
GPU-based Barrel Distortion Correction for
Acceleration

Luo Shuhua, Zhang Jun
School of Information Science and Engineering, Central South University

Hunan Engineering Laboratory for Advanced Control and Intelligent Automation
Changsha, China

junzhang@mail.csu.edu.cn, luoshuhua10@163.com

Abstract—Geometric correction is a practical and effective
barrel distortion correction method. It mainly consists of two
stages: the first stage is to take coordinates mapping from
distortion image to correction image; the second stage is bilinear
interpolation. It involves a certain amount of calculation, and the
larger the image is, the more the quantity of calculation is.
What’s more, the processing speed of geometric correction
implemented on central processing unit (CPU) can’t meet the
need of high-speed in real-time application fields. Compared with
serial processing pipeline of CPU, graphics processing unit
(GPU) has special parallel processing pipeline which is suitable
and fast for mass data calculation in parallel. Therefore, it can
provide an implementation of geometric correction on GPU with
considerable acceleration effect. The paper proposes an
implementation of geometric correction on GPU by using open
graphics library (OpenGL) and graphics library shading
language (GLSL) for portability. The experiment results show
that the full execution performance of the implementation on
GPU is over 190 times speedup of that completely on CPU at
most, which obtains a high-speed processing effect.

Keywords—geometric correction; barrel distortion; GPU;
radial distortion

I. INTRODUCTION
Wide-angle lens are widely used for obtaining wider field

of vision in a variety of fields, for example, security monitor,
navigation, medical domain and surveillance. Meanwhile it
leads to a corresponding disadvantage of serious barrel
distortion which appears in the captured images. Barrel
distortion shows nonlinear changes in the outer area of the
image where objects appear smaller than their actual size since
the image area is compressed in the outer region of the image.
It has been an obstacle for image identification, analysis and
judgment in application fields where obtaining estimation of
quantitative parameters is critical especially in clinical
application. Therefore, it is necessary and important to utilize
barrel distortion correction methods to get undistorted images
in case significant errors introduced by distortion images
disturb image analysis [1] [2].

Several researchers have proposed various mathematical
models of image distortion. Generally, there are radial
distortion model, hexagonal lattice pattern and grid-like
correction template [3]. But they are complicated to implement
and need high precision templates. Geometric distortion

correction is a practical and effective barrel distortion
correction method. It takes coordinates mapping and grayscale
interpolation [4]. As for space mapping of coordinates, it can
be divided into forward mapping from distortion image to
correction image and back mapping from correction image to
distortion image. As for grayscale interpolation, it can be
classified as bilinear interpolation, nearest neighbor
interpolation and double tri-linear interpolation [5]. Yaqiang
Liu etc. proposed a kind of geometric distortion correction
method [3]. It obtained radial distortion coefficients on the
basis of geometric distortion characteristics of images captured
by wide-angle lens, took forward mapping according to the
distance between distortion point and distortion center, and
utilized bilinear interpolation to get undistorted pixel values for
restoring image. All the above are software solutions
implemented on CPU which has the characteristic of serial
processing. However, they can’t meet the requirement of high-
speed which is often required for real-time applications in
medical, navigational and surveillance fields.

As for barrel distortion correction and the algorithms that
include a large scale of calculations, there is a common point
that computational manipulation on all pixels have the same
functionality, which is slowly processed on CPU. The serial
processing mode of CPU means processing pixels in sequence,
so it appears the disadvantage of low-speed when dealing with
large image. While parallel processing mode of GPU means
processing a certain amount of pixels at the same time by a
certain amount of processors. Thus, the time to simultaneously
deal with these pixels is greatly reduced than the time to
serially deal with these pixels. Fortunately, GPU has this kind
of special parallel processing pipeline which can be utilized to
take normal graphics rendering and accelerate mass parallel
data calculations. There are dozens of (or even hundreds of)
vertex shader processors and fragment shader processors to
simultaneously perform pixel operations according to certain
calculation procedure. What’s more, single instruction and
multiple data (SIMD) architecture of shader processor array is
suitable and fast for mass data calculations in parallel.
Consequently, it provides us with a GPU-based
implementation of barrel distortion correction by using open
graphics library (OpenGL) and graphics library shading
language (GLSL) for portability, which can achieve a
significant speed-up effect and meet the requirement of real-
time. The rest of this paper is organized as follows. Barrel

Hunan Science and Technology Project (2013GK3006).

2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing

978-0-7695-5088-6/13 $26.00 © 2013 IEEE

DOI 10.1109/HPCC.and.EUC.2013.121

845

2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing

978-0-7695-5088-6/13 $31.00 © 2013 IEEE

DOI 10.1109/HPCC.and.EUC.2013.121

845

Authorized licensed use limited to: Hanyang University. Downloaded on November 27,2023 at 06:59:51 UTC from IEEE Xplore. Restrictions apply.

distortion and geometric correction are introduced in Section II.
Section III describes the implementation on GPU with
OpenGL and GLSL in detail. The following is experiments and
evaluation in Section IV. The conclusion is provided in Section
V.

II. GEOMETRIC DISTORTION CORRECTION

A. Barrel Distortion
The configuration of the camera lens produce distorted

images. There are three most common lens which are shown in
Fig. 1. The left is standard lens, incidence angle equals exit
angle when scene light pass through it, so there is no distortion
in captured images. The right is phone lens, when scene light
pass through it, incidence angle is greater than exit angle and
the captured image shows pincushion distortion. The middle is
wide-angle lens, incidence angle is less than exit angle when
scene light pass through it, it will produce barrel distortion
which is showed in image. The deformation is relatively small
in the center of the image and greater when father away from
the center of the image.

Barrel distortion is nonlinear, which consists of radial
distortion and tangential distortion. But radial distortion is
generally much larger than tangential distortion. When using
nonlinear optimization algorithm to correct nonlinear distortion,
introducing too much nonlinear parameters not only reduce
accuracy but also lead to system instability [6]. Thus, this paper
only considers the impact of radial distortion and directly
ignores tangential distortion.

B. Geometric Correction
Geometric correction for barrel distortion mainly takes

forward mapping and bilinear interpolation to correct distortion
image in which the distortion is assumed as purely radial.

The first step is forward mapping of all pixels in the
distorted image space (DIS) to the corrected image space (CIS)
as

()
()

2 41+k *r +k *r +1 d 2 d

2 41+k *r +k *r +1 d 2 d

x = x *c d

y = y *c d

�

�
 (1)

Here the tangential distortion is ignored and high-order
terms are omitted. ()x , yd d represent the distortion point

Fig. 1. Schematic diagram of lens distortion.

coordinate in DIS, and ()x , yc c represent the corrected point

coordinate in CIS. k , k1 2 are distortion coefficients associated
to lens which are adjusted according to actual correction effect.

2rd is the distance between distortion point and distortion
center as

 () ()2 22r = x -x + y -yd 0 d 0d (2)

()0 0x , y is the center of distortion image.

The second step is bilinear interpolation which makes
corrected image appear smooth and improve its quality. The
new values of pixel location ()x , yd d can be computed by
linearly interpolating with the intensity values of the four
neighboring pixels of ()x , yd d . Let the integer parts of the
coordinate values be represented by i and j as

i = xd
j = yd

� �� �

� �� �
 (3)

and the fractional parts of the coordinate values represented by
u and v as

u = x - id
v = y - jd

 (4)

Then the four neighboring pixels of ()x , yd d are ()i, j ,

()i, j+1 , ()i+1, j , and ()i+1, j+1 as illustrated in Fig. 2. Finally

the intensity ()dst x, y for pixel at ()x , yc c in CIS can be
computed as

() () ()

() ()
dst x, y = a *src i, j + b *src i, j+1

 + c *src i+1, j + d *src i+1, j+1
 (5)

Where ()src i, j , ()src i, j+1 , ()src i+1, j and ()src i+1, j+1 are
the intensities for the four neighboring pixels at locations
()i, j , ()i, j+1 , ()i+1, j , and ()i+1, j+1 respectively. The
corresponding weighted coefficients of four pixels are as (6).

() ()
()

()

a = 1-u * 1-v

b = 1-u * v

c = u * 1-v

d = u * v

 (6)

846846

Authorized licensed use limited to: Hanyang University. Downloaded on November 27,2023 at 06:59:51 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Schematic drawing of bilinear interpolation.

III. GEOMETRIC CORRECTION IMPLEMENTATON ON GPU
The implementation of geometric correction for barrel

distortion on GPU relies on collaborative work of CPU and
GPU. CPU is responsible for overall scheduling,
synchronization issues and less calculation operation, and send
GPU-call instructions to GPU. While GPU is responsible for
main computation part of algorithm especially mass data
calculations, floating point computing and image rendering,
and finally sends processed image data to frame buffer for
display. Therefore, the processing efficiency of geometric
correction is dramatically improved in such a system that CPU
and GPU play their respective advantages to rationally bear the
workload of algorithm.

 The most important technology in geometric correction
implementation on GPU is called GPGPU, which utilizes the
heterogeneous computing resources of GPU to complete a
large scale of computations together with CPU. Classical
GPGPU programmable pipeline is shown in Fig. 3. The shader
processors in GPU consist of vertex shader processors and
fragment shader processors: vertex shader processors deal with
vertex data, while fragment shader processors deal with
rasterized pixel data. The parallelized data to be calculated are
written by CPU into the texture buffer via generating texture
using glTexImage2D, read in GPU by texture mapping in
texture cache and processed via dozens of (or even hundreds
of) vertex shaders or fragment shaders with certain calculation
procedures. The data outputted from fragment shaders are
rendered to the texture buffer which can be mapped by the next
process stage again, or to the off- screen frame buffers which
can be read by CPU.

 As for implementation of GPGPU in this paper, it is
OpenGL and GLSL not CUDA that are used to realize GPU-
based implementation of geometric correction for portability,
because CUDA has some limits to graphics card and GPU
chips. OpenGL is a large graphics API which can realize

Fig. 3. Classical GPGPU programmable pipeline.

complex graphics effects. GLSL could be utilized to realize
general-purpose computing on GPU. By using GLSL
customized program can be written to replace the default
graphics operations and realize customized graphics
algorithms. Both OpenGL and GLSL have a platform-
independent generality so that they are used to implement
geometric correction for portability.

GPU-based implementation of geometric barrel distortion
correction and the load distribution between CPU and GPU are
arranged as Fig. 4. CPU takes charge of sending GPU-call
instructions to GPU for parallel processing. GPU undertakes
the whole calculations of geometric correction for barrel
distortion with black shadow filling. The implementation starts
from a series of initializations which consists of GLUT library
(an important library of OpenGL), GLEW library (the
extension library of OpenGL), and rendering environments.
The second part sets texture format, reads distortion image and
transfer the data to GPU by generating texture, and uses
glTexture2D to bind image data to texture0.

 The third part actives texture0, reads it from the external
memory to GPU, and enables shader for texture rendering. The
next is to pass some variable values like distortion coefficients
(K1 and K2) into shader, and draw a quadrerilateral of image-
size for vertex mapping. As for vertex shader, it only takes the
mapping of vertex coordinates and texture coordinates. In order
to process every pixel in fragment shader, rasterization is to
rasterize all pixels which belong to the drawing area. As for
fragment shader, it takes forward mapping and bilinear
interpolation for three color channels (RGB) of every pixel
value by using uniform value of distortion coefficients (K1 and
K2). The outputted data are rendered back to texture1 for
displaying the correction image in frame buffer. If the
correction image don’t achieve good result, the variable values
can be changed by calling glutKeyboardFunc and the distortion
image can be corrected again with calling glutPostRedisplay
until the corrected image meets the requirements.

Fig. 4. GPU-based implementation flow of geometric barrel distortion
correction.

847847

Authorized licensed use limited to: Hanyang University. Downloaded on November 27,2023 at 06:59:51 UTC from IEEE Xplore. Restrictions apply.

IV. EXPERIMENTS AND ANALYSIS
For the performance evaluation of GPU-based

implementation of geometric barrel distortion correction, the
platform is using OpenGL 2.0 in visual studio 2008 on
NIVIDIA GTX 650 that contains 384 shader processors with
80 GB/s memory bandwidth. While the platform of CPU-based
implementation is using C language in visual studio 2008 on
Pentium Dual-Core 3.19 GHz CPU.

Three groups of experimental images are done with the
pixels of 500*335, 756*429 and 1400*850 which are shown in
Fig. 5. The images in the right column are correction images,
while the images in the left column are distortion images. We
can see that the buildings in the first group, the ceiling in
second group and the doors in the third group apparently show
barrel-type distortion in the left column, while the final result
in the right column are respectively corrected. The final
distortion coefficients of three images are shown in table I. K1
and K2 are respectively the second-order and the fourth-order
distortion coefficients in (1). The second-order distortion
coefficient is negative value, while the fourth-order distortion
coefficient is positive value. They can be adjusted by keyboard
keys to meet the requirements.

 In order to show acceleration effect of GPU, we measure
the average execution time for three distortion images. The
time consumption comparison between the implementation on
GPU and the implementation completely on CPU is shown in
table II. In the three experiments, the full execution time is all
reduced greatly by using GPU to accelerate the data
calculations. The full execution performance can achieve a
speedup more than 190 times at most and 50 times at least.
What’s more, the speedup of the third experiment is much

Fig. 5. Example images used in experiments (the top are used in experiment
1, the middle are used in experiment 2 and the below are used in

experiment 3)

TABLE I. DISTORTION COEFFICIENTS OF THREE EXPERIMENTS

 K 1 K 2

Experiment 1 -0.955 0.255
Experiment 2 -0.77 0.375
Experiment 3 -0.685 0.435

TABLE II. TIME CONSUMPTION COMPARISON BETWEEN CPU AND GPU

 CPU time (ms) GPU time (ms) CPU time
/GPU time

Experiment 1 27.243 0.536 50.83
Experiment 2 51.335 0.604 84.95
Experiment 3 197.307 1.038 190.08

more than the first experiment. It is because the larger the
image is, the more the quantity of calculation is, and the
utilization ratio of the hardware computing resources can be
more highly utilized.

V. CONCLUSION
 Geometric barrel distortion correction is practical and
effective. However, it can’t meet the demand of high-speed
processing in real-time application fields when it is completely
implemented on CPU. This paper provides an GPU-based
implementation of geometric correction, which fully utilizes
special parallel computing resources in GPU hardware to
accelerate the algorithm. It is realized with OpenGL and GLSL
to meet the need of portability because both of OpenGL
andGLSL have a platform-independent generality. Three group
images of different sizes are experimented to prove the
acceleration effects of geometric correction implemented on
GPU. The experiment results show that the execution
performance of the implementation on GPU is over 190 times
speedup of that completely on CPU at most and 50 times at
least, and can meet the requirements of real time.

ACKNOWLEDGMENT
This work was supported partly by Hunan Science and

Technology Project (2013GK3006).

REFERENCES
[1] A. Sunneberg, M. Giger, L. Kern, C. Noll, K. Stuby, K. B. Weber, and

A. L. Blum. “How reliable is determination of ulcer size by endoscopy”,
Brit. Med. J, vol. 24, pp. 1322–1324, 1979.

[2] C. Margulies, B. Krevsky, and M. F. Catalano. ‘‘How accurate are
endoscopic estimates of size,’’ Gastroint. Endoscopy, vol. 40, pp. 174---
177, 1944.

[3] Liu Yaqiang, Chen Wenyi. “A correction method of barrel distortion
image”, Journal of Xi’an university of posts and telecommunications,
vol. 17, 2012(3): 27-36.

[4] Feng Dengguo, Zhang Yang, and Zhang Yuqing. “Survey of
information security risk assesmrnt”, Journal of China institute of
communications, vol. 25, 2004(7): 10-18.

[5] Qiu Wei. “Telecommunication network security risk assesment studies”,
Telecommunication network technology, 2009, 3(3): 1-5.

[6] Ai Lili, Yuan Feng and Ding Zhenliang. “Further study on radial
distortion model for photographic objective”, vol. 28, 2008(10): 1930-
1933.

848848

Authorized licensed use limited to: Hanyang University. Downloaded on November 27,2023 at 06:59:51 UTC from IEEE Xplore. Restrictions apply.

