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Abstract—Applying Estimation of Distribution Algorithms 
(EDAs) to solve continuous problems is a significant and 
challenging task in the field of evolutionary computation. So 
far, various continuous EDAs have been developed based on 
different probability models. Initially, the EDAs based on a 
single Gaussian probability model are widely used but they 
have trouble in solving multimodal problems. Later EDAs 
based on a mixture model and on a clustering technique are 
then introduced to conquer such drawback. However, they are 
either time consuming or need prior knowledge of the 
problems. Recently, the histogram has begun to be used in 
continuous EDAs, but the histogram based EDAs (HEDAs) 
usually need too much time and space to gain a highly accurate 
solution. On the basis of pioneering contributions, this paper 
proposes a fuzzy histogram based EDA (FHEDA) for 
continuous optimization. In the FHEDA, the estimated range 
of the fuzzy histogram is adjusted adaptively by the current 
promising solutions, which leads the algorithm to search good 
solutions efficiently. A mutation mechanism is also introduced 
in the sampling operation to avoid being trapped in local 
optima. The performance of the proposed FHEDA is evaluated 
by testing seven benchmark functions with different 
characteristics. Two Gaussian based EDAs and the sur-shr-
HEDA are studied for comparison. The results show that 
among all experimental algorithms, the FHEDA can give 
comparatively satisfying performance on unimodal and 
multimodal functions. 

Keywords- Estimation of Distribution Algorithms, Fuzzy, 
Histogram, Numerical Optimization, Evolutionary Algorithms 

I.  INTRODUCTION  
Estimation of Distribution Algorithms (EDAs), first 

introduced by Baluja [1] and H.Muhlenbein [2], are a novel 
class of population based evolutionary algorithms (EAs). 
The general procedures of the EDAs are quite similar to 
those of the Genetic Algorithms (GAs). However, there is 
neither crossover nor mutation in the EDAs. Instead, an EDA 
generates new offspring by sampling from a probability 
model, which is estimated from some current promising 
solutions. As the EDAs have few parameters to set and have 
good capabilities of solving optimization problems, great 
progresses have been made to the EDAs in recent years and 
many complex problems in real-world have been solved by 
them.  

The EDAs were first introduced to solve discrete 
optimization problems with binary representations [1, 2]. 
Like many other EAs [3]-[6], the research emphasis on the 
EDAs has gone through a transformation from the discrete 
field to the continuous field. The first attempt to apply an 

EDA to solve continuous problems was made by Servet [4]. 
From then on, various methods have been proposed to 
enhance the performance of continuous EDAs [5]-[13]. 
According to the probability model used, there are two main 
categories of continuous EDAs. The first category focuses on 
the Gaussian probability model and the second category 
concentrates on the histogram probability model.  

Early continuous EDAs in the first category assume that 
the distribution of the promising solutions accords with a 
single Gaussian probability model. However, this impractical 
assumption makes these algorithms easily get trapped in 
local optima when solving multimodal problems. It is 
because that a single Gaussian probability model is far from 
enough to estimate the distribution of promising solutions, 
which tend to form various groups. In order to do away with 
this shortcoming, several efforts have been made. For 
example, Bosnian et al. [7] used the Gaussian Mixture Model 
(GMM) to estimate the distribution of promising solutions. 
However, the learning task of the GMM was time 
consuming. For another example, Lu et al. [8] introduced a 
Rival Penalized Competitive Learning (RPCL) clustering 
technique to detect the number of global optima. Though the 
algorithms worked well for unimodal problems and simple 
multimodal problems with a few local optima, the maximum 
number of clusters must be defined beforehand, which was 
infeasible when dealing with multimodal problems with a 
great deal of local optima.  

The first histogram based EDA was proposed by Tsutsui 
et al. [9]. After that, Yuan Bo et al. proposed a histogram 
based PBIL (PBILH) [10], which utilized the fitness values of 
the population when constructing a histogram. Ding Nan et 
al. [11] enhanced the performance of the HEDA by 
considering both the historical and current information of the 
population. Mutation and elitist strategies were also 
introduced in [11]. Though the histogram model has 
advantages in capturing several local optima, it has some 
trouble in applications. One is that a highly accurate solution 
can only be achieved by setting a large number of bins, 
which needs heavy computational cost. To conquer such 
drawback, Q.F.Zhang [12] proposed a Histogram based EDA 
with a uniform design method and two local search 
algorithms (EDA/L). The key idea behind the EDA/L is to 
use a histogram probability model for coarse-grained search 
and to use two different local search algorithms (cheap and 
expensive) for fine-grained search. Ding Nan et al. [13] 
proposed a sur-shr-HEDA, which utilized the surrounding 
effect of individuals and the shrink strategies.  

Unlike previous HEDAs, this paper proposes a novel 
Fuzzy Histogram based EDA (FHEDA) for continuous 
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optimization. Since originally introduced by Zadeh in 1965, 
the notion of the fuzzy sets has achieved great success both 
in theoretical researches and industrial applications [14]-
[17]. Based on the theory of fuzzy sets, K.loquin et al. [18] 
have introduced the fuzzy histogram density estimator and 
provided its feature analysis in depth. Their work inspires us 
to use the fuzzy histogram instead of the crisp histogram in 
the EDA, so as to gain a truer and more stable density 
estimation of the promising solutions. There are several 
features of the FHEDA. For one thing, the estimated range of 
the fuzzy histogram is adjusted adaptively by analyzing 
current promising solutions, which leads the algorithm to 
search highly accurate solutions. Specifically, we first find 
the minimum and maximum promising solutions (here only 
considered one dimension problems for convenience), and 
then extend the range between them slightly to be the 
estimated range of the fuzzy histogram. This mechanism 
enables the FHEDA to shrink or extend the estimated range 
of the fuzzy histogram appropriately. For another thing, by 
defining the number of bins and a fuzzy partition of the 
estimated range, we can compute the height associated to 
each bin by checking each solution one by one efficiently. 
For each solution, it contributes to the heights of two 
neighbor bins at the same time but with different weights. 
Therefore, the final height associated to every bin in the 
fuzzy histogram is smoother than that of the crisp histogram, 
which makes the algorithm perform more stably. Moreover, 
a simple mutation mechanism is also introduced in the 
sampling operation to avoid trapping into local optima. The 
performance of the proposed FHEDA is evaluated by testing 
seven benchmark functions with different characteristics. 
Two Gaussian based EDAs and the recently published sur-
shr-HEDA are studied for comparison. 

The rest of this paper is organized as follows. Section II 
briefly describes the general procedures of the EDAs and 
their features. Section III illustrates the implementations of 
the FHEDA in details. The experimental studies on the 
FHEDA are presented in Section IV. At last, Section V 
draws the conclusions. 

II. BRIEF REVIEW ON THE EDAS 

A. Framework of the EDAs 
Procedures of the EDAs are generally similar to those of 

the GAs. However, the EDAs have neither crossover nor 
mutation, but they include a probability model building 
operation and a sampling operation to generate new 
offspring. The common outline of the EDAs is as follows.  

1) Initialization 
In this process, parameters of the probability model, the 

population size Popsize and the number of promising 
solutions Se are initialized. To form the initial population, 
Popsize individuals are generated randomly in the search 
space and their fitness values are evaluated. 

2) Selection of individuals 
This process selects Se individuals from the current 

population. These selected individuals are used to construct 
the probability model in the following operations.  

3) Construct probability model 
A probability model is built in this step, based on the 

statistical information extracted from the Se selected 
individuals.  

4) Generate new offspring 
A set of new offspring are generated according to the 

previously constructed probability model and their fitness 
values are evaluated.  

There is a repetition from Step2 to Step4 to evolve the 
population and the evolution does not stop until some 
termination criteria are met. The termination criteria depend 
on specific needs, for example, reaching a predefined 
maximum number of generations or finding a preset fitness 
value for the best individual and so on. 

B. Classification of the EDAs 
The core of an EDA is its probability model, which has 

significant influence on the behaviors of the algorithm. Since 
the first proposition of the EDAs, various probability models 
have been introduced. From the viewpoint of the capability 
to capture interactions between variables, the EDAs can be 
classified into three following categories. 

1) No interactions: In this class of the EDAs, probability 
models are constructed by assuming that the variables in the 
problems are independent. Early EDAs, including the PBIL 
[1] and the UMDA [2] belong to this class. 

2) Pairwise interactions: This group of the EDAs takes 
the interaction between two variables into account. Famous 
EDAs of this class are the MIMIC [19], the COMIT [20] and 
so on. 

3) Multivariate interactions: This class usually uses 
complex probability models that can cover multivariate 
interactions. The EDAs of this sort, like the BOA [21], are 
usually applied to solve complex problems. 

III. FUZZY HISTOGRAM BASED EDA 

A. Fuzzy Histogram Description 
Given X = {x1, x2, …, xn} as a set of data points within 

the estimated range [xmin, xmax] and N as the number of bins, 
the histogram of X can be defined to be the vector H = {h1, 
h2, …, hN}, where hi is the number of data points falling into 
ith bin ( i = 1, 2, …, N), as computed by 

1
( ) 

=

=∑
n

i i j
j

h I x , i = 1, 2, …, N , (1) 

where Ii(x) is the characteristic function of bin i defined as 
(2), and Δx  is the bandwidth of each bin, which can be 
computed by (3). 

min

max

1  ,    if  ( -1)   

( ) 1  ,    if   and  
0 ,    otherwise

−⎧ ≤ <⎪ Δ⎪
= = =⎨
⎪
⎪
⎩

i

x x
i i

x
I x x x i N   (2) 

max min( ) /Δ = −x x x N     (3) 
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With the histogram defined above, an estimated density 
ˆ ( )Hf x of the underlying probability density of x � X is given 

by 

1
( ( ) )

ˆ ( ) .=

⋅
=

⋅ Δ

∑
N

i i
i

H

I x h
f x

n x
   (4) 

Due to its simplicity and effectiveness, the histogram is 
widely used to estimate the probability density of data points. 
However, the histogram density estimator has some 
weaknesses, one of which is the excessive effects of the 
estimated range and the bandwidth on the estimated density 
[18]. In recent years, several researchers suggest using the 
fuzzy histogram to overcome this drawback of the crisp 
histogram. 

The fuzzy histogram is constructed based on a fuzzy 
partition of the estimated range. Given a set of fixed points S 
= {s1, s2, …, sN} within the estimated range min max[ , ]Ω = x x  
with xmin = s1 < s2 < … < sN = xmax, we can define N fuzzy 
subsets A1, A2, …, AN, with membership functions 

1 2
( ), ( ),..., ( )μ μ μ

NA A Ax x x , to form a fuzzy partition of Ω . 
Conditions on these N fuzzy subsets are presented in 
[18].The membership function : [0,1], 1,...,Rμ → =

iA i b  can 
be triangular, cosine or others. 

By introducing the concept of the fuzzy partition, we can 
extend the definition of the crisp histogram to the fuzzy 
histogram: Given X = {x1, x2, …, xn} as a data set within the 
estimated range [xmin, xmax] and N as the number of bins, the 
fuzzy histogram of X is defined as the vector H = {h1, h2, …, 
hN}, where hi, ( i = 1, 2, …, N) is computed by  

1
( ),   1,2,...,μ

=

= =∑ i

n

i A j
j

h x i N ,  i = 1, 2, …, N. (5) 

After constructing the fuzzy histogram, we can estimate 
the underlying probability density of x � X by 

1

max min

( ( ))
ˆ ( ) .

( )
1

=

⋅μ
=

−⋅
−

∑ i

N

i A
i

FH

h x
f x

x xn
N

  (6) 

Further studies in [18] show that the estimated results of 
the fuzzy histogram are truer than that of the crisp histogram 
as well as less sensitive to the choices of the number of bins. 

B. Algorithm Framework 
The framework of the FHEDA is shown in Fig. 1, and 

the implemental details of the FHEDA are accordingly 
described as follows. 

1) Initialization 
This step is responsible to initialize several parameters, 

including the number of bins BIN_NUM, the rate of 
mutation 0q , the population size Popsize and the number of 
promising solutions Se. Besides, the initial population is 
generated randomly in the whole search space and their 
fitness values are evaluated. 

 
Figure 1.  Flowchart of the FHEDA 

2) Selection of excellent individuals 
This step selects Se excellent individuals to construct the 

probability model used in the following operations. 
3) Building histogram models 

In this step, a set of histogram models are constructed by 
extracting the information from the Se selected individuals. 
The number of histogram models depends on the dimensions 
of the problem. For a problem of M dimensions, the solution 
can be represented as 1 2( , ,..., )Mx x x=X . In order to 
estimate the distribution of Se solutions, M histogram models 
are needed and each model corresponds to a variable ix . 
Take a one-dimension problem for example, let P = {p1, 
p2, …, pSe} be Se better individuals and the procedures of 
building a fuzzy histogram are as follows. 

Step 1: Set the estimated range of the histogram model. In 
this study, the estimated range of the histogram model 
[Lbound, Ubound] corresponding to P is compute by  

min min   if  
    otherwise                           

− ε ⋅Δ − ε ⋅ Δ ≥⎧
= ⎨
⎩

p x p x LBOUND
Lbound

LBOUND
 (7) 

and  
max max  if  

,
   otherwise                            

p x p x UBOUND
Ubound

UBOUND
+ ε ⋅ Δ + ε ⋅ Δ ≤⎧

= ⎨
⎩

 (8) 

where pmin and pmax are the minimum and maximum value in 

 
Figure 2.  Member functions of N fuzzy subsets 
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P respectively, LBOUND and UBOUND are the defined 
minimum and maximum value of P, ε is the extending rate 
and Δx  is the distance value defined as (9). 

Step 2: Construct fuzzy partition of the search space. 
With a predefined value N, we can gain N fixed points S = 
{s1, s2, …, sN} on the interval Ω  = [Lbound, Ubound] with 
xmin = s1 < s2 < … < sN = xmax The distance between each 
point is the same, which is  

( ) /( 1).Δ = − −x Ubound Lbound N   (9) 
With these N fixed points, we can define N fuzzy subsets A1, 
A2, …, AN on Ω . In this paper, the membership functions of 
these N fuzzy subsets are shown as Fig. 2. Notice that, 

1
μA and μ

NA are different from other membership functions, 
they cover a data interval that is only half the size of the 
others’. 

Step 3: Compute the height associated to each fuzzy 
subsets hi by (5). 

4) Generating new offspring 
After building the histogram models, Popsize new 

offspring are then sampled from the models. In order to bring 
diversities to the new population, we add a mutation 
mechanism. Specifically, let 1 2( , ,..., )Mx x x=X  be a 
solution, and each ix  can be generated by applying the rule 
given by  

0      ,  if     (exploitation)
,

( ) ,  otherwise (biased exploration)i

v q q
x

R t
≤⎧

= ⎨
⎩

 (10) 

where q0 is a parameter with value within [0, 1], q is a 
random value uniformly distributed between 0 and 1, v is a 
random value uniformly distributed in the whole search 
space, and ( )R t  returns a value generated by the histogram 
model of ix  in generation t. Note that by using a crisp 
interpolation method, we can get the upper bounds and the 
lower bounds of the selected fuzzy subset by (11) and (12). 

                                    ,     if  1
/ 2                        ,     if 

( 1) / 2    ,     otherwise
k

Lbound k
l Ubound x k N

Lbound k x x

=⎧
⎪= − Δ =⎨
⎪ + − ⋅ Δ − Δ⎩

 (11) 

/ 2                       ,     if  1
                                   ,     if 

( 1) / 2   ,    otherwise
k

Lbound x k
u Ubound k N

Lbound k x x

+ Δ =⎧
⎪= =⎨
⎪ + − ⋅ Δ + Δ⎩

 (12) 

5) Replacement operation 
After generating a set of new individuals 'P , a new 

population would be created by replacing some individuals 
of ( )P t  with those of 'P . 

IV. EXPERIMENTAL STUDIES 

A. Test Functions 
In this section, seven benchmark functions are chosen 

from [8] and [13] for the test purpose, as tabulated in Table I. 
Among these functions, Fsphere is a simple unimodal function, 
Fsuncan is a unimodal function with a sharp peak, Ftwopeaks and 
Fthreepeaks are multimodal functions with a few peaks, whereas 
Fchewerf, Fruitsie and Frastrigin are multimodal functions with a 
large number of local optima. 

In the experimental studies, we run all algorithms for 30 
times independently, while the maximum number of fitness 
evaluation number for the unimodal functions is 2×105 and 
for the multimodal functions is 4×105. The average value and 
the standard deviation of the results are recorded after testing 
each function for the algorithm comparison. All the results of 
the FHEDA are generated by Visual C++ 6.0 platform using 
a PC with Intel 2.0 GHz CPU, 2.0 G RAM. The parameter 
setting of the FHEDA is listed in Table II. 

B. Comparison with UMDAc, CEGDA and sur-shr-HEDA 
In this part, we compare FHEDA with the UMDAc, the 

CEGDA and the sur-shr-HEDA. The final comparison 
results are summarized in Table III. 

We can see from Table III that the histogram based 
EDAs outperform Gaussian Based EDA when solving 
multimodal functions with a large number of local optima. 
Furthermore, the performance of the FHEDA is better than 
that of the sur-shr-EDA for these functions. As shown in 
Table III, the average of the best function values of Fschwefel, 
Frastrigin and Fgriewank found by the FHEDA is equal or even 
much better than those of the sur-shr-HEDA. For Fsphere, the 
performance of the FHEDA is also the best among these four 
algorithms. However, the FHEDA does not perform so good 
on functions with flat plateaus or deep valleys, such as 
Fsumsan, Ftwopeaks and Fthreepeaks. Parameter analysis in part C 
indicates that, with a smaller BIN_NUM, the algorithm can 
perform better for such kinds of functions. 

TABLE I.  SEVEN BENCHMARK FUNCTIONS 

 Dimension Domain Type Optimum
Fsphere 30 [-100,100] Min 0 
Fsumcan 10 [-0.16,0.16] Max 105 
Ftwopeaks 5 [-100,100] Max 10.1053 
Fthreepeaks 5 [-100,100] Max 10.1053 
Fchwefel 30 [-500,500] Min -12569.5 
Frastrigin 30 [-600,600] Min 0 
Fgriewank 30 [-5.12,5.12] Min 0 

 

TABLE II.  PARAMETER SETTING OF THE FHEDA 

Parameter Descriptions Value 
Popsize Size of population 400 

Se Number of excellent individuals 200 
q0 Mutation rate 0.01 

BIN_NUM Number of bins 20 
ε Rate of extending range 0.2 
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TABLE III.  RESULT COMPARISON AMONG UMDAC, CEGDA, SUR-SHR-HEDA AND FHEDA 

Function UMDAc CEGDA sur-shr-HEDA FHEDA 
 

Fsphere 
avg. 3.24×10-16 3.41×10-6 2.25×10-11 1.11×10-37 
std. 5.59×10-17 8.40×10-7 3.54×10-12 4.23×10-38 

 
Fsumcan 

avg. 221.771 99748.1 100000 4950.95 
std. 116.101 63.2197 0 11735.2 

 
Ftwopeaks 

avg. 9.6327 10.0999 10.1053 9.56638 
std. 0.1073 5.92×10-3 0 0.504 

 
Fthreepeaks 

avg. 4.7331 10.1048 8.9503 5.38951 
std. 0.7406 7.99×10-4 2.2063 1.260 

 
Fschwefel 

avg. -5424.81 -5922.54 12568.6 12569.5 
std. 202.437 1893.51 0.723 1.82×10-12 

 
Fgriewank 

avg. 0.0581 -- 1.887×10-16 0 
std. 0.0335 -- 5.363×10-17 0 

 
Frastrigin 

avg. 0.7966 -- 0 0 
std. 1.1296 -- 0 0 

 
(‘avg.’ is the average of the best function values found in 30 runs and ‘std. ’ stands for the standard deviation) 

 

C. Parameter Analysis 
Two important parameters of the FHEDA are set as 0q = 

0.01 and BIN_NUM = 20 in previous experiments. In this 
part, three functions with different characteristics are used 
for the parameter analysis. For each parameter setting, we 
run the FHEDA for 30 times on these three functions 
respectively. The results are shown in Fig. 3 - Fig. 5, where 
f(x) is the average value of the results after 30 runs.  

As shown in Fig. 3, the number of bins plays an 
important part in finding highly accurate solutions for 
functions like Fsphere. Generally, a larger BIN_NUM leads to 
better results, but the performance of the FHEDA will 
degrade quickly if the value of BIN_NUM is set too large. 
On the other hand, a smaller 0q continuously leads to better 
results for the FHEDA. As for functions like Fsumsan, Fig. 4 
indicates that the algorithm would perform better with a 
smaller BIN_NUM. In this case, 0q seemingly has little 
effect on the results. At last, Fig. 5 shows that a larger 
BIN_NUM is preferable for multimodal functions like 

Fgreisenren, because more bins can capture local optima more 
accurately when there are many local optima. The 
performance of the FHEDA will degrade if the value of 
BIN_NUM is set too large. Results in Fig. 5 also suggest that, 

0q should be set appropriately large to keep the diversity of 
the population. In conclusion, the optimum values of 0q and 
BIN_NUM are problem dependent. How to adaptively adjust 

0q and BIN_NUM is a problem that needs further studies. 

V. CONCLUSIONS 
This paper proposed a novel Fuzzy Histogram based 

EDA (FHEDA) for continuous optimization. In the FHEDA, 
new offspring are generated from fuzzy histogram 
probability models. In order to gain highly accurate 
solutions, the estimated range of the fuzzy histogram is 
adjusted adaptively. Furthermore, a mutation mechanism is 
introduced in the sampling operation to avoid local trapping. 

 

 
Figure 3.  Influence of two parameters on the FHEDA to solve Fsphere. 

 
Figure 4.  Influence of two parameters on the FHEDA to solve Fsumca
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Figure 5.  Influence of two parameters on the FHEDA to solve Fgriewank 

The performance of the proposed FHEDA was evaluated by 
testing seven benchmark functions with different 
characteristics. Two Gaussian based EDAs and the sur-shr-
HEDA were studied for comparison. The results showed that 
among all experimental algorithms, the FHEDA was able to 
give comparatively satisfying performance on unimodal and 
multimodal functions. Finally, the characteristics of two 
important parameters in the FHEDA are also studied. 

As for future work, we will further study the adaptive 
adjustment of parameters 0q and BIN_NUM in the FHEDA. 
In addition, improving the FHEDA to solve continuous 
optimization problems with variable interdependence is 
another promising research area. 
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