An Orthogonal Local Search Genetic Algorithm for the Design and
Optimization of Power Electronic Circuits

Tao Huang, Jian Huang and Jun Zhang (corresponding author), MIEEE

Abstract—In this paper, an orthogonal local search genetic
algorithm (OLSGA) is proposed for the design and optimization
of power electronic circuits. The genetic algorithm is
accelerated with a fast local search operator that automatically
adjusts the search direction and the step size. An experimental
design method called orthogonal design is used to determine the
most promising direction of the potential region in the local
search. In each generation, the step size is adaptively expanded
or shrunk according to whether there is a newly improvement in
the given local region. As a result, with proper direction and
step size, the local search operator is able to stride forward and
provide better exploitation ability to speed up the convergence
rate of the genetic algorithm. The proposed method is applied to
design and optimize a buck regulator. The results in comparison
with other published results indicate that our proposed
algorithm is effective and efficient.

1. INTRODUCTION

HE continuous development of power electronic circuits

asks for powerful design and optimization techniques to

satisfy the increasingly rigorous requirements. During
the last three decades, small-signal models have been widely
used in the modeling and design of power converters. By
applying the state-space averaging method [1], [2], current
injected equivalent circuit approach [3], and sampled-data
modeling technique [4], an averaged time-invariant model
can be derived to study the dynamic stability of the circuit
around the operating point. Although these methods are
simple and elegant, the detailed information of the circuit
waveform in one switching cycle is ignored. Moreover, they
are often applicable for predetermined switching sequence of
circuit topologies only, thus not valid for large-signal
analysis. As a result, it could be very difficult for the circuit
designers to predict precisely the circuit performance under
large-signal disturbances.

Recent studies on optimization methods indicate great
effectiveness of evolutionary algorithms for the global
optimization problems, as they are less dependent on the
initial starting point of the search and do not need derivatives
in explicit analytical form. Among various approaches,
genetic algorithms (GAs) [5]-[8] have gained continuous
attentions. A GA starts with an initial population which
consists of a number of random candidate solutions. The
evolution of population is achieved by employing three basic
operators: selection, crossover and mutation to generate
offspring. Selection attempts to apply pressure upon the

This work was supported by NSF of China Project No0.60573066; and
the Scientific Research Foundation for the Returned Overseas Chinese
Scholars, State Education Ministry, P.R. China.

Authors are with the SUN Yat-sen University, Guangzhou, P.R.China.(Jun
Zhang is the corresponding author, email:junzhang@ieee.org)

978-1-4244-1823-7/08/$25.00€)2008 IEEE

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 07:42:08 UTC from IEEE Xplore. Restrictions apply.

population in a manner similar to that of natural selection
found in biological systems. Crossover allows individual to
exchange information with each other imitating sexual
reproduction used by natural organisms. Mutation is used to
randomly change the value of single bit within individual
strings that implement global exploration of the feasible
region.

Recently, a GA based optimization scheme for switching
voltage regulators is proposed in [9]. Although GAs have
been proven to be a powerful search mechanism, the
algorithms still suffer from premature stagnation and low
convergence velocity. These drawbacks make the algorithms
difficult to locate the global optimum when dealing with
complex problems with many local optima. For the
optimization of power electronic circuits, these problems
become even more crucial because the computations of the
fitness function are intensive. The direct application of the
simple genetic algorithm to the optimization problem
requires a long time to obtain an acceptable result and the
accuracy may not be high enough. In addition, the component
tolerances and their effects on the performance of the circuit
are ignored in the optimization process in [9]. In the
manufactured circuit, all components have tolerances
associated with them. As a result, the performance of each
manufactured circuit will usually differ from that of the
simulated nominal one. Although the nominal values fully
satisfy the specifications, sometimes a great many of
productions may violate the requirements giving a low
manufacturing yield. Therefore, it is necessary to develop a
powerful method for the comprehensive optimization of
power electronic circuits.

Many studies have been focus on improving the searching
abilities of GAs. One common strategy is the hybridization of
GAs with local search techniques. The hybrid algorithm
benefits from the combination of the global exploration
abilities of GAs and the exploitation advantages provided by
local search techniques. A number of methods have been
introduced in the published literature such as hill-climbing
[10]-[12], landscape approximation [13], and gradient
descent [14]. They have been successfully applied to solve
various kinds of problems and shown that they could
outperform traditional GAs. However, additional function
evaluations are always necessary for local search techniques
to exploit the vicinity. For real-world applications such as
circuit optimization in which certain amount of simulations
have to be performed, the evaluation of fitness function is
usually the most expensive part. It is therefore desirable to
find an effective and efficient way for the local search to
locate the nearby optimum in fewer function evaluations. An
orthogonal local search method is introduced in this paper by

2452

incorporating the local search with an experimental design
method called orthogonal design.

TABLE I
THE ORTHOGONAL ARRAY Lo(3%)
Factor

Combination ! 2 3 4
1 1 1 1 1
1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

TABLE II
THE ORTHOGONAL DESIGN OF THE CHEMICAL EXPERIMENT

Factor Reaction Chemical Amount of
Combination pressure concentration catalyst

1 100kPa 50% Ig
2 100kPa 60% 2g
3 100kPa 70% 3g
4 120kPa 50% 2g
5 120kPa 60% 3g
6 120kPa 70% g
7 140kPa 50% 3g
8 140kPa 60% 1g
9 140kPa 70% 2g

The orthogonal design, which is one of the most popular
design methods, has received widely application on science
research, manufacturing industries, agricultural experiments
and quality management. Recently, many researchers have
successfully combined the orthogonal design method into the
GA. Zhang and Leung [15] proposed an orthogonal genetic
algorithm (OGA) for the multimedia multicast routing
problems. Leung and Wang [16] designed an orthogonal
genetic algorithm call orthogonal genetic algorithm with
quantization (OGA/Q) for continuous variables optimization.
Different from the previous works in which the orthogonal
design method is implemented in the crossover operator, in
our work the method is used in a local search procedure
named orthogonal local search. The orthogonal local search
proposed in this paper is comprised of two main strategies,
namely the orthogonal exploitation and the adaptive step size.
The orthogonal exploitation enables the procedure to search
in the best direction and the adaptive step size strategy
automatically adjusts the search range in different situations.
Consequently, a fast convergence to the nearby optimum can
be achieved. A novel genetic algorithm named orthogonal
local search genetic algorithm (OLSGA) is proposed for the
optimization of the power electronic circuits. The OLSGA is
fast because of the orthogonal local search procedure and it is
more practical because a tolerance analysis is incorporated in
the fitness function. Experiments are conducted for the
optimization of a buck regulator and the results indicate that
the OLSGA is effective and efficient.

The rest of this paper is organized as follows. Section II
briefly introduces the orthogonal design method taking an
example of chemical experiment. Section III presents the
orthogonal local search technique including the orthogonal

2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 07:42:08 UTC from IEEE Xplore. Restrictions apply.

exploitation and the adaptive step size strategies. In Section
IV, the OLSGA is developed by incorporating the GA with
the proposed orthogonal local search. Section V shows the
fitness function with tolerance analysis. The results of the
optimization experiments are given in Section VI and the
conclusion of this paper is drawn in Section VII.

II. ORTHOGONAL DESIGN METHOD

An experimental design method called orthogonal design
is imposed in the proposed algorithm to determine a proper
search direction for the local search. In this part, we firstly
give a brief introduction to this experimental design method
and explain how it can reduce the efforts in finding the best
direction.

Let’s consider the following example. In order to
maximum the yield of a chemical product, three relevant
variables have to be fixed: a) reaction pressure, b) chemical
concentration, ¢) amount of catalyst. These variables are
known as factors in the experimental design. Suppose there
are three possible options for each factor:

a) 100kPa, 120kPa, 140kPa
b) 50%, 60%, 70%
) 1g,2g,3g

These different choices of each factor are called levels. To
obtain the most profitable combination of levels, one simplest
way is to do the full-scale experiment which means to
evaluate every possible combination. For the chemical

experiment, such method takes 3° =27 times of tests. A
full-scale experiment is able to provide the best combination,
however, at the cost of large amount of tests. For bigger
number of factors and levels, for example 6 factors and 5
levels for each factor, the number of experiments to be tested

becomes 5* =15625 which is absolutely unacceptable. As a
result, the orthogonal design is introduced to find small but
representative combinations by using a series of orthogonal
arrays.

Let Ly, (N*) denotes an orthogonal array for K factors

and N levels, in which “L” stand for a Latin square and M is
the total number of combinations. The orthogonal array

Ly (34) is illustrated in Table I. For the chemical experiment
mentioned above, the final design shown in Table II is
obtained by removing the last column of L, (3*) because

there are only 3 factors in the problem we consider. As shown

in Fig. 1, the experimental design is illustrated with a cube

that consist of 27 nodes for the totally 27 combinations. Each

dimension denotes a factor with three nodes representing the

corresponding levels. As it can be observed in the figure, the

9 nodes selected by the orthogonal array scatter uniformly in

the space since:

1) There are equally three testing points in every plane of
the cube.

2) There is equally one testing point in every row or
column of each plane.

2453

3g

2g

70%

lg
100kPa

120kPa

140kPa

O @ Feasible combinations

[] The combinations selected by the orthogonal array
Fig. 1. Distribution of the combinations in a cube.

Hence, conclusion can be drawn that the orthogonal design
is representative in reflecting the solution space, what is more
important, with only a few selected combinations. In general,
there are two main characteristics of the orthogonal array:

1) For any column of the array, every level occurs the same
number of times.

2) For any two columns, every combination of two levels
occurs the same number of times.

Based on these characteristics, more properties can be
deduced:

3) With any two columns swapped, the resulting array is
still an orthogonal one.

4) With any two rows swapped, the resulting array is still
an orthogonal one.

5) With any two levels swapped, the resulting array is still
an orthogonal one.

6) If any columns are deleted, the resulting array is still an
orthogonal array.

The last four properties are called the basic fundamental
transformations of orthogonal arrays. This kind of features
makes the arrays more flexible as different orthogonal array
can be used for the same problem. Usually, an experimental
design that has a fix number of factors and levels can use
orthogonal arrays with different number of combinations.
Applying a larger array may achieve a more convincible
result, but it suffers from a large quantity of experiments. On
the other hand, using a smaller array is much faster in
comparison, but the quality of the resulting solution may not
be as good. Therefore, a tradeoff has to be made by choosing
a suitable orthogonal array with proper scale of experiments
so that a better combination can be found in a tolerable time.

III. ORTHOGONAL LOCAL SEARCH

A neighborhood search procedure is able to deeper exploit
the most promising region of the search space. Thus, the
incorporation of GAs and local search techniques can greatly
enhance the efficiency of the convergence to the global
optimum. In order to fully take advantage of the local search,
several questions have to be answered ahead of time, such as
which individual should under go the local search; how to
exploit the neighborhood effectively; how many efforts

2454

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 07:42:08 UTC from IEEE Xplore. Restrictions apply.

should be put in, etc. To the first question, it should be noted
that the local search operator can be applied to every
individual in the population. However, such kind of
procedure requires large amount of function evaluations and
the application of the local search to the ordinary individuals
may turn out to be a waste of time. In the proposed algorithm,
the global best solution is selected to exploit its neighborhood
because it is more likely to be in the proximity of the global
optimum and therefore be able to guide the search towards the
target point.

In this paper, we mainly focus on two important issues —
the search direction and the search range. When trying to seek
for a better solution locally, we may attempt to slightly
change a selected individual from its original location to see if
there is any advancement. For the real-coded GAs, one
common task is to decide whether a specific gene should be
increased or decreased. Such issue becomes more crucial
when multi decisions have to be made such as the K
dimensions in the function optimization. This kind of
decisions can be regard as the look for a direction in the
solution space. Following a proper direction that provides
maximum possibility of local improvement can greatly
reduce the efforts in finding the global optimum. In contrast,
searching in a bad direction may probably lead to a less
potential region and turn out to be unnecessarily waste of
function evaluations. It is therefore of vital importance to find
out the best direction so as to enhance the ability of the local
search operator. Another question to be solved is the possible
amount of variation of each gene, that is, the range of
neighborhood in the solution space. With a selected direction,
an individual may take a step forward inside the
neighborhood. An excessively large neighborhood may
significantly reduce the possibility of finding better solutions
as the individual may step over the global optimum. In
contrast, searching in too small a local region can only result
in tiny improvement and more steps have to be taken before
reaching the global optimum which may slow down the pace.
Therefore, it is integral to determine an appropriate step size
to ensure both the efficiency and effectiveness of the local
search operator. Two different strategies are designed to
solve these problems, respectively.

A. Orthogonal Exploitation

The implementation of the local search to the global best
individual can be regarded as an experiment. This angle of
view inspires the application of the orthogonal design in the

local search. For the orthogonal array L,, (N X, there are

totally M combinations which stand for M search directions.
As discussed before, these directions are more representative
in reflecting other possible directions in the solution space.
Let’s consider an optimization problem with K factors and
suppose that there are three levels for each factor: the value
may 1) be increased, 2) be decreased, 3) remain unchanged.
The global best individual denoted by
X' =(x},X,,%;,...,Xg) is selected to generate a number of

M offspring x|,x5,X3,...,X), based on the corresponding

2008 IEEE Congress on Evolutionary Computation (CEC 2008)

orthogonal array L,, (3%) following the steps described
below:
Step 1) For the offspring X'; =(x;;,%;, %3505 Xg;) 5

each variable x;; is generated by

X+ ifLijzl
=% if L; =2 (1)
X —1 if L; =3

where L; €[1,2,3] is the corresponding value of combination

Jj with factor i in the orthogonal array L, (3%) and r; is the
step size. As it can be concluded from (1), the offspring x’; is

generated according to the jth combination of the orthogonal
array. In other words, each offspring represents a search
direction.

Step 2)

Xyi if Xyj > Xy
X = 2)
Y if x;; <

Xy <Xy

where x,; and x;; denote the upper and lower bound of x,

respectively. This step is to make sure the local search will
not exceed the search domain of the optimization process.

Step 3) Evaluate each generated offspring by a
predefined fitness function.

Step 4) Calculate the sum of fitness values for each level
of each factor and select the levels with the largest sum to
generate a predicted direction.

Step 5) Generate another offspring y' = (¥, y2,--- Yk)

according to the predicted direction by

X+ if B; =1
Yi =N if B; =2 3)
X, =T if B;=3

where B; €[1,2,3] represents the predicted level of factor i.

Again, make sure the search domain is not violated.

Step 6) Evaluate the fitness value of the newly generated
offspring.

Step 7) Pick out the best offspring and compare it to the
global best individual. If the fitness value of the offspring is
found to be higher, we may say that a promising direction is
found and the global best individual will be substituted.

However, it must be noticed that this best offspring may
not be the optimal individual in such search direction. A step
forward with a proper step size is needed for further
exploitation making full use of the information gathered by
the orthogonal design. Moreover, if no better offspring can be
found, the search range has to be adjusted so that a reasonable
step size can be taken in the next generation.

B. Adaptive Step Size

In the proposed method, an appropriate step size r, for

each factor is very important for a successful search. As the
best individual becomes closer to the global optimum during
the optimization procedure, r; should be shrunk to maximize

the possibility of reaching the optimal solution or its

2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 07:42:08 UTC from IEEE Xplore. Restrictions apply.

neighborhood. On the other hand, if the step size is too small,
the global optimum may not be contained in the local region

and 1, should be expanded in such situation. To tackle this

issue, we propose an adaptive method to adjust the step size
taken in the orthogonal local search and the only steps are
shown as follows:

Step 1) Initialize a steps counter N to record the

steps
number of steps taken in a certain direction. Apply the
orthogonal search to the global best individual. If a better
solution is obtained, store the best direction and expand r; for

the next step

n=nli)

where A € (0,1) is a shrinking rate of the step size. Else if no
better individual is found go to step 3).

Step2) N =N, +1.If N

is a user defined maximum number of steps, the local

steps steps steps >N, max » 11 which

N
search procedure will be terminated. Otherwise, generate
another offspring following the best direction based on the
best so far individual. If the fitness value of this offspring is
higher than the best so far individual, expand r, according to

max

(4) and repeat step 2). Or else, go to step 3).
Step 3) Shrink the step size by
n=rnxA Q)
and terminate the local search procedure.
From the steps above, we could see that if the orthogonal
local search failed to provide any better offspring, 7, will be

shrunk so as to narrow down the size of neighborhood.
Otherwise, i.e. a promising direction is found, the procedure
will further exploit the local region by a step forward for a
better solution. The step size is expanded in such situation so
as to go even deeper. The exploitation will be ended if there is
no more improvement in such direction.

C. Implementation of the Orthogonal Local Search

The proposed orthogonal local search procedure is applied
to the global best individual in every generation of the genetic
algorithm. For the local search in each generation, the
orthogonal array is reconstructed by random selection of the
columns in the standard array for each factor. The new
constructed array is still an orthogonal one according to the
characteristics, but having different distribution in the
solution space to make the search more general.

IV. ORTHOGONAL LOCAL SEARCH GENETIC ALGORITHMS

The incorporation of GAs with local search techniques is
able to compensate the deficiencies of GAs with the high
exploitation ability of the local search. In this paper, an
orthogonal local search genetic algorithm (OLSGA) is
proposed by combining the GA with the proposed orthogonal
local search. The rationale behind is to refine the potential
individual to make it more sensitive to its neighborhood. The
OLSGA here mainly follows the basic structure of the simple
genetic algorithm.

The steps of the proposed OLSGA are described as follows
with the aid of a flowchart shown in Fig. 2.

2455

Step 1) Initialize the optimization parameters.

‘ Parameters Initialization ‘

v

‘ Initialize P, individuals ‘

v

‘ Population evaluation ‘

No

Yes

‘ Selection ‘

v

‘ Crossover ‘

v

‘ Mutation ‘

v

‘ Population evaluation ‘

A
Elitist and orthogonal
local search

]

Fig. 2. Flowchart of the OLSGA.

Step 2) Randomly create a number of P, individuals

size

to buildup the first generation.
Step 3) Initialize a counter func which records the

number of fitness function evaluations. Evaluate each
individual in the population by a predefined fitness function.
Step4) If func> func, where func is the

predefined maximum number of function evaluations, the
optimization process will be terminated. Otherwise, go on to
step 5).

Step 5) Select the individuals for the next generation
using the roulette wheel selection method.

Step 6) Perform the crossover operator to the population
with the crossover rate of p, .

max > max

Step 7) Perform the mutation operator to the population
with the mutation rate of p,, .

Step 8) Evaluate the new population.

Step 9) Reserve the global best individual and
implement the orthogonal local search. Go to step 4).

V. FITNESS FUNCTION

The proposed algorithm is used to design and optimize the
same buck regulator as in [9]. The circuit schematic is shown
in Fig. 3, in which the converter is decoupled into two parts,

2456

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 07:42:08 UTC from IEEE Xplore. Restrictions apply.

Q P . AN —— Y
Lif A
Iy e R
Drive Ny E
v, —= Circuit CT
PCS ‘
R
FN
= G
I R
C. 3
R\
j Veon o« AMN—
R4
A Vrer
Vi c,

Fig. 3. Circuit schematic of a buck regulator.

namely the power conversion stage (PCS) and the feedback
network (FN). These two parts are optimized separately in
two different procedures. The PCS is optimized for the
required static characteristics and the FN is optimized for
both the static and dynamic behavior of the whole system. For
the PCS, L and C are the design components with all the
parasitic resistances being known a priori. All the
components in the FN are the parameters to be optimized. In
this paper, we are not going to apply the OLSGA to optimize
the PCS part. Instead, the results C=1054puF, L=194puH in [9]
are taken for the optimization of the FN. The fitness function
of the FN which is taken from [9] is shown as follows

RL_max Vi

5 (CF)= z Z[OFs(RL,vin,CF)+
Ry =R}, i ORL, iy =V;

:)
in=Vin_min O

OF4(R;,v;,,CF)+OF; (R, ,v

CF)]+OFy(R,,v,,,CF)
(©)

in>

where CF =[R3,C,,C3,R,,C4,R,,R] denotes the

individual of the FN. R, ., and R, ., .V,

in_min
V.

in_max

and
are the minimum and maximum values of R; and
Vi, » Tespectively. oR; and dv;, are the steps in varying R;
and v, . OF5, OF;, OF,; and OF; represent the four object
functions for the FN.

However, component tolerances are not considered in this
fitness function. As a result, the resulting component values
may not be the optimal ones for manufactured circuits. In this
paper, we are not going to directly apply this fitness function.
Instead, a more general one with tolerance analysis is adopted
in which a sampling method is used to evaluate the influence
of the component tolerances. The fitness function used in this
paper is shown as follows

¥ (CF) =[® (CF) + ® - (CF x1.03) + ® . (CF x095) _
+®,.(CF x1.03)+ ® - (CF x0.97)]/5 2

2008 IEEE Congress on Evolutionary Computation (CEC 2008)

TABLE III
OPTIMIZATION RESULTS

Algorithm funcimax Mean Best Worst
OLSGA 3000 139.42 140.46 138.77
GA 15000 134.26 140.12 128.39
145 T T T T T T T T
140 - 4
1354 s 4
’. MAAMMM“AM“M
1304 & asad 4
o ! jaaaatt
= i H aas’ i
E 125 L
2 1204 T i
£ | u
E 54 4] -
==} ‘]
moq i —+—GA B
105 | —=—OLSGA}]
004 * 4
95 T T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000 16000

Number of function evaluations

Fig. 4. Fitness value versus the number of function evaluations.
(A dot line is drawn because the maximum number of function evaluations of
the proposed OLSGA is 3000 only.)

TABLE IV
RESULTING COMPONENT VALUES OF THE BUCK REGULATOR
Component Value
Rc3 44.298kQ
C, 16.409puF
Cs 0.669puF
R, 2.897TMQ
Cy 4.024puF
Ry 1.845kQ
R 449.939Q

As we could see in the function, a small number of samples
around the nominal values are evaluated and incorporated in
the fitness function in order to give a general estimation of the
circuit performance. It should be noticed that more samples
with various distribution could be added in the fitness
function to make it more precise. However, more
computational time is required for evaluations of the
additional samples. Therefore, a tradeoff has to be made
considering both the effect and the time limit.

VI. EXPERIMENTS AND RESULTS

Experiments are carried out for the proposed OLSGA in
comparison of the GA method used in [9]. In this part, we
compare these two algorithms based on the fitness function
evaluations. This is because the evaluation of fitness function
is usually the most expensive part in the optimization of
power electronic circuits. With the same number of function

2008 IEEE Congress on Evolutionary Computation (CEC 2008)

6 T T T T T
v
o
4 .
—
>
<
9]
o0 -
X con
=
o
>
2 .
0 T T T T T
0.000 0.005 0.010 0.015 0.020 0.025 0.030
Time (sec)
(a) v, and v,
4 T T T T T
3 .
—_
<
NS
]
S 27 T
g
=
O
14
0 T T T T T 1
0.000 0.005 0.010 0.015 0.020 0.025 0.030
Time (sec)
() i,

Fig. 5. Simulated startup transients when v;, is 20V and Ry, is 5Q.

evaluations, the execution time of different algorithms are
almost the same.

The parameters of the GA are set the same as in [9] where
P;,=30, p, =085, p, =0.25, except that the maximum

number of fitness function evaluations func,,, is 3000. The

parameter settings of the orthogonal local search procedure

are N, =2 and 2=0.8. To make fair comparison, each

algorithm is executed for twenty independent trails.

The optimization results of both algorithms are tabulated in
Table III. The ‘Mean’ stands for the average resulting fitness
value of the twenty trials and the ‘Best’ and ‘Worst’ stand for
the best and worst fitness value, respectively. As shown in the
table, the OLSGA on average achieves better results than the
GA method. Moreover, the proposed algorithm is more
reliable as the worst fitness obtained is 138.77, which is much
higher than the worst result of the GA. Fig. 4 shows the
average fitness values versus the number of fitness function
evaluations of both the results obtained by the GA and the

2457

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 07:42:08 UTC from IEEE Xplore. Restrictions apply.

Voltage (V)
<

T T T T T
0.030 0.035 0.040 0.045 0.050 0.055 0.060

Time (sec)

(a) Vo and Veon

Current (A)

T T T T T
0.030 0.035 0.040 0.045 0.050 0.055 0.060

Time (sec)

(®) i,
Fig. 6. Simulated transient responses when v;,, is changed form 20V to 40 V.

proposed OLSGA. As it can be observed in the figure, in the
optimization process the OLSGA converges much faster than
the GA. The optimal result is achieved within 3000 function
evaluations in the proposed algorithm, whereas in the GA it
requires as many as 15000 function evaluations and the
global best fitness value is still not comparable with that of
the OLSGA.

Circuit simulations are carried out for the resulting
component values of the proposed OLSGA which is shown in
Table IV. The simulated startup transients when the input
source is 20V and the output load is 5Q are shown in Fig. 5.
As we can see in the figures, the settling time is less than
20ms and the steady state ripple voltage is less than 1%. No
overshoot or undershoot can be observed in the output
voltage. Large signal behavior tests are performed for the
circuit and the input voltage is suddenly changed from 20V to
40V in the steady state. The transient responses are shown in
Fig. 6. The output voltage can revert to the steady state in less
than 20ms. Again, similar tests are carried out for output load

2458

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 07:42:08 UTC from IEEE Xplore. Restrictions apply.

Voltage (V)

T T T T T
0.030 0.035 0.040 0.045 0.050 0.055 0.060
Time (sec)

(@) vy and veop

Current (A)
1

0.035 0.040 0.045 0.050 0.055

Time (sec)
() i

Fig. 7. Simulated transient responses when Rj is changed form 5Q to 10Q.

disturbances when the input voltage is fixed at 40V. Fig. 7
shows the transients when R; is changed from 5Q to 10Q.
The steady state can be achieved when the circuit is working
in discontinuous conduction mode (DCM). The results of the
simulations show that both the static and dynamic responses
are well within the required specifications. In comparison
with the GA, the optimal circuit parameters can be obtained in
a much shorter time in our program which confirms the
virtues of the proposed method.

VII. CONCLUSION

A novel local search method is developed for the genetic
algorithm to design and optimize the power electronic circuits
in this paper. The advantages of the proposed algorithm lie in
the detection of the best search direction and the adaptive step
size strategy. The introduction of the orthogonal design
method ensures the exploitation ability of the local search
procedure by collecting representative combinations in the
solution space. The most suitable step size is acquired during

2008 IEEE Congress on Evolutionary Computation (CEC 2008)

the adaptive expanding or shrinking of the search range. The
design and optimization of a buck regulator is used to test the
quality of the proposed method. The results are compared to
the published results in the literature which verify both the
effectiveness and the efficiency of the proposed OLSGA.

REFERENCES

[11 R. D. Middlebrook and S. ~ Cuk, “A general unified approach to
modeling switched converter power stage,” in Conf. Rec. IEEE Power
Electronics Specialists Conf., pp. 18-34, June 1976.

[2] F. C. Lee, R. P. Iwens, Y. Yu, and J. E. Triner, “Generalized
computer-aided discrete time-domain modeling and analysis of dc-dc
converters,” IEEE Trans. Ind. Elect. Contr. Instrum., vol. IECI-26, pp.
58-69, May 1979.

[3] P. R. K. Chetty, “Current injected equivalent circuit approach to
modeling switching dc-dc converters,” IEEE Trans. Aerosp. Electron.
Syst., vol. AES-17, pp. 802-808, Nov. 1981.

[4] G. C. Verghese, M. E. Elbuluk, and J. G. Kassakian, “A general
approach to sampled-data modeling for power electronics circuits,”
IEEE Trans. Power Electron., vol. PE-1, pp. 76-88, Apr. 1986.

[5]1 J. H. Holland, Adaptation in Nature and Artificial Systems, 2nded.
Cambridge, MA: MIT Press, 1992.

[6] M. Srinivas, L. M. Patnaik, “Genetic Algorithms: A Survey,” IEEE
Computer, vol. 27 n0.6, pp.17-26, June 1994.

[71 D. E. Goldberg, “Genetic Algorithm in Search, Optimization and
Machine Learning,” Reading, MA: Addison-Wesley, 1989.

[8] Z. Michalewicz, Genetic Algorithm + Data Structures = Evolution
Programs, Springer-Verlag Berlin Heidelberg 1996.

[91 J. Zhang, H. S. H. Chung,W. L. Lo, S. Y. Hui, and A. K. M.Wu,
“Implementation of a decoupled optimization technique for design of
switching regulators using genetic algorithms,” IEEE Trans. Power
Electron., vol. 16, pp. 752-763, Nov. 2001.

[10] D. Whitley, S. Gordon, and K. Mathias, “Larmarckian evolution, the
Baldwin effect and function optimization,” in Parallel Problem Solving
from Nature-PPSN III, Berlin: Springer-Verlag, pp. 6-15, 1994.

[11] J. M. Renders and H. Bersini, “Hybridizing genetic algorithms with
hill-climbing methods for global optimization: Two possible ways,”
Proc. Ist IEEE Int. Conf. Evolutionary Computation, pp. 312-317,
1994.

[12] J. Yen, J. C. Liao, B. Lee, and D. Randolph, “A hybrid approach to
modeling metabolic systems using a genetic algorithm and simplex
method,” IEEE Trans. Syst., Man, Cybern. B, vol. 28, pp. 173-191,
Apr. 1998.

[13] K.-H. Liang, X. Yao, and C. Newton, “Combining landscape
approximation and local search in global optimization,” Proc. 1999
IEEE Int. Congr. Evolutionary Computation, pp. 1514-1520, 1999.

[14] R. Salomon, “Evolutionary algorithms and gradient search: Similarity
and differences,” IEEE Trans. Evol. Comput., vol. 2, pp. 45-55, July
1998.

[15] Q. Zhang and Y. W. Leung, “Orthogonal genetic algorithm for
multimedia multicast routing,” IEEE Trans. Evol. Comput., vol. 3, no.
1, pp. 91-96, Apr. 1998.

[16] Y. W. Leung and Y. P. Wang, “An orthogonal genetic algorithm with
quantization for global numerical optimization,” IEEE Trans. Evol.
Comput., vol. 5, no. 1, pp. 41-53, Feb. 2001.

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 2459

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 07:42:08 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

