
  

  

Abstract—The conventional K-Means clustering algorithm 
must know the number of clusters in advance and the clustering 
result is sensitive to the selection of the initial cluster centroids. 
The sensitivity may make the algorithm converge to the local 
optima. This paper proposes an improved K-Means clustering 
algorithm based on Quantum-inspired Genetic Algorithm 
(KMQGA). In KMQGA, Q-bit based representation is 
employed for exploration and exploitation in discrete 0-1 
hyperspace by using rotation operation of quantum gate as well 
as three genetic algorithm operations (Selection, Crossover and 
Mutation) of Q-bit. Without knowing the exact number of 
clusters beforehand, the KMQGA can get the optimal number 
of clusters as well as providing the optimal cluster centroids 
after several iterations of the four operations (Selection, 
Crossover, Mutation, and Rotation). The simulated datasets and 
the real datasets are used to validate KMQGA and to compare 
KMQGA with an improved K-Means clustering algorithm 
based on the famous Variable string length Genetic Algorithm 
(KMVGA) respectively. The experimental results show that 
KMQGA is promising and the effectiveness and the search 
quality of KMQGA is better than those of KMVGA. 

I. INTRODUCTION 

EXT clustering plays an important role in many research 
areas, such as information retrieval, text summarization, 
topic detection, and data mining. Generally speaking, 

conventional text clustering algorithms can be grouped into 
two main categories, namely hierarchical clustering 
algorithms and partitional clustering algorithms. A 
hierarchical clustering algorithm outputs a dendrogram, 
which is a tree structure showing a sequence of clusterings 
with each clustering being a partition of the dataset [1]. 
Unlike the hierarchical clustering algorithm, the partitional 
clustering algorithms partition the data set into a number of 
clusters, and the output is only a single partition of the data set. 
The majority of partitional clustering algorithms obtain the 
partition through the maximization or minimization of some 
criterion function. Recent researches show that the partitional 
clustering algorithms are well suited for clustering a large 
dataset due to their relatively low computational requirements 
[2]. And the time complexity of the partitional algorithms is 
almost linear, which makes them widely used [3]. 
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Among the partitional clustering algorithms, the most 
famous one is K-Means clustering algorithm [4]. K-Means 
clustering algorithm must know the exact number of final 
clusters (K) and a criterion function to evaluate whether the 
final partition is good. Then the algorithm randomly 
generates K initial clusters centroids. After several iterations 
of this algorithm, text data can be classified into a certain 
cluster by the criterion function, which make text data is 
similar to each other in the same cluster. However, the 
traditional K-Means clustering algorithm has two drawbacks. 
One is the number of clusters must be known in advance, and 
the other is that the result is sensitive to the selection of initial 
cluster centroids and this may make the algorithm converge to 
the local optima. Different dataset has different number of 
clusters, which is difficult to know beforehand, and the initial 
clusters centroids are selected randomly, which will make the 
algorithm converge to the different local optima. Therefore, 
the conventional K-Means clustering algorithm does not 
work well in practice. 

Due to these two drawbacks, more and more researches on 
K-Means clustering algorithm are to find the optimal number 
of clusters (K) and the best initial clusters centroids. Since the 
Q-bit representation in quantum computing can represent 
linear superposition of states probabilistically, it has a better 
characteristic of population diversity than other 
representations. In this paper, we propose an improved 
K-Means clustering algorithm based on Quantum-inspired 
Genetic Algorithm (KMQGA). KMQGA use Q-bit [5] as its 
chromosome’s representation and Davies-Bouldin Rule 
Index [6] as criterion function. Every chromosome in 
KMQGA denotes clusters centroids of a partition. Different 
chromosomes can have different string length of Q-bits, that 
is, different chromosomes denote different partitions. Before 
performing the GA operations (Selection, Crossover, and 
Mutation) and the Quantum operation (Rotation), the Q-bit 
representation firstly have to be encoded into the binary 
representation, and then the real-coded representation. When 
the GA operations and the Quantum operation are conducted 
during the iterations of KMQGA, the chromosome may 
change its string length, that is, the clusters centroids of a 
partition are changed. After several iterations of KMQGA, 
the improved algorithm can find the optimal number of 
clusters as well as the initial clusters centroids, due to the 
string length variation of chromosome. The simulated 
datasets and the real datasets are used to verify the 
effectiveness of KMQGA and to compare KMQGA with a 
K-Means clustering algorithm based on the famous Variable 
string length Genetic Algorithm (KMVGA) [7, 8] 
respectively. 

The rest part of this paper is organized as follows: Section 
 introduces some related work about optimization problems 
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using the concept of quantum computing. Section  briefly 
introduces the quantum computing .The details of KMQGA 
are described in Section . Experiments and results are 
presented in Section . We conclude this paper in Section 

. 

II. RELATED WORK 

Quantum computing is a research area that includes 
concepts like quantum-mechanical computers and quantum 
algorithms. So far, many efforts on quantum computing have 
progressed actively due to its superiority to classical 
computers on many aspects. Also, there are some well-known 
quantum algorithms, such as Grover’s database search 
algorithm [9] and Shor’s quantum factoring algorithm [10]. 
During the past two decades, evolutionary computing has 
attracted more and more researchers and played an important 
part in the area of optimization. Recently, the work of 
merging quantum computing and evolutionary computing has 
stimulated the studies of its theories and applications. The 
most important work to classical computer was done by Han 
and Kim [11]. They proposed a quantum evolutionary 
algorithm which is used to solve combinational problem on 
classical electronic computer. In [12], a quantum-inspired 
genetic algorithm is proposed for flow shop scheduling 
problem with a single objective. And in [13], a hybrid 
quantum-inspired genetic algorithm is proposed for 
multi-objective flow shop scheduling problem. The concept 
of quantum computing algorithms are also applied to some 
other applications, such as solving the travelling salesman 
problem [14], image segmentation [15], and face detection 
[16]. 

III. QUANTUM COMPUTING 

Before describing KMQGA, we introduce the quantum 
computing briefly. Unlike the two-state (0/1) representation 
in conventional computing, the smallest information 
representation in quantum computing is called quantum bit 
(Q-bit) [17]. The state of Q-bit may be “0” state, “1” state or 
any superposition of the two. So the state of Q-bit can be 
represented in formula : 

 
Where  and  are complex numbers that specify the 

probability amplitudes of the corresponding states. Thus,  
and  denote probabilities that the Q-bit will be found in 
the “0” state and the “1” state, respectively. Normalization of 
the state to the unity guarantees in formula : 

 
Thus, a Q-bit can be represented as the linear superposition 

of the two conventional binary genes (0 and 1). A Q-bit 
individual as a string of  Q-bits is defined in formula : 

 

If there is a string of  Q-bits, then the string can represent 
 states at the same time. The state of a Q-bit can be 

changed by the operation with a quantum gate, such as the 
NOT gate, the rotation gate, etc. However, the superposition 
of “0” state and the “1” state must collapse to a single state in 
the action of observing a quantum state, that is, a quantum 

state have to be the “0” state or “1” state. In the evolutionary 
computing, Q-bit representation has a better characteristic of 
population diversity than other representations, because it can 
represent linear superposition of states probabilistically. 
Examples of Q-bit representation can be seen in [11]. 

Inspired by the concept of quantum computing and the 
representation of Q-bit, KMQGA is designed with this novel 
Q-bit representation, and Quantum Rotation operation is one 
of the various operations in the algorithm. 

IV. KMQGA 

In this section, we first propose the overall algorithm of 
KMQGA. Then the chromosome representation and the 
fitness function of this algorithm will be presented. Last, four 
main operations and an accessional operation (GA selection, 
GA crossover, GA mutation, Quantum rotation operation and 
Quantum catastrophe operation) will be interpreted. 

A. The Overall Flowchart of KMQGA 

KMQGA uses Davies-Bouldin (DB) Rule Index as its 
criterion function, which is also called fitness function, to 
evaluate the partition of a dataset is good or not. The overall 
flowchart of KMQGA is shown in Fig. 1.The algorithm 
begins with initializing the population randomly. Each 
chromosome (also called individual) in the population 
denotes a certain partition of a dataset. The chromosome is 
represented by the Q-bit representation at first. Then the Q-bit 
string will be collapsed into a certain state, which is a binary 
string. After the collapse operation, there is another operation 
to change this binary string into real-coded string. Each real 
number in the real-coded string denotes a pattern of the 
dataset. Then the algorithm run conventional K-Means 
clustering algorithm on each chromosome just one time and 
evaluates each chromosome by the DB rule index fitness 
function and calculates value and the selected probability in 
the later GA selection operation. The performance of a certain 
partition of a dataset is evaluated by the fitness value. Based 
on the selected probability, the algorithm can produce a new 
population through roulette selection and the elite selection. 
The GA crossover operation affects each chromosome in 
terms of the crossover probability. In the process of GA 
crossover operation, the length of each chromosome may be 
changed. Due to this change, the partition denoted by the 
chromosome is changed accordingly, and after several 
iterations of this algorithm, the better chromosome may be 
shown up. Then the GA mutation and Quantum rotation 
operation are performed, both of which may make the 
searching space of KMQGA more diversified. In order to 
avoid the degeneration of the chromosome and prematurity of 
the algorithm, KMQGA uses elite selection operation, 
adaptive probabilities of crossover operation and mutation 
operation, quantum catastrophe operation. The overall 
procedure of KMQGA is summarized as follows: 

(a) Randomly generating an initial population using 
Q-bit representation; 

(b) Collapsing the Q-bit representation into the binary 
representation, and then the real-coded 
representation. Using the DB fitness function to 
evaluate each chromosome; 
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(c) If the stopping criterion is satisfied, then output the 
best result; otherwise save the best chromosome 
and go to the following steps; 

(d) If the prematurity criterion is satisfied, then go to 
step (f); otherwise go to step (e); 

(e) Adjusting the probabilities of crossover and 
mutation as  and  respectively. Then go to 
step (g); 

(f) Adjusting the probabilities of crossover and 
mutation as  and  respectively. Then go to 
step (g); 

(g) Performing selection operation, crossover operation 
and mutation operation; 

(h) If the catastrophe criterion is satisfied, then go on 
step (j); otherwise go to step (g); 

(i) Look up table of rotation angle, and then perform 
rotation operation. Go back to step (b); 

(j) Perform catastrophe operation. Go back to step (b). 
KMQGA sets a maximal iteration number  as its 

stopping criterion, which should be as big as possible in order 
to find the optimal solution. The prematurity criterion is 
satisfied when the best chromosome saved by the algorithm 
does not change after  iterations, where . 
That is to say, the best chromosome in current iteration is the 
same as the best one which is  iterations ago, then 
probabilities of the crossover ( ) and the mutation ( ) 
should be adjusted to  and  respectively for the sake 
of jumping out of the local trap. Since the larger probability of 
the crossover can exchange more information among a couple 
of chromosomes, and the larger probability of the mutation 
can enlarge the diversity of the population, the algorithm 
adjusts  and  to larger probabilities ( and ).The 
catastrophe criterion [12] is similar to the prematurity 
criterion and we think it is trapped in a local optima if the best 
solution does not vary in a number of consecutive generations. 
Then the best solution is reserved and the others will be 
replaced by randomly generated solutions. Another number 

 needs to be set to judge whether the catastrophe 
criterion is met, where . 

The four probabilities ( , , , ) are real numbers 
less than 1.0, where  ,  , 

 and . Here, we 
set .and  is a function that generates a 
real number between  and . 

B. Representation of chromosome in KMQGA 

Inspired by the concept of quantum computing, the Q-bit 
representation and the representation of Modified Variable 
string length Genetic Algorithm (MVGA) [18]; KMQGA 
employs a modified variable Q-bit string length 
representation. Before coding the chromosomes, the amount 
of texts to be clustered in dataset N should be known and the 
range of K (number of clusters)  should be 
defined first, where  and . As long as the 

 is not less than the exact number of clusters, the 
algorithm can get the optimal solution. However, if is 
much greater than the exact number of clusters, the cost of 
both the computation time and the storage space will be high. 

Research shows that the optimal K is not larger than [19]. 
Therefore, the range of K is set to . 

Knowing the amount N, we are also aware of the number of 
binary string length (B) to denote a text pattern ID, that 
is, . For example, if the number of texts is 178, 
then . 

When coding the chromosome, a number  is randomly 
generated first, where . Thus, the Q-bit string 
length of this chromosome is . The chromosome 
representation is presented as follows: 

 

Then the Q-bit string will be collapsed into a certain state, 
which is a binary string. That is, randomly generating a float 
number , where . If , then the corresponding 
binary state is 0, otherwise is 1. 

After the collapse operation, there is another operation to 
change this binary string into real-coded string. The algorithm 
converts every  binary string into a real number. Each real 
number in the real-coded string denotes a pattern of the 
dataset. 

 
Fig. 1  The Overall Flowchart of KMQGA 
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C. Fitness function of KMQGA 

Evaluating a certain partition should use a criterion function 
(also called fitness function). A good fitness function can give 
a high value to a good partition solution and give a low value 
to a bad partition. There are many fitness functions to 
evaluate clustering nowadays, such as Euclidean distance, 
Davies-Bouldin Rule Index, Dunn index [20], and Turi [21], 
S_DBW [22], CDBW [23]. 

Since the DB rule index can evaluate the distance of 
intra-cluster and the distance of inter-cluster, KMQGA 
employs DB as its fitness function. We describe DB as 
follows [24]: 

 

 

Where is the set the  cluster, is the amount of texts 
in the cluster , is the centroids of , is the 
Euclidean distance between text pattern  and , means 
the average cohesion of . 

 

Where  denotes the distance between  and  

 

 

The smaller the DB value, the better the partition. So we let 

 be the KMQGA’s fitness function. 

 

Since this Q-bit representation cannot denote the 
expression of the text pattern ID directly, the Q-bit 
representation has to be collapsed to binary string 
representation first. A Q-bit string  with length  is 
firstly collapsed to a certain state (0-1 state) according to the 
probability amplitudes of the individual. For

, we generate a random number  
between . If  of chromosome  satisfies , 
then set to 0, otherwise set it to 1. After the binary string is 
constructed, we encode every -length binary string into a 
real number, which is a text pattern ID. That is to say, 
KMQGA first change the Q-bit string to binary string, and 
then convert it to real number. Thus, a Q-bit string with length 

 denotes a partition with  centroids. By doing this, the 
DB fitness function can evaluate every partition.  

D. Selection Operation in KMQGA 

Roulette selection and elite selection are employed in 
KMQGA. Roulette selection runs according to the selected 
probability. Usually, the chromosome with high fitness value 
will be chosen to the next iteration with a high probability. 
However, in order to avoid the optimum chromosome with 
good fitness value is not selected occasionally; KMQGA 

performs elite selection after the roulette. Elite selection 
guarantees that the best chromosome in a certain generation 
will not be lost in the evolutionary process. The basic idea of 
elite selection is: if a certain individual in the former 
generation is better than the best individual in the current 
generation, then some individuals in the current generation 
will be replaced by the better ones in the former generation. 
The pseudo code of elite selection is expressed as follows: 

For the  generation, the population is 
 

and  is the best individual in the  generation. 

 

 

 
 

  

 

        

 

  

E. Crossover Operation in KMQGA 

KMQGA uses a special crossover operation which can 
change the length of parent-chromosomes. For each 
chromosome, the crossover point is randomly chosen 
according to its own string length. For example, there are two 
chromosomes ( ) with length 8 and 5 respectively: 

 

 

A random integer between 1 and its length is generated as 
the crossover point for each chromosome. For example, the 
crossover point of  are 6 and 2 respectively. Then, 
the new chromosomes ( ) are shown as follows: 

 

 

Now, we can see both of the chromosomes’ lengths are 
changed. Due to this change, the partition solution denoted by 
the chromosome is changed accordingly. Thus, the search 
space is larger and the optimal solution could be found. 

F. Mutation Operation in KMQGA 

For the diversity, mutation is employed. Based on the 
mutation probability, mutation point is generated randomly 
according to the chromosome’s length. For example, there is 
a chromosome ( ) with the length of 7. 

 

The mutation point is a number between 1 and its string 
length 7. If  mutation point is 5, then KMQGA change the 
position of  and . The new chromosome is  is shown 
as follows: 
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G. Rotation Operation in KMQGA 

A rotation gate  is employed to update a Q-bit 
individual as follows: 

 

where  is the  Q-bit and  is the rotation angle of 

each Q-bit toward either 0 or 1 state depending on its sign. 
The rotation operation used in KMQGA is to adjust the 

probability amplitudes of each Q-bit. According to the 
rotation operation in , a quantum-gate  is a function 
of , where  is the sign of  which 
determines the direction and  is the magnitude of rotation 
angle [13]. The lookup table of  is shown in Table , 
where  and  are the  bits of the best solution  and a 
binary solution of , respectively. In particular, if the length 
of  is not the same as the length of , then additional 
correcting performance will be employed. In this paper, we 
increase/delete the s Q-bits randomly if the length of  is 
less/more than the length of . Because  is the best solution 
in KMQGA, the use of quantum-gate rotation is to emphasize 
the searching direction toward . 

TABLE  
THE LOOKUP TABLE OF ROTATION ANGLE 

  
 

  

    
0 0 False 0 0 0 0 0 
0 0 True 0 0 0 0 0 
0 1 False 0 0 0 0 0
0 1 True 0.05  -1 +1 ±1 0 
1 0 False 0.01  -1 +1 ±1 0 
1 0 True 0.025  +1 -1 0 ±1 
1 1 False 0.005  +1 -1 0 ±1 
1 1 True 0.025  +1 -1 0 ±1 

H. Catastrophe operation in KMQGA 

To avoid premature convergence, a catastrophe operation 
[12] is used in KMQGA. We consider that it is trapped in 
local optima if the best solution does not change in certain 
consecutive generations. Then the best solution is reserved 
and the others will be replaced by solutions randomly 
generated. 

V. EXPERIMENTAL EVALUATION OF KMQGA 

In this section, we will test the performance of the proposed 
KMQGA. First, we test KMQGA’s correctness using three 
simulated datasets. Then four datasets from famous UCI 
machine learning repository [25] are carried out to compare 
the performance and the effectiveness of KMQGA with those 
of KMVGA. In both simulated data and real data experiments, 
we set the size of population as 100, ,

, , . We set  and 
 in simulated data and real data respectively. 

A. Simulated datasets 

We generate three simulated datasets (sds1, sds2, sds3), 
randomly. There are three, four and eight clusters in sds1, 

sds2, sds3 respectively. Each cluster in simulated datasets has 
100 data vectors. To get the direct vision from the coordinate, 
we define each data vector as two dimensions. Details of 
clusters’ ranges of sds1, sds2 and sds3 are given in Table , 
Table , and Table  respectively. 

TABLE  
DETAILS OF CLUSTERS’ RANGES IN SDS1 DATASET 

Coordinate Range of sds1 
Cluster1 Cluster2 Cluster3 

X [0,20] [40,60] [80,100] 
Y [0,20] [40,60] [80,100]

 
TABLE  

DETAILS OF CLUSTERS’ RANGES IN SDS2 DATASET 
Coordinate Range of sds2 

Cluster1 Cluster2 Cluster3 Cluster4 
X [0,20] [40,60] [80,100] [0,20] 
Y [0,20] [40,60] [80,100] [80,100] 

 
TABLE  

DETAILS OF CLUSTERS’ RANGES IN SDS3 DATASET 
Coord
inate 

Range of sds3 
Clus
ter1 

Clus
ter2

Clus
ter3 

Clus
ter4 

Clust
er5 

Clust
er6 

Clust
er7 

Clust
er8 

X [0,2
0] 

[40,
60] 

[80,
100]

[80,
100] 

[0,20
] 

[180,
200]

[180,
200] 

[180,
200] 

Y [0,2
0] 

[40,
60]

[80,
100]

[0,2
0] 

[180,
200] 

[0,20
] 

[80,1
00] 

[180,
200] 

After a certain range is given, these data vectors are 
generated in uniform probability distribution with the given 
range. We run KMQGA with the three simulated datasets for 
ten times, and each time we get the number of clusters (K). 
Details of the results are given in Table : 

TABLE  
DETAILS OF RESULTS WHICH KMQGA RUNS 

Datase
t 

K in 
Datase

t 

KMQGA results 
1 2 3 4 5 6 7 8 9 10 Avera

ge 
Sds1 3 3 3 3 3 3 3 3 3 3 3 3 
Sds2 4 4 4 4 4 4 4 4 4 4 4 4 
Sds3 8 8 8 8 8 8 8 8 8 8 8 8 

KMQGA also obtains the best initial clusters centroids of 
each dataset. One of the ten runs experiments’ results are 
shown as follows. Fig. 2, Fig. 3, Fig. 4 are the partitions 
solution of sds1, sds2, sds3 respectively.  
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Fig. 2  sds1 dataset 
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Fig. 3  sds2 dataset 
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Fig. 4  sds3 dataset 

 
We can see from Table  that KMQGA can get the exact 

K of each dataset in all 10 experiments. In Fig. 2, Fig. 3, Fig. 4, 
the initial clusters centroids obtained by KMQGA are 
reasonable, since each centroids are almost in the center of 
corresponding data vectors from a visual point of view. Thus, 
the correctness of KMQGA is proved by the simulated 
datasets in our experiment. 

B. Real datasets (UCI datasets) 

The four real datasets from UCI machine learning 
repository are Glass, Wine, SPECTF-Heart and Iris. The 
details of the four datasets, which can be found in the .names 
file of every dataset’s fold [25], are summarized in Table . 

TABLE  
DETAILS OF UCI REAL DATASETS 

Dataset Number of 
Instances 

Number of 
Attributes 

Number of 
clusters 

Glass 214 9 2 
Wine 178 13 3 

SPECTF-Heart 187 44 2 
Iris 150 4 3 

For each dataset, KMQGA and KMVGA run 10 times 
respectively. And the average results are shown as follows in 
Table : 

 
TABLE  

COMPARING RESULTS BETWEEN KMQGA AND KMVGA 
Dataset KMQGA KMVGA 

Number of 
clusters 

Best 
fitness 
value 

Number of 
clusters 

Best 
fitness 
value

Glass 2 63.5291 2 36.0576
Wine 3 10.6751 12 4.0309 

SPECTF-Heart 2 10.9353 2 6.816
Iris 3 13.9861 6 4.8024 

We can see from the results from Table  that, for all the 
four real datasets, KMQGA obtains the exact K. But the 
KMVGA just gets the optimal result in Glass dataset and 
SPECTF-Heart dataset and cannot get the exact K in another 
two datasets. For the best fitness value, KMQGA gets the 
higher value than KMVGA does. In Glass dataset, 
KMQGA’s best fitness value is 1.7619 times higher than 
KMVGA’s. In Wine dataset, KMQGA’s best fitness value is 
2.6483 times higher than KMVGA’s. In SPECTF-Heart 
dataset, KMQGA’s best fitness value is 1.6044 times higher 
than KMVGA’s. In Iris dataset, KMQGA’s best fitness value 
is 2.9123 times higher than KMVGA’s. Therefore, we can 
say that KMQGA is better than KMVGA in real datasets in 
our experiments. 

From the results of both our simulated datasets and the UCI 
real datasets, the correctness of KMQGA is proved. And the 
performance, the effectiveness and the stability of KMQGA 
are better than those of KMVGA. 

VI. CONCLUSION 

In this paper, we propose an improved K-Means clustering 
algorithm based on Quantum-inspired Genetic Algorithm 
(KMQGA). This algorithm employs Q-bit representation and 
the concept of quantum computing. Four main operations and 
an accessional operation (GA selection, GA crossover, GA 
mutation, Quantum rotation operation and Quantum 
catastrophe operation) are performed to search the optimal 
partition solution of a certain dataset. And the Q-bit string 
length can be changed in crossover operation. Due to this 
change, the partition denoted by a chromosome is changed, 
too. Thus, the algorithm’s searching space is large enough to 
get the optimal solution after several iterations of evolution. 
The simulated datasets in our experiment proved the 
correctness of KMQGA, and the UCI real datasets are 
performed to compare the difference between KMQGA and 
KMVGA in the performance and the effectiveness. The 
experiment results show that KMQGA is better than the 
KMVGA. Our future work is to investigate how to explore 
the search space using small number of individuals (even 
using only one individual). 
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