
SDE: A Stochastic Coding Differential Evolution for Global
Optimization

Jing-hui Zhong and Jun Zhang
Department

of Computer Science
Sun Yat-sen University

P.R. China

Key Laboratory
of Digital Life

Ministry of Education
P.R. China

Key Laboratory
of Software Technology

Education Dept.
of Guangdong Province

P.R. China

junzhang@ieee.org

ABSTRACT
Differential Evolution (DE) is a new paradigm of evolutionary
algorithm (EA) which has been widely used to solve nonlinear
and complex problems. The performance of DE is mainly
dependent on the parameter settings, which relate to not only
characteristics of the specific problem but also the evolution state
of the algorithm. Hence, determining the suitable parameter
settings of DE is a promising but challenging task. This paper
presents an enhanced algorithm, namely, the stochastic coding
differential evolution (SDE), to improve the robustness and
efficiency of DE. Instead of encoding each individual as a vector
of floating point numbers, the proposed SDE represents each
individual by a multivariate normal distribution. In this way,
individuals in the population can be more sensible to their
surrounding regions and the algorithm can explore the search
space region-by-region. In the SDE, a newly designed update
operator and a random mutation operator are incorporated to
improve the algorithm performance. Traditional DE operators
such as the mutation scheme and the crossover operator are also
accordingly extended. The proposed SDE has been validated by
nine benchmark test functions with different characteristics. Four
highly regarded EAs are compared in the experiment study. The
comparison results demonstrate the effectiveness and efficiency
of the SDE.

Catergories and Subject Descriptors
I.2.8 [Artificial Intelligence]:Problem Solving, Control Methods
and search-Heuristic methods; G.1.6 [Numerical Analysis]:
Optimization-Global optimization

Keywords
Differential Evolution, Evolutionary Computation, Global
Optimization, Multivariate Normal Distribution, Stochastic
Coding

1. INTRODUCTION
Differential evolution (DE) is a new paradigm of evolutionary
algorithm (EA) for continuous optimization [1]. Due to its easy
implementation, strong global search ability and fast convergence
speed, DE has become one of the most popular optimization
techniques and has been successfully applied to a wide range of
applications such as system design [2] and space trajectory
optimization [3] [4].

The performance of DE is largely dependent on its two
parameters, namely, the mutation scale factor F and the crossover
rate CR. However, determining the ideal values of F and CR is a
difficult task, because their optimal values are not only dependent
on the characteristics of the specific problem but also related to
the evolution state of the algorithm [5]. Although several adaptive
parameter control strategies have been drawn [5]-[6], developing
a more effective and efficient DE for practical applications is one
of the significant and challenging research topics in the EA
community.

In most DE algorithms, each individual is encoded by a
vector of floating numbers, representing one possible solution in
the search space. Hence, they actually explore the search space in
a point-by-point manner. This search mechanism could be quite
inefficient because many computational efforts are wasted on
evaluating un-significant regions. On the other hand, the
surrounding regions of promising solutions are more likely to
contain better solutions, but they are not explored sufficiently. To
overcome the above drawbacks, a new coding strategy named
stochastic coding strategy has been proposed in [8]-[10] recently.
The key idea is to represent each individual by a stochastic region
defined by a normal distribution, so that individuals are more
sensible to their surrounding region, and the search space can be
explored region-by-region. This profound idea has shown great
potential to improve the performance of EAs [8][10].

Existing stochastic coding strategies focus on using a one-
dimensional normal distribution to represent one variable of the
problem, i.e., each variable is associated with a mean value and an
independent variance. Inspired by the fact that multivariable
normal distribution is more effective to capture the interactions
between variables and can be coordinate system invariant [13]-
[15], this paper proposes an enhanced stochastic coding strategy
based on multivariable normal distribution. This new coding
strategy is incorporated into DE and form a stochastic coding DE
(SDE) for solving continuous optimization. In the SDE, a newly
designed update operator and a random mutation operator are
incorporated into the algorithm framework to improve the
performance. Traditional DE operators (e.g., mutation and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO'12, July 7-11, 2012, Philadelphia, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1177-9/12/07…$10.00.

975

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2330163.2330298&domain=pdf&date_stamp=2012-07-07

crossover) are also accordingly extended. The proposed SDE will
be assessed by carrying out optimization on nine benchmark
functions with different characteristics. Four highly regarded
optimization methods, i.e., CLPSO [11], DE [1], CoDE[12], and
CMA-ES[13] will be used for comparison.

The rest of the paper is organized as follows. Section 2
briefly describes the general framework of DE and its recent
developments. Section 3 describes detailed implementations of
SDE. Section 4 presents the experiment study and compares the
performance of six optimization algorithms. At last, Section 5
draws the conclusions.

2. TRADITIONAL DE AND ITS
DEVELOPMENTS

DE is a population based algorithm which is proposed by
Storn and Price [1]. It starts with a set of random individuals.
Then these individuals are evolved iteratively using mutation,
crossover, and selection operators until meeting the termination
condition. In each iteration, the mutation operator is firstly used
to create a mutation vector for each individual, i.e.,

, 1, 2, 3,()i g r g r g r gY X F X X    (1)

where 1 2 3, , [1,]r r r NP are three distinct random integers, F is the

scaling factor, g represents the current generation and NP is the
population size. Following the mutation operator, the crossover
operator generates a trial vector ,i gU for each individual by

,

,

,

, if (0,1) < or

 , otherwise

j
i gj

i g j
i g

y rand CR j k
u

x

  


 (2)

where [0,1]CR is the crossover rate, k is a random integer
within [1, D], D is the problem dimension, rand (0,1) returns a
random number uniformly distributed between 0 and 1, ,

j
i gu

represents the jth variable of ,i gU . Thirdly, the selection operator

chooses NP individuals for the next iteration by

, , ,

,
,

, if is better than or equal to

 , otherwise

i g i g i g

i g
i g

U U X
X

X

 


 (3)

In DE algorithm, the values of F and CR have significant
influence on the behavior of the algorithm. The ideal parameter
settings of DE seem to be problem dependent [5]-[7]. Traditional
trial-and-error method for adjusting the values of F and CR is
inconvenient in practice, therefore adaptive control techniques
have been utilized recently. In [5], Brest et al. proposed a self-
adaptive DE, where the values of F and CR are either inherited
from parents or a randomly generated number. Qin et al. [7]
proposed a self-adaptive DE by controlling the mutation schemes
and parameters dynamically based on previous search experience.
Zhang and Sanderson [6] incorporated a new “current-to-pbest”
mutation scheme into DE and suggested sampling F and CR from
a normal distribution and a Cauchy distribution respectively. In
order to improve the robustness and efficiency of DE, Wang et al.
[12] suggested to randomly combine three mutation schemes and
three parameter settings to generate offspring in the evolution.

3. THE PROPOSED SDE
3.1 Individual Representation

Unlike traditional DE that encodes each individual as a
vector of floating-point numbers, the proposed SDE encodes each

individual with a multivariable normal distribution, as expressed
in Eq. (4).

11 12 1
, , ,
21 2
, ,1 2

, , , , , ,

1
, ,

...

... ...
[,] , ,..., ,

...

... ...

n
i g i g i g

n
i g i gn

i g i g i g i g i g i g

n nn
i g i g

P

  
 

   

 

  
  
         
  
    



where ,i t represents the 1n mean vector, ,i t represents the

n n covariance matrix, i represents the index of the individual,
g represents the generation and n is the dimension of the problem.
The mean vector  is used to evaluate the fitness of the
individual. Based on the stochastic coding strategy, the normal
distribution of each individual can be used to sample neighboring
individuals for local fine-tuning.

3.2 Algorithm Framework
Algorithm 1: SDE
1. Initialize algorithm parameters and a random population P1
2. g=1
3. While (termination criterion not met) do
4. Sort Pg in best to worst order
5. For i =1 to M do
6.
7. Get the eigen values (e1,...en), and eigen vectors (v1,...vn) of
8. For j = 1 to n do
9. set b = the projection of in vj

10. set m = the projection of in vj

11. If ej /(b - m)2<Q then set ej = (b - m)2*Q
12. EndFor
13. Set X = [v1,...vn]*([e1,...en]*I)*[v1,...vn]

T.
14. Apply the Cholesky decomposition to X to obtain S, so that X=SST

15. For j = 1 to N do
16.
17. Set k = floor(rand(0,1) * n)

18. For m = 1 to n do
19. If m == k then
20. Else
21. EndFor
22. EndFor
23. Set B = the set of neighboring solutions which are better than Pi,g

24. If then set = the covariance of B
25. If the best neighboring solution is better than Pi,g then
26. Set = the best neighboring solution
27. EndIF
28. Endfor
29. For i =1 to NP do
30. Set F = rand(0,1), Set CR = rand(0,1)
31. Randomly choose from the best p.NP individuals of Pg
32. Randomly choose from Pg
33. Randomly choose from Pg

34. Set k = floor(rand(0,1) * n)
35. For j = 1 to n do
36. If rand(0,1) CR and j k then
37. set
38. Else set
39. If rand(0,1) < pm then set = rand(LBj, UBj) End if
40. If < LBj or > UBj then set = rand(LBj, UBj) End if
41. End for
42. If is better than Pi,g then set Pi,g = and update of Pi,g
43. End for
44. g = g+1
45. End while

step 1

step 2

step 3

,i g
, , ,(1)i g i g best g        

1,r gA

2, 1,r g r gA A

3, 2, 1,r g r g r gA A A 

1 2 3, , , , , ,() ()j j j j j j
i g i g r g i g r g r gu a F a a F a a      

,
j

best g

,
j

i g

j jU S Z  

m m
j jT U

,
m m
j i gT 

B  ,i g

,i g

,
j

i gu

,
j

i gu

,i gu ,i gu
,i g

, ,
j j

i g i gu a

 

Figure1. Algorithm framework of SDE.

Fig. 1 shows the framework of SDE, where three steps are
involved during the evolution. The detailed implementations of
these three steps are described as follows.

976

1) Step 1 - Initialization
The initialization generates a set of random individuals. For

each initial individual, the mean vector is generated by

,1 (,), [1,], [1,]k
i k krand LB UB i NP k n      (5)

where LBk and UBk are the lower and upper bounds of the kth
variable, (,)rand a b returns a random number uniformly
distributed between a and b. The covariance matrix is empirically
initialized as

,1

0,if

, otherwise
jk

i
k

j k

c



 


 (6)

where ck is a predefined constant, e.g., ck = (UBk – LBk)
2. After

generating the mean vectors and the covariance matrix of an
individual, its fitness value is evaluated.
2) Step 2 – Update Operator

The update operator is used for local fine-tuning, as well as
for updating the normal distribution of individuals in the
population. For each given individual, a two-phased process is
carried out. The first phase is to sample N neighboring solutions.
N temporary solutions are sampled by

, ,

'

i g i g
S Z    

where S is a lower triangular matrix with ,
T

i g S S   , Z is a

1n matrix with each element sampled from a standard Normal
distribution. It can be verified by Eq. (8) and Eq. (9) that the
mean and the covariance of

,

'

i g
 are equal to

,i g
 and ,i g

respectively.
'
, , , ,() () ()i g i g i g i gE E S Z S E Z          (8)

' ' '
, , , , ,

, , , ,

,

cov() ()()

 ()()

 ()()

 ()

 1

T
i g i g i g i g i g

T
i g i g i g i g

T

T

T

i g

S Z S Z

S Z S Z

S Z Z S

S S

    

   

  

      

  

   

  
 

 (9)

As suggested in [15][16], two parameters, namely,  and Q, are
used to improve the algorithm performance. Specifically, when
sampling a temporary individual, the mean vector is moved
towards the best-so-far individual by

, , ,(1)i g i g best g         (10)

where ,best g is the mean vector of the best-so-far individual. The

threshold Q is used to enlarge the eigenvalues for maintaining the
population diversity [15]. Once a temporary solution jU is

sampled, the corresponding neighboring solution is generated by

,

, if

, otherwise

m
jm

j m
i g

U m k
T



  


 (11)

where k is a random integer between[1,n] is a predefined constant.
In this way, only one variable of the neighboring solution is
different from that of the given individual. The quality of the
given individual can be improved gradually in a manner similar to
the hill climb search mechanism.

The second phase is to update the normal distribution of the
given individual. Denote B as the set of neighboring solutions
which are better than the given individual. If B is not empty, the
covariance of the given individual is set to be the covariance of B.

Meanwhile, if the best neighboring solution is better than the
given individual, the mean vector of the given individual would
be replaced by the best neighboring solution.

Since performing the update operator on a given individual
requires evaluating the fitness of N sampled individuals, it needs
much computational cost to update all individuals at each
generation. In order to reduce the computational cost, the SDE
only chooses the top M individuals to undergo the update process.
3) Step 3 –Mutation, Crossover and Selection
This step applies the DE operators to generate NP new individuals.
For each individual ,i tP , a new individual is generated by

, 1, , 2, 3,'
,

,

() (),if (0,1) <

, otherwise

i g r g i g r g r g

i g

i g

F F rand CR    




     


 (12)

 r2,g r3,g

2,

0, if
'

, otherwise
uv
i g u u

u v


 

 


 (13)

where r1, r2, r3 with 1 2 3r r r  , are three random individual

indexes. Using Eq. (13), we can set the covariance matrix
according to the evolution state. It should be noticed that the new
vectors '

,i g is bounded by the search ranges, i.e.,

, , ,(,), if or k k k
i g k k i g k i g krand LB UB LB UB     (14)

In the DE algorithm, the optimal values of F and CR are
dependent on the specific problem and the evolution state.
However, in practical applications, the characteristics of the
problem at hand are usually unknown. In order to improve the
robustness of the algorithm, we adopt a random scheme to set
values of F and CR, i.e.,

F = rand (0, 1) (15)
CR = rand (0, 1) (16)

Followed by the crossover operator, an extra random
mutation operator is utilized to change each ,

k
i g with a

probability of pm, i.e.,

, (,), if (0,1) < k
i g k krand LB UB rand pm  (17)

We introduce this random mutation to improve the population
diversity and avoid premature convergence, because the update
operator in step2 would gradually drive the population towards
the best individual and resulting in the population losing diversity.

There is a repetition from Step2 to Step3 and the evolution
processes iteratively until reaching the maximum number of
evaluations.

4. EXPERIMENTS AND COMPARISONS

4.1 Experimental Settings

In this section, nine benchmark functions with different
characteristics are used to investigate the effectiveness of the
proposed SDE. The benchmark functions are listed in Table I,
where f1, f2 are unimodal functions, while the others are
multimodal functions. The performance of SDE will be compared
with four EAs, i.e., CLPSO[11], DE[1], CoDE[12], and CMA-
ES[13]. The parameters of all compared EAs are set according to
their referenced papers, as listed in Table II. The dimension of all
test functions is 30 and the maximum number of fitness
evaluations is 300000. Since EAs are stochastic algorithms that
may obtain different results in different runs, all compared EAs
are run for 30 independent times on each test case. All algorithms

977

are programmed using Visual C++ 6.0 and are run on a PC with

Table I. Benchmark Test Functions.

Name Function n Domain fmin

Sphere 2
1

1

()
n

i
i

f x x


  30 [-100,100] 0

Schwefel
2

1 1

() | | | |
nn

i i
i i

f x x x
 

   30 [-10,10] 0

Rosenbrock 2 2 2
3 1

1

() [100() (1)
n

i i i
i

f x x x x


    30 [-30, 30] 0

Schwefel
4

1

() sin(| |)
n

i i
i

f x x x


  30 [-500,500] -12569.5

Rastrigin 2
5

1

() [10cos(2) 10)]
n

i i
i

f x x x


   30 [-5.12,5.12] 0

Ackley 2
6

1 1

1 1
() 20exp(0.2) exp(cos 2) 20

n n

i i
i i

f x x x e
n n


 

       30 [-32,32] 0

Penalized

1
2 2 2

7 1
1

2

1

() {10sin () (1) [1 10sin ()]

(1) } (,10,100,4)

1
where 1 (1)

4

() ,

(, , ,) 0,

() ,

n

i i i
i

n

n i
i

i i

m
i i

i i
m

i i

f x y y y
n

y u x

y x

k x a x a

u x a k m a x a

k x a x a

  







   

  

  

  


   
    




 30 [-50,50] 0

Penalized

1
2 2 2

8 1 1
1

2

1

() 0.1{sin (3) (1) [1 sin (3)]

(1)[1 sin (2)]} (,5,100, 4)

n

i i
i

n

n n i
i

f x x x x

x x u x

 










   

   




 30 [-50,50] 0

Griewank
2

9
1 1

() () cos() 1
4000

nn
i i

i i

x x
f x

i 

    30 [-600,600] 0

Table II. Parameter Settings of Compared EAs.
Algorithms Parameter settings

DE NP = 100, F = 0.5, CR = 0.9

CLPSO NP = 40, w0 = 0.9, w1 = 0.4, c = 1.49445

CoDE
NP = 30, {F, CR}={{1.0, 0.1}, {1.0, 0.9}, {0.8, 0.2}},

mutation operator = {“rand/1/bin”, “rand/2/bin”,
“current-to-rand/1” }

CMA-ES / 2     , 4 3ln()n     

SDE NP=50, M=6, N=5, pm = 0.01, p= 0.3,  = 0.15, Q = 2

Table III. Experimental Results of Five EAs on the Benchmark Test Functions.
Function CLPSO DE CoDE CMA-ES SDE

f1 mean 1.17×10-20‡ 2.23×10-31‡ 5.17×10-71 0† 6.15×10-134

f2 mean 2.51×10-13‡ 2.28×10-15‡ 2.47×10-37‡ 5.92×10-17 3.89×10-69

f3 mean 5.70‡ 1.98‡ 3.60×10-12‡ 1.33×10-1 1.78×10-16

f4 mean -12569.5‡ -8384.92‡ -12569.5‡ -8360.13‡ 12569.5

f5 mean 2.74×10-11‡ 1.40×102‡ 0‡ 5.23×101‡ 0

f6 mean 2.49×10-11‡ 4.62×10-15‡ 3.55×10-15‡ 1.18×10-16† 3.55×10-15

f7 mean 5.47×10-22‡ 4.01×10-32‡ 1.57×10-32‡ 1.04×10-2 1.57×10-32

f8 mean 7.29×10-21‡ 1.58×10-31‡ 1.35×10-32‡ 1.83×10-3‡ 1.35×10-32

f9 mean 4.86×10-13‡ 0‡ 0‡ 1.23×10-4‡ 0

Better 0 0 0 2
Worse 9 9 8 4

Similar 0 0 1 3

Score -9 -9 -8 -2

†means the corresponding values are significantly better than those found by the SDE; ‡means the corresponding values are
significantly worse than those found by the SDE; “Better” (“Worse” or “Similar”) represents the times of the algorithm
compared performing significantly better than (significantly worse than or similar to) the SDE.

1 (1) 0Score Better Worse Similar       .

978

Intel (R) Core ™2 Quad CPU Q6600, 2.4 GHz, 1.96GB of RAM.

4.2 Performance Comparison

Table III lists the results of all algorithms compared. In
Table III, we use a two-sample t-test to check whether an
algorithm compared performs significantly different from the
SDE. If the mean value of an algorithm compared is significantly
better than (similar to or worse than) that of the SDE, the
algorithm compared would gain a score of 1 (0, or -1). Otherwise,
if the algorithm compared and the SDE find the global optima in
30 runs, we do the t-test on the smallest number of fitness
evaluations (FES) required to find the optimal solution. If the FES
of a algorithm compared is significantly smaller than (similar to
or larger than) that of the SDE, it will gain a score of 1 (0, or -1).
The results in Table III show that, SDE performs significantly
better than CLPSO and DE on all test cases. SDE performs better
than CoDE on f2, f4, f5, f6, f7, f8, and f9, while performs competitive
on other functions. Compared with CMA-ES, SDE performs
significantly worse on f1, f6, competitive on f2, f3, f7, and

significantly better on f4, f5, f8, f9. According to the score values in
the last row, SDE performs the best among all algorithms
compared.

 The average convergence speed of all algorithms compared
is illustrated in Fig. 2. It can be seen in Fig.2 (a) that CMA-ES has
a faster convergence speed than SDE, but CMA-ES quickly gets
trapped into local optima on f2, f3 f4 f5 f7 f8 and f9. Compared with
other EAs, SDE has a much fast convergence speed on all test
cases. The SDE seems to perform more stable than other EAs for
it does not get trapped into local optima on the nine test cases.
The above results indicate that SDE has strong global and local
search ability.

In the following part of this subsection, we discuss the
computational complexity of algorithms compared. We use the
method presented in [17], which use four factors, namely T0, T1,
ˆ2T , and (ˆ2T -T1)/T0 to reflect the complexity of an algorithm.

The detailed computations of these four factors can be referred in
[17]. In our experiments, the values of T1 and T2 are obtained on
f3 with D = 30 and the maximum fitness evaluations = 200000.
The experiment results are list in Table IV, where all values are

0 100000 200000 300000

-150

-100

-50

0
lo

g(
f)

number of evaluations

 CLPSO
 DE
 CODE
 CMA-ES
 SDE

0 100000 200000 300000

-50

0

lo
g(

f)

number of evaluations

 CLPSO
 DE
 CODE
 CMA-ES
 SDE

0 100000 200000 300000
-20

-15

-10

-5

0

5

10

lo
g(

f)

number of evaluations

 CLPSO
 DE
 CODE
 CMA-ES
 SDE

0 100000 200000 300000

-12000

-10500

-9000

-7500

-6000

-4500

-3000

-1500

f

number of evaluations

 CLPSO
 DE
 CODE
 CMA-ES
 SDE

0 100000 200000 300000
-20

-15

-10

-5

0

5

10

lo
g(

f)

number of evaluations

 CLPSO
 DE
 CODE
 CMA-ES
 SDE

0 100000 200000 300000

-15

-12

-9

-6

-3

0

3

lo
g(

f)

number of evaluations

 CLPSO
 DE
 CODE
 CMA-ES
 SDE

0 100000 200000 300000
-35
-30
-25
-20
-15
-10
-5
0
5

10
15

lo
g(

f)

number of evaluations

 CLPSO
 DE
 CODE
 CMA-ES
 SDE

0 100000 200000 300000
-35
-30
-25
-20
-15
-10
-5
0
5

10
15

lo
g(

f)

number of evaluations

 CLPSO
 DE
 CODE
 CMA-ES
 SDE

0 100000 200000 300000
-18

-15

-12

-9

-6

-3

0

3

lo
g(

f)

number of evaluations

 CLPSO
 DE
 CODE
 CMA-ES
 SDE

Fig. 2 Convergence graphs of compared algorithms ((a) f1, (b) f2, (c) f3, (d)f4, (e) f5, (f) f6, (g) f7, (h) f8, (i) f9).

979

measured in time seconds. It can be observed that, the
computational complexity of the proposed algorithm is much
larger than the other algorithms compared. This is because the
SDE requires M times of covariance matrix decomposition in
each generation, which needs O(MD3) time complexity. Therefore,
reducing the time complexity of SDE can be a future work. Note
that the convergence speed of SDE is much faster than those of
the other algorithms in terms of number of fitness evaluation.
Hence applying SDE to applications where the fitness evaluation
process is very expensive seems to be a promising future work.

Table IV. Computational Complexity of Algorithms compared.
Algorithm

s
T0 T1 ˆ2T (ˆ2T -T1)/T0

CLPSO 0.253 1.489 2.370 3.479

DE 0.253 1.489 2.395 3.581

CODE 0.253 1.489 2.174 2.708

CMA-ES 0.253 1.489 7.479 23.676

SDE 0.253 1.489 23.979 88.893

4.3 Algorithm Analysis

0.00 0.01 0.2 0.4 0.6 0.8
-180

-150

-120

-90

-60

-30

0

lo
g(

f)

pm
0.00 0.01 0.2 0.4 0.6 0.8

-25

-20

-15

-10

-5

0

5

lo
g(

f)

pm

Fig. 3 Impact of pm ((a) f1, (b) f3).

0 5 10 15 20 25 30
-150

-120

-90

-60

lo
g(

f)

N

0 5 10 15 20 25 30
-20

-15

-10

-5

0

lo
g(

f)

N

Fig. 4 Impact of M ((a) f1, (b) f3).

0 2 4 6 8 10 12 14 16 18 20
-150
-140
-130
-120
-110
-100

-90
-80
-70

lo
g(

f)

N
0 5 10 15 20

-18
-15
-12
-9
-6
-3
0

lo
g(

f)

N

Fig. 5 Impact of N ((a) f1, (b) f3).

First, we study the impact of pm, which determines the
random mutation rate. Generally, a large pm would improve the
population diversity, but it would slow down the convergence at
the mean time. In the following experiments, we apply SDE to a
unimodal function (f1) and a multimodal function (f3) to
investigate its performance, with the value of pm to be 0, 0.001,
0.005, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7. The other
parameters are set the same as in Table II. The results in Fig. 3
demonstrate that a smaller pm (e.g., pm < 0.01) would leads to
better results for f1. However, as for the multimodal function f3,

SDE generally performs better as pm increases from 0 to 0.005,
but its performance decreases as pm continuously increases.

Next, we study the impact of M by varying its value to be 1,
3, 6, 10, 20, and 30, while the other parameters are set the same as
in Table II. The curves in Fig. 4 shows that M should not be set
too small (e.g., M = 1) or too large (e.g., M = 30). It seems that
setting M = 3 or M = 6 leads to a promising results.

Third, we study the impact of N by varying its value to be 1,
2, 3, 4, 5, 10, 15 and 20, while the other parameter settings are the
same as in Table II. The curve in Fig. 5(a) shows that the
performance of SDE on f1 decreases as N increases. As for the
multimodal function f3, N should not be set too small (e.g., N = 1)
or too large (e.g., N >10).

5. CONCLUSIONS
This paper has presented an enhanced differential evolution with
stochastic coding strategy, namely, SDE, for global continuous
optimization. In SDE, each individual is represented by a
multivariate normal distribution. The multivariate normal
distribution is used to evaluate the fitness of individuals as well as
to sample neighboring individuals for local fine-tuning. A new
update operator is designed based on the stochastic coding
strategy for local fine-tuning. The DE operators, namely,
mutation and crossover, are accordingly extended to generate
offspring. The proposed SDE has been validated by nine
benchmark functions with differential characteristics. Four highly
regarded EAs, including CLPSO, CoDE and CMA-ES, have been
used for comparison. The experimental results demonstrate that
the SDE offers a very promising performance. Future research
work includes the following: 1) reducing the time complexity of
SDE, 2) applying SDE to applications where the fitness
evaluation process is very expensive and time consuming (e.g.,
grid workflow scheduling [18] and power electronic design[19]),
3) adopting adaptive parameter controlling strategies [20]-[22] to
further improve the performance of SDE, and 4) extending the
proposed coding strategy to improve the performance of other
algorithms such as particle swarm optimization [23] and ant
colony optimization [24].

6. ACKNOWLEDGMENTS
This work was supported in part by the National Science Fund for
Distinguished Young Scholars No.61125205, National Natural
Science Foundation of China No.61070004 and NSFC Joint Fund
with Guangdong under Key Project U0835002.

7. REFERENCES
[1] R. M. Storn and K. V. Price, “Differential evolution – A

simple and efficient heuristic for global optimization over
continuous spaces,” J. Global Optimization, vol. 11, pp. 341-
359, 1997.

[2] R. Storn, “System design by constraint adaptation and
differential evolution”, IEEE Transactions on Evolutionary
Computation, vol. 3, no. 1, pp. 22-34, Apr. 1999.

[3] M. Vasile, E. Minisci,and M. Locatelli, “An Inflationary
Differential Evolution Algorithm for Space Trajectory
Optimization”, IEEE Transactions on Evolutionary
Computation, vol. 15, no. 2, pp. 267-281, Apr. 2011

[4] S. Das, and P. N. Suganthan, “Differential Evolution: A
Survey of the State-of-the-Art”, IEEE Transactions on
Evolutionary Computation, vol. 15, no. 1, pp. 4–31, Feb.
2011.

980

[5] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer,

“ Self-adapting control parameters in differential evolution:

A comparative study on numerical benchmark problems,”
IEEE Transactions on Evolutionary Computation, vol. 10, no.
6, pp. 646–657, Dec. 2006.

[6] J. Q. Zhang, and A. C. Sanderson, “JADE：Adaptive

Differential Evolution with Optional External Archive”,
IEEE Transactions on Evolutionary Computation, Vol. 13,
No. 5, 2009, pp. 945-958.

[7] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential
Evolution Algorithm with Strategy Adaption for Global
Numerical Optimization,” IEEE Transactions on
Evolutionary Computation, Vol. 13, No. 2, pp. 398-417.
2009.

[8] T. Zhenguo, L. Yong, “A robust stochastic genetic algorithm
(StGA) for global numerical optimization,” IEEE
Transactions on Evolutionary Computation, vol.8, no.5, pp.
456- 470, Oct. 2004

[9] K. Krishnakumar, R. Swaminathan, S. Garg, and S.
Narayanaswamy, “Solving large parameter optimization
problems using genetic algorithms”, Proc. Guidance,
Navigation, Contr. Conf., pp.449-460. 1995.

[10] J. H. Zhong and J. Zhang, “Adaptive Multi-objective
Differential Evolution with Stochastic Coding Strategy,” in
Proceedings of the 13th annual conference companion on
Genetic and evolutionary computation (GECCO 2011), pp.
665-672. July 12 - 16, 2011.

[11] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar,
“Comprehensive learning particle swarm optimizer for
global optimization of multimodal functions,” IEEE
Transactions on Evolutionary Computation, vol. 10, no. 3,
pp.280-295, June 2006.

[12] Y. Wang, Z. Cai and Q. Zhang, “Differential Evolution with
Composite Trial Vector Generation Strategies and Control
Parameters,” IEEE Trans on Evolutionary Computation,
Vol.15, No.1, pp55-66, 2011.

[13] N. Hansen and A. Ostermeier, “Completely derandomized
self-adaption in evolution strategies,” Evolut. Comput., vol. 9,
no. 2, pp.159-195, 2001.

[14] N. Hansen, “Adaptive encoding: How to render search
coordinate system invariant,” In G. Rudolph, T. Jansen, S.
Lucas, C. Poloni, N. Beume, (eds.) PPSN 2008. LNCS,
vol.5199, pp.205-214, Springer, Heidelberg (2008).

[15] B. Yuan and M. Gallagher, “Experimental results for the
special session on real-parameter optimization at CEC 2005:
a simple, continuous EDA,” In Proc. of Congress on
Evolutionary Computation (CEC 2005), vol. 2, pp. 1792–
1799, 2005.

[16] B. Yuan, M. Gallagher, “On the importance of diversity
maintenance in estimation of distribution algorithms,” In
Proc. of the Genetic and Evolutionary Computation
Conference-GECCO-2005, ACM, New York, USA, pp.719-
726.

[17] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen,
A. Auger, and S. Tiwari, “Problem Definitions and
Evaluation Criteria for the CEC2005 Special Session on
Real-Parameter Optimization,” Nanyang Technol. Univ.,
Singapore, KanGAL Rep. 2005005, May 2005.

[18] W. N. Chen and J. ZHANG, “Ant Colony Optimization
Approach to Grid Workflow Scheduling Problem with
Various QoS Requirements”, IEEE Transactions on Systems,
Man, and Cybernetics--Part C: Applications and Reviews,
Vol. 31, No. 1,pp.29-43,Jan 2009.

[19] J. ZHANG, and et al., “Implementation of a Decoupled
Optimization Technique for Design of Switching Regulators
Using Genetic Algorithms,” IEEE Transactions on Power
Electronic. Vol.16, No.5 Nov. 2001.

[20] J. ZHANG, and et al., “Evolutionary Computation Meets
Machine Learning: A Survey”, IEEE Computational
Intelligence Magazine, pp.68-75, NOVEMBER 2011.

[21] Z. H. Zhan, and et al., “Adaptive Particle Swarm
Optimization”, IEEE Transactions on Systems, Man, and
Cybernetics--Part B. VOL. 39, NO. 6, Dec 2009, Page 1362-
1381.

[22] J. ZHANG, H. Chung and W. L. LO, “Clustering-Based
Adaptive Crossover and Mutation Probabilities for Genetic
Algorithms”, IEEE Transactions on Evolutionary

Computation Vol.11, No.3, June 2007，Page. 326-335.

[23] W. N. Chen, and et al., “A Novel Set-Based Particle Swarm
Optimization Method for Discrete Optimization Problems”,
IEEE Transactions on Evolutionary Computation, Vol.14,
No.2, pp.278-300, April 2010.

[24] X. M. Hu, J. ZHANG, Y. Li, and H. Chung, “SamACO:
Variable Sampling Ant Colony Optimization Algorithm for
Continuous Optimization”, IEEE Transactions on Systems,
Man, and Cybernetics--Part B, VOL. 40, NO. 6, pp.1555-
1566, Dec 2010.

981

