

rid technologies are a promising next-generation
computation platform that supports the sharing and
coordinated use of diverse resource from

geographically distributed components [1]. In the recent
years, grid applications have been reinforced by the open
grid services architecture (OGSA) [2]. OGSA introduces
Web services into grid interoperability model and develops
the idea of service-oriented grid computation. It builds an
infrastructure that enables grid application users to share a
reliable, secure, scaleable and distributed network grid
environment.

Many grid applications can be described as workflows.
The problem of workflow scheduling, which aims to map
the services of a workflow to different resources in the grid
environment, is crucial and challenging for grid
computation. By now, some workflow application
management systems with workflow scheduling algorithms
have been proposed. For example, Pegasus [3][4],
ASKALON [5], Condor [6][7], and the min-min [8],
max-min, sufferage, HEFT, and random heuristics [9].
However, these algorithms mainly aim at minimizing the
makespan (the completion time) of the workflow. Based on
OGSA, a number of grid service providers (GSPs) emerge to
provide different services in the grid market. Different GSPs
may implement the same service by different policies,

mechanisms, or structures, with different QoS (quality of
service) levels, and charge the service users different price.
The overall grid environment becomes an economic-driven
[1][10] or market-driven [11] gird market. In general, GSPs
charge higher price for high QoS services, and charge lower
price for low QoS services. In this case, not only the QoS
but also the cost must be considered by users. Therefore, the
workflow scheduling algorithms considering both the
makespan (which is one of the most important QoS
parameters) and the cost are attracted for new-generation
workflow management systems.

In this area, Yuan et al. [12] develops an extended critical
activity (ECA) based dynamic workflow scheduling
algorithm. The problem they considered is to minimize the
cost for the schedule with minimum makespan. Their
deterministic algorithm manages to find the best solution for
this problem within polynomial-time. Yu et al. [13] propose
a Deadline-MDP algorithm for a much more complex
problem. The objective of their algorithm is to complete the
workflow within deadline and minimize the execution cost
of the workflow. As the problem is NP-hard with bi-criteria,
Deadline-MDP is only a deterministic algorithm to
approximate the best solution to the problem. The algorithm
works by partitioning the workflow (described by a directed
acyclic graph (DAG)) and assigning a sub-deadline to each
partition. Moreover, a Markov Decision Process (MDP) is
applied to yield the best choices for each partition.

In this paper, we tackle the same problem as [13], but
develop a mataheuristic approach. We take advantage of ant
colony optimization (ACO) [14][15] to solve this problem.
ACO is proposed by Dorigo in the light of the foraging
behavior of ants. ACO works by simulating the
pheromone-depositing and pheromone-following behavior
of ants, and has been successfully applied to various
intractable combinatorial optimization problems[16][18].The
algorithm proposed in this paper follows the rules of ant
colony system (ACS) [17], which is one of the best ACO
algorithms so far.

New features are proposed in our algorithm. First, in
order to give attention to both objectives, namely cost and
makespan, we define two kinds of pheromone and three
kinds of heuristic information to guide the search direction
of ants. Each ant selects either one from these heuristic types
and pheromone types to guide its search behavior in each
iteration based on the probabilities controlled by two
parameters. An adaptive scheme is integrated in the
algorithm to adjust the value of these two parameters.
Second, we estimate the earliest start time and earliest end
time of services in the partial solution constructed by ants. In
terms of this information, the selection preference of ants
controlled by pheromone and heuristic information is

3308

1-4244-1340-0/07/$25.00 c©2007 IEEE

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 08:06:43 UTC from IEEE Xplore. Restrictions apply.

modified, so that inferior choices will be ignored by ants.
Moreover, we implement numerical experiments on three
workflows: e-Economic, neuro-science [19], and e-Protein
[20]. Experimental results under different deadline
constraints show that the performance of our algorithm is
promising. It outperforms the Deadline-MDP algorithm [13]
in most cases. This demonstrates the effectiveness of our
algorithm.

The paper is organized as follows. Section II describes the
background of workflow application, workflow
management, and workflow scheduling in grids. Section III
formulates the workflow scheduling problem considered in
this paper. Section IV proposes the ACS algorithm for
workflow scheduling. Section V gives the instances we used
in our experiments and the results of our experiment. The
conclusion finally comes in section VI.

The architecture for workflow application and
management in grids based on the concept of
service-oriented grid computation can be illustrated by Fig.
1. The general idea of the architecture is to map the tasks of
a workflow into services. Services are defined as
self-describing, open components which support rapid and
low-cost distributed applications [21]. In virtue of service,
different organizations, although geographically distributed,
are able to provide these services based on different
implementation policies, mechanism, and structures. These
organizations are referred to as grid service providers
(GSPs). GSPs charge different services by their QoS. Users
only execute their services by GSPs that satisfy their QoS
requirements, and only pay for what they use. The whole
grid environment becomes an economic-driven market
[1][10] that supports reliable, secure, scalable, and
distributed applications.

More specific, a workflow application and management
cycle in grids can be viewed as the interplay of the following
procedures (Fig. 1).

Step 1) GSPs register services to grid market directory

(GMD). In grid market, GMD [22] is used to manage the
information of all services. Usually, GMD records the type,
the provider, the QoS parameters, the cost and other
information of each service. Once an organization tends to
promote services to the grid market, it first registers itself to

GMD as a GSP. New services also have to be registered
before they enter the market.

Step 2) Users define and submit the workflow application

to workflow management system (WMS). Generally,
definition and implementation of workflow applications are
processed in four levels [3], which are shown in Fig. 2.
Firstly in the abstract workflow level, the objective and
requirements of the work are described in abstract language.
This abstract description is further specified into a sequence
of organized tasks in the specific workflow level. As only
services, not tasks, are provided in market, in the service
level, tasks of the workflow have to be mapped to
corresponding service types. Then users are able to assign
these services to GSPs and GSPs execute the services in the
implementation level. According to this four-level model,
users carry out the first three levels in this step. They submit
the workflow with all tasks having been mapped to
corresponding service types to WMS. They also submit their
QoS requirements to WMS.

Step 3) As soon as WMS accepts the workflow
applications, it enquires GMD for service information.
Typically, it collects the type, provider, access directory,
QoS parameters, and cost of each related services.

Step 4) WMS enquires each related GSPs to know
whether the services will be available. The services without
available acknowledgements will not be adopted.

Step 5) WMS executes a scheduling algorithm to decide
the optimal allocation scheme for the workflow. The
scheduler needs to assign each service to the right GSP and
determines the execution time slot for each service. The goal
of scheduling is to achieve the users’ QoS requirements,
typically the deadline constraints, as well as to minimize the
execution cost. Fig. 1 reveals that the scheduler is composed
of three modules. Scheduling module maintains a scheduling
algorithm to generate feasible solutions. These solutions are
sent to QoS estimation module, where the makespan, cost
and other parameters of solutions are evaluated. QoS

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 3309

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 08:06:43 UTC from IEEE Xplore. Restrictions apply.

parameter recorder module records some priori information,
such as the service success rate of each GSP. This
information is the summary of previous experience,
recording the historical performance of each GSP, and is
updated every time when an application is complete. These
historical statistics are adopted as parameters in QoS
estimation module to evaluate the expected performance of a
schedule more reasonably and accurately.

Step 6) WMS accesses related GSPs to make reservations
for all services according to the solution returned by step 5.

Step 7) The workflow is executed by GSPs in terms of the
prearranged time. Information exchange between WMS and
GSPs may occur.

Step 8) The contract between users and GSPs may be
violated at times due to many reasons such as the failure of
GSPs’ resources. In this case, a service may be delayed or
even become unavailable, which makes the following
services fail to be executed in terms of the priori schedule.
Therefore, a rescheduling mechanism is required for
violation management. Rescheduling mechanism updates the
schedule dynamically to adapt to run-time violations.

Step 9) After the completion of each service, the actual
QoS performance of service is fed back to the QoS
parameter recorder module so that the historical QoS
statistics are updated.

We focus on the scheduling module in this paper. The
scheduling problem involves a workflow application the
services of which can be implemented by different GSPs.
For the same service, GSPs charge higher price for
short-makespan implementation and lower price for
long-makespan implementation. The scheduling problem is
to allocate each service to a GSP so that the workflow can be
done within the users’ deadline requirements and the cost is
minimized. The scheduling model is formulated in this
section in detail.

Generally, workflow applications can be modeled as a
directed acyclic graph (DAG) G=(V,A). Let n be the number
of services in the workflow. The set of nodes V={S1,S2, ,Sn}
corresponds to the services of the workflow. The set of arcs
A represents precedence relations. An arc is in the form of
(Si,Sj), where Si is called the parent service of Sj, and Sj is the
child service of Si. Typically in a workflow, a child service
cannot be executed until all of its parent services have been
completed. The set of parent services of Si is denoted as
Pred(Si), and the set of child services is Succ(Si). Examples
of workflow described by DAG are given by Fig. 3.

For the sake of convenience, we add a start node Sstart and
an end node Send to the DAG. For all Si(≤ ≤), if Pred(Si)
is empty, we add Si to Succ(Sstart), so that Pred(Si)={Sstart}.
Similarly, if Succ(Si) is empty, we add Si to Pred(Send), so that
Succ(Si)={Send}.

Each service Si(≤ ≤) has an implementation domain

= , where ≤ ≤ represents
the service implementations provided by different GSPs, and

 is the total number of available service implantations for
Si. Additionally, we denote the total processing time
(duration) of as , and the cost of is .

The objective function of the scheduling problem is to
find an optimal schedule , which means Si is

executed by (≤ ≤), so that the total cost of the
workflow is minimized, as described by (1).

=

=

Moreover, the end time of the whole workflow must be
not later than D. D is the deadline constraint required by
users.

The general idea of ant colony optimization (ACO) is to
simulate the foraging behavior of ant colonies. When a
group of ants set out from their nest to search for food
source, they use a special kind of chemical to communicate
with each other. The chemical is referred to as the
pheromone. Once the ants discover a path to food source,
they deposit pheromone on the path. By sensing pheromone
on the ground, ants can follow the path to food source
discovered by other ants. As this process continues, most of
the ants tend to choose the shortest path to food as there
have been a huge amount of pheromones accumulated on
this path. This collective pheromone- depositing and
pheromone-following behavior of ants becomes the inspiring
source of ACO.

In this paper, we apply the ant colony system (ACS)
algorithm [17], which is one of the best ACO algorithms by
now, to tackle the workflow scheduling problem in grid
applications. Informally, the algorithm can be viewed as the
interplay of the following procedures:

1) Initialization of the algorithm. All pheromone values
and parameters are initialized.

2) Initialization of ants. Assume that a group of M ants
are used in the algorithm. At the beginning of each iteration,
all ants are set to initial state. Each ant chooses a
constructive type (forward or backward) and a heuristic type
(duration-greedy, cost-greedy, or overall-greedy). Based on
the constructive type, each ant builds its tackling sequence
of services.

3) Solution construction. M ants set out to build M
solutions to the problem. The construction procedure
includes n steps. n is the number of services in the workflow.
In each step, each ant picks up the next service in its tackling
sequence and maps it to one implementation out of the
service’s implementation domain using pheromone and
heuristic information. The algorithm also estimates the
earliest start time and earliest end time of services in terms
of the information of partial solution built by each ant. This
information is helpful to guide the search behavior of ants.

4) Local updating. Soon after an ant maps a service Si to
, the corresponding pheromone value is updated by a

local pheromone updating rule.
5) Global updating. After all ants have completed their

constructions, global pheromone updating is applied to the
best-so-far solution. The cost and makespan of all solutions
are evaluated. The pheromone values related to the
best-so-far solution is significantly increased. Moreover,

3310 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 08:06:43 UTC from IEEE Xplore. Restrictions apply.

some parameters of the algorithm are adaptively adjusted in
this procedure.

6) Terminal test. If the test is passed, the algorithm is end.
Otherwise, goto step 2) to begin a new iteration.

The flowchart of the algorithm is given by Fig. 4. These
procedures are described in detail below.

The considered problem is a bi-criteria problem to limit
the makespan within deadline and to minimize the cost.
Therefore, two types of pheromone are used. One represents
the desirability from the view of makespan, and the other
represents the desirability from the view of cost. We denote
these two types of pheromone as τ and τ

(≤ ≤ ≤ ≤). τ is the desirability of mapping

service Si to from the perspective of cost, and τ is

desirability of the same mapping from the perspective of
duration.

While initializing the algorithm, all pheromone values are
initialized. That is,

τ τ τ τ= = ≤ ≤ ≤ ≤

where τ and τ are two parameters, representing the

initial values for τ and τ respectively. Similar to the

ACS algorithm for TSP [17], we set τ = ⋅ and

τ = ⋅ . and are the lower bound estimation

for the total cost and makespan respectively. Typically,
can be set to the total cost when every service is mapped to
its lowest-cost implementation, and can be set to the
deadline D. So we have

τ ≤ ≤
=

= ⋅

and
τ = ⋅

The heuristic information for mapping Si to is

denoted as η . We also use three kinds of different heuristic

information to guide the search direction of ants, namely
duration-greedy, cost-greedy, and overall-greedy. The
definition is given by (5).

η

=

= =

⋅ =

In terms of this definition, duration-greedy heuristic bias
the implementations with the shortest execution time,
cost-greedy heuristic prefers the low-cost ones, and
overall-greedy considers both factors.

At the beginning of each iteration, all ants are initialized.
Each ant chooses a selection type from duration-greedy,
cost-greedy, or overall-greedy according to (6):

≤ <

= ≤ <

≤ ≤

p1 and p2 (0<p1<p2<1) are two parameters and
∈ is a random number. It is apparent that the

probabilities of choosing duration-greedy, cost-greedy, and
overall-greedy are p1, (p2-p1), and (1-p2) respectively. We
can see later that the values of p1 and p2 are adapted
dynamically in our algorithm. The selection type of an ant is
corresponding to the type of heuristic information it used
while constructing solutions.

Each ant also has to select its constructive type (forward
or backward) randomly and builds its tackling sequence of
services. The tackling sequence is built as follows. A
forward ant begins from the start service Sstart and applies a
random depth-first search to order all services. For example,
the possible sequences built by a forward ant in the
e-Economic workflow given by Fig. 3 (a) are
(S1•S2•S4•S7•S9•S5• S3•S6•S8), (S1•S2•S5•S7•S9•S4•S3•S6•S8), (S1•
S3•S6•S8•S9•S2•S4•S7•S5), and (S1•S3•S6•S8 •S9•S2•S5•S7•S4).
Similarly, a backward ant begins from the end service Send
and uses a random backward depth-first search to order the
services. The possible sequences built by a backward ant in
the above example are (S9•S7•S4•S2•S1•S5•S8•S6•S3),
(S9•S7•S5•S2• S1•S4•S8•S6•S3), (S9•S8•S6•S3•S1•S7•S5•S2 •S4), and
(S9•S8•S6•S3•S1•S7•S4• S2•S5). The reason for using a depth-first
search scheme is that the information of partial solutions
(i.e., the earliest start time and earliest end time of services)

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 3311

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 08:06:43 UTC from IEEE Xplore. Restrictions apply.

can be estimated, so that we can use this information to rule
out the probabilities of selecting inferior components, which
can be seen later. The reason for constructing the tackling
sequences from both sides (forward and backward) is to
diminish the influences exerted by the relative orders of
services.

After initialization, M ants set out to build solutions to the
problem in parallel according to their tackling sequences. In
step k (1•k•n), each ant picks up the kth service from its
tackling sequence and maps it to an implementation out of
the service’s implementation domain. Assume that an ant is

choosing one out of = to map to Si,
the selection rule is as follows:

Step 1: Evaluate the overall bias desirability of all
implementations in terms of (7).

α β

α β

α β

τ η η

τ η η

τ η η

=

−

=
=

−

= ⋅

−

Bij represents the bias of mapping Si to ≤ ≤ .
and are two parameters determining the weight of
pheromone and heuristic information respectively.

Step 2: Adapt the values of Bij in terms of the information
from partial solution. The earliest start time and the earliest
end time of services can be estimated for the current partial
solution built by an ant. We denote the estimated earliest
start time of Si as Si.est and the earliest end time of Si as
Si.eet. As the tackling sequence is built by depth-first search,
it guarantees that a service will only be considered by a
forward ant until at least one of its parent services has been
considered. (Similarly, a service will only be considered by a
backward ant until at least one of its child services has been
considered. In the following text, we only discuss the
situation for forward ants. The situation for backward ants
comes when regarding all parent services as child services
and regarding all child services as parent services.) So, when
a forward ant is considering Si, Si.est can be estimated as

∈=

For example, a forward ant uses the sequence of
(S1•S2•S4•S7 •S9•S5•S3•S6•S8) to build a solution for the
e-Economic workflow (Fig. 3(a)). After mapping all services
of the first branch (S1•S2•S4•S7•S9) to corresponding
implementations, we can estimate that S2.est=S1.eet,
S4.est=S2.eet, S7.est=S4.eet, S9.est=S7.eet. When considering
the next service S5, we have S5.est=S2.eet.

 On the other hand, sometimes the earliest start time for
the child services of Si may also have been estimated. For
instance, when we are considering S5 in the same example as
the last paragraph, S7.est (S7 is the son of S5) has already been
estimated. In this case, the available time slot for S5 is limited
by S2.eet and S7.est. We define

∈

∀ ∈

=
−

 Based on this definition, if Si is mapped to that

satisfies > , then = + will be larger
then at least one of its child’s estimated earliest start time. In
this situation, the estimated earliest start time for all children
of Si must be updated to be at least not smaller than .

Otherwise, for all implementations that satisfy ≤ ,
only the one with the lowest cost is useful, because all other
choices will result in a higher-cost solution with the same
makespan. So the ants will ignore these inferior choices by
modifying the preferences Bij using (10):

∀ ≤

∀ ≤

∀

=
≤ =

≤ >
≤

Step 3: An ant selects one implementation out of

= to map to Si in terms of the
following selection rule:

∀ ≤ ≤
≤

←

=

=

∈

∈

≤

Immediately after an ant maps to Si, local pheromone
updating procedure is implemented. The updating rule is
given by (13).

τ ξ τ ξ τ

τ ξ τ ξ τ

= − ⋅ + ⋅

= − ⋅ + ⋅

3312 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 08:06:43 UTC from IEEE Xplore. Restrictions apply.

where ξ ∈ is a parameter. The function of local
pheromone updating is to decrease the pheromone value
corresponding to so that the following ants have higher
probability to choose other implementations. Local
pheromone updating procedure enhances the diversity of the
algorithm.

Global updating takes place after all ants have built their
solutions. Global pheromone updating only applies to the
components on the best-so-far solution. Assume the
best-so-far solution is , which means Si is

executed by (≤ ≤). The cost and makespan of the

best-so-far solution are denoted as and .
Then the global pheromone updating rule is given by (14).

τ ρ τ ρ

τ ρ τ ρ

= − ⋅ + ⋅

>

= − ⋅ + ⋅

where ρ ∈ is a parameter. The function of global
pheromone updating is to reinforce the components on the
best-so-far solution to speedup the convergence of the
algorithm.

 Additionally, the values of parameters p1 and p2 are
adaptively tuned in this stage according to the best-so-far
solution. The adaptive scheme is given by (15):

= + = +

> + <

= =

> + ≥

= − = −

≤ − >

= =

≤ − ≤

As has been mentioned before, the probabilities of
choosing duration-greedy, cost-greedy and overall-greedy
are p1, (p2-p1), and (1-p2) respectively. According to the
adaptive scheme, if > , the probability of
choosing duration-greedy type (p1) is increase, so that more
ants use shorter duration implementations in their solutions.
As a result, these ants tend to find some short makespan
schedules to fit the deadline constraints. On the other hand,
if ≤ , it means the deadline constraint has
been met. In this case, we increase the probability of using
cost-greedy and overall-greedy so that the ants tend to
construct low-cost solutions.

We test the ACS algorithm in the three workflow
applications given in Fig. 3. Fig. 3(a) is an e-Economic

workflow application with 9 services. Each service of this
workflow has 5 different elements in its implementation
domain provided by different GSPs. The cost and duration
of each implementation are given by Table 1. Fig. 3(b) is a
neuro-science workflow application provided by [19] with
15 services. It is called the functional MRI (fMRI)
workflow. Fig. 3(c) is an e-Protein workflow application
with 15 services derived from [20]. The name of each
service in this application is also given in Fig. 3(c). This
application aims at testing the issues in building annotation
of the proteins in the major genomes using grid
technologies. In our simulation, we randomly assign 2 to 10
different implementation modes to each service in the
neuro-science workflow or the e-Protein workflow. The cost
and duration of all implementations are also randomly set,
but they follow the rule that for the same service a short
duration implementation is corresponding to a high price and
vice versa.

In the table, d means duration, and c means the cost.

Parameters of the algorithm are set as follows. The
weights of pheromone and heuristic information in equation
(7) are set to α β= = . The probability of selecting the
implementation with the largest value of Bij in equation (11)
is q0=0.8. Local pheromone updating rate in equation (13) is
ξ = . Global pheromone updating rate in equation (14) is

ρ = . In all experiments, the total iteration number is set
to 1000, and the number of ants M=10. As the above
parameters are regulars in the ACS algorithm, we configure
these parameters basically according to the ACS algorithm
for TSP [17]. Experimental results prove that this
configuration still has good performance.

 An interesting characteristic of this algorithm is that
two types of pheromone values and three types of heuristic
information are adopted to guide the ants towards two
objectives: compressing the makespan within deadline and
minimize the cost. We applied two parameters p1 and p2 in
equation (6) to determine the probabilities of using
duration-greedy, cost-greedy, and overall-greedy. In our
algorithm, we set = and = initially, which
means that the probability of using duration-greedy is 0.8,
and the probability of using cost-greedy or overall-greedy is
0.1. The reason for assigning a large probability for
duration-greedy initially is that ants are expected to find

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 3313

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 08:06:43 UTC from IEEE Xplore. Restrictions apply.

solutions that are subject to the deadline constraint as soon
as possible at the beginning of the algorithm.

DL=Deadline, AD=Adaptive adjusting scheme, NA=Without adaptive
adjusting scheme

Additionally, in the process of the algorithm, we adapt the

values of p1 and p2 using (15). The effect of this adaptive
adjusting scheme can be illustrated by Fig. 5. Fig. 5(a) is the
application of e-Protein (Fig. 3(c)) workflow with deadline
D=30. As D=30 is a very tight constraint for this application,
it is not easy for ants in the first few iterations to find
solutions finished within deadline. In this case, the value of
p1 is increased so that ants bias short-execution-time
implementations. This strategy is helpful for ants to find
feasible solutions that are subject to deadline constraints. As
a result, the makespan of the best-so-far solution drops to
smaller than 30 within fifteen iterations, which is shown in
Fig.5 (a1). Later, we decrease the value of p1 so that ants
tend to use low-cost implementations and the cost of the
best-so-far solution decreases (Fig.5 (a2)).

Fig. 5(b) gives another case that the deadline constraint is
loose (D=70). In this situation, ants manage to find feasible
solutions within deadline with ease (Fig. 5(b1)). So the value
of p1 decreases immediately after the beginning of the

algorithm and low-cost solutions can be found very quickly
(Fig. 5(b2)).

 The comparison between the algorithms with and
without adaptive adjusting scheme is given by Table 2. It is
apparent that the adaptive scheme manages to yield better
performance in most cases. This proves that the adaptive
scheme is able to improve efficiency of the algorithm.

We compare our ACS approach with the Deadline-MDP
algorithm proposed by [13]. Deadline-MDP is a
deterministic algorithm to tackle the same problem. This
algorithm works as dividing the DAG into several partitions
and distributing sub-deadline to each partition. Moreover, a
Markov Decision Process (MDP) is applied to find the best
solutions for pipeline partition branches in Deadline-MDP.

Experimental results in the three workflow applications

are illustrated by Fig. 6, Fig. 7, and Fig. 8. It can be seen that
in most cases even the worst solution found by ACS
outperforms the one found by Deadline-MDP, especially in

3314 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 08:06:43 UTC from IEEE Xplore. Restrictions apply.

the e-Protein workflow application. The results from both
algorithms are able to meet all deadline constraints.
However, the ACS approach tends to make full use of the
time to minimize the cost. The makespans found by ACS are
always equal to the deadline. On the other hand, although
the makespan found by Deadline-MDP are shorter than
ACS, the costs found by Deadline-MDP are much higher
than ACS. This demonstrates the effectiveness of the ACS
approach.

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 3315

Authorized licensed use limited to: Hanyang University. Downloaded on November 29,2023 at 08:06:43 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

