performance of S-DE on TSP is shown in
Section 4. Conclusion is drawn in Section 5.

II. DE IN CONTINUOUS SPACE

Differential Evolution (DE) is a population-based stochastic
algorithm which utilizes NP D-dimensional parameter vectors
as a population to search for the global numerical optimum.
The DE Algorithm starts with initializing the target population
X=[]j

i NP Dx � with the size of NP and the dimension of D. NP
and D does not change during the whole process. The
ith(i=1,...,NP) D-dimensional parameter vector can be
described as 1 2[, ,...,]D

i i i ix x x x� which is initialized as a
random point in the solution space. Then the algorithm works
through a simple cycle of stages, i.e., mutation, crossover and
selection to find the global optimum. We will explain each
stage separately.

A. Mutation
For each target vector 1 2[, ,...,]D

i i i ix x x x� (i=1,..., NP), a
mutant vector is generated according to

1 2 3
()i r r rv x F x x� � � � (1)

With random indexes 1 2 3, , {1,2,..., }r r r NP� which are different
from each other and the running index i, so that NP must be
greater or equal to four to allow for this condition. The scale
number F is a positive control parameter used to scale the
differential vector

2 3
()r rx x� . D is the dimension of the search

space.

Price and Storn proposed several strategies of mutation [8]
based on the number of differential vectors and the individuals
being perturbed. The strategy talked above is denoted as
DE/rand/1, meaning that the vector to be perturbed is selected
randomly and only one differential vector is used. There are
also other strategies of mutation as it is shown in [18], and in
most cases the DE/rand/1 strategy shows better performance
[19], so in this paper we use DE/rand/1 strategy to test TSP.

B. Crossover
The crossover operation is used to enhance the diversity of

the population. To this end ,the trial vector:
1 2(, ,...,)D

i i i iu u u u� , i=1,2,..., NP (2)

is formed according to

randif rand(0,1) or

otherwise

j
ij

i j
i

v CR j j
u

x

� 	 �
� �

�

, j=1,2,...,D (3)

In (3), rand(0,1) is a random number between 0 and 1, D is
the dimension of the search space, randj is a randomly chosen
index which ensures iu gets at least one parameter from iv .

This kind of crossover is called binomial crossover. There
is another crossover called exponential crossover [18]. Two
variants st and L is used in this kind of crossover. Variant st
denotes the start point from where the trial vector inherits from
the mutant vector. L denotes the number of components the
trial vector inherits from the mutant vector. The number st is
generated randomly from {1,2...D} and L is formed according
to the following pseudo-code.

 For (L = 1; rand(0,1) < CR && L < D; L ++);

After st and L are generated, the trial vector is obtained as

if { mod ,(1) mod ,
..., (1) mod }
otherwise

j
i

j
i

j
i

v j st D st D
u st L D

x

� � �

� � ��

�

, j=1,2,...,D (4)

C. Selection
The one with better fitness between the target vector and

the trial vector will be chosen to form the next generation. For
a minimization problem, the vector with a lower fitness value
survives to the next generation, which is expressed as follows.

if () is better than ()
otherwise

i i i
i

i

u f x f u
x

x
�

� �
�

, i=1,2,...,NP (5)

where f(x) is the objective function.

III. THE SET-BASED DE
In this section, the set-based DE method is described. Our

purpose when proposing the S-DE is to extend the original DE
to solve the discrete space optimization problems without
changing its procedure so that the S-DE can extend the
searching features of the original DE in continuous space to the
discrete space. To allow this, S-DE applies a set-based
representation scheme and redefines all related operators for
the discrete space. We can see its structure in Figure .1.

Figure 1. The structure of S-DE

134813481348

Authorized licensed use limited to: Hanyang University. Downloaded on November 27,2023 at 06:57:13 UTC from IEEE Xplore. Restrictions apply.

A. Representation Scheme
According to [20], many COPs can be formulated in the

abstract as "find from a set E a subset that satisfies some
constraints and optimizes the objective function." Following
this scheme, in S-DE, a COP is described by the following
characteristics.

 The domain of a COP is defined in the universal set E,
which can be divided into n-tuple 1 2(, ,...,)nE E E ,
where n can be regarded as the dimension of the
searching space and iE (i=1,2,...n) is a set
corresponding to the ith dimension of the searching
space. For example, in TSP, the universal set E is
composed of all arcs connecting every two cities and
the jth (j=1,2,...,n) dimension of the searching space

jE is the set of arcs which are connected with node j.

 A solution to the problem X is also an n-tuple
1 2(, ,...,)nX X X , where iX (i=1,2,...n) is a crisp set

and i iX E� . X is feasible only if X satisfies the
constraints � . In symmetric TSP, Any feasible
solution X form a Hamiltonian circuit of the graph. X
can be described as a set and be divided into n-tuple

1 2(, ,...,)nX X X and iX (i=1,2,...n) is a subset of iE
with two arcs. This is because there must be two arcs
connected with node i.

After giving the scheme, our goal of solving the COPs in
the discrete space is to find a feasible solution that optimizes
the objective function. Figure. 2 gives us an example of the
symmetric TSP to help us understand this representation.

B. Procedure of the Algorithm
In our S-DE, following the original DE, we first initialize

NP random feasible solutions as a population to search for the
global numerical optimum. Then we start searching the
optimization iteratively. During every iteration, we also have
three stages , i.e., mutation, crossover and selection. Since the
operators of the original DE can only be used in continuous
space, we redefine all related operators for the discrete space
which we will discuss below in detail.

1) Mutation
In S-DE, the mutation operator generates NP mutant sets,

NP is the size of the population. The ith mutant set is generated
according to

1 2 3
()i r r rv x F x x� � � � (6)

All parameters has the same meaning as described in (1). We

redefines some operators in (6) as follows.

Operator 1) Individual set � Individual set � Differential
set

The minus operator between two crisp set A and B is
defined as follows:

{ and }A B e A e B� � � � (7)

We apply this operator definition to our S-DE. For example,
A={(1,2),(2,3),(3,4),(1,4)} and B={(1,3),(3,2),(2,4),(4,1)}, then
following Operator 1, A B� ={(1,2),(3,4)}.

Operator 2) Scale factor � Differential set � Scaled
differential set

We define this operator as that every dimension of
differential set survives with the probability F. F is the scale
factor. Here in our algorithm , [0,1]F� . We describe this as
follows:

if rand(0,1)
otherwise

j
j d F

F d
� 	

� � �
��

, j=1,2,..., n (8)

which jd denotes the jth dimension of the differential set
and n denotes the dimension of the search space. For example,

2 {(1,2),(2,4)}d � , F is set as 0.8, r=rand(0,1)=0.4, so
2F d� = 2d ={(1,2),(2,4)}. But in the same case, if

r=rand(0,1)=0.9, 2F d� �� .

Operator 3) Scaled differential set + Scaled differential
set� Scaled differential set

The plus operator between two differential set A and B is
defined as follows:

{ or }A B e A e B� � � � (9)

For example, A={(1,2),(3,4)}, B={(1,2),(2,3)}. Then
A+B={(1,2),(2,3),(3,4)}.

Operator 4) Individual set + Scaled differential
set�Mutant set

We define this operator as that the individual set is replaced
by the scaled differential set to cause a deviation in the
corresponding dimension if the latter is not null.

if
otherwise

j j
j j

j

x SD
x SD

SD

� � �
� � �

�

, j=1,2,...,n (10)

For example, suppose 3x ={(1,3),(3,4)}, if 3SD ={(2,3)},
3x + 3SD ={(2,3)}. But if 3SD = � , the result will be

{(1,3),(3,4)}.

Based on the four operators, the mutation stage can be
extended to discrete space. After that the mutant set is no long
a feasible solution of the problem, but we can still use it as
intermediate variable to generate the trial set. Figure.3 helps to
understand the procedure of mutation for symmetric TSP.

2) Crossover

134913491349

Authorized licensed use limited to: Hanyang University. Downloaded on November 27,2023 at 06:57:13 UTC from IEEE Xplore. Restrictions apply.

procedure crossover(ix , iv)

iu =� ;
generate a random index jrand;

for each dim j (j=1,2,...,D)
generate a random variant [0,1]r� ;
If (r<CR or j=jrand)

learn(j
iu , j

iv);
end if
else

learn(j
iu , j

ix);
end else

end for
end procedure

procedure learn(j
iu , j

is)
mid_set={e|e j

is� and e satisfies � };
while j

iu is not finished and mid_set is not empty
select a element from mid_set and add it to j

iu
update mid_set;

end while
mid_set={e|e jE� and e satisfies � };
while j

iu is not finished and mid_set is not empty
select a element from mid_set and add it to j

iu
update mid_set;

end while
end procedure

X={(1,2),(2,3),(3,4),(1,4)}
W={(1,2),(2,4),(3,4),(1,3)}
Z={(1,4),(2,4),(2,3),(1,3)}
V=X+F*(W-Z)

X1={(1,2),(1,4)} X2={(1,2),(2,3)}
X3={(2,3),(3,4)} X4={(1,4),(3,4)}
D=W-Z={(1,2),(3,4)} SD=F*D
D1=D2={(1,2)} D3=D4={(3,4)}

Suppose that F=0.7 in (6) and four random
floating number r1=0.9>F, r2=0.4<F,
r3=0.6<F,r4=0.7=F. So SD1 is null , SD2=
{(1,2)}, SD3={(3,4)}, SD4 is null.
V1=X1={(1,2),(1,4)} V2=SD2={(1,2)}
V3=SD3={(3,4)} V4=X4={(1,4),(3,4)}
V={(1,2),(1,4),(3,4)}

Figure.3 The example of mutation for symmetric TSP

Crossover is introduced to increase the diversity of the
perturbed parameter vectors. We will take the binomial
crossover for example. The exponential crossover is very
similar. The whole procedure is shown in Figure. 4 and Figure.
5. The trial set 1 2 Du u u u� � � � Du� is also a feasible solution.
D is the dimension of the searching space. ju (j=1,2,...,D) is the
jth dimension of the trial set u. We generate iu (i=1,2,...,NP) as
the following steps. NP is the size of the population.

Step 1) A random index 0<jrand<D is generated.

Step 2) For each dimension j(j=1,2,...,D), a random variant
[0,1]r� is generated.

Step 3) If r<CR or j=jrand, j
iu learns from j

iv .

Step 4) If r>CR and r jrand� , j
iu learns from j

ix .

There is a learn procedure in Step 3 and Step 4. Figure. 5
shows the procedure of which j

iu learns from a set j
is . In the

learn procedure, a selection operator is introduced. When there
are more than one elements available, we can randomly choose
an element which is called randomly element selection operator
or choose an element based on some problem-independent
information which is called heuristic-based element selection
operator.

We will take TSP for example to facilitate understanding.
In TSP, the length of each edge can be taken as the heuristic
information and the edge with the shortest length is selected. In
this case, we assume that the dimension is 4 which means there
are 4 cities in this case, CR=0.4, the individual set X is set as
{(1,2),(2,3),(3,4),(1,4)} and the mutant set V is set as
{(1,3),(1,2),(3,4)}. Our goal is to generate the trial set U. First,
a random index jrand is generated. Here we assume jrand=2.
Then we start with the 1st dimension. A random variant r is
generated, assuming r=0.6. Since r>CR, 1U should learns from

1X . Here we select the arc (1,2) to add to 1U . Then we turn to
the 2nd dimension. This time r=0.8. Since j=jrand=2,

2U learns from 2V . There is only one arc (1,2) in 2V which

has been selected to add to 1U . So we select an arc from
2E which is the set of arcs which are connected with Node 2.

Supposing we select (2,4), then we turn to dimension 4. We
repeat the procedure to finish the construction of U.

But for TSP, exponential crossover has its own meaning.
The effect of the exponential crossover is connecting the
continuous path of the mutant set and the individual set, which
could be destroyed by the binomial crossover. So in this paper,
we use the exponential crossover to test the TSP. In the
example above, first, we randomly select a variable named st
and a variable named L. We turn to dimension st and in the
next L steps, U learns from V. After that U learns from X to
finish the construction.

3) Selection
The selection operator is similar with the original DE. The

one with better fitness between the target set and the trial set
will be chosen to form the next generation. For a minimization
problem, the set with a lower fitness value survives to the next
generation, which is expressed as follows.

if () is better than ()
otherwise

i i i
i

i

u f x f u
x

x
�

� �
�

, i=1,2,..., NP (11)

Figure 4. Example of a figure caption Pseudo-code of crossover procedure.

Figure 5. Pseudo-code of learn procedure.

135013501350

Authorized licensed use limited to: Hanyang University. Downloaded on November 27,2023 at 06:57:13 UTC from IEEE Xplore. Restrictions apply.

where f(x) is the objective function for the minimization
problem.

IV. EXPERIMENTAL RESULTS

We use TSP to test our S-DE. The TSP instances are
derived from the TSPLIB [23]. S-DE employs the most
classical rand/1 mutation scheme which has been proved to
exhibit favorable exploration ability [19] and the exponent
crossover scheme as discussed in Section 3. The heuristic
elements selection operator is employed in the crossover
process to select the shortest edges. The parameters CR and F
are set as 0.9 and 0.5 respectively as in most literature that
employs a exponential crossover [21-22]. The total problem
evaluations for all the algorithms are set as 500n, where n is the
number of cities.

A. Comparisons with Discrete DE Algorithms
We first compare the S-DE with several state-of-the-art

discrete DE algorithms, i.e., the discrete DE (DDE) proposed in
[13], the discrete DE with smallest value position rules (DDE-
SVP) mutation strategy [14], and the ensemble discrete DE
(eDDE) algorithm [12]. The parameter settings of these
discrete DE algorithms for comparison follow the original
papers. To make fair comparisons, all these algorithms employ
a completely random initialization and do not contain the local
search heuristics. The simulation results are exhibited in Table
I.

From Table I we can see that S-DE greatly outperforms the
compared state-of-the-art discrete DE algorithms in all the 17
TSP instances in both the average and best results. Moreover,
the best results of S-DE in the 20 runs can reach the world-
known optimal results on 16 of the 17 test instances, whereas
the compared discrete DE algorithms failed to obtain the
optimal results on any of the instances. Compared with the
state-of-the-art discrete DE algorithms, our proposed S-DE
algorithm directly optimize in the set space of TSP without a
space transformation in advance. Meanwhile, S-DE is very
similar with the basic idea of the original DE no matter in the
mutation process or in the crossover process. Moreover, our
proposed S-DE shows favorable performance on TSPs which
greatly overtakes the state-of-the-art discrete DE algorithms.

B. Comparisons with other Algorithms
The S-DE is then compared with some other metaheuristic

algorithms, i.e., ACS [24], MMAS [25], and S-CLPSO [17] as
illustrated in table II. Among the compared algorithms, ACS
and MMAS are predominantly defined for combinatorial
optimization problems and exhibit good performance. The S-
CLPSO is a recently proposed discrete PSO algorithm which
shows favorable results on combinatorial optimization
problems. The parameter settings of ACS, MMAS and S-
CLPSO follow the original literature [24][25][17]. The results
in Table II illustrate that even compared with the state-of-the-
art metaheuristic algorithms, S-DE is still competitive. S-DE
can obtain the best average results in all the tested TSP
instances. In addition, the best results of ACS, MMAS, and S-
CLPSO in 20 runs are worse than those of S-DE in most test
instances. Meanwhile, we also compare the average results of

SDE for the 17 tested instance with the best results of ACS,
MMAS and SCLPSO.9 are better than those of ACS, 17 are
better than those of MMAS and 7 are better than those of
SCLPSO.

TABLE I The Performance of S-DE Compared with the State-of-the-art
Discrete DE Algorithms on TSP

Instance
name

Best
known
results

S-DE DDE DDE-SVP Ensemble DDE

Best Ave Best Ave Best Ave Best Ave

eil76 538 538 538 1459 1540.4 1007 1601.4 555 591.9
eil51 426 426 426.85 895 940.25 676 864.4 445 455.7
eil101 629 629 629.3 2016 2189.9 1517 2198.45 682 717.1
st70 675 675 675.55 1966 2125.65 1225 1976.3 703 764.9

kroa100 21282 2128221321.55 96755 101152.3 52364 76323.3 24330 26011.45

kroa150 26524 2652426539.05158426167187.6 90088 135466.1 30714 33394.05

krob100 22141 22141 22166.5 93369 99523.1 52395 69987.45 23963 26239.3

krob150 26130 2613026141.25155330163639.4 94291 133835.7 30787 33799.35

krob200 29437 29437 29468.4 218769227128.9151360222173.5 35547 39959.95

lin105 14379 14379 14419.2 69336 72672.6 36951 48245.15 16136 17466.8

pr107 44303 44303 44411.3 285500306046.5 84030 154220.4 49251 52455.85

pr144 58537 58537 58595.7 490197523368.9423767506934.2 73329 81308.5

pr136 96772 96785 96912.1 522341 542591 326694513711.5111730122818.3

pr152 73682 73682 73710.3 654057681890.8427803660290.5 79576 92101.55

pr299 48191 48191 48294.6 527763544853.4392115583010.2 61985 67981.65

berlin52 7542 7542 7542 14346 16197.75 11653 16382.35 7988 8312.3

tsp225 3916 3916 3922.15 28789 29701.15 26757 32815.65 4609 5090.7

TABLE II The Performance of S-DE Compared with other Heuristic
Algorithms on TSP

Instance
name

Best
known
results

S-DE ACS MMAS S-CLPSO

Best Ave Best Ave Best Ave Best Ave

eil76 538 538 538 541 550.05 546 548.45 538 539.45

eil51 426 426 426.85 427 432.05 429 436.6 426 427.25
eil101 629 629 629.3 639 648.6 641 660.25 629 638.5
st70 675 675 675.55 675 686.45 680 698.95 675 676.45

kroa100 21282 2128221321.552128221577.55 21594 22059.6 2128221348.65

kroa150 26524 2652426539.0526875 27265.3 26959 27420.752666326933.15

krob100 22141 22141 22166.5 2221622447.85 22287 22468.2522141 22227.1

krob150 26130 2613026141.2526345 26763.2 26806 27161.3 2614126465.45

krob200 29437 29437 29468.4 2976730437.85 30443 31564.1 29539 30089.9

lin105 14379 14379 14419.2 1437914571.65 14461 14594.251437914433.15

pr107 44303 44303 44411.3 4430344573.25 44581 45179.2 4430344683.75

pr144 58537 58537 58595.7 5853758643.35 58679 58834.8 58657 58771.4

pr136 96772 96785 96912.1 97293 100351 104300106434.997279 98410.6

pr152 73682 73682 73710.3 73818 74172.2 74136 74528.8573682 74126.2

pr299 48191 48191 48294.6 48871 49695.7 51519 53022.2 4846649159.45

berlin52 7542 7542 7542 7542 7634 7547 7640.45 7542 7544.55

tsp225 3916 3916 3922.15 3965 4060.45 4043 4108.75 3921 3959.3

135113511351

Authorized licensed use limited to: Hanyang University. Downloaded on November 27,2023 at 06:57:13 UTC from IEEE Xplore. Restrictions apply.

V. CONCLUSION

In this paper, we proposed a set-based DE to extend the
original DE to discrete space by redefining the basic concepts
and operators of the original DE according to the set
representation scheme. The mutation and crossover always stay
the same with those of the original DE so that the proposed S-
DE can totally keep the searching features of DE in continuous
space. By comparing the results of TSP implemented by S-DE,
ACS, MMAS and S-CLPSO, we can draw conclusion that the
performance of S-DE to TSP is very promising. In further
research, we will try to develop our S-DE to solve more COPs
in S-DE.

ACKNOWLEDGMENT

This work was partially supported by the National High-
Technology Research and Development Program (“863”
Program) of China under Grand No. 2013AA01A212, by the
National Science Fund for Distinguished Young Scholars under
Grant 61125205, by the National Natural Science Foundation
of China under Grant 61070004 and 61202130, by the NSFC
Joint Fund with Guangdong under Key Project U1201258 and
U1135005.

REFERENCES

[1] R. M. Storn and K. V. Price, "Differential evolution-a simple and
efficient heuristic for global optimization over continuous spaces," J.
Global Optim, vol. 11, 1997, pp. 341–359.

[2] A. K. Qin, V. L. Huang and P. N. Suganthan," Differential evolution
algorithm with strategy adaptation for global numerical optimization,"
IEEE Trans. Evol. Comput., vol. 13, 2009, pp. 398-417.

[3] Y . Wang, Z. Cai, Q. Zhang, "Differential evolution with composite trial
vector generation strategies and control parameters," IEEE Trans. Evol.
Comput., vol. 15, 2011, pp. 55-66.

[4] R. Storn and K. V. Price, "Minimizing the real functions of the ICEC’96
contest by differential evolution," In Proceedings of IEEE International
Conference on Evolutinary Computation, 1996, pp. 842-844.

[5] K. V. Price, "Differential evolution versus the functions of the 2nd
ICEO," In Proceedings of IEEE International Conference on Evolutinary
Computation, Apr 1997.

[6] A. P. Engelbrecht and G. Pampara, "Binary Differential Evolution
Strategies," In Proceedings of IEEE Conference on Evolutinary
Computation, 2007.

[7] J. Zhang, Viswanath Avasarala, Arthur C. Sanderson and Tracy Mulle,
"Differential Evolution for Discrete Optimization: An Experimental
Study on Combinatorial Auction Problems," In Proceedings of IEEE
Conference on Evolutinary Computation, 2008.

[8] N. Damak, B.Jarboui, P. Siarryb and T. Louki, "Differential evolution
for solving multi-mode resource-constrained project scheduling
problems," Computers & Operations Research, vol. 36, 2009, pp. 2653-
2659.

[9] M. F. Tasgetiren, Quan-Ke Pan, P. N. Suganthan and Yun-Chia Liang,
"A Discrete Differential Evolution Algorithm for the No-Wait Flowshop

Scheduling Problem with Total Flowtime Criterion," In Proceedings of
the IEEE Symposium on Computational Intelligence in Scheduling, pp.
251-258 SCIS'07, April, 2007.

[10] M. F. Tasgetiren, Q.-K. Pan, Y.-C. Liang and P. N. Suganthan, "A
Discrete Differential Evolution Algorithm for the Total Earliness and
Tardiness Penalties with a Common Due Date on a Single-Machine," In
Proceedings of the IEEE Symposium on Computational Intelligence in
Scheduling, pp. 271-278, April 2007.

[11] Q.-K. Pan, M. Fatih Tasgetiren and Yun-Chia Liang, "A Discrete
Differential Evolution Algorithm for the Permutation Flowshop
Scheduling Problem," presented at the Genetic Evol. Comput., 2007.

[12] M. F. Tasgetiren, P.N. Suganthan and Quan-Ke Pan, "An ensemble of
discrete differential evolution algorithms for solving the generalized
traveling salesman problem." Applied Mathematics and Computation,
vol. 215, 2010, pp. 3356–3368.

[13] L. Wang, Q.-K. Pan, P.N. Suganthan, Wen-Hong Wang and Ya-Min
Wang, "A novel hybrid discrete differential evolution algorithmfor
blocking flowshop scheduling problems," Computers & Operations
Research, vol. 37, 2010, pp. 509-520.

[14] J. G. Sauer and L. d. S. Coelho, "Discrete Differential Evolution with
Local Search to Solve the Traveling Salesman Problem: Fundamentals
and Case Studies," In Proceedings of IEEE International Conference on
Cybernetic Intelligent Systems, 2008, pp. 1-6.

[15] Q.-K. Pan, L. Wang, L. Gao and W.-D. Li, "An effective hybrid discrete
differential evolution algorithm for the flow shop scheduling with
intermediate buffers," Information Sciences, vol. 181, 2011, pp. 668-685.

[16] G. Deng and X. Gu, "A hybrid discrete differential evolution algorithm
for the no-idle permutation flow shop scheduling problem with
makespan criterion," Computers & Operations Research, vol. 39, 2011,
pp. 2152-2160.

[17] W.-N. Chen, Jun Zhang, Henry Chung, Wen-liang Zhong, Wei-Gang
Wu and Yu-hui Shi, "A novel set-based particle swarm optimization
method for discrete optimization problem," IEEE Transactions on
Evolutionary Computation, vol. 14, no. 2, 2010, pp. 278-300.

[18] S. Das and P. N. Suganthan, "Differential Evolution: A Survey of the
State-of-the-Art," IEEE Trans. Evol. Comput., vol. 15, 2011, pp. 4-31.

[19] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello Coello, "A
comparative study of differential evolution variants for global
optimization," In Proc. Genet. Evol. Comput. Conf., 2006, pp. 485-492.

[20] S. Lin and B. W. Kernighan, "An effective heuristic algorithm for the
traveling-salesman problem," Operations Res.,vol. 21, no.2, 1973, pp.
498-516.

[21] H. Wang, Z. Wu and S. Rahnamayan, "Enhanced Opposition-Based
Differential Evolution for Solving High-Dimensional Continuous
Optimization Problems," Soft Computing, vol. 15, 2010, pp. 1-14.

[22] F. Herrera, M. Lozano, and D. Molina, "Components and Parameters of
DE, Real-coded CHC, and G-CMAES," University of Granada,
Spain2010.

[23] TSPLIB, Http://www.Iwr.uni_heidelberg.de
[24] M. Dorigo and L. M. Gambardella, "Ant colony system: a cooperative

learning approach to the traveling salesman problem," IEEE
Transactions on Evolutionary Computation, vol. 1, pp. 53-66, 1997.

[25] T. Stützle and H. Hoos, "MAX-MIN ant system and local search for the
traveling salesman problem," presented at the IEEE International
Conference on Evolutionary Computation (ICEC’97), 1997.

135213521352

Authorized licensed use limited to: Hanyang University. Downloaded on November 27,2023 at 06:57:13 UTC from IEEE Xplore. Restrictions apply.

