
 
 

 

  

Abstract—Decisions for admission scheduling in hospitals are 
a class of optimization problems constrained by many factors. 
Instead of scheduling the admission of patients directly, this 
paper proposes a genetic algorithm (GA) designed for the 
optimization of a long-term admission strategy for the 
ophthalmology department in hospitals. For the optimization of 
admission strategy, we devise a coding scheme of strategies and 
define the objective functions for two objectives: efficiency and 
fairness. The proposed algorithm utilizes historical data of the 
hospital for evaluation of chromosomes. Experiments are 
conducted on several cases, and the strategy optimized by the 
proposed GA is compared with the first come first serve (FCFS) 
strategy and the greedy strategy. Experimental results show 
that strategies optimized by the proposed algorithm outperform 
FCFS and the greedy strategy. 

I. INTRODUCTION 
s the demand for medical service increases, the 
admission scheduling of patients significantly affects the 

utilization rate of medical resources and the quality of service. 
However, admission scheduling in hospitals are constrained 
by factors like the number of beds, category of patients and 
timetable of surgeries, etc. As these factors make the 
scheduling of admission complicated, the traditional first 
come first serve (FCFS) strategy can not guarantee efficiency. 
Besides, the two major objectives of medical services, i.e. 
enhancing the utilization rate of medical resources and 
maintaining fairness, usually contradict each other. Thus an 
efficient and unbiased strategy is demanded for admission 
scheduling of patients. 

For some typical admission scheduling problems in 
hospitals, theoretical research works are already done [1]-[3]. 
Literature [1] built a Markov model for an admission 
scheduling problem, while literatures [2] and [3] developed 
statistic and deterministic models respectively for the analysis 
of utilization rates of bed resource. All of the above works 
provide guidelines for the admission scheduling problem for 
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patients. However, as the admission scheduling problem is 
complicated and of various forms, the already-done 
theoretical research works are not adequate for application 
[4]. 

Intelligence systems and intelligence computation are 
applied to this class of problems for their robustness and no 
need of precise mathematical models [4][5][6]. Harper et al. 
[4] made the managing and planning of bed capacity in 
hospitals based on a simulation model. Hutzschenreuter et al. 
[5] built a model of patient flow, and employed an agent 
system to admit an optimal mix of patients from different 
departments. Demeester et al. [6] designed a hybrid tabu 
search algorithm that assigns patients to beds in the 
appropriate departments. All of the above algorithms are run 
every day to do the scheduling work. However, optimization 
of the scheduling every day can not always guarantee 
optimized long-term effect of the algorithm. 

The genetic algorithm (GA) [7][8][9] is a technique of 
evolutionary computation based on population and has been 
applied to various fields like neural network training [10], 
image processing [11], and power electronics [12]. It is 
characterized by its robustness and ability of global 
convergence. Thus GA is suitable for solving the admission 
scheduling problem. This paper proposes a new GA for the 
optimization of admission strategy, different from all the 
above-mentioned approaches. The algorithm utilizes 
historical data in a period, and optimizes a long-term 
admission strategy instead of doing the scheduling work 
directly. Thus the algorithm has a global perspective, and 
only need to be run once to obtain an optimized strategy. 

The proposed GA is designed for a class of medical 
systems where the bed resources are the main bottleneck of 
medical services. In the system, most of the patients that need 
surgery are not emergency cases, and can wait for a few days 
before admission. As the timetable of surgeries is constrained 
by several factors, a proper strategy for admitting patients is 
required for efficiency and fairness of the system. For the 
optimization of admission strategy, we devise a coding 
scheme of chromosomes for the proposed GA. Also, we 
design the evaluation functions for two objectives: efficiency 
and fairness. For evaluation of chromosomes, the algorithm 
utilizes historical data of the hospital and calculates the value 
of objective functions through simulation. Finally, the 
strategy optimized by the proposed GA is compared with the 
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FCFS strategy and a greedy strategy. Experimental results 
show that strategies optimized by the proposed algorithm 
outperform FCFS and the greedy strategy on the two 
objectives. 

The rest of this paper is organized as follows. Section II 
presents the background and analysis of the considered 
problem. Section III describes the proposed GA. The 
experimental results and performance comparison for the 
FCFS strategy, the greedy strategy, and strategies used in the 
proposed GA are presented in Section IV. Section V 
concludes this paper. 

II. BACKGROUND AND ANALYSIS OF THE PROBLEM 

A. Background 
In this paper, we consider one specialized department of 

the hospital, i.e. department of eye diseases, to be a relatively 
independent medical system. In a hospital, the ophthalmology 
department admits four kinds of patients: patients with 
cataract, with retinal diseases, with glaucoma, and with ocular 
trauma, respectively. All the four categories of patients need 
surgery, and they arrive every day waiting for admission. 
However, as vacant beds are limited, most of the patients can 
not be admitted immediately. In each day, the hospital admits 
some patients in the waiting line according to the number of 
vacant beds and a certain strategy such as the FCFS. 

As doctors and resources are limited, there are some 
constraints for the surgeries listed as follows.  

1) Patients with ocular trauma require surgery in the day 
after their arrival. If this requirement can not be satisfied, the 
patient will be transferred to another hospital immediately. 

2) Cataract surgeries and other surgeries (except ocular 
trauma surgeries) should not be assigned in the same day. 

3) Some patients with cataract needs surgery for only one 
eye, but some patients need surgery for both eyes. The latter 
should have surgery for one eye first, and have surgery for the 
other eye two days later. 

B. Analysis 
Once a patient is admitted for surgery, the patient will go 

through four stages before he leaves the hospital. These four 
stages are presented in Fig. 1. Stage 1 is the preparation stage, 
in which the hospital makes preparation for the surgery. 
During stage 2 the patient waits for the surgery in case the 
surgery can not be scheduled immediately after stage 1. This 
means that stage 2 is a waste of resources and can be reduced 
if the patients are admitted according to a proper strategy. 
Stage 3 is for the surgery and stage 4 is for the resumption 
after surgery. 

Stage 3:
    surgery

Stage 4:
 resumption

Stage 2:
    waiting

Stage 1:
preparation  

Fig. 1.  Four stages after a patient is admitted. 

As mentioned above, the length of stage 1, stage 3, and 
stage 4 are all decided by the condition of a patient, and thus 
can not be optimized. On the other hand, stage 2 is a waste of 
resources and its length can be reduced. Besides wasting the 
time and money of a patient, stage 2 also makes the bed 
resource not fully utilized. In this system of medical service, 
the bed resource is one of the bottlenecks that affect the 
efficiency rate of medical services. Thus minimizing the 
average time of stage 2 means promotion to the serving rate. 

If the department sticks to the FCFS strategy, the system is 
fair but probably inefficient, as the FCFS strategy may result 
in a long average length of stage 2. On the other hand, if the 
department only admits patients with the minimum expected 
time of stage 2 (and this is a greedy strategy), imbalance of 
admission may occur among different categories of patients, 
which may finally affect the efficiency of system. Thus a 
strategy other than FCFS and greedy is necessary for an 
efficient and fair medical system. 

In this work, the objective of optimization is to find an 
optimal strategy so that the waste of resources is minimized, 
and that all kinds of patients are treated fairly. Here we apply 
GA to the problem for finding an efficient and fair admission 
scheduling strategy instead of scheduling the admission 
directly. The algorithm is thus to be run only once for an 
appropriate strategy, and every day all the scheduling work is 
done according to the optimized strategy.  

III. GA FOR THE OPTIMIZATION OF ADMISSION SCHEDULING 
STRATEGY 

A. Coding of Strategies 
The proposed GA is designed for the optimization of 

admission scheduling strategies. However, coding all 
possible scheduling strategies in chromosomes would be 
infeasible. Thus, here we only handle one class of strategies, 
which is specialized for the considered problem. This class of 
strategies has a number of parameters, which are to be 
optimized by GA.  

Patients with ocular trauma do not need admission 
scheduling, as they would be admitted as long as there are 
vacant beds. There are still three categories of patients except 
ocular trauma. Among the three, patients with cataract can be 
divided into two groups according to the number of eyes that 
need surgery. Thus the patients for admission scheduling can 
be grouped into four categories: patients with cataract on one 
eye, patients with cataract on two eyes, patients with retinal 
diseases, and patients with glaucoma. In the following 
paragraphs, we number them from 1 to 4.  

There is a period of T days for the timetable of the surgeries. 
Cataract surgeries can only be scheduled to the 1st, 3rd, …, 
(2*v-1)th day of a period. Every day, when admitting the 
patients, the ith category of patient can be admitted only if the 
surgery can be scheduled to at most Gi days later. Generally, 
smaller Gi promises less time of stage 2 for the ith category of 
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patients, but the average length of stage 2 for all patients may 
increase.  

A coefficient ki is defined for the ith category of patients, 
and ki is a real number for deciding the proportion for the ith 
category of patients in all the admitted patients. When 
admitting patients, the number admitted for the ith category of 
patients is 
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where a0 is the total number of vacant beds; tj is assigned 0 or 
1. The value of tj is 1 only when the ith category is admitted 
according to Gi.  

In the strategy, the period T, the integers v and G1-G4, and 
the real coefficients k1-k4 are all parameters. The structure of a 
chromosome is illustrated in Fig. 2. All the parameters are 
optimized by GA to form an efficient and unbiased strategy.  

 

k1-k4 G1-G4T v
 

Fig. 2.  The structure of a chromosome. 
 

B. Objective Function 
The optimization of a strategy has two objectives: (a) 

minimization of the waste of resources; (b) maximization of 
the fairness of the system. Both of the objectives are 
associated with long-term performance of a strategy. Thus the 
evaluation of a strategy should consider its effect over a 
period of d days. In this paper, the calculation of the value of 
objective functions are based on simulation and historical 
data, thus the value of d is decided by the length of available 
data. 

For objective (a), there are two cases where the bed 
resource is wasted: the vacant beds without assigning patients 
and the beds that are in stage 2 as mentioned in the previous 
section. Thus the first objective can be defined as the average 
number of vacant beds and beds in stage 2: 
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where d is the number of days for simulation; wi is the number 
of beds that is vacant or in stage 2 in the i-th day. The value of 
f1 is calculated through simulation. 

For objective (b), we denote the total number of the ith 
category of patients in , and the total admitted number of the 
ith category of patients 'in . The system is relatively fair if the 
ratio between in  and 'in  are almost the same for all i. Thus 
we define the second objective to be the standard deviation of 

'in / in as shown in (3) 
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where U is the average value of 'in / in . 
When evaluating a chromosome, the values of f1 and f2 are 

calculated though simulation. All of the constraints described 
in Section II-A are handled in the process of simulation. Thus 
the constraints can be changed without modifying the coding 
strategy and the framework of the algorithm. 

C. Description of the Algorithm 
The GA for optimization of scheduling strategies has the 

same framework as the classical GA, except that a local 
search operator is added to refine solutions. The flowchart of 
the algorithm is presented in Fig. 3. 

 

  
Fig. 3.  Flow chart of the proposed GA. 

 

The detailed description of the algorithm in Fig. 3 is as 
follows: 

1) Initialization. In a population of size N, all 
chromosomes are initialized to be the random strategy with 
all variables within the legal range. The counter of function 
evaluations is set to 0. 

2) Selection. The algorithm employs the tournament 
selection, where the scale of tournament is K. When selecting 
a new population, the algorithm selects K chromosomes 
randomly for tournament. Then it adds the winner of the 
tournament to the new population repeatedly until there is a 
new population of size N. When comparing two 
chromosomes, the following strategy is applied: 
chromosomes with both better f1 and better f2 definitely win, 
whereas chromosomes with better f1 but worse f2 (or with 
better f2 but worse f1) win with a probability of 0.5. 

3) Crossover and mutation. Each chromosome goes 
through the crossover process with a probability of px. In the 
proposed algorithm, we choose the traditional single-point 
crossover for simplicity. The single-point crossover 
exchanges the variables after a randomly selected position for 
two chromosomes. Also, for each chromosome, every 
variable is mutated with a probability of pm. The mutation 
sets the variable to a random value within the legal range. 
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After crossover and mutation, every chromosome is checked 
to guarantee that it is a legal strategy, i.e. the value of T is no 
less than twice the value of v. Illegal strategies are reset to a 
legal one by modifying v to be / 2T⎢ ⎥⎣ ⎦ . 

4) Local search. The local search process includes three 
parts: local search on coefficients k1-k4, local search on G1-G4, 
and local search on period T. The three parts are described as 
follows: 

(a) For local search on k1-k4, the algorithm selects a 
variable from k1-k4 randomly, and add a random real number 
to the variable within the range [-r, r], where r is the radius of 
local search, and is set to (Uk-Lk)/N, Uk is the upper bound for 
ki, Lk is the lower bound, and N is the population size. We set 
Uk = 0 and Lk =10. 

(b) For local search on G1-G4, the algorithm randomly 
selects a variable from G1-G4, and adds a random integer 
within [-1, 1] to the variable. Then the algorithm checks 
G1-G4 to be within the range [Lg, Ug]. Here we set Lg=1 and 
Ug=10. 

(c) For local search on T, add a random integer within [-1, 1] 
to T. The algorithm first checks whether T is within the range 
[LT, UT] (in this paper we set LT=5, UT=20), then it checks the 
validity of chromosome as in 3). 

IV. EXPERIMENTS AND DISCUSSIONS 

A. Experimental Settings 
In this section, experiments are conducted to compare the 

performance of strategies optimized by GA, the FCFS 
strategy, and the greedy strategy. Here the FCFS strategy 
simply admits the patients according to the order of their 
arrival. The greedy strategy admits patients according to the 
expected number of days of stage 2, and also to the order of 
arrival if the expected length of stage 2 is the same. 

The setting of parameters for GA are shown in Table I, 
where N is the population size, px is the probability of 
crossover, and pm is the probability of mutation. 

TABLE I 
PARAMETER SETTING FOR GA 

Parameter N px pm 
Value 30 0.1 0.7 

 
Experiments are conducted on three cases, and the 

descriptions of the test cases are presented in Table II. In 
Table II, there are four columns that describe the test cases. 
The first column shows the total number of available beds. 
The next column presents the average number of days for the 
preparation of surgery, and the numbers are listed for all the 
five categories of patients, i.e. patients with cataract on one 
eye, with cataract on two eyes, with retinal diseases, with 
glaucoma, and with ocular trauma, respectively. The third 
column shows the average number of patients that arrive 
every day, and the last column is the average days required 
for resumption. The data for case 1 and case 2 are generated, 
while the data for case 3 are from a hospital. 

TABLE II 
DESCRIPTION OF TEST CASES 

 Beds Preparation Arrival Resumption 

Case1 56 1,1,2,2,0 2.5, 3,3, 1.5, 1.5 2, 2.5, 6, 4.5, 5

Case2 79 1,1,2,2,0 3.5, 4.5, 5.5, 3, 2 4, 5, 8, 8, 7 

Case3 79 1,2,3,2,0 3.5, 4, 3, 2.5, 1.5 3, 3.5, 7, 5.5, 6

 

B. Experimental Results 
On each case, both FCFS strategy and greedy strategy need 

only one run, whereas GA runs 30 independent times. In each 
run, the GA terminates after 40000 function evaluations. The 
average and best values of f1, f2 are shown in Table III. 

 
TABLE III 

EXPERIMENTAL RESULTS 
Case Algorithm Avg f1 Avg f2 Best f1 Best f2 

GA 1.6534 0.04712 0.94256 0.00621

FCFS 5.6615 0.028285 5.6615 0.028285Case1

Greedy 4.7589 0.17495 4.7589 0.17495

GA 2.4653 0.03312 0.82455 0.00134

FCFS 7.5777 0.029135 7.5777 0.029135Case2

Greedy 5.3852 0.17100 5.3852 0.17100

GA 4.4345 0.053445 3.6465 0.04325

FCFS 6.0444 0.057735 6.0444 0.057735Case3

Greedy 5.8666 0.080979 5.8666 0.080979

 
From Table III, strategies optimized by GA outperform the 

FCFS strategy and the greedy strategy on f1 in all the three 
cases. On f2 the proposed GA outperforms the greedy strategy 
but performs slightly worse than the FCFS strategy. However, 
the FCFS strategy is not competitive for its poor performance 
on f1. The results are consistent with the idea that the FCFS 
strategy only guarantees the fairness of the system but does 
not consider the utilization of recourses. The results for the 
greedy strategy on f1 is due to the fact that it admits patients 
only based on the expected length of stage 2 but pays no 
attention to the balance among the admission of different 
categories of patients.  

Case 3 is from a hospital, and the data are relatively odd 
compared with case 1 and case 2. Thus in this case an optimal 
strategy is hard to achieve. GA still outperforms FCFS 
strategy and the greedy strategy in case 3, although its 
superiority is not so obvious as in case 1 and case 2. 

Fig. 4(a)-(c) illustrate the distribution of the values of f1 
and f2 on case 1 to case 3. The objective function values of 
solutions found by GA, the FCFS strategy and the greedy 
strategy are plotted. It is shown in Fig. 4(a)-(c) that almost 
half of the points that represent solutions found by GA have 
both better f1 and better f2 than the FCFS strategy and greedy 
strategy, and that almost all of the points representing 
solutions found by GA have better f1. 
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Fig. 4.  Distribution of the objective function values on Case 1, Case 2, and 
Case 3. 

V. CONCLUSION 
This paper proposes a GA designed for the optimization of 

patient admission strategies in the eye disease department. 
For the optimization of admission strategies, we devise a 
coding scheme of chromosomes and define the evaluation 
functions for two objectives: efficiency and fairness. The 
proposed algorithm utilizes historical data from the hospital 

for evaluation of chromosomes. Although only one class of 
medical systems is considered in this paper, the proposed 
algorithm can solve other problems with modified constraints 
without changing the coding strategy and the framework of 
algorithm. Experiments are conducted on three cases, and the 
strategies optimized by the proposed GA are compared with 
the FCFS strategy and greedy strategy. Experimental results 
show that the strategies optimized by the proposed algorithm 
outperform both the FCFS and the greedy strategies. 
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