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Abstract — This paper presents psendo-coevolutionary
genetic algorithms (GA’s) for power electronic circuit
(PEC) optimization. Circuit parameters are optimized
through  twe  parallel  co-adapted  GA-based
optimization processes for power conversion stage and
feedback network, respectively., Each process has
tunable and untunable parametric vectors. The best
candidate of the tunable vector in one process is
migrated into the other process as untunabie vector
through a migratien controller, in which the migration
strategy is adaptively controlled by a first-order
projection of the maximum and minimum bounds of
the fitness value in each generation. Implementation ef
this method is suitable for systems with parallel
computation capacity, resulting in considerable
improvement of the training speed. Optimization of a
buck regulator for meeting requirements under large-
signal changes and at steady state is illustrated,
Simulation predictions are verified with experimental
results.
1. Introduction

As modern power electronics technology
continues to develop, there is a growing need for
automated synthesis that starts with high-level siatements
of desired behaviors and optimizes the component values
for satisfying elecirical specifications.  Evolutionary
computations such as genetic algorithms (GA’s) which
have emerged as a practical, robust optimization and
search method [1]-[5), have been applied to optimize
analog electronic circuits [2]-[4). Recenily, the method
has been extended to optimize PEC’s in [11], in which a
decoupled optimization technique for design of switching
regulator was proposed. The optimization process entails
selection of the component values in the regulator to meet
some static and dynamic requirements. A regulator is
decoupled into a power conversion stage {PCS) and a
feedback network (FN). The circuit component values in
the PCS are optimized with the required static
characteristics, whilst the ones in the FN are optimized
with the required static and dynamic behaviors of the
whole system. However, interactions between the PCS and
FN in the optimization are relatively low with this training
scheme.

As well as the classical serial GA’s, extensive

research has been conducted on the development of

parallel GA’s (PGA’s) [7]-{9]. Coordinated GA’s running
in parallel result in a very powerful method for solving
multi-modal function and high-dimension optimization
problems. In particular multiple-population PGAs are the
most sophisticated ones.  They consist of several
populations, in which individuals migrate occasionally.
Parameiers such as migration rafes, communication
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topology, and population size affect their behaviors
significantly. With enhancements in the multiple-
population PGAs, cooperative evolutionary computations
have been proposed in [8)[9). They provide rational
opportunities for solutions 1o evolve in the form of
interacting coadapted subpopulation (species). Apart from
the interaction architecture, migration strategy is an
influential factor affecting the performance.

Synchronous migration is the most dominant one,
in which migration occurs at constant time or generation
intervals. Another one is the asynchronous migration
scheme, which allows individuals to migrate only after
some events occur. Low migration rate is generally
suitable for separable searching functions. Relatively
isolated species are likely to converge to different
solutions. Migration and recombination may combine
partial solutions, resulting in low filness as compared to
classical GAs. If the migration is too fast, high potential
individuals in the migrants may be too less to influence the
overall search.

An asynchronous migration scheme wusing
pseudo-coevolutionary GA’s for design of PEC’s is
presented in this paper., By using the decoupled
optimization technique in [6), component values of the
PCS and FN are optimized by two coadapted evolutionary
training processes. They are treated as two species and are
evolved in parallel. Each process has tunable and
untunable parametric vectors. The best candidate of the
tunable vector in one process is migrated intg another
process as untupable vector through a migration controller.
The migration strategy is adaptively controlled by a first-
order projection of the fitness value’s limits in each
generation. This can decentralize the computations that
ensure its suitability and applicability for network-based
optimization. Optunization of a buck regulator for
satisfying steady state and transient requirements is
illustrated.  Simulation predictions are verified with
experimental measurements.

2, Decoupling of PEC’s
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Fig. | Basic block diagram of a PEC.
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The basic block diagram of a PEC- including the
PCS and FN is shown in Fig. 1. The PCS is supplied from
the source 1, to the load R;. The PCS consists of /p
resistors (R), Jp inductors (L), and K capacitors (C). The
FN consists of I resistors, J- inductors, and K capacitors.
The signal conditioner /4, converts the PCS output voliage
v, into a suitable form (i.e., v,”) for comparing with a
reference voltage v,» Their difference v, is sent to an
error amplifier (EA). The EA output v, is combined with
the feedback signals ¥, from the PCS parameters, such as
the inductor current and input voltage, to give an output
control voltage v, after performing a mathematical
function g(v,, W,). v,,, 15 then modulated by a pulse-width
modulator to derive the gate signals for the switches in the
PCS. As defined below, veclors ©pes and @ry contain all
passive component values for the PCS and FN,
respectively,
Ops =R, L, Cpland Qg ={R; Ly C;] (1
where
Re=[R R

F:[Cl C: C.f\',]’

Ro=[Ry R, .- R:,] + Lp=[L L,

a—' =G G €yl

B [

L.=[L i

Ly,]

£,1 - and

3. Training Mechanism
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Fig. 2 Functional block diagram of the GA’s.

All elements in Qpcs and Oy are aptimized
through two training processes, namely Process | and
Process 11, respectively. @pps is a tunable vector and Qpy
is an uniunable one n Process |, whilst Gppqs is an
untunable vector and ©f, 15 a tunable one in Process 11
Each process wutilizes classical GA’s that inherit
characteristics of evolutionary computations, involving
randomness, recombination, and survival of the fiuesu
Detailed description of the GA’s implementation can be

found in [6] and is depicted in Fig. 2. Both processes have
the same fitness function for showing the degree of
attainment of the chromosome on the optimization
objectives. The best candidate of the tunable vector in one
process is migrated into the other process as untunable
vector through a migration controller. Fig. 3 depicts an
example of variations of the fitness value @ of the best
candidate versus the generation k. As the candidate trained
in a generation must be no worse than the previous ones,
@ monotenically increases [i.e.@(k) = Ok - 1)].

Since the migration frequency determines the
effectiveness and efficiency in optimizing the circuit
parameters, the proposed asynchronous migration scheme
will adaptively adjust the migration frequency. The
methodology is based on monitoring the change in @ [i.e..
ADG(L)] between the &th and (4 - 1)th generations., where
AD(K) = DL - Bk - 1), 1If Ad(4) is nonzero, a migration
counter N~ will be incremented by one. If ¥ equals a
fixed reference value v, migration will be initiated. The
best candidate of the tunable vector in one process will be
passed t0 the other process. In general. too frequent
migration rtesults i 2 single freely inter-bleeding
population similar o classical GA’s {8] [9]. Too little
migration results in two diversified populations and two
local optimization selutions. Hence, the value of vis a
critical factor affecting the overall solution.
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Fig. 3 {llustrations on the variation of @ against &.

A. Migrarion Conrroller i
v s adjusted adapiively by comparing §(%) with the
expected maximum bound @

bound @

max () and  minimum

win (kY. As depicted in Fig. 3(a), the predicied
upper bound Ci)mm (k} is formed by constructing a
straight line passing through the poimt Uy [k - 2,

@ (k=2)]and the point U [k- 1. @ (k—1)] By
using linear extrapolation, a line passing through U, and
U, is formulated. CDm\(k) (1Le..
expressed as

D (K = @ (=D +[D (A =1)= P, (k- 2)]
=20 _ {(k-1)-0_ (k-2)

max

point U_ ) can be

ey
mux (

Similarly, the predicted lower bound o (k} (ie.. point

mn

Jf.j ) can be expressed as

(Dmin(]\’) =

min(k - 1) + [cbmin(k —‘1) - (Dmin(k - 2)1 (3)
mln(l\ l)—q)min(k_z)
As shown in Flg. 3(a), if Ci)max(k) > ®k) > Ci)m.m(k),
ma\ (k) q)mau (A) (4)
and
mm (k) (Dmln 1\) (5)

Otherwise, new bounds @

D, (k) and D

by linear interpolation beiween generations &£ and £ - 1,
where

© . (K) =D+ AQK) =2D(k)-D(k-1) (6)
©,,'(k)=0k)-A®(k-1)= (D(k -1) N
For example, as shown in Fig. 3(b), D{k) > ) k)
and is outside U and f‘}. New bounds U, and L, are

derived from (6) and (7). respeclive]y The situation will

be the same for P(k) < (I)mm (k). which is illustrated in
Fig. 3(c).

(k) and @ _."(k) for

(k). respectively, will be formulated

min

min

max (

However as shown in Fig. 3(d).
(k)< b, (
O (k) and @

fo!!owmg equations

ma‘c (A) max [ max (k) (Dma\ (k)] (g)

it is possible that
k) Concluding the above cases,

max

(k) are generatly determined by the

min

and

@, () =min[b,, ()., /0]  ©
Based on the above steps, the following cases occur and
have the adjustments on @, (k) , @ (k). and v.

The flowchart is shown in Fig. 4.
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Fig. 4 Flowchart of the training mechanism.
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Case ] -1f @ . (k) <®(k)<D__ (k), the value of v
is kept constant. If AD{k+1) is positive, V" is increased

max

by one. Migration occurs when V' = 1.
Case 2 -\ ®(k)>®D (k). the untunable parameters

due to the last- migration show a high degree of
collaboration with the tunable parameters of the current
process. The tunable parameters of the current process are
likely to have further optimization. The migration process
has to be deferred by one generation (i.e., v =v + 1). Egs.
{8) and (9) will be applied.

Case 3 - If P(k) <P .. (k), the untunable parameters
due to the last migration show a low degree of
collaboration with the tunable parameters of the current
process. Thus, the tunable parameters of the current
process have low potential for further optimization. The
migration process has to be accelerated by one generation
(i.e., v =v - 1) Again, the new bounds wiil be determined
by (&) and (9). respectively.

B. Training Algorithm

With the help of Fig. 3, the training algorithm is
summarized as below. The shaded blocks @py in Process |
and Opcs in Process 11 are untunable vectors. The two
processes are started and executed as classical GA’s.
Step 1 - Calculate the fitness values ®(k) and A®{k) of
process I. Update the population of Process 1 by using
standard GA’s [6]. If AD(k) > 0. N" =N + |. Otherwise,
N is kepi constant.

Step 2 - Caleulate @
and (3), respectively.
Step 3- 16D > ®__ (k),v=v+ L. Update P, (k) and
Do (k) by (8) and (9), respectively.

Step 4 - I DRy < D__ (k) v =v- |. Update ®yn(k) and
®,.2, (k) by (8) and (9), respectively.

Step 5 - If O (k) < @) < ®

(]‘) q‘)nm(k) and CI:)r:niﬂ(k)ZCDrmn('k)'

Step 6 - If N” <v, repeat steps | to 5 for Process [ if &7
=v, the best candidate (i.e., the tunable vector) in Process |
is ready to migrate to Process 1l Process | will wait until
Process 1l becomes ready for migration. It should be noted
that step 1) to step 6) are also performed in Process I1.

Step 7 - Migration is initiated if both processes are ready
for migration. ®ps in Process 1 will be passed to Process
11 as untunable parameters, whiist @£y in Process 1l will be
passed 10 Process | as untunable parameters.

" Step 8 - After migration, reset A to one. Repeat steps 1 to
8 for both processes.

It can be seen that v is adjusted in an adaptive
way throughout the cverall training process, v acts as an
adaptive reference for controlling the migration process.
The migration frequency is increased when there is no
potential for further optimization in individual GA process
and the frequency is reduced decrease when there is

max (k) and cbmin

(k) by using (2)

k)

max (

nm\

further potential for optimization in individual GA
process. .

As illustrated in Fig. 5, at the jth generation in
Process 1. N7 =1 Process 1 is ready for migration.
However, as Process Il is not teady for migration, Process
1 is kept wailing until at the kth generation of Process 1l.
Migration is initiated. ®pcs in Process | is passed (o
Process I (white atrow). O in Process 1l is passed to
Process 1 (biack arrow). Similarly, at the mth generation of
Process 1, Process Il is ready for migration but Process I
is not. Process 1 is then kept wamng umd at the nth

generation of Process L. . .
PROCESS | PROCESS 11
Opeirmization of €, ¥ Optavization nI'G)R\,'

DTN

o) Mb=- N

| | Bl

o M= Ne=2

gen=Ad=HN=2

ot

N,

| Controller

Pm;:ns 6,0 m re—
ey [ |

Fig. 5 [Mustration of the migration process.

goEmN=y

Finally, if. migrations have not occurred for a
number of generations M, a forced migration is initiated.
This i1s 1o prevent the two processes trapping in their
correspending local solutions and being acied as two
isolated non-interactive GA processes. Moreover, the
solutions will be accepted as the final ones if no self-
migrations are initiated for more than Ngy times. In this
situation the two GA processes come 1o the final value, No
further optimization and searching for @pcs and Opy WIll
be performed.

C. Pseudo-Coevolutionary Imp/emwmnon

The parallel computations can be realized by a
so-called pseudo-coevolutionary method, in  which
sequential computations are implemented. As shown in
Fig. 3, Process | is firstly carried out from Step ! to Step 6
until N7 =v. Process | will be paused and Process 1§ will be
initiated and proceeded from Step | to Step 6 until N” =1
Finally, both processes are ready for migration. The best
candidate of ®pcs in Process 1 will be passed to Process 1
and the best candidate ot @y in Process I will be passed
to Process 1. The training will be continued for next
compulation. v : :

D. Fitness functions .

A fitness value is agsigned to each chromosome
ch in the population according to a predefined fitness
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function ®. The fitness value shows the degree of
attainment of the chromosome on the optimization

objectives.  ln this paper, a multi-objective optimization

for optimizing the chromosome is adopted.  Their

definitions are described as follows.

18} steady state error of v,,,

2y maximum overshoot and undershoot, damping
ratio, and the settling tme of v, during
disturbances,

3) steady-state ripple voltage on v,, and

4) dynamic behaviors.

[t should be noted that other objective functions,
such as cost function, can also be included [11]. @ is
defined as

o L
dechy=[ Y S OF(R,.v,.ch+ OF(R,.,v,.chy+ (10)

Re =By 8RO =V

OF (R, . v,,.ci)]+ OF (ch)

RL Vﬂ]'ieS frOm R[,mr"n to RL.um,r ﬂl’]d Yir VHI’iES fl’OlT] I/:«n.mm 1o
Vm.ma.\'\
I OF, for objective (1)

This objective is to evaluate the steady
performance of the regulator. In order to measure the
steady state performance, the steady state value of control
signal v, is determined by a dual loop iterative method in
[9]. The filiered oulput v,” is compared with the reference
value v, An integral square error function E; is defined
to estimate the closeness of v,” with v, in the N, simulated
samples. If no steady-state conditions can be found, OF)
should be small. Otherwise, OF should be large. Hence,

OF, = K, e B/%:¢ (11)
where K, and X, are scaling factors. K, is the maximum
attainable index of OF, and K, adjusts the sensitivity of
OF, with respect to E;. OF]j decreases as E, increases.

2. OF ; and OF ; for objective (2) and objective (4)

During the startup or. external disturbances, &

transient response appears at v, where

Vg = Vi — V' (i2)

OF, and OF, are used to measure the transient response of
vg, including 1) the maximum overshoot, 2) the maximum
undershoot, and 3} the settling time of the response. during
the startup and disturbances. respectively. The general
form of OF, and OF} can be expressed as

OF, =0V (R,,v,,.ch)+ UV(R, v,

w’?

ehy +ST(R, v, chy {13)

[ZAd

(14)

ol )

i
ixh

M-
OF, = 2 OFIR, . v, ChY+ UF (R v, okl + STUR,

where N7 15 the number of the input and load disturbances
in the performance test.

In the above expressions, OF, UV, and ST are the objective
functions for minimizing the maximum overshoot,
maximum undershoot, and settling time of v, They are
defined as,

K,

o Mo = M) T R,

(1%)
[+

where K; is the maximum attainable value of this objective
function, M, is the desired maximuin overshoot, M, is the
actual overshoot, and K is the passband constant.

K .
vr= o Mo~ M) ive 17Ky (e

1+

where K is the maximum attainable value of this objective
function. M, is the desired maximum undershoot, M. is
the actual undershoot, and K is the passband constant.

K,

] + e_(TSn - Tj VORy

ST = an

where Ky is the maximum attainable value of the objective
function, 7y is the desired settling time, T, is the actual
settling time, and Ky is the passband constant. T is
defined as the setiling time of v, that falls within a +¢ %
band. That is,

va()|£001o, 1275
3. OF; of objective (3) .
The objective function OF; is' defined for
measuring the maximum ripple voltage at v, in steady state.
In practice, the steady state ripple has to be less than a
limit of £Av, around the expected output v, ... A measure
of the attainment is 1o count the number of samples N, that
are outside v,.p = Av, in a total number of N, samples.
OF, is defined as '

(i8)

N
OF; = K; (1-7%) (19)

s
where Ky is the scaling factor, which is maximum

attainable index for this objective. OF; decreases as N,
increases.

4. Design Example

Fig. 6 Circuit schematic of the buck regulator with overcarrent
protection.

The proposed method is illustrated with the same
example in [11]. The schematic is shown in Fig. 6. The
PCS is a classical buck converter and the FN is a
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proportional-plus-integral  controller. In [l1], the
component values of the PCS is determined by considering
the steady-state behaviors of the buck converter whilst the
FN is determined by considering the overall performance
of the whole circuit. Although the method requires a
shorter computation time than the overall training methed,
there is no interaction between the PCS and FN in training
the PCS. The trained parameters in [11] are tabulated in
Table I, whilst the ones with the proposed optimization
method are tabulated in Table 11

- —— T
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3
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Fig. 7Comparisons of the fitness values against the training
generations with fixed and the proposed migration strategies.
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{b) 7, (1.0A/div) (Timebase: Ims/div).
Fig. 9 Experimental startup transients when v,, is 20V and R, is
5Q2.

Voltager vt

+ v —— —
o [0 vuIo ans [T vy B.U30
Time(Sec)

(@) v,and v,,,.
; —,

CurmeniiAY

u (J.L:Ui ul)'lu ut’\!.‘ DOI:U I.H;:.‘ mﬂ
Tirae(Sect
) (b) i )
Fig. 10  Simulated transient responses when v, is changed from
10V o 20V,
Y E

(a)y v ( l.V/di\‘) a

u

3

" {bY i, (1A/div) (Timebase: 2ms/div).
Experimental transient responses when v, is changed
from 10V into 20V,

Fig. 11

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 04:20:09 UTC from IEEE Xplore. Restrictions apply.



(b) Initial component values for the controller and the resuits

~ " " T - after 500 generations.
N . __ T Component Initial Optimal Value after 500
Value generations
3 —\/____] Res 4.7KQ 35kQ
3 o
C 2pF 5.9 uF
of -
e o G 3.3uF 0.45 uF
L1 omo Tl‘%l&gﬁ:) oo 0gf 03
_ @yviandven R, 300k 767 kO
o 1.8pF 1.1 wF
R, 1k 6.5 kO
R 0.6kQ 1.1kQ

Table Il Optimized parameters with the proposed method.
{a) Initial values of L and C and the results after 500 generations.

- (]:;"Tgm B c" Component | Initial Optimized value after 500
L ;
Fig. 12 Simulated transient responses when £ is changed from Value generations
SQ into 1002 a?d Vi, 15 20V, - : L 200uH 1055
T : C 1000pF 1196uF

(b) Inivial component values for the controller and the results
after 500 generations.

Component Initial Optimal Value‘ after 500
Value generations
Res 4.7k} 0.749 kQ)
(&) 2pF (.24 uF
: & 3.3uF 1.865 pF
R 300k 10398 kO
Cy 1.8uF 8.0 uF
R4 1kQ2 0.179 k0
Ry 0.6kQ2 0.208 k2

i

(b} i (1A/div) (Timebase: Zms/div). (c) Parameters used in the optimization.

Fig. 13 Experimental Iransient responses when R is changed
from 5€) inte 1002 and v,, is 20V. (Timebase: 2ms/div). Parameter | Value Parameter Value
Table I Optimized parameters in [11} P a.85 Ks 2
(a) Initial values of L and C and the results after 500 generations.
Component | Initial Optimized value after 500 P, 0.25 K - 0.455
Value generations
Grax 5060 Xy 2
IL 200uH 194uH
N, 30 Ky 228 %103
2C 1000uF 1054pF
N, 15000 Ko 2
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Ny 6 T 4.55 x 107
K, 2 ¢ 2.14 %107
K 400 Bv, 20V
K o|o2 R, 30
K, 0.455

Fig. 7 shows comparisons of the fitness values
against the training generations with fixed migration
frequency and the proposed adaptive migration frequency.
As expected, for the fixed migration frequency scheme,
there is a critical value that can optimize the components.
A value of five is the best one in this example. Higher or
lower than five, such as one, nine, and eleven shown in the
figure, cannot enhance the optimization problem. The
proposed method is unnecessary to preset the migration
frequency and is adaptively adjusted. The convergence
rate and the final fitness value are better than the fixed
migration rate, because interaction in optimizing the PCS
and FN is enhanced.

Fig. 8 and Fig. 9 shows the simulated
experimental startup lransients, when the input voltage is
20V and the output load resistance is 52. The settling
time is less than 10ms, which is shorter than the design in
[11]. Figs. 10 and 11 show the theoretical’ and
experimental transients when the input voltage is changed
from 10V to 20V. Figs. 12 and 13 show the theoretical and
experimental Iransients when the output load is changed

from 5€) to 1002. The experimental measurements are in

close agreement with the predicied results. From the above
results, it can be shown that the optimized circuit
parameters with the proposed technique give better
performances than the ones obtained in [11], confirming
the advantage of the proposed method.

5. Conclusions

Pseudo-coevolutionary genetic  algorithms for
design of power electronic circuits have been presented.
The two parallel optimization processes entail selection of
the component values in the PCS and FN, in order to meet
the required steady state and dynamic performances. An
adaptive migration mechanism that determines the
exchange rate has been proposed. Detailed
implementation  procedures have been  described.
Hlustrative example shows that the optimized values give
higher fitness value than the method with fixed migration
and the decoupled optimization technique in [11]. It is
because interactions between the PCS and FN in the
optimization are improved.
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