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ABSTRACT 
Instead of having fixed px and pm, this paper presents the use of 
fuzzy logic to adaptively tune px and pm for optimization of power 
electronic circuits throughout the process. By applying the K-
means algorithm, distribution of the population in the search 
space is clustered in each training generation. Inferences of px and 
pm are performed by a fuzzy-based system that fuzzifies the 
relative sizes of the clusters containing the best and worst 
chromosomes. The proposed adaptation method is applied to 
optimize a buck regulator that requires satisfying some static and 
dynamic requirements. The optimized circuit component values, 
the regulator’s performance, and the convergence rate in the 
training are favorably compared with the GA’s using fixed px and 
pm 

Categories and Subject Descriptors 
D.2.2  [Evolutionary prototyping]  

Keywords 
Genetic Algorithms and Real World Applications  

1. INTRODUCTION 
This paper presents the use of fuzzy logic to adaptively tune px 
and pm for optimization of PEC throughout the process. By 
applying the K-means algorithm[1] , distribution of the population 
in the search space is clustered in each training generation. 
Inference of px and pm is performed by a fuzzy-based system that 
fuzzifies the relative sizes of the clusters containing the best and 
worst chromosomes. Both of the population distribution factor 
and the computational efficiency, as compared with[2] and[3], are 
considered. The proposed adaptation method is applied to 
optimize a buck regulator that requires satisfying some static and 
dynamic requirements. The decoupled optimization technique as 
proposed in[4] is used. Nevertheless, without loss of generality, 
the proposed parameter adaptation scheme can be applied to other 
GA-based optimization problems. The optimized circuit 
component values, the regulator’s performance, and the 
convergence rate in the training are favorably compared with the 
GA’s using fixed px and pm. 

2. ADAPTIVE CONTROL OF px AND pm 
Biological evolution shows that px and pm should be adapted and 
should depend on the evolution state[5]. Thus, in order to enhance 

the training efficiency of[4], an adaptive approach for tuning px 
and pm is proposed. The basic concept is based on considering 
that px determines the probability of reproduction from parent 
chromosomes and pm determines the probability of creation from a 
parent chromosome in different training states. Fig. 1 illustrates 
the strategy of tuning px and pm in four optimization states, 
including initial state, under-matured state, maturing state, and 
matured state [5]. In order to prevent premature convergence of 
the GA to a local optimum, it is essential to be able to identify 
whether the GA is converging to an optimum. The proposed 
method suggests the use of the relative population distribution to 
define the training state. The first step is to partition the 
population into clusters. Chromosomes of having similar 
component vectors are grouped in the same cluster. The second 
step is to use a fuzzy system that fuzzifies the relative sizes of the 
clusters containing the best and worst chromosomes to determine 
px and pm. The procedures are described as follows. 
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Fig 1. Illustrations on adjusting px and pm in different 

optimization phases. 
A. Clustering of the Population 
Although K-means algorithm can only partition sub-optimal 
clusters, it is sufficient for this particular application to depict the 
chromosome distribution.  
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B.Tuning Rules for px and pm 
Tuning of px and pm in the proposed fuzzy inference system is 
based on considering the relative cluster sizes of GB and GW (i.e., 

BĜ  and WĜ ). The following four rules for tuning px and pm are 
defined and are tabulated in Table I. 

Table I Strategy in tuning px and pm 
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Small Px Increase 
Pm Increase 

Px Decrease 
Pm Decrease

Small Large 
Size of cluster containing 
the BEST chromosome 

Rule1-The best chromosome is in the largest cluster whilst the 
worst chromosome is in the smallest cluster. 
Rule2-GB equals GW. Both of them are the largest among others. 
Rule3-GB equals GW. Both of them are the smallest among others. 
Rule4-The best chromosome is in the smallest cluster whilst the 
worst chromosome is in the largest cluster. 
C.Fuzzy-based tuning mechanism for px and pm 
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Fig 2. Illustrations on adjusting px and pm in different 

optimization phases 
 

Table II Fuzzy control rules for tuning px and pm 

Rule for 
xPδ  

Rule 1=(Rule (0,1)): If ( BĜ  is PB) and ( WĜ  is PS) then δPx=NB 

Rule 2=(Rule (1,1)): If ( BĜ  is PB) and ( WĜ  is PB) then δPx=PB 

Rule 3=(Rule (0,0)): If ( BĜ  is PS) and ( WĜ  is PS) then δPx=PB 

Rule 4=(Rule (1,0)): If ( BĜ  is PS) and ( WĜ  is PB) then δPx=NB 

Rule for 
mPδ  

Rule 1=(Rule (0,1)): If ( BĜ  is PB) and ( WĜ  is PS) then δPm=NB 

Rule 2=(Rule (1,1)): If ( BĜ  is PB) and ( WĜ  is PB) then δPm=NB 

Rule 3=(Rule (0,0)): If ( BĜ  is PS) and ( WĜ  is PS) then δPm =PB 

Rule 4=(Rule (1,0)): If ( BĜ  is PS) and ( WĜ  is PB) then δPm=PB 

3. DESIGN EXAMPLE & COMPARISONS 
The proposed method is illustrated with the same example in [4]. 
The circuit schematic is shown in Fig. 3. The PCS is a classical 
buck converter and the FN is a proportional-plus-integral 

controller. In[4], px (= 0.85) and pm (= 0.25) are fixed in the GA’s. 
Fig. 4 shows the comparisons of the fitness values against the 
training generations with the fixed and proposed fuzzy-controlled 
px and pm. It can be seen that the fuzzy-controlled scheme can 
significantly improve the fitness values. 
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Fig. 3. Schematics of the buck regulator in[4]  
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Fig.4 Comparisons of the fitness values against the training 

generation using fixed and fuzzy-controlled px and pm 

4. CONCLUSIONS 
A fuzzy-controlled crossover and mutation probabilities in GA’s 
for optimization of PECs has been proposed. They are determined 
adaptively for each solution of the population. It is in the manner 
that the probabilities are adapted to the population distribution of 
the solutions. This not only improves the convergence rate of the 
GA, but also prevents the GA from getting stuck at a local 
minimum. A buck regulator has been optimized. The results are 
favorably compared with the ones using GA’s with fixed 
probabilities. 

5. REFERENCES 
[1] J. T. Tou, R. C. Gonzalez, Pattern Recognition Principles, 

Reading MA: Addison-Wesley, 1974. 
[2] M. Srinivas and L. Patnaik, “Adaptive probabilities of 

crossover and mutation in genetic algorithms,” IEEE Trans. 
Syst., Man, and Cybernetics, vol. 24, no. 4, pp. 656-667, 
Apr. 1994. 

[3] J. Grefenstette, “Optimization of control parameters for 
genetic algorithms,” IEEE Trans. Syst., Man, and 
Cybernetics, vol. 16, no. 1, pp. 122-128, Jan. 1986. 

[4] J. Zhang, H. Chung, W. L. Lo, S.Y.R. Hui, and A. Wu, 
“Implementation of a decoupled optimization technique for 
design of switching regulators using genetic algorithm,” 
IEEE Trans. Power Electron., Nov. 2001 issue. 

[5] Jon Reed, “Simulation of Biological Evolution and Machine 
Learning”, J. Theoret. Biol., vol. 17, 319-342, 1967. 

1578


