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ABSTRACT 
Differential Evolution (DE) is a new paradigm of evolutionary 
algorithm (EA) which has been widely used to solve nonlinear 
and complex problems. The performance of DE is mainly 
dependent on the parameter settings, which relate to not only 
characteristics of the specific problem but also the evolution state 
of the algorithm. Hence, determining the suitable parameter 
settings of DE is a promising but challenging task. This paper 
presents an enhanced algorithm, namely, the stochastic coding 
differential evolution (SDE), to improve the robustness and 
efficiency of DE. Instead of encoding each individual as a vector 
of floating point numbers, the proposed SDE represents each 
individual by a multivariate normal distribution. In this way, 
individuals in the population can be more sensible to their 
surrounding regions and the algorithm can explore the search 
space region-by-region. In the SDE, a newly designed update 
operator and a random mutation operator are incorporated to 
improve the algorithm performance. Traditional DE operators 
such as the mutation scheme and the crossover operator are also 
accordingly extended. The proposed SDE has been validated by 
nine benchmark test functions with different characteristics. Four 
highly regarded EAs are compared in the experiment study. The 
comparison results demonstrate the effectiveness and efficiency 
of the SDE. 

Catergories and Subject Descriptors 
I.2.8 [Artificial Intelligence]:Problem Solving, Control Methods 
and search-Heuristic methods; G.1.6 [Numerical Analysis]: 
Optimization-Global optimization 

Keywords 
Differential Evolution, Evolutionary Computation, Global 
Optimization, Multivariate Normal Distribution, Stochastic 
Coding 

1. INTRODUCTION 
Differential evolution (DE) is a new paradigm of evolutionary 
algorithm (EA) for continuous optimization [1]. Due to its easy 
implementation, strong global search ability and fast convergence 
speed, DE has become one of the most popular optimization 
techniques and has been successfully applied to a wide range of 
applications such as system design [2] and space trajectory 
optimization [3] [4].  

The performance of DE is largely dependent on its two 
parameters, namely, the mutation scale factor F and the crossover 
rate CR. However, determining the ideal values of F and CR is a 
difficult task, because their optimal values are not only dependent 
on the characteristics of the specific problem but also related to 
the evolution state of the algorithm [5]. Although several adaptive 
parameter control strategies have been drawn [5]-[6], developing 
a more effective and efficient DE for practical applications is one 
of the significant and challenging research topics in the EA 
community. 

In most DE algorithms, each individual is encoded by a 
vector of floating numbers, representing one possible solution in 
the search space. Hence, they actually explore the search space in 
a point-by-point manner. This search mechanism could be quite 
inefficient because many computational efforts are wasted on 
evaluating un-significant regions. On the other hand, the 
surrounding regions of promising solutions are more likely to 
contain better solutions, but they are not explored sufficiently. To 
overcome the above drawbacks, a new coding strategy named 
stochastic coding strategy has been proposed in [8]-[10] recently. 
The key idea is to represent each individual by a stochastic region 
defined by a normal distribution, so that individuals are more 
sensible to their surrounding region, and the search space can be 
explored region-by-region. This profound idea has shown great 
potential to improve the performance of EAs [8][10].  

Existing stochastic coding strategies focus on using a one-
dimensional normal distribution to represent one variable of the 
problem, i.e., each variable is associated with a mean value and an 
independent variance. Inspired by the fact that multivariable 
normal distribution is more effective to capture the interactions 
between variables and can be coordinate system invariant [13]-
[15], this paper proposes an enhanced stochastic coding strategy 
based on multivariable normal distribution. This new coding 
strategy is incorporated into DE and form a stochastic coding DE 
(SDE) for solving continuous optimization. In the SDE, a newly 
designed update operator and a random mutation operator are 
incorporated into the algorithm framework to improve the 
performance. Traditional DE operators (e.g., mutation and 
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crossover) are also accordingly extended. The proposed SDE will 
be assessed by carrying out optimization on nine benchmark 
functions with different characteristics. Four highly regarded 
optimization methods, i.e., CLPSO [11], DE [1], CoDE[12], and 
CMA-ES[13] will be used for comparison.  

The rest of the paper is organized as follows. Section 2 
briefly describes the general framework of DE and its recent 
developments. Section 3 describes detailed implementations of 
SDE. Section 4 presents the experiment study and compares the 
performance of six optimization algorithms. At last, Section 5 
draws the conclusions. 

2. TRADITIONAL DE AND ITS 
DEVELOPMENTS 

DE is a population based algorithm which is proposed by 
Storn and Price [1]. It starts with a set of random individuals. 
Then these individuals are evolved iteratively using mutation, 
crossover, and selection operators until meeting the termination 
condition.  In each iteration, the mutation operator is firstly used 
to create a mutation vector for each individual, i.e., 

, 1, 2, 3,( )i g r g r g r gY X F X X                               (1) 

where 1 2 3, , [1, ]r r r NP are three distinct random integers, F is the 

scaling factor, g represents the current generation and NP is the 
population size. Following the mutation operator, the crossover 
operator generates a trial vector ,i gU  for each individual by 
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where [0,1]CR  is the crossover rate, k is a random integer 
within [1, D], D is the problem dimension, rand (0,1) returns a 
random number uniformly distributed between 0 and 1, ,

j
i gu  

represents the jth variable of ,i gU . Thirdly, the selection operator 

chooses NP individuals for the next iteration by 
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In DE algorithm, the values of F and CR have significant 
influence on the behavior of the algorithm. The ideal parameter 
settings of DE seem to be problem dependent [5]-[7]. Traditional 
trial-and-error method for adjusting the values of F and CR is 
inconvenient in practice, therefore adaptive control techniques 
have been utilized recently. In [5], Brest et al. proposed a self-
adaptive DE, where the values of F and CR are either inherited 
from parents or a randomly generated number. Qin et al. [7] 
proposed a self-adaptive DE by controlling the mutation schemes 
and parameters dynamically based on previous search experience. 
Zhang and Sanderson [6] incorporated a new “current-to-pbest” 
mutation scheme into DE and suggested sampling F and CR from 
a normal distribution and a Cauchy distribution respectively. In 
order to improve the robustness and efficiency of DE, Wang et al. 
[12] suggested to randomly combine three mutation schemes and 
three parameter settings to generate offspring in the evolution. 

3. THE PROPOSED SDE 
3.1 Individual Representation 

Unlike traditional DE that encodes each individual as a 
vector of floating-point numbers, the proposed SDE encodes each 

individual with a multivariable normal distribution, as expressed 
in Eq. (4).  
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where ,i t  represents the 1n mean vector, ,i t represents the 

n n  covariance matrix, i represents the index of the individual, 
g represents the generation and n is the dimension of the problem. 
The mean vector   is used to evaluate the fitness of the 
individual. Based on the stochastic coding strategy, the normal 
distribution of each individual can be used to sample neighboring 
individuals for local fine-tuning. 

3.2 Algorithm Framework 
Algorithm 1: SDE
1.   Initialize algorithm parameters and a random population P1 
2.   g=1
3.   While (termination criterion not met) do
4.        Sort Pg in best to worst order
5.        For i =1 to M do 
6.             
7.             Get the eigen values (e1,...en), and eigen vectors (v1,...vn) of 
8.             For j = 1 to n do
9.                   set b = the projection of            in vj

10.                   set m = the projection of          in vj

11.                 If ej /(b - m)2<Q then set ej = (b - m)2*Q
12.           EndFor     
13.           Set X = [v1,...vn]*([e1,...en]*I)*[v1,...vn]

T.
14.           Apply the Cholesky decomposition to X to obtain S, so that X=SST

15.           For j = 1 to N do
16.                   
17.                  Set k = floor(rand(0,1) * n)

18.                  For m = 1 to n do
19.                        If m == k then 
20.                        Else 
21.                  EndFor                           
22.           EndFor
23.           Set B = the set of neighboring solutions which are better than Pi,g

24.           If            then set         = the covariance of B
25.           If the best neighboring solution is better than Pi,g then 
26.                 Set          = the best neighboring solution 
27.           EndIF  
28.      Endfor
29.      For i =1 to NP do
30.           Set F = rand(0,1), Set CR = rand(0,1)
31.           Randomly choose         from the best p.NP individuals of Pg 
32.           Randomly choose                  from Pg 
33.           Randomly choose                           from Pg

34.           Set k = floor(rand(0,1) * n)
35.             For j = 1 to n do
36.                  If rand(0,1)    CR and j    k then
37.                        set   
38.                  Else set
39.                  If rand(0,1) < pm then set          = rand(LBj, UBj) End if
40.                  If < LBj or > UBj then set           = rand(LBj, UBj) End if
41.           End for
42.           If        is better than Pi,g then set Pi,g =         and update       of Pi,g 
43.      End for
44.      g = g+1
45. End while

step 1

step 2

step 3
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Figure1. Algorithm framework of SDE. 

Fig. 1 shows the framework of SDE, where three steps are 
involved during the evolution. The detailed implementations of 
these three steps are described as follows. 

976



1) Step 1 - Initialization 
The initialization generates a set of random individuals. For 

each initial individual, the mean vector is generated by 

,1 ( , ), [1, ], [1, ]k
i k krand LB UB i NP k n               (5) 

where LBk and UBk are the lower and upper bounds of the kth 
variable, ( , )rand a b returns a random number uniformly 
distributed between a and b. The covariance matrix is empirically 
initialized as 

,1

0,if 
  

,  otherwise
jk

i
k

j k

c



 


                       (6) 

where ck is a predefined constant, e.g., ck = (UBk – LBk)
2. After 

generating the mean vectors and the covariance matrix of an 
individual, its fitness value is evaluated. 
2) Step 2 – Update Operator 

The update operator is used for local fine-tuning, as well as 
for updating the normal distribution of individuals in the 
population. For each given individual, a two-phased process is 
carried out. The first phase is to sample N neighboring solutions. 
N temporary solutions are sampled by 
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where S is a lower triangular matrix with ,
T

i g S S   , Z is a 

1n matrix with each element sampled from a standard Normal 
distribution. It can be verified by Eq. (8) and Eq. (9) that the 
mean and the covariance of 

,
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As suggested in [15][16], two parameters, namely,   and Q, are 
used to improve the algorithm performance. Specifically, when 
sampling a temporary individual, the mean vector is moved 
towards the best-so-far individual by  

, , ,(1 )i g i g best g                                 (10) 

where ,best g  is the mean vector of the best-so-far individual. The 

threshold Q is used to enlarge the eigenvalues for maintaining the 
population diversity [15]. Once a temporary solution jU is 

sampled, the corresponding neighboring solution is generated by 

,
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,   otherwise

m
jm

j m
i g

U m k
T



  


                                  (11) 

where k is a random integer between[1,n] is a predefined constant. 
In this way, only one variable of the neighboring solution is 
different from that of the given individual. The quality of the 
given individual can be improved gradually in a manner similar to 
the hill climb search mechanism. 

The second phase is to update the normal distribution of the 
given individual. Denote B as the set of neighboring solutions 
which are better than the given individual. If B is not empty, the 
covariance of the given individual is set to be the covariance of B. 

Meanwhile, if the best neighboring solution is better than the 
given individual, the mean vector of the given individual would 
be replaced by the best neighboring solution.  

Since performing the update operator on a given individual 
requires evaluating the fitness of N sampled individuals, it needs 
much computational cost to update all individuals at each 
generation. In order to reduce the computational cost, the SDE 
only chooses the top M individuals to undergo the update process.  
3) Step 3 –Mutation, Crossover and Selection 
This step applies the DE operators to generate NP new individuals. 
For each individual ,i tP , a new individual is generated by 

, 1, , 2, 3,'
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,                                                        otherwise
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                      (13) 

where r1, r2, r3 with 1 2 3r r r  , are three random individual 

indexes. Using Eq. (13), we can set the covariance matrix 
according to the evolution state.  It should be noticed that the new 
vectors '

,i g  is bounded by the search ranges, i.e.,  

, , ,( , ),  if  or k k k
i g k k i g k i g krand LB UB LB UB               (14) 

In the DE algorithm, the optimal values of F and CR are 
dependent on the specific problem and the evolution state. 
However, in practical applications, the characteristics of the 
problem at hand are usually unknown. In order to improve the 
robustness of the algorithm, we adopt a random scheme to set 
values of F and CR, i.e., 

F = rand (0, 1)                                  (15) 
CR = rand (0, 1)                                (16) 

Followed by the crossover operator, an extra random 
mutation operator is utilized to change each ,

k
i g  with a 

probability of pm, i.e., 

, ( , ),  if (0,1) < k
i g k krand LB UB rand pm                (17) 

We introduce this random mutation to improve the population 
diversity and avoid premature convergence, because the update 
operator in step2 would gradually drive the population towards 
the best individual and resulting in the population losing diversity. 

There is a repetition from Step2 to Step3 and the evolution 
processes iteratively until reaching the maximum number of 
evaluations. 

4. EXPERIMENTS AND COMPARISONS 

4.1 Experimental Settings  

In this section, nine benchmark functions with different 
characteristics are used to investigate the effectiveness of the 
proposed SDE. The benchmark functions are listed in Table I, 
where f1, f2 are unimodal functions, while the others are 
multimodal functions. The performance of SDE will be compared 
with four EAs, i.e., CLPSO[11], DE[1], CoDE[12], and CMA-
ES[13]. The parameters of all compared EAs are set according to 
their referenced papers, as listed in Table II. The dimension of all 
test functions is 30 and the maximum number of fitness 
evaluations is 300000. Since EAs are stochastic algorithms that 
may obtain different results in different runs, all compared EAs 
are run for 30 independent times on each test case. All algorithms 
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are programmed using Visual C++ 6.0 and are run on a PC with 

Table I. Benchmark Test Functions. 

Name Function n Domain fmin 

Sphere  2
1

1

( )
n

i
i

f x x


   30 [-100,100] 0 

Schwefel 
2

1 1

( ) | | | |
nn

i i
i i

f x x x
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    30 [-10,10] 0 

Rosenbrock 2 2 2
3 1

1

( ) [100( ) ( 1)
n

i i i
i

f x x x x
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Schwefel 
4

1

( ) sin( | |)
n

i i
i

f x x x


   30 [-500,500] -12569.5 

Rastrigin 2
5

1

( ) [ 10cos(2 ) 10)]
n

i i
i

f x x x


    30 [-5.12,5.12] 0 

Ackley 2
6

1 1

1 1
( ) 20exp( 0.2 ) exp( cos 2 ) 20

n n

i i
i i

f x x x e
n n


 

        30 [-32,32] 0 
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1
2 2 2

7 1
1

2

1

( ) {10sin ( ) ( 1) [1 10sin ( )]

( 1) } ( ,10,100,4)

1
where 1 ( 1)

4
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( , , , ) 0,              

( ) ,    
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i i i
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n i
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i i

m
i i

i i
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f x y y y
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
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
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  
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


 30 [-50,50] 0 

Penalized  

1
2 2 2

8 1 1
1
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( ) 0.1{sin (3 ) ( 1) [1 sin (3 )]

( 1)[1 sin (2 )]} ( ,5,100, 4)

n
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i

n
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i

f x x x x

x x u x

 






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
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


 30 [-50,50] 0 

Griewank 
2

9
1 1

( ) ( ) cos( ) 1
4000

nn
i i

i i

x x
f x

i 

     30 [-600,600] 0 

Table II. Parameter Settings of Compared EAs. 
Algorithms Parameter settings 

DE NP = 100, F = 0.5, CR = 0.9 

CLPSO NP = 40, w0 = 0.9, w1 = 0.4, c = 1.49445 

CoDE 
NP = 30, {F, CR}={{1.0, 0.1}, {1.0, 0.9}, {0.8, 0.2}}, 

mutation operator = {“rand/1/bin”, “rand/2/bin”, 
“current-to-rand/1” } 

CMA-ES / 2     , 4 3ln( )n       

SDE NP=50, M=6, N=5, pm = 0.01, p= 0.3,  = 0.15, Q = 2 

Table III.  Experimental Results of Five EAs on the Benchmark Test Functions. 
Function CLPSO DE CoDE CMA-ES SDE 

f1 mean 1.17×10-20‡ 2.23×10-31‡ 5.17×10-71 0† 6.15×10-134 

f2 mean 2.51×10-13‡ 2.28×10-15‡ 2.47×10-37‡ 5.92×10-17 3.89×10-69 

f3 mean 5.70‡ 1.98‡ 3.60×10-12‡ 1.33×10-1 1.78×10-16 

f4 mean -12569.5‡ -8384.92‡ -12569.5‡ -8360.13‡ 12569.5 

f5 mean 2.74×10-11‡ 1.40×102‡ 0‡ 5.23×101‡ 0 

f6 mean 2.49×10-11‡ 4.62×10-15‡ 3.55×10-15‡ 1.18×10-16† 3.55×10-15 

f7 mean 5.47×10-22‡ 4.01×10-32‡ 1.57×10-32‡ 1.04×10-2 1.57×10-32 

f8 mean 7.29×10-21‡ 1.58×10-31‡ 1.35×10-32‡ 1.83×10-3‡ 1.35×10-32 

f9 mean 4.86×10-13‡ 0‡ 0‡ 1.23×10-4‡ 0 

Better 0 0 0 2 
Worse 9 9 8 4 

Similar 0 0 1 3 

Score -9 -9 -8 -2 

 

†means the corresponding values are significantly better than those found by the SDE; ‡means the corresponding values are 
significantly worse than those found by the SDE; “Better” (“Worse” or “Similar”) represents the times of the algorithm 
compared performing significantly better than (significantly worse than or similar to) the SDE. 

1 ( 1) 0Score Better Worse Similar       .
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Intel (R) Core ™2 Quad CPU Q6600, 2.4 GHz, 1.96GB of RAM. 

4.2 Performance Comparison  

Table III lists the results of all algorithms compared. In 
Table III, we use a two-sample t-test to check whether an 
algorithm compared performs significantly different from the 
SDE. If the mean value of an algorithm compared is significantly 
better than (similar to or worse than) that of the SDE, the 
algorithm compared would gain a score of 1 (0, or -1). Otherwise, 
if the algorithm compared and the SDE find the global optima in 
30 runs, we do the t-test on the smallest number of fitness 
evaluations (FES) required to find the optimal solution. If the FES 
of a algorithm compared is significantly smaller than (similar to 
or larger than) that of the SDE, it will gain a score of 1 (0, or -1).  
The results in Table III show that, SDE performs significantly 
better than CLPSO and DE on all test cases. SDE performs better 
than CoDE on f2, f4, f5, f6, f7, f8, and f9, while performs competitive 
on other functions. Compared with CMA-ES, SDE performs 
significantly worse on f1, f6, competitive on f2, f3, f7, and 

significantly better on f4, f5, f8, f9. According to the score values in 
the last row, SDE performs the best among all algorithms 
compared. 

 The average convergence speed of all algorithms compared 
is illustrated in Fig. 2. It can be seen in Fig.2 (a) that CMA-ES has 
a faster convergence speed than SDE, but CMA-ES quickly gets 
trapped into local optima on f2, f3 f4 f5 f7 f8 and f9. Compared with 
other EAs, SDE has a much fast convergence speed on all test 
cases. The SDE seems to perform more stable than other EAs for 
it does not get trapped into local optima on the nine test cases. 
The above results indicate that SDE has strong global and local 
search ability. 

In the following part of this subsection, we discuss the 
computational complexity of algorithms compared. We use the 
method presented in [17], which use four factors, namely T0, T1, 
ˆ2T , and ( ˆ2T -T1)/T0 to reflect the complexity of an algorithm. 

The detailed computations of these four factors can be referred in 
[17]. In our experiments, the values of T1 and T2 are obtained on 
f3 with D = 30 and the maximum fitness evaluations = 200000. 
The experiment results are list in Table IV, where all values are 
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Fig. 2 Convergence graphs of compared algorithms ((a) f1, (b) f2, (c) f3, (d)f4, (e) f5, (f) f6, (g) f7, (h) f8, (i) f9). 
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measured in time seconds. It can be observed that, the 
computational complexity of the proposed algorithm is much 
larger than the other algorithms compared. This is because the 
SDE requires M times of covariance matrix decomposition in 
each generation, which needs O(MD3) time complexity. Therefore, 
reducing the time complexity of SDE can be a future work. Note 
that the convergence speed of SDE is much faster than those of 
the other algorithms in terms of number of fitness evaluation. 
Hence applying SDE to applications where the fitness evaluation 
process is very expensive seems to be a promising future work. 

Table IV.  Computational Complexity of Algorithms compared. 
Algorithm

s
T0 T1 ˆ2T  ( ˆ2T -T1)/T0 

CLPSO 0.253 1.489 2.370 3.479 

DE 0.253 1.489 2.395 3.581 

CODE 0.253 1.489 2.174 2.708 

CMA-ES 0.253 1.489 7.479 23.676 

SDE 0.253 1.489 23.979 88.893 

4.3 Algorithm Analysis  
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Fig. 3 Impact of pm ((a) f1, (b) f3). 
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Fig. 4 Impact of M ((a) f1, (b) f3). 
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Fig. 5 Impact of N ((a) f1, (b) f3).  

First, we study the impact of pm, which determines the 
random mutation rate. Generally, a large pm would improve the 
population diversity, but it would slow down the convergence at 
the mean time. In the following experiments, we apply SDE to a 
unimodal function (f1) and a multimodal function (f3) to 
investigate its performance, with the value of pm to be 0, 0.001, 
0.005, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7. The other 
parameters are set the same as in Table II. The results in Fig. 3 
demonstrate that a smaller pm (e.g., pm < 0.01) would leads to 
better results for f1. However, as for the multimodal function f3, 

SDE generally performs better as pm increases from 0 to 0.005, 
but its performance decreases as pm continuously increases. 

Next, we study the impact of M by varying its value to be 1, 
3, 6, 10, 20, and 30, while the other parameters are set the same as 
in Table II. The curves in Fig. 4 shows that M should not be set 
too small (e.g., M = 1) or too large (e.g., M = 30). It seems that 
setting M = 3 or M = 6 leads to a promising results. 

Third, we study the impact of N by varying its value to be 1, 
2, 3, 4, 5, 10, 15 and 20, while the other parameter settings are the 
same as in Table II. The curve in Fig. 5(a) shows that the 
performance of SDE on f1 decreases as N increases. As for the 
multimodal function f3, N should not be set too small (e.g., N = 1) 
or too large (e.g., N >10).  

5. CONCLUSIONS 
This paper has presented an enhanced differential evolution with 
stochastic coding strategy, namely, SDE, for global continuous 
optimization. In SDE, each individual is represented by a 
multivariate normal distribution. The multivariate normal 
distribution is used to evaluate the fitness of individuals as well as 
to sample neighboring individuals for local fine-tuning. A new 
update operator is designed based on the stochastic coding 
strategy for local fine-tuning. The DE operators, namely, 
mutation and crossover, are accordingly extended to generate 
offspring. The proposed SDE has been validated by nine 
benchmark functions with differential characteristics. Four highly 
regarded EAs, including CLPSO, CoDE and CMA-ES, have been 
used for comparison. The experimental results demonstrate that 
the SDE offers a very promising performance. Future research 
work includes the following: 1) reducing the time complexity of 
SDE, 2) applying SDE to applications where the fitness 
evaluation process is very expensive and time consuming (e.g., 
grid workflow scheduling [18] and power electronic design[19]), 
3) adopting adaptive parameter controlling strategies [20]-[22] to 
further improve the performance of SDE, and 4) extending the 
proposed coding strategy to improve the performance of other 
algorithms such as particle swarm optimization [23] and ant 
colony optimization [24]. 
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