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Abstract - This paper presents pseudo-coevolutionary 
genetic algorithms (GA’s) for power electronic circuit 
(PEC) optimization. Circuit parameters a re  optimized 
through two parallel co-adapted CA-based 
optimization processes for power conversion stage and 
feedback network, respectively. Each process has 
tunable and untunable parametric vectors. The best 
candidate of the tunable vector in one process is 
migrated into the other process as untunable vector 
through a migration controller, in which the migration 
strategy is adaptively coutrolled by a first-order 
projection ,of the maximum and minimum bounds of 
the fitness value in each generation. Implementation of 
this method is suitable for systems with parallel 
computation capacity, resulting in considerable 
improvement of the training speed. Optimization of a 
buck regulator for meeting requirements under Iarge- 
signal changes and a t  steady state is illustrated. 
Simulation predictions are verified with experimental 
results. 

1. lntroduction 
As modem power electronics technology 

continues to develop, there is a growing need for 
automated synthesis that starts with high-level statemem 
of desired behaviors and optimizes the component values 
for satisfying electrical specifications. Evolutionary 
computations such as genetic algorithms (GA’s) which 
have emerged as a practical, robust optimization and 
search method [1]-[5], have been applied to optimize 
analog electronic circuits [21-[4]. Recently, the method 
has been extended to optimize PEC’s in [I I], in which a 
decoupled optimization technique for design of switching 
regulator was proposed. The optimization process entails 
selection of the component values in the regulator to meet 
some static and dynamic requirements. A regulator is 
decoupled into a power conversion stage (PCS) and a 
feedback network (FN). The circuit component values in 
the PCS are optimized with the required static 
characteristics, whilst the ones in the FN are optimized 
with the required static and dynamic behaviors of the 
whole system. However, interactions between the PCS and 
FN in the optimization are relatively low with this training 
scheme. 

As well as the classical serial GA’s, extensive 
research has been conducted on the development of 
parallel GA’s (PGA’s) [7]-[9]. Coordinated GA’s running 
in parallel result in a very powerful method for solving 
multi-modal function and high-dimension optimization 
problems. In particular multiple-population PGAs are the 
most sophisticated ones. They consist of several 
populations, in which individuals migrate occasionally. 
Parameters such as migration rates, communication 

topology, and population size affect their behaviors 
significantly. With enhancements in the multiple- 
population PGAs, cooperative evolutionary computations 
have been proposed in [S][9]. They provide rational 
opportunities for solutions to evolve in the form of 
interacting coadapted subpopulation (species). Apart from 
the interaction architecture, migration strategy is an 
influential factor affecting the performance. 

Synchronous migration is the most dominant one, 
in which migration occurs at constant time or generation 
intervals. Another one is the asynchronous migration 
scheme, which allows individuals to migrate only afier 
some events occur. Low migration rate is generally 
suitable for separable searching functions. Relatively 
isolated species are likely to converge to different 
solutions. Migration and recombination may combine 
partial solutions, resulting in low fitness as compared to 
classical GAS. If the migration is too fast, high potential 
individuals in the migrants may be too less to influence the 
overall search. 

An asynchronous migration scheme using 
pseudo-coevolutionary CA’s for design of PEC’s is 
presented in this paper. By using the decoupled 
optimization technique in [6], component values of the 
PCS and FN are optimized by two coadapted evolut ionq 
training processes. They are treated as two species and are 
evolved in parallel. Each process has tunable and 
untunable parametric vectors. The hest candidate of the 
tunable vector in one process is migrated into another 
process as untunable vector through a migration controller. 
The migration strategy is adaptively controlled by a first- 
order projection of the fitness value’s limits in each 
generation. This can decentralize the computations that 
ensure its suitability and applicability for network-based 
optimization. Optimization of a buck regulator for 
satisfying steady state and transient requirements is 
illustrated. Simulation predictions are verified with 
experimental measurements. 

2. D e c o u p m  of PEC’s 
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Fig. I Basic block diagram of a PEC. 
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The basic block diagram of a PEC.including the 
PCS and FN is shown in Fig. I. The PCS is supplied from 
the source v;,, lo the load Rr. The PCS consists of Ip 
resistors ( R ) ,  J p  inductors (L). and Kp capacitors (0. The 
FN consists of IF resistors. J F  inductors. and Kr capacitors. 
The signal conditioner H,, converts the PCS output voltage 
v,, into a suitable form (i.e.> v,,') for comparing with a 
reference voltage ';6,f Their difference i;i is sent to an 
error amplifier (EA). The EA output v, is combined with 
the feedback signals 5, from the PCS parameters, such as 
the inductor current and input voltage. to give an output 
control voltage v,,,,, after perfonning a mathematical 
function g(ve, M',,). q,,,, is then modulated by a pulse-width 
modulator to derive the gate signals for the switches in the 
PCS. As defined below, vectors Opts and OF.,; contain all 
passive component vaIues for the PCS and FN, 
respectively, 

where 

- e,, = [ E p  Cp Cp]  and 0 ,  =[R, rF C F ]  ( 1 )  

Er =[RI R: ... R,*] . Z. = [ L ,  L2 ... L,,,,] . 

and 
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Fig. 2 Functional block diagram ofthe GA's 

All elements in epCs and OF\. are optimized 
through two training processes. namely Process I and 
Process 11, respectively. Qrcs is a tunable vector and a,,? 
is an untunable one in Process I. whilst OpL.s is an 
untunable vector and OF,\. i s  a tunable one in Process I I .  
Each process utilizes classical GA's that inherit 
characteristics of evolutionary computations, involving 
randomness, recombination, and survival of the fittest. 
Detailed description of the GA's implementation can be 

found in [6] and is depicted in Fig. 2 .  Both processes have 
the same fitness function for showing the degree of 
attainment of the chromosome on the optimization 
objectives. The best candidate of the tunable vector in one 
process is migrated into the other process as untunable 
vector through a migration controller. Fig. 3 depicts an 
example of variations of the fitness value d, of the best 
candidate versus the generation k.  As the candidate trained 
in a generation must be no worse than the previous ones, 
d, monotonically increases [i.e.Q,(k) t @(k-  l)]. 

Since the migration frequency determines the 
effectiveness and efficiency in optimizing the circuit 
parameters, the proposed asynchronous migration scheme 
will adaptively adjust the migration frequency. The 
methodology is based on monitoring the change in d, [i.e.. 
AO(k)] between the kth and ( h  - 1)th generations. where 
A@(k) = Q ( k )  - O(k - I ) .  If AQ(k) is nonzero. a migration 
counter N -  will be incremented by one. If N equals a 
fixed reference value v, migration will be initiated. The 
best candidate of the tunable vector in one process will be 
passed to the other process. In general. too frequent 
migration results in a single freely inter-bleeding 
population similar to classical GA's [ 8 ]  191. Too little 
migration results in two diversified populations and two 
local optimization solutions. Hence, the value of v is a 
critical factor affecting the overall solution. 
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(d) &,,,, ,(k) < & n l ; n ( k )  
Fig. 3 Illustrations on the variation of Q against k.  

A. M;grarion Conrroller 
I '  is adjusted adaptively by comparing Q(k)  with the 
expected maximum bound @ ms, ( k )  and minimum 

bound Qmin(k ) .  As depicted in Fig. 3(a), the predicted 

upper bound @,,,,,(k) is formed by constructing a 
straight line passing through the point U,: [I; - 2 .  
4,,,,(k-2)]andthepointU2: [ k -  I .  e m a x ( k - 1 ) ] .  By 
using linear extrapolation. a line passing through til and 

U? is formulated. Qma,(k) (i.e.. point U, i can be 
expressed as 

6 m y ( k )  = Q ~ ~ ~ ( ~ - l ) + [ ~ " ~ ~ " ( ~ - l ) - Q " , ~ ~ ( k  -a1 ( 2 )  
= mm,, ( k  -2)  

Similarly, the predicted lower bound Qm,"(k) (i.e.. point 

L,  ) can be expressed as 

Qr"i>>(k) = Q>"i"(k -1) +[Q,,, , ,(k- l)  -Q,",,,(k - 2)1(3) 
= mmIn ( k  - I )  - @",,"( R - 2 )  

As shown in Fig. 3(a), if (bmaX(k) @ ( k )  > (bmin(k),  
Q,,,(k)=&,,,,(X-) (4) 

and 

Q,"i"(k) = &,"i"(k) ( 5 )  

Otherwise, new bounds @may'(k)  and Q m , , ; ' ( k )  for 

Omar ( k )  and Qmi, , (k) ,  respectively. will be formulated 
by linear interpolation between generations k and k - I ,  
where 

Q , , , ' ( k )  = Q ( k ) + A Q ( k ) = 2 Q ( k ) - 4 , ( k - l )  (6) 

6 , , i " ' ( k ) = Q ( k ) - A @ ( k - l ) = ~ ( k - 1 )  (7) 

For example. as shown in Fig. 3(b), @ ( k )  Qmax(k) 

and is outside e, and i, . New bounds U ,  and L, are 
derived from ( 6 )  and (7). respectively. The situation will 

be the same for @ ( k )  c Dmi,(k). which is illustrated in 
Fig. 3(c). 

However, as shown in Fig. 3(d). it is possible that 

&max(k)  < (bm,,](k) . Concluding  the^ above cases, 

Omax(k) and @,, (k)  are generally determined by the 
following equations 

~ , ~ ~ ~ ( k )  = max [ 6 , , , ( k ) ,  @,,,ax'(k)~ 

mrnin(k) =min[(bmi,(k),~, , , ' (k)l  (9) 

(8) 
and 

Based on the above steps, the following cases occur and 
have the adjustments on Q m a y ( k )  ami,,(k). and v. 
The flowchart is shown in Fig. 4. 

Fig. 4 Flowchart of the training mechanism. 
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Case I - If @,,in ( k )  < @ ( k )  < @,,,as ( k ) ,  the value of 13 

is kept constant. If A@(k+l)  is positive, N is increased 
by one. Migration occurs when N = I,. 

Case 2 - If @ ( k )  >@,,,8x(k),,  the untunahle parameters 
due to the last- migration show a high degree of 
collaboration wsith the tunable parameters of the current 
process. The tunable parameters of the current process are 
likely to have further optimization. The migration process 
has to be deferred by one generation (i.e., v = v + 1). Eqs. 
(8) and (9) will be applied. 

Case 3 - If @ ( k )  < (bmin(k),  the untunable parameters 
due to the last migration show a low degree of 
collaboration with the tunable parameters of the current 
process. Thus. the tunable parameters of the current 
process have low potential for further optimization. The 
migration process has to be accelerated by one generation 
(i.e., v = v - I) .  Again, the new bounds will he determined 
by (8) and (9). respectively. 

B. Traitiing Algorirhnt 
With the help of Fig. 5, the training algorithm is 

summarized as below. The shaded blocks OFK in Process I 
and Opts in Process 11 are untunable vectors. The two 
processes are started and executed as classical GA's. 
Step I - Calculate the fitness values O(k) and AO(k) of 
process 1. Update the population of Process I by using 
standard GA's [6] .  If AO(k) > 0. N' = N + I .  Otherwise, 
N is kept constant. 

Step 2 - Calculate @,,,,,,(k) and Q,mi,,(k) by using (2) 
and (3), respectively. 
Step 3 - lf@(k) > 6 ms" ( k )  , v = v + 1. Update Qmi.(k) and 
@,&k) by (8) and (9), respectively. 

Step 4 - If @(k)  < @mi,l(k), v = v - 1. Update O,,&) and 
@,max(k) by (8) and (9), respectively. 

step - If &,,,i,,(k) < ~ ( k )  < 6 m a x ( k )  , 
@",&\ (k)  = 6 , , , , , ( k )  and O,","(k) = 6 , , , , ( k ) .  
Step 6 - If h; < v. repeat steps I to 5 for Process 1. If N 
=v. the hest candidate (i.e., the tunable vector) in Process I 
is ready to migrate to Process 11. Process I will wait until 
Process 11 becomes ready for migration. I t  should be noted 
that step 1) lo step 6) are also performed in Process 11. 
Step 7 - Migration is initiated if both processes are ready 
for migration. Elpcs in Process 1 will be passed to Process 
11 as untunable parameters, whilst OF,,, in Process 11 will be 
passed to Process I as untunahle parameters. 
Step 8 - After migration. reset Nto  one. Repeat steps 1 to 
8 for both processes. 

It  can he seen that v is adjusted in an adaptive 
way throughout the overall training process. v acts as an 
adaptive reference for controlling the migration process. 
The migration frequency is increased when there is no 
potential for further optimization in individual GA process 
and the frequency is reduced decrease when there is 

further potential for optimization in , individual. GA 
process. 

As illustrated  in^ Fig. 5:' at the ith generation in 
Process 1. N =I/.  Process 1 is ready for migration. 
However. as Process I1 is not ready for migration, Process 
I is kept waiting until at the kth genera!ion of Process 11. 
Migration is initiated. Opts in Process 1 is passed to 
Process I1 (white arrow). Of, in Process I1 is passed to 
Process I (black arrow). Similarly, at the mth generation of 
Process 11, Process I1 is ready for migration but Process 1 
is not. Process II is then kept waiting until at the nth 
generation of Process 1. . .  I 

PRoctssl PFwzFssII 

W?3? 
sl*m 

R n m r  
I 

Ruul 

Fig. 5 Illustration ofthe migration process 

Finally, if. migrations have not occurred for a 
number of generations N,ma,, a forced migration is initiated. 
This is to prevent the two processes trapping in their 
corresponding local solutions and being acted as two 
isolated non-interactive CA processes. Moreover: the 
solutions will be accepted as the final ones if no self- 
migrations are initiated for more than NSM times. In this 
situation the two GA processes come to the fi,nal value. N'o 
further optimization and searching for OPc.s and OF,%, will 

C. Pseiido-Coevohitiona,?: Implementation 
The parallel computations can he'kealized by a 

so-called pseudo-coevolutionary method, in which 
sequential computations are implemented. As shown in 
Fig. 5 ,  Process I is firstly carried out from Step 1 to Step 6 
until N -  =I,. Process I will he paused and Process I 1  will be 
initiated and proceeded from Step I to Step 6 until N =I.: 
Finally, both processes are ready for migration. The best 
candidate of Op(s in Process 1 will be passed to Process 11 
and the best candidate of OF\. in Process 11 will he passed 
to Process I. The training will be continued for next 
computation. 
D. Fitnessss/imctions 

A fitness value is assigned to each chromosome 
rh in the population according to a predefined fitness 

be performed. * 
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(15) K3 function 0. The fitness value shows the degree of 
attainment of the chromosome on the optimization ov = 

~ M , , ~ ~ ~ , ' , I ~ K ~  
objectives. In this paper, a multi-objective optimization I + e  

where K; is the maximum attainable value of this objective 
function. .UJ2,, is the desired maximum overshoot, MI, is the 
actual overshoot. and K, is the passband constant. 

for optimizing the chromosome is adopted. 
definitions are described as follows. 
1) 
2)' maximum overshoot and undershoot, damping 

, .  steady state error of I,,,, 

(16) KS ratio, and the settling time of r:, during 

steady-state ripple voltage on v,,, and 
disturbances, uv = , + . ~ L l M , , , - n , , I ! ~ , ~ ~ l ' r ,  

3) 
4) dynamic behaviors. 

I t  should be noted that other objective functions, 
such as cost function, can also be included [ I  I]. 0 is 
defined as 

where K5 is the maximum attainable value of this objective 
function. M,, is the desired maximum undershoot, M,. is 
the actual undershoot. and K6 is the passband constant. 

OF,IR, , r,,, . < h ) ]  + OF4(chl 

RL varies from RL ,,,, ~" to RL.,,r,,,~ and i>,,? varies from V, ,,.,,,,, I to 
V,,>.,,,".V. 
I .  OF, ./ai- o1,jective (IJ 

This objective is to evaluate the steady 
performance of the regulator. In order to measure the 
steady state performance, the steady state value of control 
signal v ~ , , , ~  is determined by a dual'loop iterative method in 
[9]. The filtered output v,,' is compared with the reference 
value An integral square error function EL is defined 
to estimate the closeness of v,,' with vV<,, in the N,  simulated 
samples. If no steady-state conditions can be found, OFi 
should be small: Otherwise, OF, should be large. Hence. 

where K7 is the maximum attainable value of the objective 
function, is the desired settling time, 7, is the actual 
settling time, and K; is the passband constant. Ts is 
defined as the settling time of vd that falls within a +a % 
hand. That is, 

. .  
I V d ( t )  I < 0.01 0, f z T, (18) 

3. OF, of objective (3) 
The objective function OF, i s '  defined for 

measuring the maximum ripple voltage at v,, in steady state. 
In practice. the steady state ripple has to be less than a 
limit of kAv,> around the expected output r'o.t,y,,. A measure 
of the attainment is to count the number of samples N ,  that 
are outside v , , ~ ~ ~ ~  ? AV,, in a total number of N ,  samples. 
OF, is defined as  

(19) 
N" 
N ,  

where K ,  and K2 are scaling factors. K ,  is the maximum 
attainable index of OF, and K. adjusts the sensitivity of 
OF, with respect to E?. OFi decreases as E. , increases. 
-. 7 

transient response appears at v,,, where 

OF, = K ,  (1 --) 

OF, and OF, for objecrive (2) and objective (4) 
During the stanup or. disturbances, a where Kp is the scaling factor. which is maximum 

attainable index for this objective. OF; decreases as Nc, 
Increases. 

Vd ="ref  - vo' (12) 
4. Design Example 

OF? and OF, are used to measure the transient response of 
v,,, including I )  the maximum,overshoot, 2) the maximum 
undershoot. and 3) the settling time of the response. during 

form of OFL and OF4 can be expressed as 
the startup and disturbances. respectively. The general I,.. 

-. 
OF? =OV(R,,v~,,'ch)+UV(R,,r,~,ch)+ST(R,.~ ,,,. ch)  (13) FN ; 

\ ,  (14) ! 
OF, = ZOI'IR, ,. L. ,",. d ? l +  UI'(R, ,, r,. ,. d ? l +  STIR,  ,, vlr ,. < / ? I  

! 

! 
I where NT is the number of the input and load disturbances 

in the performance test. 
In the above expressions, Oh', UV. and STare the objective 
functions for minimizing the maximum overshoot, proteciion. 
maximum undershoot, and settling time of vd. They are 
defined as. 

Fig. 6 Circuit schematic ofthe buck regulator with overcurrent 

The proposed method is illustrated with the same 
example in [ I l l .  The schematic is shown in Fig. 6. The 
PCS is a classical buck converter and the FN is a 

478 

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 04:20:09 UTC from IEEE Xplore.  Restrictions apply. 



proportional-plus-integral controller. In [ 1 I], the 
component values of the PCS is determined by considering 
the. steady-state behaviors of the buck converter whilst the 
FN is determined by considering the overall performance 
of the whole circuit. Although the method requires a 
shorter computation time than the overall training method, 
there is no interaction between the PCS and FN in training 
the PCS. The trained parameters in [ 1 I ]  are tabulated in 
Table 1, whilst the ones with the proposed optimization 
method are tabulated in Table 11. 

110 

_,  . ~ 

--*_U 

I", 1(# IM 

GC%.rn,,CT 

Fig. 7Comparisons of the fitness values against the training 
generations with tixed and the proposed migration strategies. 

., . ,, r 
T r n i W ,  

(b) ii. 
Fig. 8 Simulated stamp tranrients when vin is 2OV and RL is 5R. 

1 I 1 k . - i  . .  

\e- .~ w -.~-.. ~ 

i 

(a) 1'" (IVidiv) and isc,,,, (IV/div) (Timebase: Smsidiv). 
L I  

(a) 18" (IVidiv) and vc,,,, (IV/div) (Timebase: Smsidiv). 

**.. 

(a", iL (I.OA/div) (Timebase: Imsidiv). 
Fig. 9 Experimental stamp, transients when v," is 20V and RL is 

5R. 

(b) f r .  

IOV into 20V. 
Fig. I O  Simulated transient responses when v,,, is changed from 

I 
i 

(a) v,, (IV/di\-),,and,,~ =,,,,, (IV/div),(Ti,mebase: Zrns.'div) , .  " 
I , .  

, .  

-..-.-.._..-.--.-I^-.-__._^^_____^_I 
(b) i, (IAidiv) (Timebase: Zrnsidiv). 

from IOV into 20V. 
Fig. I 1  Experimental transient responses when I,,,? is changed 
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I, Ism' ""8" &#&<, n":l/ 00:s YO", 

(b) ii. ' 

Fig. I2 Simulated transient responses when RL is changed from 
SC2 into l o l l  and win is 20V. - 

. . .  

Component 

I 
7 

Initial Optimized value after 500 
Value generations 

L I 
(a) U,, (IVidiv) and w,,,, (IVidiv) (Timebase: Jms/dw). 

L 

C 

. ,  i.:. ,. . . . . . ..,. .. ,. ... .. . . .. .. .. . ...,. ..~.* 
. .  

200pH 105pH 

1OOOpF 1196pF 

.. 
~ 

(b) iL (IAidiv) (Timebase: Zmsidiv). 

from 5Q into lOC2 and w,. is 20V. (Timebase: 2msIdiv). 

Table I Optimized parameters in 11 1) 

Fig. 13 Experimental tfansient responses when RL is changed 

Value generations 

200pH 194pH 

IOOOpF 1054pF 

C, 

C, 

(b) Initial component values for the controller and the results 

2vF 0.24 pF 

3.3pF 1.865 pF 

R4 

R ,  

1 kR 0.179kR 

0.6kR 0.208 kS2 

1 R2 [ 300kR [ 1039.8 kS2 I 

(c) Param, 

Parameter Value 

G"!, 

N, 1 so00 

Parameter Value 

0.455 

KR 2.28 10.' 

K9 
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0.455 
LK4 I 

Fig. 7 shows comparisons of the fitness values 
against the training generations with fixed migration 
frequency and the proposed adaptive migration frequency. 
As expected, for the fixed migration frequency scheme, 
there is a critical value that can optimize the components. 
A value of five is the best one in this example. Higher or 
lower than five, such as one, nine, and eleven shown in the 
figure, cannot enhance the optimization problem. The 
proposed method is unnecessary to preset the migration 
frequency and is adaptively adjusted. The convergence 
rate and the final fitness value are better than the fixed 
migration rate, because interaction in optimizing the PCS 
and FN is enhanced. 

Fig. 8 and Fig. 9 shows the simulated 
experimental startup transients, when the input voltage is 
20V and the output load resistance is SR. The settling 
time is less than IOms, which is shorter than the design in 
[ l l ] .  Figs. 10 and I I  show the theoretical’ and 
experimental transients when the input voltage is changed 
from IOV to 2OV. Figs. 12 and 13 show the theoretical and 
experimental transients when the output load is changed 
from 5R to lOR. The experimental measurements are in 
close agreement with the predicted results. From the above 
results, it can be shown that the optimized circuit 
parameters with the proposed technique give better 
performances than the ones obtained in [ 1 I], confirming 
the advantage of the proposed method. 

5. Conclusions 
Pseudo-coevolutionary genetic algorithms for 

design o f  power electronic circuits have been presented. 
The two parallel optimization processes entail selection of 
the component values in the PCS and FN, in order to meet 
the required steady state and dynamic performances. An 
adapiive migration mechanism that determines the 
exchange rate has been proposed. Detailed 
implementation procedures have been described. 
Illustrative example shows that the optimized values give 
higher fitness value than the method with fixed migration 
and the decoupled optimization technique in [ I l l .  It is 
because interactions between the PCS and FN in the 
optimization are improved. 

References 
[I]. V. Petridis, S. Kazarlis, and A. Bakirtzis, “Varying 

fitness functions in genetic algorithm constrained 
optimization: The cutting stock and unit commitment 
problems,” IEEE Trans. Svstem. Mun and Cybernetics 
B ,  vo1.28, no.5,pp. 629-640,Oct. 1998. 

[2].D. Nam, Y .  Seo, L. Park, C. Park, and B. Kim, 
“Parameter optimization of a reference circuit using 
EP,” in Proc. 1998 IEEE Int. ConJ Evolutionary 
Computation, 1998, pp. 301-305. 

[3].M. Wojcikowski, J.  Glinianowicz, and M. Bialko, 
“System for optimisation of electronic circuits using 
genetic algorithm,” in Proc. IEEE Int. Conf: 
Electronics, Circtrifs, and Smfems, 1996, vol. 1, pp. 
247-250. 

[4].N. N. Dhanwada, A. Nunez-Aldana, and R. Gemuri, 
“A genetic approach to simultaneous parameter space 
exploration and constraint transformation in analog 
synthesis,” in Proc. IEEE Int. Svm. Circuits Systs., 
1999, vol. 6, pp. 362-265. 

[5].Z. Michalewicz, Genetic algorithms + Data Structure 
= Evolution Programs, Springer-Verlag, 1996. 

16l.J. Zhang, H. Chung, W. Lo, S. Hui, and A. Wu, 
“lmplementation of a decoupled optimization 
technique for design of switching regulators using 
genetic algorithms,” IEEE Trans. Power Electron., vol. 
16, no. 6, pp. 752-763, Nov. 2001. 

[7].E. Cantu-Paz, “A survey of parallel genetic 
algorithms,” . Calculotetrrs Para/&, Reseaux et 
Systems Repartis, Paris: Hermes, vol. 10, no. 2, pp. 
141-171. 

[8].M. Potter and K. De Jong, “Cooperative coevolution: 
an architecture for evolving coadapted 
subcomponents,” Evolutionary Computation, vol. 8, no. 
1, pp. 1-29, 2000. 

[Y].M. Potter, and K. De Jong, “A cooperative 
coevolutionary approach to function optimisation.”, 
Proceedings of the third conference on Parallel 
problem solving form Nature, pp. 245-257, Springer- 
Verlag, 1994. 

B. Wong and H. Chung, “Steady-state analysis of 
PWM dcidc switching regulators using iterative cycle 
time-domain simulation,” IEEE Trans. Ind. Elecfron., 
vol. 45, no. 3, pp. 421-432, June 1998. 

J. Zhang, H. Chung, W. Lo, S. Hui, and A. Wu, 
“lniplementation of a decoupled optimization 
technique for design of switching regulators using 
genetic algorithms,” IEEE Trans. Power Electron., vol. 
16, no. 6, pp. 752-763, Nov. 2001. 

[lo]. 

[ I I ] .  

481 

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 04:20:09 UTC from IEEE Xplore.  Restrictions apply. 


