A Novel Particle Swarm Optimization
for the Steiner Tree Problem in Graphs

Wen-Liang Zhong, Student Member IEEE, Jian Huang and Jun Zhang (corresponding author), MIEEE

Abstract—The Steiner tree problem (STP) in graphs is a
special but essential case of multiple destination routing (MDR)
problems, which focuses on finding a minimal spanning tree
(MST) that connecting the source and destinations. It has been
proved to be an NP-hard problem. Particle swarm optimization
(PSO) is an important swarm intelligent algorithm with fast
convergence speed and easy implementation. In this paper, a
novel discrete PSO for the STP (DPSO-STP), with the concept
that the particle is guided by social and self cognition, is
proposed. Different from the standard PSO, the DPSO-STP
includes four parts: 1. two preprocessing operations are
introduced, which are to construct a complete graph and to
calculate each node’s total distance from itself to the source and
destination nodes; 2.the position of a particle is represented as a
binary string, where 1 stands for the selected nodes and 0
denotes the opposite; 3. several novel update operations,
including new mutation factor c;, are adopted for the binary
string; 4. when generating a MST from a binary string, a
modified Prim’s algorithm and a trimming strategy are
employed. The experiments based on the benchmarks from
category B, C of STP in the OR-library have been carried out to
demonstrate the effectiveness of the proposed algorithm.
Compared with traditional heuristic algorithms, such as
shortest path heuristic (SPH), average distance heuristic (ADH),
etc, the DPSO obtains more promising results. And it also
performs better than the other iteration based algorithm, with
much less computation. The discussion to extend the algorithm
to other MDR problems is also given.

1. INTRODUCTION

ITH the development of Internet, more and more
complicated applications require figuring out the
proper routing to transfer data from one source to several
destination nodes, such as network meeting and
video-on-demand services, etc. Analyses on this are called
multiple destination routing (MDR) problems [1]. The
Steiner tree problem in graphs (STP) is one of the most
important MDR problems, which is NP-hard [1]. Given a
network graph, the object of STP is to find out a minimal
spanning tree (MST) that connecting the source and all the
destination nodes (see section II for more detail).
Many heuristic approaches for STP have been represented
in the last twenty years [1]-[9]. The SPH algorithm [2] creates
the MST by adding the nearest node one by one until the tree

This work was supported by NSF of China Project No.60573066 and
the Scientific Research Foundation for the Returned Overseas Chinese
Scholars, State Education Ministry, P.R. China.

Authors are with Department of Computer Science, SUN Yat-sen
University, Guangzhou, P.R.China, (Jun Zhang is the corresponding author,
email:junzhang@jieee.org)

978-1-4244-1823-7/08/$25.00€)2008 IEEE

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 07:56:50 UTC from IEEE Xplore. Restrictions apply.

contains the source and all destination nodes. The distance
network heuristic algorithm [3] figures out the distance
complete network first, and then creates and trims a MST on
it. The ADH algorithm [4] focuses on seeking the
intermediate nodes and performs well. The other feasible
algorithms include dual ascent heuristic [5], direct
convergence heuristic (DCH) [6], simulated annealing [7],
genetic algorithm (GA) [1][8] and ant colony optimization
[9], etc. The traditional algorithms [2]-[6] are very fast
because they often generate a few, even only one, minimal
spanning tree. But they often obtain poor results, especially
when the network contains lots of nodes. On the other hand,
the iteration based algorithms [1][7]-[9] achieve better results,
but cost more computational time.

Particle swarm optimization (PSO), which was first
proposed by Kennedy and Eberhart [10] in 1995, employs an
iteration based search to locate global optimal solution.
Simulating simplified social system of birds flock, the
algorithm has been successfully applied to many continuous
optimization problems as a swarm intelligence algorithm
[11]-[15]. Due to its easy implementation and fast
convergence, the PSO becomes more and more popular.

However, the standard PSO is designed for continuous
problems, so it can’t be applied to discrete problems directly.
Since 1996, several discrete PSOs for binary optimization
problems have been presented [16]-[18]. As to the MDR
problems, the PSOs have obtained promising results
[19]-[22], but none of them is for the STP.

In this paper, we propose a novel discrete PSO to solve the
STP. Two important preprocessing operations are adopted.
One is to construct the complete graph (any two nodes
connected directly), and the other is to calculate the total
distance for each node from itself to the source and
destination nodes. The position of a particle is represented as
a binary string, where 1 stands for the selected nodes and 0
for the opposite. Each binary string represents one or more
MSTs with the same weight cost, which are the solution for
STP. Consequently, the update equations are modified to fit
this change. To prevent the algorithm from being trapped in a
local optimal, a new parameter c; called mutation factor is
introduced. When evaluating the fitness of a particle, a
modified Prim’s algorithm [23] is employed to generate a
MST and a trimming operation is used to cut off the
redundant nodes. In a word, the novel PSO is employed to
optimize the binary string and two operations are used to
generate corresponding MSTs. The results of the problems
from category B and C in the OR-library indicate that the

2460

algorithm is promising. The proposed algorithm obtains
better solutions than traditional heuristic algorithms and the
GA [1].

In section II, the background of standard PSO algorithm is
introduced and the STP is defined formally. Section III
describes the DPSO-STP and section IV gives the experiment
results. Section V is the discussion to extend the algorithm for
other MDR problems. And the last section draws a
conclusion.

II. THE STAND PARTICLE SWARM OPTIMIZATION AND THE
STERNER TREE PROBLEM IN GRAPHS

A. The standard particle swarm optimization

In the standard PSO model, the particle, which can be
regarded as a bird, has a position X; and a velocity V;, both of
which are D-dimensional vectors denoting a solution and a
moving step, respectively. Here D is the number of dimension
of the problem and the variable 7 stands for the i-th particle.
Similar to the GAs, PSO evolves a population of n particles to
search the best solution based on generations. Different from
GAs, a particle adjusts its position X; without crossover or
mutation operators. It flies through the solution space
attracted by gbest and pbest;, which are the best positions that
the whole population and the i-th particle have reached,
respectively.

Initialization
while(termination criterion is not met)
for(i = 1 to size)
update (¥, X));
evaluating f(X));
if(X)) <Apbest;))
pbest; < X;
if (X)) < flgbest))
ghest <—X;
end if
end if
end for
end while
Report the result

Fig. 1. The pseudo code of standard PSO for the minimal optimization

Fig. 1 is the pseudo code of the standard PSO for the
minimal optimization problem. First, the parameters are
initialized and every particle is given a random position and
velocity. And then, the positions are saved as pbest;, and
evaluated by function fto elect ghest. During the generations,
a particle is updated through these two equations:

VI = vk 1 cn (pestt — XF)+ cyry (ghest® — X F) 1)
X xE v @

where k denote the k-th generation. The first equation can be
divided to three parts by operator “+”. The parameter w,

called inertia weight [11][12], helps to control the influence
of the pre-velocity. The other two parts are self-cognitive and

2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 07:56:50 UTC from IEEE Xplore. Restrictions apply.

social-cognitive components. Both ¢, and ¢, are constant real
positive number, which are used to direct the i-th particle to
pbest; and gbest. And r,, r, are random real numbers
belonging to [0, 1]. After updated, the new positions will be
evaluated again, and pbest; and gbest may be replaced if
necessary.

B. The Sterner tree problem in graphs

The problem is formally defined as follow:

Definition 1: G= (V, E, C) is a weighted, undirected and
connected graph, where V, E are the set of nodes (also called
vertexes) and edges, respectively, and C is the weight

function. That is, C(e;) > R™ is the weight of edge e; € E,

which connects nodes i and ;.

Definition 2: Vy is the set of destination nodes and s is the
source node. Because the STP only focuses on searching a
tree connecting the source and all the destination nodes, Vg
and s make no difference. So we call both of them objective
nodes and treat them indiscriminatingly in the proposed
algorithm.

Definition 3: The object of the STP is to find out a sub-tree
T in graph G, which connects all objective nodes with the
minimal cost of weight. That is,

f =min Z Cle)
ecT

For any solution tree 7 that is not a MST, there is always at
least one MST 7' with the same nodes as 7, and its weight
cost is smaller than 7. So it is obvious that the optimal
sub-tree must be a MST. Because there are several algorithms
to generate a MST in polynomial time, such as the Prim’s and
the Kruskal’s algorithm [23], the key to solve STP is finding
out the intermediate nodes (nonobjective nodes in the
solution tree) as Leung et al. [1] pointed out.

III. THE DISCRETE PARTICLE SWARM OPTIMIZATION FOR THE
STEINER TREE PROBLEM

Because the DPSO-STP is more complexity than the
standard PSO, we give its flowchart in Fig. 2. There are four
key components in the proposed algorithm, which are the
preprocessing operations, the representation, the update
operations and the improving strategies, respectively.

A. The preprocessing operations

The solution of the STP is always a connected tree.
However, because the graph G is not guaranteed as a
complete graph, some binary strings may represent
unconnected nodes. In other words, it is unable to generate a
MST in the graph according a binary string occasionally. To
overcome this obstacle, the Floyd’s algorithm [23] is applied
to figure out the shortest distance and the path between any
two indirectly connected nodes in the graph. As a result, the
graph has been transferred to complete graph.

The other preprocessing operation is that for each node, the
total distance from itself to all the objective nodes is figured
out. And then the nodes are sorted according to the total

2461

distance in descending order. This work is the preparation for
Modification 7 in the update operations.

‘ Preprocessing operations ‘

Initialization

Create a MST by the modified Prim” s
algorithm and trim the tree to evaluate X;*

‘ Replace pbest; and gbest if necessary ‘

‘ Update velocity V<! ‘

v

No ‘ Choose some bits from V"' for X!

v

‘ Choose some bits from cyr3X* for X! ‘

=}

‘ Ni

| Fill the absent bits of X/ |

Fig. 2. The flow chart of the proposed PSO

B. The representation

As mention before, the key for the STP is to find out the
proper intermediate nodes and it is easy to generate a MST
based on a binary string in polynomial time. Consequently,
the position of a particle is encoded as a binary string as
XF = (x;,%;9,++,%;,) in the proposed algorithm where x;1s 0
or 1 and £, j denote the k-th generation and the j-th node in the
graph, respectively. If x, =1, the j-th node is selected as an

intermediate node or it is an objective node. As a result, the
object of STP is equal to obtaining a proper binary string, so
the STP has been converted to a 0/1 optimization problem.
Remark 1: The bits stand for the objective nodes are always
setto 1.
The velocities are represented as

0.0 0
VIsV2, s Vy
V= 1.1 1’
VI>V2, s Vy

where v? and v} are real numbers in the internal of [0,1] and
denote the probabilities of the j-th bit to be 0 or 1. According
Modlification 5 below, the sum of v? and v; is not necessary
to equal to 1.
C. The update equations

In the iteration, the particles will be updated and evaluated
repeatedly until the termination criterion is met. Since the
standard PSO is designed for the continuous problems, the

update equations (1) and (2) in the DPSO-STP have to be
redefined for the STP by following 7 modifications.

2462

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 07:56:50 UTC from IEEE Xplore. Restrictions apply.

@

Modlification 1: The result of subtracting operator
between two positions (binary string) X; and X, in (1) is

defined as a velocity, in which v? is set to 1 if the j-th bit in

X is b while it is not in X,. Otherwise, v? is set to 0.

Modlification 2: In equation (1), the result J of subtraction
is multiplied by c¢;»; (j = 1, 2) , where ¢; is a const real

number and 7; is a random real number belonging to [0, 1]. It
is the same in the proposed algorithm. As a result, each
element is probably multiplied by a unique real number
belonging to [0, ¢;], because the r; is spawn randomly.

b
J

will be limited to 1.

Remark: if v7 is greater than 1.0 after multiplication, it

Remark: as to @V, the result is that each element vj? inlV

is multiplied by the same w, respectively.
Modlification 3: The result of operator “+” in equation (1)
between two velocities is a new velocity, that is V=V + V..

The v? in V'is the greater one between vf’/- and V5 ;e

Following the three modifications above, the first equation
is totally redefined for the STP. An example is given as
follow.

Assume @ =0.5, ¢;=c, =2.

phest¥ =11,0,0,1,11,0,

gbest* =11,1,0,1,0,1,0,

XF=11101100,

vk _ 0.4,0, 0,0.2,0,0,1,0

" 710.6,0,0.2,0.8,0,0,0,1
SO
0,0,0.8,0,0,0,0,0

k+1 k k
V: = best: — X¥)=
il an (p est; i) {0’0’ 0’0,0,0’]’0

} , suppose c;ry

=0.8, 1.5 for each vf (vf- #0), respectively.

0,0,0,0,0,0.7, 0,0

k+1 k k
V' = best” — X[)=
2 =ean(gbet = Xp) {0,0,0,0,0, 0,0.60

} , SUPPOSE €7y

= 0.7, 0.6 for each v'; (v_? # 0), respectively.

and then
1 0.2,0,0.8,0.1,0,0.7,0.5, 0
Vik+1 :a)V,karV,vaH +Vl-l§+1 _ .
0.3,0,0.1,0.4,0, 0, 1,0.5
divided

The second update to four

modifications.

equation is

Modification 4: The next position X**! is initialized as an
empty string.
Modification 5: Generate a random number « €[0,1], and if

vﬁ- in 7*! is greater than a, the j-th bit of X*' is set to b. If
both v? and v} are greater than a, the j-th bit is set to 0 or 1

randomly. And if both v? and v} are smaller than a, the j-th
bit is set to “-”, which stands for the absent bits. After these
two steps, X*! is a string with several absent bits.

2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Modification 6: A new parameter c; is added to equation
(2) to keep balanced between exploitation and exploration.
That is, the second update equation is modified as

Xt =v @y x; 3)

For each absent bit in X},

belonging to [0, 1] is spawned, and if ¢33 >a , the

a random real number 73

corresponding bit in X* will be copied to X**!. The reason

of not copying all absent bits from X/ is that, after some
generations, pbest;, gbest and X; will become more and more
similar, like other evolutionary algorithms. As to the standard
PSO, X; will keep tiny moving as local search to get higher
precision, especially in unimodal function optimization.
However, in the DPSO-STP, the number of vf- =0 in V;‘“
will increase rapidly. So if choosing as many as possible bits
in X, almost all elements in X5*' will come from X%, and
then the algorithm stagnates. With ¢;, some absent bits in
x5! won’t be filled until the operation in Modification 7,
like mutation. So c¢3 is called mutation factor. What the
algorithm benefit from it is showed by experiments in the
next section.

Modification 7: Because several bits are perhaps absent in
X1 a strategy to fill the blanks is adopted. For the i-th
absent bit a random real number ¢ belonging to [0, 1] is
generated, if # <rand;/n , where rank; is the rank of the i-th
node that figured out in the preprocessing operations, and # is
the number of nodes. Otherwise the i-th is set to 0. So for each
node, the closer to all the objectives it is, the more
opportunity to be selected it will have.

Remark: The bits stand for the objective nodes are always

setto 1.

Assume a = 0.5, ¢;=2, and V*!

is given in the example
after Modification 3. So a possible case is

XF = (--,0,--,0,0)

Assume cyr3 = 1, 0.5, 0.4, 0.7 for the 1%, 2", 4", 5" bits,

respectively, then the 1%, 2™ and 5™ bits in X/ are copied to
X so

XFT = (1,1,0,-,1,0,0,1) .

Suppose ¢ <rank,/n, then X,~k+1 is (1,1,0,0,1,0,0,1) .

D. The modified Prim’s algorithm and the trimming strategy
According to the seven modifications, the X**! is a new

n-bit binary string. Because the solution of STP is a minimal
spanning tree, we have to design a method to convert a binary
string to a corresponding MST, and then the cost of the MST
is the fitness of the particle. The Prim’s algorithm [23] is an
effective algorithm to do such a work in a connected graph.
However, because it is uncertain that all selected node in

X5 are connected directly, we modify the Prim’s algorithm

2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 07:56:50 UTC from IEEE Xplore. Restrictions apply.

as follow:

Definition 4: A real edge is an edge connecting two nodes
directly and given in the STP.

Definition 5: A virtual edge is the shortest path connecting
two nodes, which contain at least one intermediate node. It is
figured out by Floyd’s algorithm [23] in the preprocessing
operation. And restoring a virtual edge means using the
intermediate nodes and real edges to replace it.

Definition 6: S is the set containing nodes already involved
in the MST. And ~S is the set whose members are candidate
nodes for the MST.

The modified Prim’s algorithm is:

a. Choose a node randomly to S, and put the other nodes
into ~S;

b. Find out the shortest real edge connecting one node in S
and the other in ~S. If succeed, move the selected node from
~S to S and repeat this step until ~S is empty. If no real edges
exist between S and ~S, go to c.

c. Find out the shortest virtual edge connecting one node in
S and the other in ~S, and then move the selected node from
~Sto S and record the virtual edge, then go to b. If ~S'is empty,
go to d.

d. Restore the recorded virtual edges and the modified
Prim’s algorithm finishes.

The MST containing all selected nodes in X **' has been
generated. Due to the restoring operation, some additional
nodes may be also involved in the MST.

It is obvious that the MST may contain some redundant
leaves, which are not objective nodes and increase some
unnecessary cost. So tree is trimmed by follows:

a. Drop the redundant leaves.

b. If the number of dropped leaves is more than zero, go to
a, otherwise the trimming is over.

As a result, a MST without redundant leaves is generated
and its cost is the fitness value of the position X**!. As some
nodes have been added in restoring or deleted in trimming,
the binary string of X**! should been modified to respond it.

Fig. 3 (a) is the network of Steiner tree problem, where the
blocks denote the objective nodes and the dots stand for
routers. And (b) & (c) are the MST of X/*! before and after
restoring and trimming, respectively. The dashed in (b) is the
virtual edge and the 6™ node is selected in (c) because of
restoring and the 8™ one is deleted in trimming. The cost of
MST in (c) is the fitness of X/*! and the binary string is
(1,1,0,0,1,,1,0) at the end.

According steps above, the PSO is applied to the STP and
called the DPSO-STP. The experimental results are given in
the next section.

2463

(b)

Fig. 3 The minimal spanning tree

IV. EXPERIMENTAL RESULTS

A. Relative setting

The experiments based on the STPs in graphs from
category B and C in the OR-library have been carried out.
(http://people.brunel.ac.uk/~mastjjb/jeb/info.html). The
details of them are given in Table 1 and 2. The B Steiner tree

problems are based on the network with 50, 75 and 100 nodes.

And the networks in C contain 500 nodes. In the two tables,
[Vsl, |[Eg| and |Vp| stand for the number of nodes, edges and
objective nodes, respectively. And “OPT” denotes the

optimal value for each test case given by the OR-library.
TABLE 1. THE DETAIL OF CATEGORY B PROBLEMS

In the proposed PSO, the size of population is set to 20. ¢y,
¢ and c; are set to 2.0, and @ = 0.5. If the generation number
reaches 1250 or the algorithm is unable to obtain any better
MST in 250 continuous generations, the DPSO-STP stops.
Each benchmark was carried out for 10 times.

To prove the efficiency of the proposed PSO, several
results of heuristic algorithms [1][6], including the SPH, the
ADH, the DCH and the GA, are given. The results of SPH
and ADH are reported in [1], while the ones of the DCH are in
[6]. The parameters of GA are set as follows: crossover
probability px = 0.7, mutation probability pm = 0.04, size of
population size = 50. The GA terminated when the
generations came up to 500 or the algorithm stop finding
better results for 100 generations. So there is at most 50*500
= 25000 MST generated in each run of GA, as many as the
proposed PSO. Because the section to generate MSTs is the
most complex part of the algorithms for STP, we reason to
compare two algorithms by the number of generating the
MST. B and C problems were also carried out on GA for 10
times.

B. Experimental results

In Table 3, the relative errors of B problems, generated by
the SPH, the ADH, the DCH, the GA and the DPSO-STP are
presented. Due to only 50-100 nodes in B problems, each
algorithm performs well. Both the SPH and the ADH
achieved results whose relative errors are less than 5% in
most cases. The relative error Err was defined as
_ result —OPT
- oer

The result is the average date of 10 runs. The DPSO-STP
and the GA are the best two among these algorithms. The GA
obtains the optimal fitness in every run of every case. So does
the DPSO-STP.

TABLE 3. THE RELATIVE ERRORS OF B PROBLEMS

Err

No. Vel |Eq| V| OPT
BO1 50 63 9 82
B02 50 63 13 83
B03 50 63 25 138
B04 50 100 9 59
BO5 50 100 13 61
B06 50 100 25 122
BO7 75 94 13 111
B08 75 94 19 104
B09 75 94 38 220
B10 75 150 13 86
B11 75 150 19 88
B12 75 150 38 174
B13 100 125 17 165
B14 100 125 25 235
BI15 100 125 50 318
B16 100 200 17 127
B17 100 200 25 131
B18 100 200 50 218

TABLE 2. THE DETAIL OF CATEGORY C PROBLEMS

No. SPH ADH DCH GA | DPSO-STP
BO1 0 0 0 0 0
B02 0 0 3.6 0 0
B03 0 0 0 0 0
B04 5.08 5.08 1.69 0 0
B05 0 0 8.17 0 0
B06 0 0 3.27 0 0
B07 0 0 5.40 0 0
B08 0 0 2.88 0 0
B09 0 0 0.90 0 0
B10 4.65 4.65 17.44 0 0
Bl11 227 227 4.54 0 0
B12 0 0 0.57 0 0
B13 7.88 4.24 14.54 0 0
B14 2.55 0.43 2.12 0 0
B15 0 0 3.14 0 0
Bl6 3.15 0 19.68 0 0
B17 3.82 3.05 6.8 0 0
B18 1.83 0 0.91 0 0

No. V4l |Ed| Vol OPT
Co1 500 625 5 85

Cco02 500 625 10 144
C03 500 625 83 754
C04 500 625 125 1079
C05 500 625 250 1579
C06 500 1000 5 55

Co7 500 1000 10 102
Co8 500 1000 83 509
C09 500 1000 125 707
C10 500 1000 250 1093
Cl1 500 2500 5 32

C12 500 2500 10 46

C13 500 2500 83 258
Cl14 500 2500 125 323
C15 500 2500 250 556
Cleé 500 12500 5 11

C17 500 12500 10 18

Cl18 500 12500 83 113
C19 500 12500 125 146
C20 500 12500 250 267

2464

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 07:56:50 UTC from IEEE Xplore. Restrictions apply.

Table 4 shows the number of MSTs generated by the GA
and the DPSO-STP before finding out the best results. It is
obvious from Table 4 that the DPSO-STP obtains the optimal
value much faster than GA. From B0O1 to B06, which are
simplest, GA needed nearly two or three times computation

2008 IEEE Congress on Evolutionary Computation (CEC 2008)

of the DPSO-STP. With the increasing nodes, the gap

between the GA and the DPSO-STP became larger and larger.

For example, in the benchmark B10, the GA generates
average 780 MSTs to find the optimum while the DPSO-STP
does 72, which is only 10% of the GA. The situations of B14

and B15 are similar.
TABLE 4 THE NUMBER OF MSTS GENERATED BY GA AND PSO

No. GA | DPSO-STP | No. GA | DPSO-STP
B01 105 42 B10 780 72
B02 160 54 Bl11 585 142
B03 100 52 B12 260 144
B04 120 82 B13 1100 468
BO5 130 50 B14 4020 342
B06 515 258 B15 1380 94
B07 275 42 B16 885 110
B08 185 48 B17 925 144
B09 275 56 B18 1250 338

The category C problems involve 500 nodes, and
thousands of edges as Table 2 showed. Because the test data
on category C is seldom reported, only the DCH and the GA

algorithm were adopted for comparison.
TABLE 5 THE BEST, WORSE AND MEAN RESULTS OF CATEGORY C

No. GA DPSO-STP

Best Worst Mean Best Worst Mean
Co01 85 85 85 85 85 85
C02 144 144 144 144 144 144
C03 754 761 757.8 754 758 754.4
C04 | 1081 1091 1083.8 1079 1080 1079.2
C05 | 1579 1583 1580.6 1579 1579 1579
C06 55 55 55 55 55 55
C07 102 102 102 102 102 102
C08 510 522 514.8 509 512 509.9
C09 712 721 716 708 711 709.1
C10 | 1093 1103 1097.2 1093 1098 1094.5
Cl1 32 32 32 32 33 32.1
Cl12 46 47 46.2 46 46 46
Cl13 259 263 261.5 259 263 260.5
Cl4 325 331 327.6 324 326 324.8
CI15 559 567 561.8 556 558 556.7
Cl6 11 12 11.3 11 12 114
C17 18 19 18.2 18 19 18.4
C18 117 120 118.4 115 119 116
C19 152 155 153.3 146 149 147.4
C20 268 276 272.4 267 267 267

TABLE 6. THE RELATIVE ERROR THE NUMBER OF GENERATING MST

No. DCH GA DPSO-STP
Err Err MST Err MST
Co1 3.5 0 380 0 66
C02 23.6 0 815 0 204
C03 7.16 0.50 15430 0.05 4706
C04 6.02 0.44 19480 0.02 5902
C05 1.25 0.10 17970 0 806
C06 | 14.06 0 1615 0 3160
C07 | 18.62 0 3255 0 3774
C08 9.03 1.14 16810 0.18 20502
C09 7.21 1.27 15965 0.30 25020
C10 2.92 0.38 18980 0.14 20648
Cl1 3.5 0 1410 0.31 12090
Cl12 23.6 0.43 3535 0 4156
Cl13 7.16 1.36 14390 0.97 25020
Cl4 6.02 142 12480 0.56 25020
Cl5 1.25 1.04 17730 0.16 21280
Cl6 | 14.06 | 2.73 2940 3.64 12780
Cl17 | 18.62 | 1.11 2450 2.22 11944

2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 07:56:50 UTC from IEEE Xplore. Restrictions apply.

CI18 9.03 4.78 10105 2.65 25020
C19 7.21 5 11160 0.96 24826
C20 2.92 2.02 13540 0 4388

The best, worst, mean cost, number of generating MSTs
and relative error of the DPSO-STP in category C problems
are illustrated in Table 5 and 6. According to the tables, the
DPSO-STP performed much better than the GA. All
benchmarks except C16 and C17, the DPSO-STP seemed to
have more opportunity to get the optimal solution than GA. In
16 of 20 problems (CO01 to C08, C10-C12, C15-C17, C19 and
C20), the PSO succeeded in finding the best tree at lease
once. With the number of nodes increasing, the PSO keeps
efficient with relative errors less than 1% in most cases.
However, in the C16, C17 and C18, the DPSO-STP showed a
little weak. The three benchmarks are relative dense networks
with a few objective nodes. As to sparse network that with
less edges, the proposed algorithm is indeed effective. From
Table 6, it is apparent that GA converges faster than PSO in
category C. However, it should be noticed that the PSO
achieved better results in most cases, which means that GA
may be trapped in the local optimal area and stopped getting
better results. So the GA generates much less MSTs
according the terminate criterion.

C. Analysis of c;

The DPSO-STP with and without parameter c; are applied
to the CO8 problem in category C for 20 times to find out how
c; works. The algorithm without ¢; meant that all blanks were

filled with bits from X in Modification 6.

Fig. 4 shows the convergence of the DPSO-STP with and
without ¢; in CO8 problem. Its vertical axis denotes the fitness
of average ghbest in 20 runs and the horizon axis is the
generation. The solid and dash curves represented the
DPSO-STP with and without c;, respectively. According to
Fig. 4, both the fitness of the two DPSO-STP decreases
rapidly in the first several generations, because the Prim’s
algorithm [23] and trimming are both greedy methods, which
promises to obtain a suboptimal result very soon. However,
PSO without c; is trapped in 10 generations and hard to find
better results, while the algorithm with stayed c¢; performs
much better in prophase and keeps going to the optimal point
slowly in the later phase.

Fitness

Generation

Fig. 4 The convergence of the DPSO-STP with and without ¢; in C08

As a result, the DPSO-STP with c; gets averaged fitness of
510.1, which was only a little greater than the optimal 509.
And the result of the other DPSO-STP is only 542.3. The
variation rate v,, which is illustrated in Fig. 5, is defined as:

2465

ZI"MHS ZSIZL’

runs X size
The runs and size are the number of runs and population,
and m;; is the number of different bits of the j-th particle in i-th
run between the last and current generation. As Fig. 5 shows,
the DPSO-STP with c; always keeps a variation rate at about

0.1, which indicates that several nodes in X¥ are added or

deleted all the time. As to the one without c3, because all the
particles become similar rapidly, few, even none,
modifications happens as the dash line shows. It means
almost all particles keep their binary string static and the
algorithm is trapped. So ¢ is an important parameter for the
proposed DPSO-STP.

004 ™

T T T T T T
0 100 200 300 400 500

Generation

Fig. 5 The variation rate of the DPSO-STP with and without c;3

V. DISCUSSION

As mention before, the Steiner tree problem in graphs is
only a special case of multiple destination routing problems.
However, the DPSO-STP algorithm can solve the extended
MDR problems with several simple modifications. The two
sorts of typical problems are discussed as follows.

The first kind is the dynamic multicast routing problem
[24]. In this problem, the nodes are added or removed from
the dynamic network during the running time. Thus the
algorithm should detect the change of network and respond in
time. In the DPSO-STP, the binary string should represent all
the nodes, including the active and the dumb ones. If some
nodes are removed, that is the active ones become dumb, their
corresponding bits are forced to be to 0 before generating a
MST from the binary string, as the objective nodes are always
set to 1. When some nodes join into the network, they are not
forced to be 0 any more, and always have the opportunities to
be selected because of the mutation.

The other kind is the QoS multicast routing problem [19].
In this problem, the solution tree should meet several
constraints, such as the total delay, the bandwidth, and so on.
For the bandwidth constraint, another preprocessing
operation is needed to delete the edges which can not fulfill
the bandwidth requirement. Therefore the algorithm won’t
generate the illegal solutions. As to the total delay constraint,
a validity check should be adopted in steps b and ¢ of the
modified Prim’s algorithm. That is, if the shortest real (virtual)
edge costs too much time to get a valid tree, the second
shortest one will replace it. However, it can not insure to

2466

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 07:56:50 UTC from IEEE Xplore. Restrictions apply.

generate a valid MST, so the solution should be discarded or
repaired.

Though the experimental results of the extensive MDR
problems are not given, the discussion shows that the
algorithm is feasible for them.

VI. CONCLUSION

In this paper, a novel discrete particle swarm optimization
is proposed for the Steiner tree problem in graphs. It is
different from the standard PSO in 4 parts: 1. the
preprocessing operations; 2. the representation; 3. the update
operation; 4. the improving strategies. With the new
parameter c;, the DPSO-STP has achieved favorable results
compared with other algorithms for the STP by the
experiments on 38 test cases. Even in the large networks
containing 500 nodes, the proposed PSO is still an effective
algorithm. The future work is focus on simplifying the
algorithm and extending it to other MDR problems.

REFERENCES

[1] Y.Leung, G. Liand Z. B. Xu: “A genetic algorithm for multiple
destination routing problems”, I[EEE Trans. Evol. Comput., vol. 2, No.
4, Nov. 1998, pp. 150-161

[2] V.J. Rayward-Smith and A. Clare: “On finding Steiner vertices”,
Networks, vol. 16, 1986, pp. 283-294

[3] L.Kou, G. Markowsky and L. Berman: “A fast algorithm for Steiner
tree”, Acta Informatica, vol. 15, 1981, pp. 141-145

[4] F.Bauer and A. Varma: “Distributed algorithms for multicast path set
up in Data Networks”, [EEE/ACM Trans. Networking, vol. 4, No. 2,
1996, pp. 181-191

[5] S. Vop: “Steiner problem in graphs: Heuristic methods”
Math, vol. 40, 1992, pp. 45-72

[6] C.Shampa, B. Arvind and R. Aman, “Directed Convergence Heuristic:
A fast & novel approach to Steiner Tree Construction,” Int. Conf. Very
Large Scale Integration, pp. 255 — 260, 2006

[71 K. A.Downsland: “Hill-climbing, simulated annealing and the Steiner
problem in graphs”, Eng. Optim, vol. 17, 1991, pp. 91-107

, Discr. Applied

[8] H. Esbensen: “Computing near-optimal solutions to the Steiner
problem in a graph using a genetic algorithm”, Networks, vol. 26, 1995,
pp. 129-167

[9]1 G. Singh, S. Das, S. Gosavi and S. Pujar: “Ant colony algorithms for
Steiner trees: An application to routing in sensor networks”, Recent
Development in Biologically Inspired Computing, Idea Group
Publishing, 2005, pp. 181-206

[10] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Networks, 1995, pp. 1942-1948.

[11] Y. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” in
Proc. IEEE Int. Conf. Evol. Comput., 1998, pp. 69-73.

[12] Y. Shi and R. C. Eberhart, “Fuzzy adaptive particle swarm
optimization,” in Proc. IEEE Int. Congr. Evol. Comput., vol. 1,2001,
pp. 101-106.

[13] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability and
convergence in a multidimensional complex space,” IEEE Trans. Evol.
Comput., vol. 6, no. 2, pp. 58-73, Feb. 2002.

[14] F.van den Bergh and A. P. Engelbrecht, “A cooperative approach to
particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3,
pp.225-239, Jun. 2004.

[15] J.J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar, “Comprehensive

learning particle swarm optimizer for global optimization of

2008 IEEE Congress on Evolutionary Computation (CEC 2008)

multimodal functions,” IEEE Trans. Evol. Comput., vol.10, no.3, pp.
281-295. Jun. 2006.

[16] J. Kennedy and R. C. Eberhart, “A discrete binary version of the
particle swarm algorithm,” in Proceedings of IEEE International
Conference on System, Man, and Cybernetics, pp 4104-4109, 1997.

[17] B. Al-kazemi and C. K. Mohan, “Discrete multi-phase particle swarm
optimization,” Infomation Processing with Evolutionary Algorithms,
Springer Berlin Heidelberg, pp.306-326, 2006.

[18] G. Pampara, N, Franken, and A. P. Engelbrecht, “Combining particle
swarm optimisation with angle modulation to solve binary problems,”
in Proceedings of the 2005 IEEE Congress on Evolutionary
Computation, vol. 1, pp. 89-96, 2005.

[19] Z. Wang, X. Sun, D. Zhang, “A PSO-Based Multicast Routing
Algorithm Natural Computation,” Int. Conf. Naetural Computation,
2007, pp. 664 — 667

[20] C.Li, C. Cao, Y. Li, Y. Yu, “Hybrid of Genetic Algorithm and Particle
Swarm Optimization for Multicast QoS Routing Control and
Automation,” Int. Conf. Control Automation, 2007, pp.2355 — 2359

[21] J. Wang, X. Wang, M. Huang, “An Intelligent QoS Multicast Routing
Algorithm under Inaccurate Information”, Int. Conf. Comput.
Intelligence and Security, 2006, pp. 1073-1077

[22] P. Yuan, C. Ji, Y. Zhang, Y. Wang, “Optimal multicast routing in
wireless ad hoc sensor networks,” IEEE Int. Conf. Networking, Sensing
and Control, 2004, pp.367-371

[23] H.C. Thomas, E.L. Charles, L. R. Ronald and S. Clifford, Introduction
to algorithms, MIT press, 1990

[24] H.C. Lin, S.C. Lai, “VTDM-a dynamic multicast routing algorithm,”
IEEE Inf. Proc. Comput. Commun. Societies, pp. 1426-1432

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 2467

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 07:56:50 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

