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Abstract—Research into maximizing the network lifetime is 
one of the most significant and challenging areas in wireless 
sensor networks (WSNs). By arranging sensors and sinks to 
realize target coverage and network connectivity respectively, 
an efficient schedule of sensors and sinks can prolong the 
network lifetime. However, the arrangements of sensors and 
sinks correlate with each other because each sensor needs to 
send its data to a sink, making the problem of finding the 
optimal schedule difficult. Instead of using a single process to 
optimize the entire schedule of sensors and sinks, this paper 
proposes a scheduling method which uses two separate 
processes to schedule operations of sensors and sinks 
respectively. The first process organizes sensors in the network 
into disjoint sets, with each set being able to fully cover the 
targets. Based on the arrangement of sensors, a novel genetic 
algorithm (GA) is adopted in the second process to allocate sinks 
to each set of sensors. When the number of full cover sets that 
ensure both connectivity of sensors to sinks and connectivity of 
the network composed of sinks is maximized, a schedule that 
maximizes the network lifetime can be obtained. The proposed 
method has been applied to a number of WSN cases. Results 
demonstrate that the method is effective and efficient in 
prolonging the lifetime of WSNs. 

I. INTRODUCTION 

IRLESS sensor networks (WSNs) are composed of a 
set of battery-powered nodes that are deployed in an 

area of interest. Each node senses the surrounding 
environment and delivers the sensed data via wireless 
transmission to the remote base station (BS) for further 
analysis or applications.  In this way, WSNs are able to 
provide reliable, accurate, and real-time observations over a 
vast area, encouraging usage in many civil and military 
applications [1][2].  However, due to the large quantity of 
nodes and the unpredictability of the environment, replacing 
or recharging the battery of each node is difficult. The energy 
resource is thus the fundamental constraint in the applications 
of WSNs.  How to conserve energy and prolong the network 

 
This work was supported in part by the NSFC Joint Fund with Guangdong 

under Key Project U0835002 and the National High Technology Research 
and Development Program (“863” Program) of China, No. 2009AA01Z208. 

Ying Lin, Xiao-min Hu, and Jun Zhang are with the Department of 
Computer Science, Sun Yat-sen University, Guangzhou, China. Jun Zhang is 
the corresponding author (email: junzhang@ieee.org) 

Ou Liu is with The Hong Kong Polytechnic University, Hung Hom, Hong 
Kong. 

Hai-lin Liu is with Guangdong University of Technology, Guangzhou, 
China. 

 

lifetime is a critical issue in the research of WSNs. 
When nodes in a WSN are densely deployed, the sensing 

ranges of neighboring nodes usually overlap.  Only a subset 
of the nodes can already fulfill the sensing task and the rest 
nodes can be scheduled into a sleep state for conserving 
energy.  Therefore, the maximization of network lifetime can 
be considered as a problem of finding the maximum number 
of disjoint sets of nodes, with each set being able to realize 
target coverage and network connectivity independently.  

In the literature, the above idea has been applied to WSNs 
of flat architectures and encouraging results have been 
reported [3]-[6]. However, WSNs in real-world applications 
generally have n-tier (n>1) architectures.  One of the most 
widely used n-tiered WSNs is the two-tier WSN [7]-[12]. A 
two-tier WSN comprises a number of clusters and one or 
more BS’s. Each cluster is composed of several member 
nodes and a head node.  The member nodes of different 
clusters compose the lower tier of the WSN while the cluster 
heads (CHs) and the BS’s compose the upper tier.  In a cluster, 
the member nodes are responsible for the sensing task over 
the corresponding area, whereas the CH collects the data from 
the sensors and routes them to the BS.  Such cluster-based 
architecture offers some inherent advantages against the flat 
architecture in terms of energy conservation [13]-[15].  First, 
since only CHs are involved in routing data to the remote 
BS’s and the member nodes only transmit the sensed data to a 
CH nearby, the energy consumed in data transmission is 
substantially reduced [13][14].  Second, the fact that only the 
CH transmits data out of the cluster also helps save energy by 
avoiding collisions between cluster members [15]. Due to the 
popularity and advantages of using two-tier WSNs, we 
consider designing energy-efficient algorithms or protocols 
for prolonging the lifetime of two-tier WSNs deserves more 
in-depth investigations. 

Generally speaking, there are two types of clusters in 
two-tier WSNs: homogeneous and heterogeneous [16][17].  
In this paper, we focus on the WSNs comprised of 
heterogeneous clusters. Different from the homogeneous 
clusters consisting of a single type of nodes, there are two 
types of nodes in the heterogeneous clusters.  The nodes used 
as CHs are sinks equipped with high capacity (e.g., data 
aggregation and routing ability), whereas the nodes used as 
non-CHs are common sensors with limited capacity (e.g., 
application-specified sensing ability).  Apparently, the WSNs 
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composed of heterogeneous clusters can save substantial cost 
by reducing the number of high-capacity nodes that require 
expansive hardware. Besides, management is easier because 
there is no need to alternate the modes of nodes between 
being CHs and non-CHs [13][16].  Literatures [15], [20], and 
[21] have proposed three different node scheduling schemes 
to maximize the lifetime of a WSN with homogeneous 
clusters. However, the research on optimal node scheduling 
schema for maximizing the lifetime of heterogeneous two-tier 
WSNs is still at an early stage. 

This paper proposes a new node scheduling methods for 
maximizing the lifetime of heterogeneous two-tier WSNs.  A 
heterogeneous two-tier WSN must satisfy three constraints to 
function properly, i.e., the coverage constraint of sensors, the 
routing constraint of sinks, and the connectivity constraint 
between sensors and sinks. The coverage constraint requires 
sensors on the lower tier to form a satisfying coverage to the 
deployed area.  The routing constraint requires sinks on the 
upper tier to form a connected network so that each CH can 
transmit data to a BS either directly (in one hop) [13] or 
indirectly (in multiple hops) [17].  The connectivity 
constraint ensures that every lower-tier sensor can 
communicate with one upper-tier sink. Thus every piece of 
information of the deployed area can be transmitted from 
sensors to sinks. 

Indeed, it is difficult to use a single global optimization 
process for finding the optimal schedule that maximizes the 
number of sets that satisfy all the three constraints 
simultaneously. Therefore, this paper introduces a 
divide-and-conquer method. First, the sensors are scheduled 
for finding the maximum number of disjoint full cover sets. 
Second, based on the optimal schedule of sensors, sinks are 
allocated to the existing sets of sensors, aiming to build as 
many admissible sets that comply with the connectivity and 
routing constraints as possible.  By combining the solutions in 
the above two steps, an optimal or near-optimal schedule can 
be obtained.  Several approaches have been proposed for 
addressing the sensor scheduling problem in the first step 
[3]-[6].  In this paper, we focus on the second step of sink 
scheduling and propose a novel genetic algorithm (GA) [22] 
to address it.  The proposed GA is designed based on the idea 
of minimizing the number of sinks in every admissible set, so 
that inadmissible sets have more opportunities to be improved. 
In order to evaluate the performance of the proposed GA, a 
series of random WSN cases are generated.  Experimental 
results show that the proposed method can find optimal or 
near-optimal schedules at a fast speed. 

The remainder of this paper is organized as follows.  
Section II describes the network model and defines the 
problem considered in this paper.  Section III details the 
implementation of the proposed GA.  Section IV shows the 
experimental study and related discussions.  The conclusion 
of the whole paper is drawn in Section V.  

II. NETWORK MODEL AND PROBLEM DEFINITION 

A. Network Model 

Fig. 1 (a) shows an example of the heterogeneous two-tier 
WSNs considered in this paper.  As can be observed, the 
two-tier WSN contains a BS, a set of sensors, and a set of 
sinks. 

The application-specified sensors are responsible for the 
sensing task.  They are grouped in clusters and constitute the 
lower tier of the network.  After capturing the data within the 
sensing range, sensors transmit the data to the sink in its own 
cluster in one hop.  Sinks are equipped with data aggregation 
and forwarding abilities.  In the network model of this paper, 
there is only one sink as the cluster head in each cluster of 
sensors.  After receiving data from sensors in the cluster, the 
sink aggregates the data and forwards the aggregation results 
to the BS.  The BS receives messages from the sinks and 
obtains a complete scene of the whole deployed area by 
analyzing the messages.  Since the BS is generally remote 
from the other nodes, it is more energy-efficient to organize 
the sinks into a relay network that is connected with the BS at 
the closest point.  Through the relay network, a sink that is far 
from the BS can forward its message in multiple hops.  Sinks 
and BSs constitute the upper tier of the network.  Fig. 1 (b) 
shows a hierarchical view of the above two-tier WSN. 
 

 
Fig. 1. An example of (a) the two-tier WSN and (b) its hierarchical view.  In 
(b), the dot circles indicate the clusters; the arrows show the direction of data 
flow. 
 

Both sensors and sinks are battery-powered.  The batteries 
of sinks are generally more powerful because sinks consume 
energy at a higher rate.  In this paper, we assume the battery 

Authorized licensed use limited to: Hanyang University. Downloaded on December 01,2023 at 02:27:21 UTC from IEEE Xplore.  Restrictions apply. 



 
 

 

of sensors and sinks can support them for the same length of 
time.  Different from the sensors and sinks, the energy 
provision of BS is generally not constrained.  Therefore, the 
energy conservation of BS is not a concern of our 
investigation. 

B. Problem Definition 

In order to maximize the network lifetime, the scheduling 
scheme should maximize the number of admissible sets.  
Suppose N sensors SE={SE1,SE2,…,SEN} and M sinks 
SI={SI1,SI2,…,SIM} have been deployed in an area A.  The 
nodes are stationary and their positions are known to the 
schedule scheme through the Global Positioning System 
(GPS) or other GPS-free location algorithms.  The problem 
considered in this paper can then be stated as maximizing the 
number U of admissible set with each set Si (i=1,2,…,U) 
subject to the following constraints. 

1) Coverage constraint.  In this paper, the coverage 
constraint requires sensors in Si to form a full coverage of the 
deployed area A.  In other words, any point P in A must be 
covered by at least one sensor in Si.  Assume all the sensors 
have the same sensing range rs and their detection follows the 
deterministic disk model [13].  Then Si satisfies the coverage 
constraint if and only if 
 PA,  SEjSEi, ||SEj  P||  rs, (1) 
where SEi={SEj | SEjSi, j=1,2,…,N} is the set of sensors in 
Si and ||SEj－P|| indicates the distance between SEj and P.  An 
illustration of the set satisfying the coverage constraint is 
shown in Fig. 2. 
 

 
Fig. 2. Illustration of a set that satisfies the coverage constraint. 
 

2) Routing constraint.  As discussed in the previous part, 
the sinks compose a relay network for routing data to the BS 
efficiently.  To guarantee the existence of the relay network, 
there must be a spanning tree that links all the sinks in Si (as 
shown in Fig. 3).  Consider a weighted graph G with the 
vertex set V=SIi={SIj | SIjSi, j=1,2,…,M}, the edge set 
E={(SIj,SIk) | SIj,SIkSIi}, and the cost function C:E→+ as 
C((SIj,SIk))=||SIj － SIk||.  Then Si satisfies the routing 
constraint if and only if the minimum spanning tree T 
constructed from G is subject to 

 (SIj,SIk)T, ||SIj   SIk||  SI
tr , (2) 

where SI
tr  is the transmission range of sinks. 

 

CN
tr

 
Fig. 3. Illustration of a set that satisfies the routing constraint.  The gray bold 
lines connect the sinks that can communicate with each other directly and 
indicate the relay network constituted by the sinks in the set.  The black thin 
lines indicate a spanning tree in the relay network. 
 

3) Connectivity constraint.  The connective constraint is to 
insure that all the information obtained by the sensors is 
delivered to the sinks.  For this, every sensor must be able to 
transmit its data to at least one sink (as shown in Fig. 4).  

Suppose all the sensors have the same transmission range SE
tr .  

Si satisfies the connectivity constraint if and only if 

 SEjSEi, SIkSIi, 
SE

tkj r||SISE||  . (3) 

 

SN
tr

 
Fig. 4. Illustration of a set that satisfies the connectivity constraint.  Each 
sensor in the set is connected to a sink in its transmission range with a solid 
line 
 

Note that the routing and connectivity constraints do not 
address any specified routing protocols or clustering rules.  It 
is the existence of the routing topology and the feasibility of 
clustering that are concerned in this paper.  Besides the above 
three constraints, the schedule forbids any node to appear in 
two or more sets simultaneously, i.e., 
 i, j  {1,2,…,U}, i  j, Si  Sj = .  (4) 
This is because we have assumed the energy of sensors and 
sinks can support their activation for the same length of time.  
Once a set is activated, it continues to monitor the deployed 
area until a node in the set exhausts its energy. 

Based on the idea of divide-and-conquer, the above 
problem can be divided into two sub-problems: 1) schedule 
sensors to maximize the number of full cover sets that satisfy 
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the coverage constraint and 2) schedule sinks into the full 
cover sets to maximize the number of admissible sets that 
satisfy all the three constraints.  The former sub-problem can 
be addressed by scheduling methods in flat WSNs [3]-[6].  
This paper focuses on the later sub-problem and proposes a 
GA to solve it. 

III. A GENETIC ALGORITHM FOR SCHEDULING SINKS ON 

THE UPPER-TIER 

In this section, a GA is proposed to schedule sinks for 
maximizing the lifetime of two-tier WSNs.  There are three 
key components in a GA: 1) representation of chromosomes, 
2) construction of fitness function, and 3) design of genetic 
operators.  In this section, we detail the design of these three 
components and then give the complete process of the 
proposed GA. 

A. The Key Components of the Proposed GA 

1) Representation of Chromosomes 
In a GA, a chromosome represents a solution to the 

optimization problem.  Therefore, a chromosome in the 
proposed GA should define a schedule of sinks.  Suppose U 
full cover sets have already been found in the sensor 
scheduling step. With every gene being mapped to a sink, the 
chromosome Ci can be represented as 
 Ci = {gi1,gi2, …,giM}, i = 1,2,…,PS, (5) 
where gij[1,U+1] is the index of the set that the sink SIj 
belongs to, M is the number of sinks, and PS is the size of 
population.  Note that when gij=U+1, the sink SIj is actually 
excluded from the WSN and would not be activated at any 
time.  With such a representation scheme, schedules found by 
the GA are forced to obey the disjoint constraint in (4). 
Moreover, the representation scheme can cover the whole 
solution space and make each chromosome represent a 
unique schedule. 
2) Fitness Function 

The fitness function in a GA evaluates the quality of 
chromosomes.  A good fitness function can make the 
optimization process more efficient.  Consider the aim of the 
proposed GA being maximizing the number of admissible 
sets.  The fitness function is defined as 

  


U

k k

U

k ki PICf
1211 )()()( SS  ,  (6) 

It can be observed that the fitness function is composed of 
two components.  The first component contains a predefined 
positive weight ω1 and an indicator function I(Sk), which is 
defined as (7) to indicate whether Sk is an admissible set. 

 





otherwise0

satisfied (3) - (1) Eq. 1
)(

,

,
I kS , k=1,2,…,U.  (7) 

The first component of the fitness function summarizes the 
number of admissible sets in the chromosome.  Chromosomes 
that represent schedules with more admissible sets are 
supposed to have better fitness values.  In this way, the fitness 
function encourages the chromosomes to evolve towards 
schedules with more admissible sets. 

The second component of the fitness function is 
constituted by a predefined negative weight ω2 and a penalty 
function P(Sk).  The penalty function embeds an idea: the 
more redundant sinks the admissible sets contain, the less 
opportunity for the remaining inadmissible sets to be 
improved.  Thus, suppose the sensor SEt (SEt Sk) can 
transmit data to vt sinks in Sk, the penalty of Sk is calculated by 

  


ktSE t
k

k vHP
SSE

S )(
||

1
)( ,  (8) 

where H() is a function defined as 
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A special case is that no sink has been scheduled into Sk, i.e., 
|SIk|=0.  In that situation, the penalty is set to one.  From (8) 
and (9), it can be deduced that a set receives heavy penalty 
under two situations: 1) the number of unconnected sensors in 
the set is large and 2) the sinks in the set have serious 
redundancy.  Generally speaking, the number of unconnected 
sensors will reduce when more sinks are assigned to the set.  
If a set involves many sinks but still has some sensors 
unconnected, the schedule is considered especially inefficient 
and the penalty of this set would be particularly large.  By 
adding up the penalties of all the sets, the second component 
of the fitness function can bias the search process towards 
schedules that allocates sinks more efficiently. 

In order to insure the effectiveness of the fitness function, 
the values of ω1 and ω2 must be adjusted.  The definition of 
the penalty function determines that the penalty value of a set 
will not exceed the range of [0, |SIk|].  Therefore, if ω1 and ω2 
satisfy 

 )||(max
1

2

1
k

Uk
SI







,  (10) 

an admissible set will always contribute a positive increment 
to the fitness value because ω1+ω2·P(Sk)>ω1+ω2· 

)(max1 || kUk SI >0.  In the opposite, an inadmissible set will 

reduce the fitness by a negative value ω2·P(Sk).  By doing so, 
the fitness value of a chromosome increases as the number of 
admissible sets rises. 

The process of evaluating the population with the above 
fitness function is shown in Fig. 5 (a). 
3) Genetic Operators 

The proposed GA comprises three genetic operators: 
selection, crossover, and mutation, which are defined as 
follows. 

 Selection. The classical tournament selection [22] is 
adopted. The best chromosome within the TS 
chromosomes that are randomly selected from the 
population is chosen as a parent chromosome. 

 Crossover.  As shown by (11), the genes from two 
randomly selected parents Ci and Cj (i, j=1,2,…,PS) 
are combined with equal probability to generate a new 
chromosome )( 21 kMkkk g,...,g,gC  , 
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Fig. 5. Flowchart of (a) the population evaluation process and (b) the complete process of the proposed GA. 
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where q is a uniformly distributed random number in 
(0,1).  For each generation, the above procedure is 
repeated until PS offspring PSC,...,C,C  21  are 

generated. 
• Mutation.  After the crossover, the genes in an 

offspring kC   are changed as 

 








m

mkt
kt Pq,g

Pq,g
g , t=1,2,…,M,  (12) 

where Pm is the mutation probability, q is a uniformly 
distributed random number in (0,1), and g≠ tg   is a 

random value in [1,U+1].  In every generation, (12) is 
applied to all the offspring generated by the crossover. 
The mutated chromosomes )g,...,g,g(C Mk  21  

(k=1,2,…,PS) constitute a new population. 

B. The Complete Process of the Proposed GA 

With the key components specified as above, the complete 
process of the proposed GA is summarized in the flowchart of 
Fig. 5 (b).  The following paragraphs explain the process step 
by step. 

Step 1) Initialization: The population is initialized by 
assigning random numbers in the range of [1,U+1] to the 
genes of each chromosome.  The chromosomes are then 
evaluated by the fitness function.  The best chromosome Cb is 
used to initialize the historical best record Chb. 

Step 2) Termination check: If the evolution termination 
criterion, e.g., the maximum number of fitness function 
evaluations, has been met, the schedule of Chb is returned as 
the result and the optimization process terminates.  Otherwise, 
the optimization process continues with Step 3). 

Step 3) Selection: The tournament selection is performed. 
Step 4) Reproduction: The crossover and mutation 

operators defined in Section III-A are performed to generate a 
new population. 

Step 5) Elitist strategy: After reproduction, the 
chromosomes in the new population are evaluated with the 
fitness function.  The currently worst chromosome Cw is 
replaced by the historical best record Chb.  The currently best 
chromosome Cb is compared with Chb.  If f(Cb)>f(Chb), Chb is 
updated with Cb. 

Step 6) After Steps 3) to 5), the population of the next 
generation has been formed.  The optimization process 
returns to Step 2) and begins another generation of evolution. 

In the above GA process, the time complexity of selection 
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and reproduction is no more than O(PS×M).  The most 
time-consuming component is the evaluation of the 
population.  For each set Sk: the time complexity for checking 
the routing constraint is |SIk|

2; the time complexity for 
calculating the penalty is |SIk|×|SEk|.  Therefore, the time 
complexity to evaluate the whole population is 

  


U

k kkk |)|(|PS
1

SE|SI|SI| , (13) 

which is no larger than PS×(M+N)2. 

IV. EXPERIMENTAL STUDY 

In this section, the proposed GA is evaluated by a series of 
simulation on some randomly generated test cases.  The test 
cases are designed with the optimal solutions known.  
Therefore, the effectiveness and the performance of the 
proposed algorithm can be directly examined. 

A. Experimental Setups 
Procedure TEST_CASE_GENERATION 
Input:  
L: the length of the deployed area 
W: the width of the deployed area 
rs: the sensing range of sensors 
N: the number of sinks 
per: the proportion between the numbers of sensors and sinks
Output:  
U: the number of covering sets in the schedule of sensors 
SE [SEi]: SEi=<xi,yi> indicates the position of the i-th sensor 
D [di]: di is the index of the set that SEi belongs to 
M : the number of sinks 
SI [SIi]: SIi=<xi,yi> indicates the position of the i-th sink 

SE
tr : communication range of sensors 

SI
tr : communication range of sinks 

Begin 
//randomly deploy N sinks in the L×W area 
For i:=1 to N 
 SIi:=RAND(L,W); 
End 
//schedule the sensors 
<D,U>:=SE_SCHEDULIN(L,W,rs,SE); 
//schedule the sinks 

M:=0; 
SN

tr :=0; 
CN

tr :=0; 

For i:=1 to U 
 SEi:={SNj | dj=i, j=1,2,…,N}; 
 K:=per×|SNi|; 
 C:=K_CLUSTERING(SEi,K); 

 SN
ttr := ||)SEC(||max jk

s,Kk ij


 SN1

; 

 CN
ttr :=PRIM_MST(C); 

 If SE
ttr > SE

tr  Then SE
tr := SE

ttr ; End 

 If SI
ttr > CN

tr  Then SI
tr := SI

ttr ; End 

 For j:=M+1 to M+K 
  SIj=<Cj−K,1, Cj−K,2>; 
 End 
 M:=M+K; 
End 

End 
Fig. 6. Pseudo-code of the test case generation method.  RAND(L,W) is a 
function generating random numbers in the range of [0,L]×[0,W]; 
SE_SCHEDULIN(L,W,rs,SE) is a function based on [6] to schedule sensors 
and to return the schedule D as well as the number U of the full cover sets; 
K_CLUSTERING(SEi,K) is a function to cluster the nodes in SEi into K 
clusters and return the array C of the positions of the cluster centers 

With the deployed area set as a 50×50 rectangle, the 
sensing range of sensors set to R, and the proportion between 
the numbers of sensors and sinks fixed at 0.2, nine test cases 
are generated by the method introduced in Fig. 6.  Table I 
tabulates the configurations of the nine test cases, including 
the numbers of sensors and sinks (M and N), the sensing 
range of sensors (rs), the transmission range of sensors and 

sinks ( SE
tr and SI

tr ), and the number of admissible sets (U) in 

the optimal schedule. 
There are a total of five parameters in the proposed GA: the 

size of population PS, the size of tournament selection TS, the 
mutation probability Pm, and the weights ω1 and ω2 in the 
fitness function.  Among these parameters, PS, TS, and Pm are 
common parameters of GAs. As recommended in literature 
[22], these three parameters are set as PS=20, TS=8, and 
Pm=0.05.  The relationship between ω1 and ω2 has been 
discussed in Section III-A.  In order to satisfy the constraint in 
(10), we set ω1=M and ω2=－1.0, which has been empirically 
proven good.  The proposed GA terminates when the number 
of fitness function evaluations exceeds the predefined upper 
boundary 50,000.  For fair evaluation, the proposed algorithm 
is executed for 30 independent times and the statistical results 
are used for analysis.  All the experiments are run on a Dell 
computer with an Intel Core 2 Duo 2.33GHZ CPU and a ram 
of 966 MB. 
 

TABLE I 
TEST CASES USED IN EXPERIMENTAL STUDY 

Case No. N M rs rt
SE rt

SI U 
1 100 21 20 29 31 7 
2 300 60 15 30 35 16 
3 300 60 20 32 36 32 
4 400 80 10 16 25 9 
5 400 84 15 30 34 23 
6 500 100 8 15 22 7 
7 500 98 10 22 28 15 
8 1000 200 5 7 12 5 
9 1000 198 8 15 21 17 

 
TABLE II 

RESULTS OF THE PROPOSED GA 
Case No. Best Worst Avg avgFEs SR(%) 

1 7 7 7 236 100 
2 16 16 16 728 100 
3 32 32 32 3906 100 
4 9 8 8.87 11019 86.67 
5 23 23 23 1108 100 
6 7 7 7 2452 100 
7 15 15 15 4617 100 
8 5 4 4.43 23945 43.33 
9 17 15 16.33 24454 43.33 

 

B. Experimental Results 

Table II tabulates the results of the experiments.  In the 
table, ‘Max’, ‘Min’, and ‘Avg’ represent the maximum, 
minimum, and average numbers of the admissible sets found 
by the algorithm.  ‘SR’ is the rate that the algorithm 
successfully found the optimal solution in 30 runs.  ‘avgFEs’ 
indicates the average number of fitness function evaluations  
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Fig. 7. Evolution curves of the proposed GA on (a) Case No. 4, (b) Case No. 6, (c) Case No. 8, and (d) Case No. 9. 

 
for the algorithm to obtain the optimal solution. 

From Table II, it can be observed that the proposed GA is 
able to find the optimal solution in every test case.  Actually, 
the algorithm promises to find the optimal solution with 
100% successful rate for all the test cases except for cases No. 
4, 8, and 9.  Even on cases No. 4, 8, 9, the successful rates are 
no less than 40%.  On the other hand, on cases No. 1 to 7, the 
value of ‘avgFEs’ is smaller than 12,000, that is, 600 
generations, suggesting that the algorithm is able to find the 
optimal solutions quickly when the scale of the problem is 
under a thousand nodes. 

To better understand the optimization process, Fig. 7 
depicts the evolution curves for cases No. 4, 6, 8, and 9.  In 
this figure, the horizontal axis indicates the number of 
generations, while the vertical axis is the relative error 
between the numbers of admissible sets in the best-so-far 
solution and the optimal solution averaged over 30 runs.  
Therefore, the larger the value on the vertical axis, the worse 
the solution is.  It can be observed that at the beginning of the 
algorithm, the random initialization generates poor solution 
with relative error over 0.6.  Then in the early phase of the 
evolution, as shown by the steep curves in Fig. 7, the 
algorithm quickly improves the solution quality and reduces 
the error.  However, the evolution curve becomes smooth in 
the later phase, meaning that the algorithm slows down in the 
later evolution. 

Fig. 8 displays the average CPU time for the proposed GA 
to find the optimal solution in 30 runs.  It can be observed that 
the average CPU time spent on cases No. 1 to 7 is less than 1 
second. 

Concluded from the above, the proposed GA is able to find 

optimal or near-optimal schedules in limited computation 
time.  The experimental results have confirmed that the 
proposed GA is effective and efficient for scheduling the 
upper-tier nodes in the two-tier WSN. 
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Fig. 8. Illustration of the average CPU time cost by the proposed GA on each 
test case. 

 

V. CONCLUSION 

This paper considers a node scheduling method to 
maximize the lifetime of the two-tier WSNs.  Based on the 
idea of divide-and-conquer, the proposed method suggests 
scheduling sensors on the lower tier and sinks on the upper 
tier respectively.  Since the scheduling of sensors can be 
analogous to the node scheduling in flat WSNs and some 
approaches have already been provided, this paper focuses on 
the scheduling of sinks and proposes a GA to address the 
problem.  The proposed GA is based on the idea of 
minimizing the number of sinks in the admissible sets so that 
the inadmissible sets gain more opportunities to be improved.  
Experiments on a range of random test cases show that the 
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proposed GA is effective and efficient in finding the optimal 
or near optimal schedule of sinks. 
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