

Abstract—The conventional K-Means clustering algorithm
must know the number of clusters in advance and the clustering
result is sensitive to the selection of the initial cluster centroids.
The sensitivity may make the algorithm converge to the local
optima. This paper proposes an improved K-Means clustering
algorithm based on Quantum-inspired Genetic Algorithm
(KMQGA). In KMQGA, Q-bit based representation is
employed for exploration and exploitation in discrete 0-1
hyperspace by using rotation operation of quantum gate as well
as three genetic algorithm operations (Selection, Crossover and
Mutation) of Q-bit. Without knowing the exact number of
clusters beforehand, the KMQGA can get the optimal number
of clusters as well as providing the optimal cluster centroids
after several iterations of the four operations (Selection,
Crossover, Mutation, and Rotation). The simulated datasets and
the real datasets are used to validate KMQGA and to compare
KMQGA with an improved K-Means clustering algorithm
based on the famous Variable string length Genetic Algorithm
(KMVGA) respectively. The experimental results show that
KMQGA is promising and the effectiveness and the search
quality of KMQGA is better than those of KMVGA.

I. INTRODUCTION

EXT clustering plays an important role in many research
areas, such as information retrieval, text summarization,
topic detection, and data mining. Generally speaking,

conventional text clustering algorithms can be grouped into
two main categories, namely hierarchical clustering
algorithms and partitional clustering algorithms. A
hierarchical clustering algorithm outputs a dendrogram,
which is a tree structure showing a sequence of clusterings
with each clustering being a partition of the dataset [1].
Unlike the hierarchical clustering algorithm, the partitional
clustering algorithms partition the data set into a number of
clusters, and the output is only a single partition of the data set.
The majority of partitional clustering algorithms obtain the
partition through the maximization or minimization of some
criterion function. Recent researches show that the partitional
clustering algorithms are well suited for clustering a large
dataset due to their relatively low computational requirements
[2]. And the time complexity of the partitional algorithms is
almost linear, which makes them widely used [3].

Manuscript received Dec. 10, 2007.
Jing Xiao is with the Department of Computer Science, Sun Yat-Sen

University, GuangZhou, China. Postcode: 510275. Phone: 8620-31457668
(e-mail: xiaoj2@mail.sysu.edu.cn).

YuPing Yan is with the School of Software, Sun Yat-Sen University,
GuangZhou, China. (e-mail: yuson_yan@163.com).

Ying Lin is with the Department of Computer Science, Sun Yat-Sen
University, GuangZhou, China. (email: issly@mail.sysu.edu.cn).

Ling Yuan is with the School of Computing, National University of
Singapore, Singapore. (email: yuanling@comp.nus.edu.sg)

Jun Zhang is with the Department of Computer Science, Sun Yat-Sen
University, GuangZhou, China. (email: junzhang@ieee.org).

Among the partitional clustering algorithms, the most
famous one is K-Means clustering algorithm [4]. K-Means
clustering algorithm must know the exact number of final
clusters (K) and a criterion function to evaluate whether the
final partition is good. Then the algorithm randomly
generates K initial clusters centroids. After several iterations
of this algorithm, text data can be classified into a certain
cluster by the criterion function, which make text data is
similar to each other in the same cluster. However, the
traditional K-Means clustering algorithm has two drawbacks.
One is the number of clusters must be known in advance, and
the other is that the result is sensitive to the selection of initial
cluster centroids and this may make the algorithm converge to
the local optima. Different dataset has different number of
clusters, which is difficult to know beforehand, and the initial
clusters centroids are selected randomly, which will make the
algorithm converge to the different local optima. Therefore,
the conventional K-Means clustering algorithm does not
work well in practice.

Due to these two drawbacks, more and more researches on
K-Means clustering algorithm are to find the optimal number
of clusters (K) and the best initial clusters centroids. Since the
Q-bit representation in quantum computing can represent
linear superposition of states probabilistically, it has a better
characteristic of population diversity than other
representations. In this paper, we propose an improved
K-Means clustering algorithm based on Quantum-inspired
Genetic Algorithm (KMQGA). KMQGA use Q-bit [5] as its
chromosome’s representation and Davies-Bouldin Rule
Index [6] as criterion function. Every chromosome in
KMQGA denotes clusters centroids of a partition. Different
chromosomes can have different string length of Q-bits, that
is, different chromosomes denote different partitions. Before
performing the GA operations (Selection, Crossover, and
Mutation) and the Quantum operation (Rotation), the Q-bit
representation firstly have to be encoded into the binary
representation, and then the real-coded representation. When
the GA operations and the Quantum operation are conducted
during the iterations of KMQGA, the chromosome may
change its string length, that is, the clusters centroids of a
partition are changed. After several iterations of KMQGA,
the improved algorithm can find the optimal number of
clusters as well as the initial clusters centroids, due to the
string length variation of chromosome. The simulated
datasets and the real datasets are used to verify the
effectiveness of KMQGA and to compare KMQGA with a
K-Means clustering algorithm based on the famous Variable
string length Genetic Algorithm (KMVGA) [7, 8]
respectively.

The rest part of this paper is organized as follows: Section
 introduces some related work about optimization problems

A Quantum-inspired Genetic Algorithm for Data Clustering

Jing Xiao, YuPing Yan, Ying Lin, Ling Yuan and Jun Zhang

T

1513

978-1-4244-1823-7/08/$25.00 c©2008 IEEE

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 07:51:02 UTC from IEEE Xplore. Restrictions apply.

using the concept of quantum computing. Section briefly
introduces the quantum computing .The details of KMQGA
are described in Section . Experiments and results are
presented in Section . We conclude this paper in Section

.

II. RELATED WORK

Quantum computing is a research area that includes
concepts like quantum-mechanical computers and quantum
algorithms. So far, many efforts on quantum computing have
progressed actively due to its superiority to classical
computers on many aspects. Also, there are some well-known
quantum algorithms, such as Grover’s database search
algorithm [9] and Shor’s quantum factoring algorithm [10].
During the past two decades, evolutionary computing has
attracted more and more researchers and played an important
part in the area of optimization. Recently, the work of
merging quantum computing and evolutionary computing has
stimulated the studies of its theories and applications. The
most important work to classical computer was done by Han
and Kim [11]. They proposed a quantum evolutionary
algorithm which is used to solve combinational problem on
classical electronic computer. In [12], a quantum-inspired
genetic algorithm is proposed for flow shop scheduling
problem with a single objective. And in [13], a hybrid
quantum-inspired genetic algorithm is proposed for
multi-objective flow shop scheduling problem. The concept
of quantum computing algorithms are also applied to some
other applications, such as solving the travelling salesman
problem [14], image segmentation [15], and face detection
[16].

III. QUANTUM COMPUTING

Before describing KMQGA, we introduce the quantum
computing briefly. Unlike the two-state (0/1) representation
in conventional computing, the smallest information
representation in quantum computing is called quantum bit
(Q-bit) [17]. The state of Q-bit may be “0” state, “1” state or
any superposition of the two. So the state of Q-bit can be
represented in formula :

Where and are complex numbers that specify the

probability amplitudes of the corresponding states. Thus,
and denote probabilities that the Q-bit will be found in
the “0” state and the “1” state, respectively. Normalization of
the state to the unity guarantees in formula :

Thus, a Q-bit can be represented as the linear superposition

of the two conventional binary genes (0 and 1). A Q-bit
individual as a string of Q-bits is defined in formula :

If there is a string of Q-bits, then the string can represent
 states at the same time. The state of a Q-bit can be

changed by the operation with a quantum gate, such as the
NOT gate, the rotation gate, etc. However, the superposition
of “0” state and the “1” state must collapse to a single state in
the action of observing a quantum state, that is, a quantum

state have to be the “0” state or “1” state. In the evolutionary
computing, Q-bit representation has a better characteristic of
population diversity than other representations, because it can
represent linear superposition of states probabilistically.
Examples of Q-bit representation can be seen in [11].

Inspired by the concept of quantum computing and the
representation of Q-bit, KMQGA is designed with this novel
Q-bit representation, and Quantum Rotation operation is one
of the various operations in the algorithm.

IV. KMQGA

In this section, we first propose the overall algorithm of
KMQGA. Then the chromosome representation and the
fitness function of this algorithm will be presented. Last, four
main operations and an accessional operation (GA selection,
GA crossover, GA mutation, Quantum rotation operation and
Quantum catastrophe operation) will be interpreted.

A. The Overall Flowchart of KMQGA

KMQGA uses Davies-Bouldin (DB) Rule Index as its
criterion function, which is also called fitness function, to
evaluate the partition of a dataset is good or not. The overall
flowchart of KMQGA is shown in Fig. 1.The algorithm
begins with initializing the population randomly. Each
chromosome (also called individual) in the population
denotes a certain partition of a dataset. The chromosome is
represented by the Q-bit representation at first. Then the Q-bit
string will be collapsed into a certain state, which is a binary
string. After the collapse operation, there is another operation
to change this binary string into real-coded string. Each real
number in the real-coded string denotes a pattern of the
dataset. Then the algorithm run conventional K-Means
clustering algorithm on each chromosome just one time and
evaluates each chromosome by the DB rule index fitness
function and calculates value and the selected probability in
the later GA selection operation. The performance of a certain
partition of a dataset is evaluated by the fitness value. Based
on the selected probability, the algorithm can produce a new
population through roulette selection and the elite selection.
The GA crossover operation affects each chromosome in
terms of the crossover probability. In the process of GA
crossover operation, the length of each chromosome may be
changed. Due to this change, the partition denoted by the
chromosome is changed accordingly, and after several
iterations of this algorithm, the better chromosome may be
shown up. Then the GA mutation and Quantum rotation
operation are performed, both of which may make the
searching space of KMQGA more diversified. In order to
avoid the degeneration of the chromosome and prematurity of
the algorithm, KMQGA uses elite selection operation,
adaptive probabilities of crossover operation and mutation
operation, quantum catastrophe operation. The overall
procedure of KMQGA is summarized as follows:

(a) Randomly generating an initial population using
Q-bit representation;

(b) Collapsing the Q-bit representation into the binary
representation, and then the real-coded
representation. Using the DB fitness function to
evaluate each chromosome;

1514 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 07:51:02 UTC from IEEE Xplore. Restrictions apply.

(c) If the stopping criterion is satisfied, then output the
best result; otherwise save the best chromosome
and go to the following steps;

(d) If the prematurity criterion is satisfied, then go to
step (f); otherwise go to step (e);

(e) Adjusting the probabilities of crossover and
mutation as and respectively. Then go to
step (g);

(f) Adjusting the probabilities of crossover and
mutation as and respectively. Then go to
step (g);

(g) Performing selection operation, crossover operation
and mutation operation;

(h) If the catastrophe criterion is satisfied, then go on
step (j); otherwise go to step (g);

(i) Look up table of rotation angle, and then perform
rotation operation. Go back to step (b);

(j) Perform catastrophe operation. Go back to step (b).
KMQGA sets a maximal iteration number as its

stopping criterion, which should be as big as possible in order
to find the optimal solution. The prematurity criterion is
satisfied when the best chromosome saved by the algorithm
does not change after iterations, where .
That is to say, the best chromosome in current iteration is the
same as the best one which is iterations ago, then
probabilities of the crossover () and the mutation ()
should be adjusted to and respectively for the sake
of jumping out of the local trap. Since the larger probability of
the crossover can exchange more information among a couple
of chromosomes, and the larger probability of the mutation
can enlarge the diversity of the population, the algorithm
adjusts and to larger probabilities (and).The
catastrophe criterion [12] is similar to the prematurity
criterion and we think it is trapped in a local optima if the best
solution does not vary in a number of consecutive generations.
Then the best solution is reserved and the others will be
replaced by randomly generated solutions. Another number

 needs to be set to judge whether the catastrophe
criterion is met, where .

The four probabilities (, , ,) are real numbers
less than 1.0, where , ,

 and . Here, we
set .and is a function that generates a
real number between and .

B. Representation of chromosome in KMQGA

Inspired by the concept of quantum computing, the Q-bit
representation and the representation of Modified Variable
string length Genetic Algorithm (MVGA) [18]; KMQGA
employs a modified variable Q-bit string length
representation. Before coding the chromosomes, the amount
of texts to be clustered in dataset N should be known and the
range of K (number of clusters) should be
defined first, where and . As long as the

 is not less than the exact number of clusters, the
algorithm can get the optimal solution. However, if is
much greater than the exact number of clusters, the cost of
both the computation time and the storage space will be high.

Research shows that the optimal K is not larger than [19].
Therefore, the range of K is set to .

Knowing the amount N, we are also aware of the number of
binary string length (B) to denote a text pattern ID, that
is, . For example, if the number of texts is 178,
then .

When coding the chromosome, a number is randomly
generated first, where . Thus, the Q-bit string
length of this chromosome is . The chromosome
representation is presented as follows:

Then the Q-bit string will be collapsed into a certain state,
which is a binary string. That is, randomly generating a float
number , where . If , then the corresponding
binary state is 0, otherwise is 1.

After the collapse operation, there is another operation to
change this binary string into real-coded string. The algorithm
converts every binary string into a real number. Each real
number in the real-coded string denotes a pattern of the
dataset.

Fig. 1 The Overall Flowchart of KMQGA

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 1515

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 07:51:02 UTC from IEEE Xplore. Restrictions apply.

C. Fitness function of KMQGA

Evaluating a certain partition should use a criterion function
(also called fitness function). A good fitness function can give
a high value to a good partition solution and give a low value
to a bad partition. There are many fitness functions to
evaluate clustering nowadays, such as Euclidean distance,
Davies-Bouldin Rule Index, Dunn index [20], and Turi [21],
S_DBW [22], CDBW [23].

Since the DB rule index can evaluate the distance of
intra-cluster and the distance of inter-cluster, KMQGA
employs DB as its fitness function. We describe DB as
follows [24]:

Where is the set the cluster, is the amount of texts
in the cluster , is the centroids of , is the
Euclidean distance between text pattern and , means
the average cohesion of .

Where denotes the distance between and

The smaller the DB value, the better the partition. So we let

 be the KMQGA’s fitness function.

Since this Q-bit representation cannot denote the
expression of the text pattern ID directly, the Q-bit
representation has to be collapsed to binary string
representation first. A Q-bit string with length is
firstly collapsed to a certain state (0-1 state) according to the
probability amplitudes of the individual. For

, we generate a random number
between . If of chromosome satisfies ,
then set to 0, otherwise set it to 1. After the binary string is
constructed, we encode every -length binary string into a
real number, which is a text pattern ID. That is to say,
KMQGA first change the Q-bit string to binary string, and
then convert it to real number. Thus, a Q-bit string with length

 denotes a partition with centroids. By doing this, the
DB fitness function can evaluate every partition.

D. Selection Operation in KMQGA

Roulette selection and elite selection are employed in
KMQGA. Roulette selection runs according to the selected
probability. Usually, the chromosome with high fitness value
will be chosen to the next iteration with a high probability.
However, in order to avoid the optimum chromosome with
good fitness value is not selected occasionally; KMQGA

performs elite selection after the roulette. Elite selection
guarantees that the best chromosome in a certain generation
will not be lost in the evolutionary process. The basic idea of
elite selection is: if a certain individual in the former
generation is better than the best individual in the current
generation, then some individuals in the current generation
will be replaced by the better ones in the former generation.
The pseudo code of elite selection is expressed as follows:

For the generation, the population is

and is the best individual in the generation.

E. Crossover Operation in KMQGA

KMQGA uses a special crossover operation which can
change the length of parent-chromosomes. For each
chromosome, the crossover point is randomly chosen
according to its own string length. For example, there are two
chromosomes () with length 8 and 5 respectively:

A random integer between 1 and its length is generated as
the crossover point for each chromosome. For example, the
crossover point of are 6 and 2 respectively. Then,
the new chromosomes () are shown as follows:

Now, we can see both of the chromosomes’ lengths are
changed. Due to this change, the partition solution denoted by
the chromosome is changed accordingly. Thus, the search
space is larger and the optimal solution could be found.

F. Mutation Operation in KMQGA

For the diversity, mutation is employed. Based on the
mutation probability, mutation point is generated randomly
according to the chromosome’s length. For example, there is
a chromosome () with the length of 7.

The mutation point is a number between 1 and its string
length 7. If mutation point is 5, then KMQGA change the
position of and . The new chromosome is is shown
as follows:

1516 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 07:51:02 UTC from IEEE Xplore. Restrictions apply.

G. Rotation Operation in KMQGA

A rotation gate is employed to update a Q-bit
individual as follows:

where is the Q-bit and is the rotation angle of

each Q-bit toward either 0 or 1 state depending on its sign.
The rotation operation used in KMQGA is to adjust the

probability amplitudes of each Q-bit. According to the
rotation operation in , a quantum-gate is a function
of , where is the sign of which
determines the direction and is the magnitude of rotation
angle [13]. The lookup table of is shown in Table ,
where and are the bits of the best solution and a
binary solution of , respectively. In particular, if the length
of is not the same as the length of , then additional
correcting performance will be employed. In this paper, we
increase/delete the s Q-bits randomly if the length of is
less/more than the length of . Because is the best solution
in KMQGA, the use of quantum-gate rotation is to emphasize
the searching direction toward .

TABLE
THE LOOKUP TABLE OF ROTATION ANGLE

0 0 False 0 0 0 0 0
0 0 True 0 0 0 0 0
0 1 False 0 0 0 0 0
0 1 True 0.05 -1 +1 ±1 0
1 0 False 0.01 -1 +1 ±1 0
1 0 True 0.025 +1 -1 0 ±1
1 1 False 0.005 +1 -1 0 ±1
1 1 True 0.025 +1 -1 0 ±1

H. Catastrophe operation in KMQGA

To avoid premature convergence, a catastrophe operation
[12] is used in KMQGA. We consider that it is trapped in
local optima if the best solution does not change in certain
consecutive generations. Then the best solution is reserved
and the others will be replaced by solutions randomly
generated.

V. EXPERIMENTAL EVALUATION OF KMQGA

In this section, we will test the performance of the proposed
KMQGA. First, we test KMQGA’s correctness using three
simulated datasets. Then four datasets from famous UCI
machine learning repository [25] are carried out to compare
the performance and the effectiveness of KMQGA with those
of KMVGA. In both simulated data and real data experiments,
we set the size of population as 100, ,

, , . We set and
 in simulated data and real data respectively.

A. Simulated datasets

We generate three simulated datasets (sds1, sds2, sds3),
randomly. There are three, four and eight clusters in sds1,

sds2, sds3 respectively. Each cluster in simulated datasets has
100 data vectors. To get the direct vision from the coordinate,
we define each data vector as two dimensions. Details of
clusters’ ranges of sds1, sds2 and sds3 are given in Table ,
Table , and Table respectively.

TABLE
DETAILS OF CLUSTERS’ RANGES IN SDS1 DATASET

Coordinate Range of sds1
Cluster1 Cluster2 Cluster3

X [0,20] [40,60] [80,100]
Y [0,20] [40,60] [80,100]

TABLE

DETAILS OF CLUSTERS’ RANGES IN SDS2 DATASET
Coordinate Range of sds2

Cluster1 Cluster2 Cluster3 Cluster4
X [0,20] [40,60] [80,100] [0,20]
Y [0,20] [40,60] [80,100] [80,100]

TABLE

DETAILS OF CLUSTERS’ RANGES IN SDS3 DATASET
Coord
inate

Range of sds3
Clus
ter1

Clus
ter2

Clus
ter3

Clus
ter4

Clust
er5

Clust
er6

Clust
er7

Clust
er8

X [0,2
0]

[40,
60]

[80,
100]

[80,
100]

[0,20
]

[180,
200]

[180,
200]

[180,
200]

Y [0,2
0]

[40,
60]

[80,
100]

[0,2
0]

[180,
200]

[0,20
]

[80,1
00]

[180,
200]

After a certain range is given, these data vectors are
generated in uniform probability distribution with the given
range. We run KMQGA with the three simulated datasets for
ten times, and each time we get the number of clusters (K).
Details of the results are given in Table :

TABLE
DETAILS OF RESULTS WHICH KMQGA RUNS

Datase
t

K in
Datase

t

KMQGA results
1 2 3 4 5 6 7 8 9 10 Avera

ge
Sds1 3 3 3 3 3 3 3 3 3 3 3 3
Sds2 4 4 4 4 4 4 4 4 4 4 4 4
Sds3 8 8 8 8 8 8 8 8 8 8 8 8

KMQGA also obtains the best initial clusters centroids of
each dataset. One of the ten runs experiments’ results are
shown as follows. Fig. 2, Fig. 3, Fig. 4 are the partitions
solution of sds1, sds2, sds3 respectively.

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

 pattern

X Axis

 centroid

Y
 A

xi
s

Fig. 2 sds1 dataset

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 1517

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 07:51:02 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

 pattern

 Centroid

Y
 A

xi
s

X Axis

Fig. 3 sds2 dataset

0 50 100 150 200

0

50

100

150

200

0 50 100 150 200

0

50

100

150

200

0 50 100 150 200

0

50

100

150

200

 pattern

X Axis

 centroid

Y
 A

xi
s

Fig. 4 sds3 dataset

We can see from Table that KMQGA can get the exact

K of each dataset in all 10 experiments. In Fig. 2, Fig. 3, Fig. 4,
the initial clusters centroids obtained by KMQGA are
reasonable, since each centroids are almost in the center of
corresponding data vectors from a visual point of view. Thus,
the correctness of KMQGA is proved by the simulated
datasets in our experiment.

B. Real datasets (UCI datasets)

The four real datasets from UCI machine learning
repository are Glass, Wine, SPECTF-Heart and Iris. The
details of the four datasets, which can be found in the .names
file of every dataset’s fold [25], are summarized in Table .

TABLE
DETAILS OF UCI REAL DATASETS

Dataset Number of
Instances

Number of
Attributes

Number of
clusters

Glass 214 9 2
Wine 178 13 3

SPECTF-Heart 187 44 2
Iris 150 4 3

For each dataset, KMQGA and KMVGA run 10 times
respectively. And the average results are shown as follows in
Table :

TABLE

COMPARING RESULTS BETWEEN KMQGA AND KMVGA
Dataset KMQGA KMVGA

Number of
clusters

Best
fitness
value

Number of
clusters

Best
fitness
value

Glass 2 63.5291 2 36.0576
Wine 3 10.6751 12 4.0309

SPECTF-Heart 2 10.9353 2 6.816
Iris 3 13.9861 6 4.8024

We can see from the results from Table that, for all the
four real datasets, KMQGA obtains the exact K. But the
KMVGA just gets the optimal result in Glass dataset and
SPECTF-Heart dataset and cannot get the exact K in another
two datasets. For the best fitness value, KMQGA gets the
higher value than KMVGA does. In Glass dataset,
KMQGA’s best fitness value is 1.7619 times higher than
KMVGA’s. In Wine dataset, KMQGA’s best fitness value is
2.6483 times higher than KMVGA’s. In SPECTF-Heart
dataset, KMQGA’s best fitness value is 1.6044 times higher
than KMVGA’s. In Iris dataset, KMQGA’s best fitness value
is 2.9123 times higher than KMVGA’s. Therefore, we can
say that KMQGA is better than KMVGA in real datasets in
our experiments.

From the results of both our simulated datasets and the UCI
real datasets, the correctness of KMQGA is proved. And the
performance, the effectiveness and the stability of KMQGA
are better than those of KMVGA.

VI. CONCLUSION

In this paper, we propose an improved K-Means clustering
algorithm based on Quantum-inspired Genetic Algorithm
(KMQGA). This algorithm employs Q-bit representation and
the concept of quantum computing. Four main operations and
an accessional operation (GA selection, GA crossover, GA
mutation, Quantum rotation operation and Quantum
catastrophe operation) are performed to search the optimal
partition solution of a certain dataset. And the Q-bit string
length can be changed in crossover operation. Due to this
change, the partition denoted by a chromosome is changed,
too. Thus, the algorithm’s searching space is large enough to
get the optimal solution after several iterations of evolution.
The simulated datasets in our experiment proved the
correctness of KMQGA, and the UCI real datasets are
performed to compare the difference between KMQGA and
KMVGA in the performance and the effectiveness. The
experiment results show that KMQGA is better than the
KMVGA. Our future work is to investigate how to explore
the search space using small number of individuals (even
using only one individual).

REFERENCES
[1] Leung Y, Zhang J, and Xu Z, “Clustering by space-space filtering,”

IEEE Trans Pattern Anal Mach Intell 22(12): 1396-1410, 2000
[2] M. Steinbach, G. Karypis, and V. Kumar, “A Comparison of Document

Clustering Techniques,” in TextMining Workshop, KDD, 2000
[3] Ajith Abraham, Swagatam Das, and Amit Konar, “Document

Clustering Using Differential Evolution”. in 2006 IEEE Congress on
Evolutionary Computation, 2006

1518 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 07:51:02 UTC from IEEE Xplore. Restrictions apply.

[4] J. A. Hartigan, “Clustering Algorithms,” John Wiley and Sons, Inc.,
New York, NY, 1975

[5] Narayanan, A. and Moore, M, “Quantum-inspired genetic algorithms,”
in1996 IEEE Congress on Evolutionary Computation, 1996

[6] Davies Bouldin, “A cluster separation measure,” IEEE Trans Pattern
Anal Mach Intell 1(2), 1979

[7] Sanghamitra Bandyopadhyay and Ujjwal Mauilk, “Nonparametric
Genetic Clustering: Comparison of Validity Indices,” IEEE
Transactions on System, Man, and Cybernetics-Part C Applications and
Reviews, Vol. 31, No. 1,2001

[8] Ujjwal Mauilk and Sanghamitra Bandyopadhyay, “Performance
Evaluation of Some Clustering Algorithms and Validity Indices,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 24,
No. 12, 2002.

[9] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proc. 28th ACM Symp. Theory Comput., Philadelphia, PA,
pp. 212–221, 1996.

[10] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proc. 35th Symp. Found. Comput. Sci., Los
Alamitos,CA, pp. 20–22, 1994.

[11] K. H. Han and J. H. Kim, “Quantum-inspired evolutionary algorithm
for a class of combinatorial optimization,” IEEE Trans. Evol. Comput.,
vol. 6,no. 6, pp. 580–593, Dec. 2002.

[12] L. Wang, H. Wu, F. Tang, and D. Z. Zheng, “A hybrid
quantum-inspired genetic algorithm for flow shop scheduling,” Lecture
Notes in Computer Science, vol. 3645. Berlin, Germany:
Springer-Verlag, pp. 636–644, 2005

[13] Bin-Bin Li and Ling Wang, “A Hybrid Quantum-Inspired Genetic
Algorithm for Multiobjective Flow Shop Scheduling,” IEEE
Transactions on System, Man and Cybernetics, PART B:
CYBERNETICS, VOL. 37, NO. 3, pp. 576-591, JUNE 2007

[14] Talbi. H, Draa. A, and Batouche. M, “A new quantum-inspired genetic
algorithm for solving the travelling salesman problem,” in 2004 IEEE
International Conference on Industrial Technology, Volume 3,
pp:1192 – 1197, Dec. 2004.

[15] Benatchba Karima, Koudil Mouloud, Boukir Yacine, Benkhelat,Nadjib,
“Image segmentation using quantum genetic algorithms,” in IEEE 2006
- 32nd Annual Conference on Industrial Electronics, pp:3556 – 3563,
Nov. 2006.

[16] Jun-Su Jang, Kuk-Hyun Han, Jong-Hwan Kim, “Face detection using
quantum-inspired evolutionary algorithm,” in 2004 IEEE Congress on
Evolutionary Computation, 2004

[17] T.Hey, “Quantum computing : An introduction,” Computing & Control
Engineering Journal, Piscataway, NJ: IEEE Press, vol. 10, no. 3,pp.
105-112, June 1999

[18] Wei Song, Soon Cheol Park, “Genetic Algorithm-based Text
Clustering Technique: Automatic Evolution of Clusters with High
Efficiency,” in Proceedings of the Seventh International Conference on
Web-Age Information Management Workshops, 2006

[19] S.L. Yang, Y.S. Li, X.X. Hu, and PAN Puo-yu, “Optimization study on
k value of K-Means algorithm,” System Engineering-Theory &
Practice, 26(2):97-101, 2006

[20] Dunn JC, “Well separated clusters and optimal fuzzy partitions,” J
Cybern 4:95-104, 1974

[21] Turi RH, “Clustering-based colour image segmentation,” PhD Thesis,
Monash University, Australia, 2001

[22] Halkidi M and Vazirgiannis M, “Clustering validity assessment:
finding the optimal partitioning of a data set,” in Proceedings of ICDM
conference, CA, USA, 2001

[23] Halkidi M and Vazirgiannis M, “Clustering validity assessment using
multi representative,” in Proceedings of SETN conference,
Thessaloniki, Greece, 2002

[24] Zhang Dingxue, Liu Xinzhi, and Guan Zhihong, “A Dynamic
Clustering Algorithm Based on PSO and Its Application in Fuzzy
Identification,” in Proceedings of the 2006 International Conference on
Intelligent Information Hiding and Multimedia Signal Processing
(IIH-MSP’06), 2006

[25] A. Asuncion,D.J. Newman. UCI Machine Learning Repository
[Online].Available:http://www.ics.uci.edu/~mlearn/MLRepository.ht
ml

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 1519

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 07:51:02 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

