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ABSTRACT 
Traditional particle swarm optimization (PSO) algorithms adopt 
completely regular network as topologies, which may encounter 
the problems of premature convergence and insufficient 
efficiency. In order to improve the performance of PSO, this 
paper proposes a novel topology based on small-world network. 
Each particle in the swarm interacts with its cohesive neighbors 
and by chance to communicate with some distant particles via 
small-world randomization. In order to improve search diversity, 
each dimension of the swarm is assigned with a specific network, 
and the particle is allowed to follow the historical information of 
different neighbors on different dimensions. Moreover, in the 
proposed small-world topology, the neighborhood size and the 
randomization probability are adaptively adjusted based on the 
convergence state of the swarm. By applying the topology 
adaptation mechanism, the particle swarm is able to balance its 
exploitation and exploration abilities during the search process. 
Experiments were conducted on a set of classical benchmark 
functions. The results verify the effectiveness and high efficiency 
of the proposed PSO algorithm with adaptive small-world 
topology when compared with some other PSO variants. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – heuristic methods.  

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Global optimization, particle swarm optimization, small-world 
network, topology adaptation. 

1. INTRODUCTION 
Particle swarm optimization (PSO) has attracted significant 
attention since its introduction in 1995 [1]-[4]. As a representative 
Swarm Intelligence (SI) algorithm, PSO emulates the social 
behavior of birds flocking or fish schooling. A population of 
particles randomly scatters in the solution space and then 

cooperates to search for the global optimum. Each particle in the 
swarm is assigned with a velocity and a position. Then, the 
particle flies through the solution space with its velocity 
dynamically adjusted according to the historical best position 
information by itself (self-cognitive) and the other particles 
(social-influence). It has been proved that, in this way, particles 
have a tendency to fly towards better and better region in the 
search space. Owing to its conceptual simplicity and high 
efficiency, PSO algorithms have been widely used to optimize 
various problems in recent years [5]-[7]. 

It can be seen that the powerfulness of PSO for problem solving 
comes from the interaction of particles in the swarm. A particle 
by itself is almost incapable of solving any problem. Therefore, 
the particle swarm is not just a set of particles but an interactive 
population organized by some sort of social communication 
network or topology. The topology adopted by a PSO algorithm 
plays an important role in determining the search behavior of the 
algorithm.  

The traditional PSO algorithms are either global or local versions. 
Both of them applied simplified social model, i.e., they adopted 
completely regular networks as the topologies of particles. It has 
been shown that the PSO algorithm using a global topology 
converges very fast, but may easily get trapped into local optima, 
whereas PSO with a local topology has more chances to find the 
global optimum with a slow convergence speed. Therefore, global 
and local versions of PSO algorithms, both have their strengths 
weaknesses, are suitable for tackling different kinds of problems.  

Considering the above issues, this paper proposes an adaptive 
small-world topology of PSO in order to improve the general 
performance of the algorithm. In real world, most of the networks, 
such as biological, technological, and social networks, are not 
completely regular. Instead, the vertices in the networks 
frequently communicate with their close neighbors and also by 
chance to connect with some distant vertices. In this way, the 
networks have the small-world feature that any two nodes in the 
networks can be connected via a small number of hops. Inspired 
by this, in the proposed topology, each particle is immediately 
connected with its close neighbors and reconnected to some 
random particles far away with a certain probability. The small-
world topology has both advantages of large clustering coefficient 
and small characteristic path lengths. Therefore, the 
corresponding PSO algorithm developed may possess good global 
search ability, like local versions of PSO, yet have fast 
convergence speed, like the global version of PSO.  

Moreover, different from traditional PSO topologies that the 
whole swarm shares a single topology graph, the proposed 
topology is fined-grained that each dimension of the swarm is 
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assigned with a specific particle network. The neighbors on 
different dimensions of a particle constitute a guidance vector, 
which is used in the velocity update of the particle. By using such 
a fine-grained topology, the search of the particle swarm is more 
diverse, and therefore the exploration ability of the proposed 
algorithm is enhanced.  

Furthermore, in the proposed topology, the network structures are 
adaptively adjusted according to convergence state of the swarm. 
We define a stagnation coefficient of the entire swarm. Based on 
this coefficient, the vertex degree and small-world randomization 
probability are adjusted so as to balance the exploitation and 
exploration abilities of the particle population. By applying this 
topology adaptation, the search efficiency of the proposed 
algorithm can be further improved.  

The rest of this paper is organized as follows. Section 2 presents 
the preliminaries of the small-world network and the PSO 
topology. Section 3 describes the implementation of the proposed 
PSO algorithm with adaptive small-world topology in detail. 
Experimental tests are carried out in Section 4, followed by 
conclusions drawn in Section 5. 

2. PRELIMINARIES 
2.1 Small-World Network 
In the context of network theory, complex networks can be 
categorized into three classes. In the first class, networks are 
completely regular, such as the well-known complete graph, ring, 
wheel, star, grid, fractal graph, etc. In contrast, the second class is 
the completely random graph generated by some specific 
probabilistic model. However, researchers have found that many 
real-world networks such as biological, technological, and social 
networks do not belong to one of these two extremes. Instead, 
they lie between the regular and random networks and involve 
both regular and random features. These networks are generally 
classified into the third category, among which the small-world 
network has attracted lots of attention in recent years [1][2].  

The small-world network is inspired by Milgram’s “six degrees of 
separation” theory that two arbitrary people can be connected via 
six hops, i.e., the diameter of a social network is averagely not 
larger than six [8]. In 1998, Watts and Strogatz [9] modeled this 
small-world phenomenon and their proposed WS model is the 
first small-world network model. In WS model, regular networks 
are randomly rewired to introduce some amounts of disorder. 
Illustrated in Figure 1, starting with a ring of N vertices, each 
connected to its K nearest neighbors, with a probability P, each 
edge is reconnected to a vertex selected uniformly at random over 
the entire ring. This random rewiring procedure would not alter 
the number of vertices or edges in the network. However, the 

rewired edge is possibly to introduce some “long-range links” by 
which two vertices far away from each other can be connected. 
With only a small number of long-range links, the diameter of the 
graph can be far more reduced, while the clustering coefficient 
(representing the density of triangles in the network) stays large.  

In the small-world network, the rewiring probability P is a very 
important parameter deciding the relative proportion of regularity 
and disorder. If P = 0, the network becomes a completely regular 
graph in which the diameter is proportional to the network size. 
On the other hand, P = 1 stands for sparse random graphs that 
have a vanishingly small clustering coefficient. As shown in 
Figure 1, a small-world network with 0 < P < 1 lies between 
completely regular and random networks and owns a small 
diameter and a high clustering coefficient simultaneously. By 
tuning P, the small-world network can be fitted to many real-
world networks such as social influence networks, telephone call 
graphs, voter networks, road maps, etc. 

2.2 Population Topology of PSO Algorithm 
The classical global version PSO algorithm adopts complete 
graph as its topology that any two particles are immediately 
connected and each particle is informed by the global best particle 
(gbest) of the entire swarm [10]. On the other hand, some other 
regular networks such as ring, wheel, grid, etc., are widely 
adopted by local version PSO algorithms in which each particle is 
informed by the local best particle (lbest) in its neighborhood 
[11]. Besides, some recently developed PSO variants, such as the 
dynamic multi-swarm PSO (DMS-PSO) [12] and the standard 
PSO 2011 (SPSO2011) [13], use random graphs.   

However, as described in Subsection A), the real-world biological 
influence network is neither completely regular nor completely 
random. As PSO is a kind of bio-inspired algorithm simulating 
bird flocking or fish schooling, it is reasonable to develop small-
world topologies for the algorithm. In [14], Kennedy conducted 
experiments to found that the small-world randomization on a 
certain number of links can produce a significant effect on the 
performance of PSO algorithm. Afterwards, a certain number of 
PSO variants based on small-networks have been proposed, 
including the network-structured PSO (NS-PSO) [15] and the 
small-world local PSO (SWLPSO) [16].  

In this paper, we propose a novel adaptive small-world PSO 
algorithm (ASWPSO). The differences of ASWPSO with the 
previous small-world-based PSO algorithms are: a) the proposed 
algorithm uses a fine-grained topology on variable level that 
different dimensions of one particle can have different links, and 
b) the neighborhood size K and the disorder probability P are 
adaptively adjusted based on the convergence state of the swarm 
during the optimization process. 

 

Figure 1. Small-world network: from regularity to disorder. 
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3. ADAPTIVE SMALL-WORLD PSO 
3.1 The Proposed Small-World Topology 
In this paper, a novel local topology based on the WS small-world 
network model for PSO algorithm is developed. At first, each 
particle i is connected with its K successor particles (i+1), 
(i+2), …, (i+K). Then, for each link of particle i, we reconnect the 
edge to a random particle in the entire swarm with probability P. 
The novelty of the topology lies in that it is fine-grained and 
based on variable level. Particularly, for each dimension of the 
particle, the above small-world network generating process is 

carried out once, i.e., each dimension of PSO is assigned with a 
specific topology network.  

Then, for each particle i, we generate a neighboring assembling 
vector Neii = (neii1, neii2, …, neiiD) with neiij being the index of 
the neighboring particle selected from the jth topology network. 
For simplicity, the small-world network building and the 
neighboring assembling vector generating processes are merged 
into a single process termed topology update. The pseudo code of 
the proposed topology update process is shown in Figure 2. It can 
be observed that, with probability P, neiij is a particle randomly 
selected from the entire swarm. Otherwise, neiij is either a particle 
in i’s K successor particles (should be better than particle i) or 
particle i itself. This neighboring assembling vector will be used 
in the particle update process being described in the next 
subsection. 

Procedure Topology Update of Particle i 
For each dimension j of particle i 

r = random (0, 1); 
If r < P then 

            Randomly select a particle k from the entire swarm; 
neiij = k; 

Else 
Randomly select a particle k from particle i’s K successor particles; 
If particle k is better than particle i then  

neiij = k; 
Else  

neiij = i; 
            End if 

End if 
End for 

End procedure 

Figure 2. Pseudo code of the topology update process in ASWPSO. 
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Figure 3. Curves of the adaptation of neighborhood size K and 
disorder probability P in the small-world topology. 
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Figure 4. Flowchart of the proposed algorithm. 
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3.2 Particle Update 
Suppose Vi = (vi1, vi2, …, viD), Xi = (xi1, xi2, …, xiD), and PBesti = 
(pi1, pi2, …, piD) refer to the velocity, position, and personal best 
position vectors of the ith particle, respectively. The update 
equations for the jth dimension of particle i are defined as 

              (0,1) ( )ij ij kj ijv v c random p x                        (1) 

                         ij ij ijx x v                                               (2) 

where  and c are the inertia weight and accelerating coefficient, 
and k = neiij representing the neighboring particle that informs the 
jth dimension of particle i.  

Instead of using pbest and the gbest of the entire swarm (or lbest 
in the neighborhood) to update particle as traditional PSO 
algorithms, the proposed algorithm uses the neighboring 
assembling vector to guide the search. According to the producing 
process of the vector, it can be observed each dimension of the 
particle is guided by a relatively good particle (including itself) in 
its close neighborhood in most cases. At other times, the 
dimension is influenced by a random particle from the entire 
swarm with probability P. The benefits of using such an update 
mechanism are summarized as follows.  

First, as particles are informed by their close neighbors with a 
great probability, parallel search is allowed. The particle swarm is 
able to explore diverse regions of the search space, which 
discourages premature convergence of PSO.  

Second, by the small-world randomization on a certain number of 
links, the diameter of the topology graph is greatly reduced and 
the information propagation speed on the particle network is 
improved. The particle is essentially communicates with distant 
particles, in a way of “weak tie” [17]. Although particles interact 
frequently within cohesive neighborhood by strong ties, the 
shared information may be circumscribed or obsolete. In contrast, 

the weak ties can inject diverse information (with high entropy) 
into the small neighborhood, which is very likely to bring 
“innovation” of particles. This helps to enhance the global search 
ability of the proposed algorithm. Meanwhile, owing to the faster 
information propagation speed, the particle swarm can explore the 
search space with improved efficiency.  

Third, the fine-grained topology allows particles to learn from 
different neighbors on different dimensions, which avoids the 
undue domination of a single particle on all dimensions. In this 
way, the search information of all particles in the entire swarm is 
used more sufficiently. Thus, compared to traditional coarse-
grained PSO, the particle swarm in the proposed algorithm is less 
likely to get trapped in local optima,  

3.3 Topology Adaptation 
To enable a particle to steadily and smoothly search on a 
promising direction, we allow the particle to use a same 
neighboring assembling vector for a certain number of 
generations until it is stagnated. For particle i, only when it ceases 
improving for si generations larger than a threshold value Sg, it 
conducts the topology update procedure to generate a new 
neighboring assembling vector to guide search. Moreover, the 
neighborhood size K and the disorder probability P used in the 
topology update are adaptively adjusted based on the convergence 
state of the swarm. The proposed topology adaptation mechanism 
of ASWPSO is described as follows. 

Define a stagnation coefficient Sc as  

                     1
N

ii s N
Sc

Sg
                             (3) 

where N is the population size and si is the number of stagnating 
generations for each particle. It can be observed that [0,1]Sc   
reflects the stagnation state of the entire swarm. Based on the Sc 

Table 1. Benchmark Functions 

Function Domain Optimum Name 
2

1 1( ) D
iif x x  [－100, 100]D 0 Sphere 

2 1 1( ) DD
i ii if x x   x  [－10, 10]D 0 Schwefel 2.22 

2
3 1 1( ) ( )D i

ji jf x   x  [－100, 100]D 0 Schwefel 1.2 

4 ( ) max ( ,1 )i if x i D  x  [－100, 100]D 0 Schwefel 2.21 

1 2 2 2
5 11( ) [100( ) ( 1) ]D

i i iif x x x
   x  [－30, 30]D 0 Rosenbrock 

2
6 1( ) ( 0.5 )D

iif x   x  [－100, 100]D 0 Step 

4
7 1( ) [0,1)D

if ix random x  [－1.28, 1.28]D 0 Noise 

8 1( ) sin( )D
i iif x x x  [－500, 500]D －12569.5 Schwefel 2.26 

2
9 1( ) [ 10cos(2 ) 10]D

i iif x x  x  [－5.12, 5.12]D 0 Rastrigin 

2
10 1 1( ) 20exp( 0.2 1 / ) exp(1 / cos 2 ) 20D D

i ii if D x D x e       x  [－32, 32]D 0 Ackley 

2
11 1 1( ) 1/ 4000 cos( / ) 1DD

i ii if x x i    x  [－600, 600]D 0 Griewank 

12 2 2
12 1 11

2
1

( ) {10sin ( ) ( 1) [1 10sin ( )]

( 1) } ( , , , )

D
i ii

D
D ii

f y y y
D

y u x a k m

  




   

  





x
 [－50, 50]D 0 

Generalized 
Penalized 
Function 12 2 2

13 1 11

2 2
1

1
( ) {sin (3 ) ( 1) [1 sin (3 )]

10

( 1) [1 sin (2 )]} ( , , , )

D
i ii

D
D D ii

f x x x

x x u x a k m

 








   

   





x
 [－50, 50]D 0 
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value in each generation, parameters K and P are adaptively 
adjusted according to Eqs. (4) and (5), whose curves are plotted in 
Figure 3.  

                    2.5 5K Sc                                         (4) 

          0.05 2 0.1Sc
iP i N                                  (5) 

It can be observed in Figure 3(a) that K stepped from 2 to 7 with 
the increase of Sc. It means that, the more critical the particles are 
stagnated, the larger the neighborhood size is. By increasing K, 
the particle can have a broader field of view and hence be 
possible to jump out of the local optimum. According to Eq. (5), 
each particle is assigned with a specific disorder probability Pi, 
which diverse the search habits of different particles. As shown in 
Figure 3(b), each particle from 1 to N has a Pi ranging from 0.05 
to 0.2 with the increase of Sc.  

3.4 Overall Process 
In this paper, we develop an ASWPSO algorithm with an adaptive 
small-world topology, whose flowchart is shown in Figure 4. In 
addition to the general process of traditional PSO, the topology 
update operation is executed once a particle ceases improving for 
Sg generations. In the operation, a neighboring assembling vector 
is built, which hereafter guides the search of the particle. 
Moreover, it is to be noticed that the parameters K and P in the 
small-world topology is adaptively adjusted according to 
stagnation coefficient Sc of the entire swarm. In the next section, 
the proposed algorithm will be experimentally studied. 

 

 

Table 2. Statistical Results and Comparisons of the Three Algorithms 

Function 
VNPSO DMS-PSO ASWPSO 

Mean Best Std Mean Best Std Mean Best Std 

f1 1.52E-40 3.90E-43 3.60E-40 1.17E-27 5.98E-32 4.40E-27 8.07E-72 5.34E-73 1.43E-71 

f2 1.29E-27 5.83E-30 5.56E-27 3.60E-09 7.97E-17 1.91E-08 4.85E-43 1.24E-43 3.50E-43 

f3 1.40E+00 3.32E-01 1.17E+00 1.83E+01 4.16E+00 1.39E+01 2.68E-04 2.29E-05 1.71E-04 

f4 7.37E-01 2.86E-01 3.11E-01 1.04E+00 3.81E-01 4.48E-01 6.41E-04 6.46E-06 8.19E-04 

f5 3.46E+01 4.64E-01 3.02E+01 3.49E+01 1.77E+01 2.63E+01 2.22E+01 1.95E-01 1.73E+01 

f6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f7 9.16E-03 5.42E-03 2.49E-03 1.19E-02 4.89E-03 4.85E-03 1.33E-03 6.99E-04 7.57E-04 

f8 2.53E+03 1.74E+03 3.66E+02 2.30E+03 1.36E+03 4.97E+02 4.39E+02 3.82E-04 2.60E+02 

f9 2.76E+01 1.79E+01 5.09E+00 1.83E+01 9.95E+00 5.64E+00 8.17E+00 2.99E+00 3.68E+00 

f10 1.33E-14 7.69E-15 3.05E-15 4.14E-14 1.48E-14 2.65E-14 6.27E-15 4.14E-15 1.77E-15 

f11 1.24E-02 0.00E+00 1.64E-02 4.60E-03 0.00E+00 7.96E-03 5.75E-04 0.00E+00 2.21E-03 

f12 1.57E-32 1.57E-32 2.36E-34 2.96E-28 2.34E-32 1.40E-27 1.57E-32 1.57E-32 2.78E-48 

f13 1.47E-03 1.35E-32 3.80E-03 3.27E-03 7.92E-31 5.78E-03 1.35E-32 1.35E-32 5.57E-48 
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Figure 5. Boxplots of the three algorithms on multimodal functions. 
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4. EXPERIMENTAL STUDIES 
4.1 Experimental Setup 
In the experiments, 13 benchmark functions with different 
features are used to test the performance of ASWPSO [19]. These 
functions are listed in Table I, where f1 to f5 are unimodal 
functions, f6 is a step function, f7 is a noisy quartic function, and f8 
to f13 are multimodal functions with a great number of local 
optima.  

In ASWPSO, the inertia weight  and accelerating coefficient c 
are setting to 0.7298 and 1.49618 respectively, and the stagnation 
threshold value is set as Sg = 5. The proposed algorithm is further 
compared with two existing PSO variants. Particularly, VNPSO is 
the PSO algorithm with a regular von Neumann topology [18], 
whereas DMS-PSO uses a completely random topology in the 
first 90% time and adopts the global topology for the final 
convergence [7]. The parameter settings of the two algorithms are 
according to the corresponding references.  

All the algorithms are tested on 30 dimensions functions with 

population size 30 and function evaluations 300,000. For each 
function, 30 independent trials are carried out by applying 
VNPSO, DMS-PSO, and ASWPSO under the same circumstances. 
The statistical results are presented and compared in the following 
subsection. 

4.2 Results and Comparisons 
In Table II, the mean, best, and standard deviations of the error 
values achieved by VNPSO, DMS-PSO, and the proposed 
ASWPSO are listed. It can be observed that ASWPSO 
comprehensively outperforms VNPSO and DMS-PSO. On the 
one side, for unimodal functions, the proposed algorithm can 
achieve higher solution accuracy than VNPSO and DMS-PSO. 
On the other side, in optimizing multimodal functions, the 
proposed ASWPSO exhibits much stronger global search ability 
than the other two algorithms.  

The performance of the three algorithms on multimodal functions 
f8 to f13 are further compared by the box plots shown in Figure 5. 
In the figure, the minimum, lower quartile, median, upper quartile, 
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Figure 6. Convergence curves of the three algorithms. 
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maximum, and outliers of the results are graphically depicted. It 
can be seen that, for all the multimodal functions tested, the 
results of ASWPSO are better than those of VNPSO and DMS-
PSO. Moreover, Figure 5 also shows the robustness of the 
proposed algorithm, for it can always obtain promising results in a 
narrow error range. 

In addition, the convergence curves of the three algorithms in 
optimizing unimodal functions f1, f3, and f5 and multimodal 
functions f8 to f13 are plotted in Figure 6. The figure clearly shows 
that ASWPSO converges the fastest to achieve the highest 
solution accuracy among the three algorithms. To summarize, by 
using the adaptive small-world topology, the proposed ASWPSO 
is a very competitive PSO algorithm in terms of solution accuracy, 
search efficiency, and robustness.  

5. CONCLUSIONS 
In this paper, a novel PSO algorithm based on adaptive small-
world topology (ASWPSO) is proposed. In ASWPSO, each 
particle is connected with several nearest neighbors, and, by the 
small-world randomization, it may be reconnected to some other 
particles from the entire swarm. The randomly built long-range 
links reduce the diameter of the topology and hence improve the 
convergence speed of the entire swarm. Moreover, we use a fine-
grained topology based on variable level that allows particles 
adopt different small-world networks on different dimensions. 
This helps to diversify the search of particles so as to improve the 
global search ability of PSO. During the search process of the 
algorithm, the parameters in the small-world topology are 
adaptively adjusted based on the stagnation state of the entire 
swarm. In this way, the search effectiveness and efficiency of the 
swarm is further improved.  

In the experiments, the proposed ASWPSO is tested on 13 
benchmark functions, with performance compared with VNPSO 
using regular topology and DMS-PSO using random topology. 
Experimental results verify the high efficiency and robustness of 
using the proposed adaptive small-world topology.  

6. ACKNOWLEDGMENTS 
This work was partially supported by the National High-
Technology Research and Development Program (“863” 
Program) of China under Grand No. 2013AA01A212, by the 
National Science Fund for Distinguished Young Scholars under 
Grant 61125205, by the National Natural Science Foundation of 
China under Grant 61070004 and 61202130, by the NSFC Joint 
Fund with Guangdong under Key Project U1201258 and 
U1135005. 

7. REFERENCES 
[1] Li, M., Lee, W.-C., Sivasubramaniam, A., and Zhao, J. 2008. 

SSW: A small-world- based overlay for Peer-to-Peer search. 
IEEE Trans. Parallel Distrib. Syst. 19, 6, 735-749. 

[2] Guidoni, D. L., Mini, R. A. F., and Loureiro, A. A. F. 2012. 
Applying the small world concepts in the design of 
heterogeneous wireless sensor networks. IEEE Commun. 
Lett. 16, 7, 953-955. 

[3] Chen, W.-N., Zhang, J., Lin, Y., Chen, N., Zhan, Z.-H., 
Chung, H.S.-H., Li, Y., Shi, Y.-H. 2012. Particle swarm 

optimization with an aging leader and challengers.  IEEE 
Trans. Evolut. Comput. In press. 

[4] Zhan, Z.-H., Zhang, J., Li, Y., and Shi, Y.-H. 2011. 
Orthogonal learning particle swarm optimization. IEEE 
Trans. Evol. Comput. 15, 6, 832-847. 

[5] Gong, Y.-J., Zhang, J., Chung, H.S.-H., Chen, W.-N., Zhan, 
Z.-H., Li, Y., and Shi, Y.-H. 2012. An efficient resource 
allocation scheme using particle swarm optimization. IEEE 
Trans. Evolut. Comput. 16, 6, 801-816. 

[6] Gong, Y.-J., Zhang, J., Liu, O., Huang, R.-Z., Chung, H.S.-
H. and Shi, Y.-H. 2012. Optimizing the vehicle routing 
problem with time windows: a discrete particle swarm 
optimization approach. IEEE Trans. Syst. Man Cybern. Part 
C Appl. Rev. 42, 2, 254-267. 

[7] Gong, Y.-J., Shen, M.-E., Zhang, J., Kaynak, O., Chen, W.-
N., Zhan, Z.-H. 2012. Optimizing RFID network planning by 
using a particle swarm optimization algorithm with 
redundant reader elimination. IEEE Trans. Ind. Inf. 8, 4, 900-
912. 

[8] Milgram, S. 1967. The small world problem. Psychology 
Today. 22, 61-67. 

[9] Watts, D. J. and Strogatz, S. H. 1998. Collective dynamics of 
small-world neworks. Nature. 393, 440-442. 

[10] Kennedy, J. and Eberhart, R. 1995. Particle swarm 
optimization. in Proc. IEEE Int. Conf. Neural Netw. 4, 1942-
1948.  

[11] Eberhart, R. and Kennedy, J. 1995. A new optimizer using 
particle swarm theory. in Proc. 6th Int. Symp.  Micro Mach. 
Human Sci. 39-43. 

[12] Liang, J. J. and Suganthan, P. N. 2005. Dynamic multi-
swarm particle swarm optimizer. in Proc. IEEE Swarm 
Intell. Symp. 124-129. 

[13] Clerc, M. 2012. Standard particle swarm optimisation - from 
2006 to 2011 (2012-09-23 version). Particle Swarm Central 
[Online]. Available: http://www.particleswarm.info. 

[14] Kennedy, J. 1999. Small worlds and mega-minds: effects of 
neighborhood topology on particle swarm performance. in 
Proc. IEEE Congr. Evol. Comput., 3, 1931-1938. 

[15] Matsushita, H. and Nishio, Y. 2009. Network-structured 
particle swarm optimizer with small-world topology. in 
Proc. Int. Symp. Nonlinear Theory Appl. 372–375. 

[16] Liu, Y.-M., Zhao, Q.-Z., Shao, Z.-Z., Shang, Z.-X., and Sui, 
C.-L. 2009. Particle swarm optimizer based on dynamic 
neighborhood topology. Emerging Intell. Comput. Technol. 
Appl. LNCS 5755, 794-803. 

[17] Granovetter, M. D. 2004. The impact of social structures on 
economic development. J. Econ. Perspect. 19, 1, 33-50.  

[18] Kennedy, J. and Mendes, R. 2002. Population structure and 
particle swarm performance. in Proc. Congr. Evol. Comput., 
1671-1676. 

[19] Yao, X., Liu, Y., and Lin, G.-M. 1999. Evolutionary 
programming made faster. IEEE Trans. Evol. Comput. 3, 2, 
82–102. 

 

 

31




