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Abstract—A portfolio selection problem is about finding an 
optimal scheme to allocate a fixed amount of capital to a set of 
available assets. The optimal scheme is very helpful for 
investors in making decisions. However, finding the optimal 
scheme is difficult and time-consuming especially when the 
number of assets is large and some actual investment 
constraints are considered. This paper proposes a new 
approach based on estimation of distribution algorithms 
(EDAs) for solving a cardinality constrained portfolio selection 
(CCPS) problem. The proposed algorithm, termed PBIL-
CCPS, hybridizes an EDA called population-based incremental 
learning (PBIL) algorithm and a continuous PBIL (PBILc) 
algorithm, to optimize the selection of assets and the allocation 
of capital respectively. The proposed algorithm adopts an 
adaptive parameter control strategy and an elitist strategy. 
The performance of the proposed algorithm is compared with 
a genetic algorithm and a particle swarm optimization 
algorithm. The results demonstrate that the proposed 
algorithm can achieve a satisfactory result for portfolio 
selection and perform well in searching nondominated 
portfolios with high expected returns. 

Keywords-estimation of distribution algorithm; population-
based incremental learning algorithm; portfolio selection 
problem 

I.  INTRODUCTION 
Selecting the optimal portfolio is an attractive problem in 

modern investment research. Investors or investment 
companies profit from investing a large number of available 
assets. A promising portfolio is very helpful for investors in 
making decisions. The portfolio selection (PS) problem is 
about finding an optimum scheme to allocate a fixed amount 
of capital to a set of available assets. As early as 1950s, 
Markowitz [1] proposed a classic mathematical model, 
termed mean-variance (MV) model, for the problem. Each 
feasible portfolio in the model has its own expected return 
and a risk value measured by the variance of the return. The 
portfolios which have the minimum risk for each level of the 
expected return form an efficient frontier. In other word, for 
every level of the desired expected return, the efficient 
frontier offers the best portfolio with the minimum risk. With 
the aid of the efficient frontier, investors can choose and 
decide which portfolio to adopt, according to their own 
tolerance for risk. 

The MV model has advanced the research of investment 
portfolio on a quantitative basis and has established the 
modern investment theory. However, the model has no 
restriction on the number of the invested assets and thus is 
not very suitable in practical applications. A cardinality 
constrained mean-variance (CCMV) model [2] fixes the 
issue and is more suitable for actual investment. In this paper, 
we focus on the cardinality constrained portfolio selection 
(CCPS) problem based on the CCMV model. 

The CCPS problem can be formulated into a mixed 
integer quadratic programming problem, which is an NP-
hard problem [3]. The computation demanding for solving 
the problem is high and the problem has the characteristics 
such as harsh constraints and a non-linear search space. 
When the number of assets is large, exact algorithm are not 
efficient to solve the problem. Some researchers introduced 
computational intelligence (CI) algorithms to solve the 
problem [2][4][5]. Inspired by the nature, CI algorithms are 
designed for obtaining an acceptable solution in an 
acceptable time by imitating natural evolutionary processes 
[6], animals’ group behaviors [7], activities of human 
thinking [8], or real physical phenomena [9], etc. Some PS 
approaches based on CI algorithms such as genetic 
algorithms (GAs) [2] and particle swarm optimization (PSO) 
algorithms [5] have been developed. Chang et al. [2] 
proposed three algorithms based on GA, tabu search (TS), 
and simulated annealing (SA), respectively for solving the 
PS problem. They reported that the algorithm based on GA 
generally outperformed the other two algorithms. Fernández 
et al. [4] and Cura [5] respectively applied a neural network 
(NN) and a PSO algorithm to solve the problem. Using the 
same instances as in [2], the two algorithms both performed 
better than the algorithms in [2] when searching portfolios 
with low risks.  

In this paper, a novel approach based on the estimation of 
distribution algorithms (EDAs) for the CCPS problem is 
proposed. EDA is a CI algorithm issued from the 
improvement of GAs [10][11]. Different from GA, it does 
not use crossover and mutation operators on the individuals 
in the population, but adopts an evolutionary mode for 
searching the best solutions. The evolutionary mode first 
builds a probabilistic model about the distribution of good 
individuals in the search space and then samples a new 
generation of population using the probabilistic model. With 
the aid of building a probabilistic model about the 
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distribution of good individuals, EDA manages to acquire 
the knowledge for approaching the global optimum in the 
search space step by step. EDA is an effective algorithm 
especially for complicated high-dimensional optimization 
problems [12].  

At present, there are a large number of EDAs adopting 
various probabilistic models, such as the Gaussian 
distribution model [13][14] and the Bayesian network model 
[15]. However, some of them such as the Bayesian 
optimization algorithm (BOA) [15] have high computation 
demands. To reduce the computation time, we adopt a simple 
EDA, called population-based incremental learning (PBIL) 
algorithm [10], to solve the CCPS problem. PBIL is easy to 
implement and costs less in the computation of probabilistic 
model than other EDAs. 

Various EDAs are also available for different 
optimization domains. In the application of discrete domain, 
there are PBIL [10], the univariate marginal distribution 
algorithm (UMDA) [11], mutual information maximizing 
input clustering (MIMIC) [16], and BOA [15]. For the 
continuous domain, the available EDAs include the real-
encoded PBIL algorithm [17], the continuous PBIL (PBILc) 
algorithm [13], and the continuous UMDA (UMDAc) 
algorithm [14]. Considering that the CCPS problem involves 
both discrete and continuous optimizations, in our work, the 
proposed algorithm, termed population-based incremental 
learning-cardinality constrained portfolio selection (PBIL-
CCPS), hybridizes PBIL and PBILc to optimize the selection 
of assets and the allocation of capital respectively. Moreover, 
PBIL-CCPS incorporates an adaptive parameter control 
strategy and an elitist strategy in the process of searching the 
best portfolio. In experiments, PBIL-CCPS is compared with 
the GA in [2] and the PSO algorithm in [5] on a collection of 
instances [2]. The results demonstrate that PBIL-CCPS is a 
competitive algorithm for portfolio selection and performs 
well in searching portfolios with high expected returns. 

The rest of the paper is organized as follows. Section II 
gives a definition about the CCPS problem. In Section III, 
we introduce the proposed algorithm in detail. Section IV 
reports the experiments and the results. At last, a conclusion 
for the paper is given in Section V. 

II. PROBLEM DEFINITION 
In this section, we first describe the MV model. Then, 

the CCMV model, which is an extension of the MV model, 
is presented for the CCPS problem. 

A. MV Model for the PS Problem 
Suppose N is the number of available assets, �i is the 

expected return of asset i, ij� is the covariance between the 
returns of assets i and j, the decision variable xi denotes the 
proportion of capital invested in asset i. The MV model is 
defined as (1)-(3).  
Minimize  
 

1 2 1 1 1( , ,..., ) (1 )N N N
N i j ij i ii j if x x x x x x� � � �� � �

� � � �� � �	 
 	 
� � �  (1) 
Subject to 

1 1N
ii x� ��  (2) 

 0 1ix� � , 1, 2,...,i N�   (3) 

where 1
N

i ii x ��� represents the expected return of the 
portfolio and 1 1

N N
i j iji j x x �� �� � represents the total risk 

(variance of the portfolio’s return). The value [0,1]� 
 is the 
weighting parameter which represents a tradeoff between 
the two objectives of minimizing the risk and maximizing 
the expected return.  

Because of the two conflict objectives, the PS problem 
belongs to the family of multiobjective optimization 
problems. Therefore, the optimum portfolio can be defined 
using the Pareto optimality definition. Suppose that D is the 
domain of feasible portfolios, (ri,ei) denotes any portfolio i 
in D with a risk ri and an expected return ei. The portfolio i 
is optimum (or nondominated) if there does not exit any 
portfolio j
D ( i jr r� and i je e� ) satisfies j ir r� and j ie e� . 
Otherwise, the portfolio i is defined as dominated [4]. 
Markowitz [1] proposed a concept of the efficient frontier 
which is formed by the nondominated portfolios. Fig. 1 
gives an example of the efficient frontier presented by the 
black curve, where the horizontal and vertical axes are the 
risk and the expected return associated with the portfolio 
respectively. Based on the MV model, the efficient frontier 
can be obtained by taking different values for � and solving 
exactly the corresponding objective function (1). 

B. CCMV Model for the CCPS Problem 
For the MV model, there is no restriction on the number 

of invested assets in the portfolio. The CCMV model 
improves on the issue and is described as (4)-(8). 
Minimize 1 2 1 2( , ,..., , , ,..., )N Nf z z z x x x �  
 

1 1 1(1 )� � � �� � �
� � � �� �	 
 	 
� � �N N N

i j ij i ii j ix x x  (4) 
Subject to 

1 1N
ii x� ��  (5) 

 
1

N
ii z K� ��  (6) 

 
i i i i iz x z� �� � , 1,2,...,i N�  (7) 

 {0,1}iz 
 , 1,2,...,i N�  (8) 
where K is the desired number of invested assets in the 
portfolio, zi denotes whether asset i is invested and it equals 
1 or 0. If zi equals 1, asset i is chosen to be invested and the 
proportion of capital xi lies between �i and �i, where 
0� �i � �i � 1. Otherwise, asset i is not invested and xi equals 
0. In this model, zi and xi are both the decision variables.  

Compared with the MV model, the CCMV model is 
more useful in the actual investment. However, the CCPS 
problem is more complicated to be solved. The efficient 
frontier of CCPS may be quite different from that of the MV 
model, due to the presence of the cardinality constraint and 
the bounds for the proportion of capital associated with each 
invested asset. Moreover, the efficient frontier may be 
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Figure 1. An example of the efficient frontier of the PS problem. 
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discontinuous [2]. The way of varying � and solving exactly 
the corresponding objective function (4) may not be 
available to obtain the exact efficient frontier any more. On 
such issue, Chang et al. [2] proposed that an algorithm 
involving investigating a large number of different solutions 
could still perform well. 

III. PBIL-CCPS FOR CCPS 
The CCPS problem can be formulated into a mixed 

integer quadratic programming problem. It requires 
optimizing not only the selection of assets but also the 
allocation of capital. The former is essentially a 
combinatorial optimization problem in a discrete search 
space, whereas the latter relates to an optimization in a 
continuous search space. The proposed PBIL-CCPS 
algorithm hybridizes PBIL and PBILc to optimize the 
selection of assets and the allocation of capital respectively. 
The overall flowchart of PBIL-CCPS is illustrated in Fig. 2. 

A. Framework of PBIL-CCPS 
In the algorithm, each individual denotes one feasible 

portfolio and is constructed as a structure containing a 
selection vector 1( ,..., ,..., )i Nz z z z�

�
and a proportion vector 

1( ,..., ,..., )i Nx x x x�
�

where i is the serial number of asset and 
i=1, 2, ..., N. For z

�
, each dimention zi is an integer and 

equals 0 or 1. If zi=1, the corresponding asset i is chosen to 
be invested in the portfolio and the proportion xi
 [�i, �i]. If 
zi=0, it denotes that asset i is not invested and xi is set as 0.  

To search the best portfolio, PBIL-CCPS hybridizes 
PBIL and PBILc. PBIL encodes each individual that 
denotes a feasible solution as a binary string which consists 
of 0 and 1, and maintains a real vector, termed a probability 
vector. The dimension of the vector equals the number of 
bits in the binary string. Each dimension of the vector 
denotes the probability of the corresponding bit in the good 
individual’s binary string equaling 1. Like PBIL, PBIL-
CCPS maintains a probability vector, whose each dimension 
describes the probability of the corresponding dimension 
of z

�
equaling 1 in the good individuals. 

Different from PBIL, PBILc encodes each individual 
which represents a feasible solution as a real vector. Every 
dimension of the vector denotes one variable of the problem. 
The algorithm adopts a Gaussian distribution probabilistic 
model so that it maintains a mean vector and a standard 
deviation vector, where each dimension denotes the mean 
and the standard deviation of the corresponding variable in 
the good individuals, respectively. Similarly in PBIL-CCPS, 
each dimension in the mean vector X

���
=(X1,...,Xi,...,XN) and 

the standard deviation vector�
��

=(�1,...,�i,...,�N) describe the 
mean and the standard deviation of the corresponding 
dimension’s value in the good individuals’ proportion 
vectors, respectively. 

To distinguish the good and bad individuals, the fitness 
of each individual is evaluated by the fitness evaluation 
function. While optimizing the objective (4) with a certain 
value of �, the fitness evaluation function is defined as (9).  
 * *

1 1 1( ) (1 )N N N
ij ik jk ij jj k jf i x x x� � � �� � �

� � � �� � �	 
 	 
� � �  (9) 

where f(i) denotes the fitness of individual i, *� is the value 
of �, ijx and ikx denotes the j-th and k-th dimensions of the 
proportion vector in individual i. Obviously, the smaller the 
fitness is, the better the individual and the corresponding 
portfolio are. The stepwise procedures of PBIL-CCPS are 
organized as follows. 
Step 1) – Initialization 

In the step, the population, probability vector, mean 
vector, and standard deviation vector are initialized. Firstly, 
for each individual, randomly choose K assets to be invested. 
The proportion of capital invested in each chosen asset is 
initialized to be a random real number between 0 and 1. For 
the unselected assets, the proportions are initialized to be 0. 
The portfolio that each constructed individual presents may 
not satisfy the constraints of the problem. Hence, we need to 
amend the individual by adjusting the values of the selection 
vector and the proportion vector. The detail about how to 
amend an individual will be given in Part B. 

Secondly, initialize each dimension of the probability 
vector to be 0.5.  

Finally, initialize the mean vector and the standard 
deviation vector. Each dimension of the mean vector Xi is 
initialized as Xi:=(�i+�i) /2. For the standard deviation vector, 
each dimension �i is initialized as (10).  
 2

1: ( )POP
i ji ij x X POP� �� ��  (10) 

where POP is the size of the population, jix denotes the i-th 
dimension of the proportion vector in individual j. 
Step 2) – Updating the Probabilistic Model 

The step updates the probability vector, mean vector, 
and standard deviation vector according to the current 
population. The probability vector is updated in the same 
way as PBIL including the following three steps. 

Step A) – Learning from the Best Individual 
Each dimension of the probability vector P(i) is updated 

by learning from the best individual as (11).  
 P(i) :� P(i)� (1 �LR)+best(i)� LR  (11) 
where best(i) is the i-th dimention of the selection vector in 
the best individual, LR is the learning rate and LR
 [0,1]. 

Figure 2. The overall flowchart of the PBIL-CCPS algorithm. The 
step of initialization consists of initializing the population, the 
probability vector, the mean vector, and the standard deviation vector. 
The step of updating the probabilistic model includes updating the 
probability vector, the mean vector, and the standard deviation vector. 

307

Authorized licensed use limited to: Hanyang University. Downloaded on December 01,2023 at 02:29:17 UTC from IEEE Xplore.  Restrictions apply. 



Step B) – Negative Learning 
Suppose the i-th dimention of the selection vector in the 

best individual and the worst individual are best(i) and 
worst(i), respectively. If best(i)�worst(i), the i-th dimention 
of the selection vector in the optimum may has a greater 
probability to equal best(i) than worst(i). Therefore, 
negative learning requires the probability vector to continue 
learning from the best individual as (12) with a negative  
learning rate NEG_LR 
 [0,1]. 
 P(i) :� P(i)� (1 �NEG_LR)+best(i)� NEG_LR  (12) 

Step C) – Mutation 
Each dimension of the probability vector P(i) is altered 

according to a certain mutation probability PM as (13). 
( ) (1 ) , (0,1)

( ) :
( ),                                          otherwise         

P i MUT MD MUT rand PM
P i

P i
� � � � ��

� �
�

(13) 

where rand(0,1) is a random real number in (0,1], MUT 
denotes the amount for mutation to affect the probability 
vector, MD is a random integer equals 0 or 1. Note that, the 
mutation operates on the probability vector, which differs 
from that of GA. 

The method of updating the mean vector and the 
standard deviation vector in PBIL-CCPS is similar to that in 
PBILc. For the mean vector, each dimension Xi is updated 
as (14) with a learning rate PLR
 [0,1]. 
 Xi :� (1 �PLR)� Xi+PLR� (besti

(1)+besti
(2)�worsti)  (14) 

where besti
(1), besti

(2), and worsti denote the i-th dimension 
of proportion vector in the optimal individual, the 
suboptimal individual, and the worst individual, respectively. 

Analogously, each dimension of the standard deviation 
vector �i is updated as (15).  
 ( ) 2

1: (1 ) ( )M j
ii i ijPLR PLR best best M� � �� � � � � ��  (15) 

where besti
(1), ..., besti

(M) are the i-th dimention of proportion 
vector in the M best individuals, ibest  is the mean of 
besti

(1), ..., besti
(M). 

For updating the mean vector and the standard deviation 
vector, PBIL-CCPS introduces an adaptive parameter 
control strategy that the value of PLR linearly increases as 
the number of iterations increases during the optimization 
process. The strategy is effective for the algorithm to 
perform sufficient exploration in the search space at the 
beginning and then for accelerating the convergence speed 
and improving the accuracy of the solution with a larger 
learning rate as the evolution continues. 
Step 3) – Sampling 

Each individual of the new population is constructed 
with the aid of the probabilistic model. For each individual, 
firstly construct the selection vector. Supposing that the i-th 
dimension of the probability vector is P(i), the i-th 
dimension of the selection vector is set as a random integer 
which follows the Bernoulli distribution B(1, P(i)). 

Then construct the proportion vector. If the i-th 
dimension of the selection vector zi equals 1, the i-th 
dimension of the proportion vector xi is set to be a random 
real number which follows the Gaussian distribution N(Xi,�i

2) 
and satisfies 0 � xi � 1, where Xi and �i denote the i-th 
dimension of the mean vector and the standard deviation 
vector, respectively. Otherwise, xi is set to be 0. 

Similar to the initialization process, the constructed 
individuals must be amended if the representative portfolios 
do not satisfy the constraints of the problem. 

In the step, PBIL-CCPS introduces an elitist strategy. If 
the best individual in the new sampled population has worse 
fitness than the global best individual found by the 
algorithm, then replace R worst individuals by the global 
best individual. The strategy contributes to ensuring that the 
global best individual found by the algorithm will not be 
lost, improving the computational accuracy of the solution, 
and enhancing the evolutionary level of the new population.  

There is a repetition from Step 2 to Step 3 until the 
fitness evaluation number reaching a predefined value. 

B. Amending the Individual 
In initializing and sampling the population, each 

constructed individual must be amended if the 
representative portfolio does not satisfy the constraints of 
the problem. The way of amending an individual is similar 
to that in [5] and consists of two steps. 
Step 1) – Adjusting the Number of the Selected Assets 

In the first step, the amending operator on the individual 
ensures that the number of the selected assets equals K. 
While the number of the selected assets is smaller (larger) 
than K, the amending operator selects another asset (gives 
up a selected asset) until the number equals K.  

It is useful to exploit the heuristic information in 
determining which asset to select or give up. In the problem, 
the asset with a higher expected return and a lower 
covariance between the returns of itself and other assets, has 
a greater probability to appear in the best portfolio. Here we 
define the priority pi of each asset i to be selected as (16). 
 1

1

1 min(0, ,..., ,..., )
1 min(0, ,..., ,..., )

i i N
i

i i N

p � � � �
� � � �

� �
�

� �
, 1,2,...,i N�  (16) 

where i� and i� are computed as (17) and (18).  
 (1 )i i� � �� � �  (17) 
 

1
N

i ikk N� � ��� ��  (18) 
If asset i has a higher expected return and a lower 

covariance, pi is larger and asset i has a greater priority to be 
selected. The procedure to ensure the number of the selected 
assets in individual i equals K is designed as below:  
Begin 
 While 1

N
ijj z�� <K do 

 If rand(0,1)>0.5 then j:=randomly choose an unselected asset 
 Else  j:=choose an unselected asset with a greatest priority 
 End If 
 : 1ijz � , : 0ijx �  
 End While 
 While 1

N
ijj z�� >K do 

 If rand(0,1)>0.5 then j:=randomly choose a selected asset 
 Else j:=choose a selected asset with a smallest priority 
 End If 
 : 0ijz � , : 0ijx �  
 End While 
End 
where rand(0,1) is a random real number in (0,1], ijz and ijx  
are the j-th dimension of the selection vector and the 
proportion vector in individual i. 
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Step 2) – Adjusting the Investment Proportions 
The procedure to ensure that the proportions of capital 

invested in the selected assets satisfy the constraints is 
described as below: 
Begin 
 While true do 
 

1: N
ijjs x�� �  

 If s = 0 then 1ijz� � , : 1ijx K�   
 Else 1ijz� � , :ij ijx x s�  
 End If 
 � := 0, � := 0, H := 0, L := 0 
 For j:=1 to N  
 If 1ijz �  then 
 :j j ijh x�� � , :j ij jl x �� �  
 If hj < 0 then � := � + ( ij jx �� ) 
 Else H:=H + jh  
 End If 
 If lj  < 0 then �:= � +( j ijx� � ) 
 Else L:=L + jl  
 End If 
 End If 
 End For 
 If � = 0 and � = 0 then break 
 Else 
 For j:=1 to N  
 If 1ijz � then 
 If hj > 0 then :ij ij jx x h H� � � � 
 Else :ij jx ��  
 End If 
 If lj  > 0 then :ij ij jx x l L� � � � 
 Else :ij jx ��  
 End If 
 End If 
 End For 
 End If 
 End While 
End 

The procedure above consists of a repetition whose 
termination criterion is the proportions satisfying the 
constraints of the problem. At each iteration, the proportions 
are firstly adjusted to satisfy (5), and then each proportion 
associated with each invested asset is amended according to 
the upper and lower bounds. 

IV. EXPERIMENTS AND COMPARISONS 

A. Experiments Description 
Experiments take a collection of instances from the OR-

Library [18][19], including stocks from different capital 
market indices around the world, such as the Hang Seng 
(HS) index in Hong Kong, the Deutscher Aktien IndeX 
(DAX) in Germany, the Financial Times Stock Exchange 
(FTSE) index in UK, the Standard & Poor’s (S&P) index in 
USA, and the Nikkei index in Japan. The number of stocks, 
i.e., the value of N in each instance is 31, 85, 89, 98, and 
225 respectively. The detailed data about each stock can be 
obtained by [20]. 

In the experiments, PBIL-CCPS is compared with the 
GA in [2] and the PSO algorithm in [5] which are the two 
best exiting CI algorithms for the CCPS problem. In the 

parameter settings for PBIL-CCPS, the number of 
individuals in the population POP is 20, the values of the 
learning rate LR and the negative learning rate NEG_LR 
asscociated with the probability vector are 0.1 and 0.075, 
respectively. In the mutation on the probability vector, the 
mutation probability PM is 0.02, the amount for mutation to 
affect the probability vector MUT is 0.05. For each value of 
�, the learning  rate of the mean vector and the standard 
deviation vector PLR is linearly increased in accordance 
with the number of iterations increases and ranges in 
[0.05,0.4]. The number M of the best individuals from 
which the standard deviation vector learns is half of POP. 
And in the elitist strategy, the number R of the worst 
individuals to be replaced is a quarter of POP. The settings 
of the parameters for PBIL-CCPS are determined based on 
refering to [21][22] and testing. Whereas, the parameter 
values of GA and PSO are set as the same as those in [2] 
and [5] respectively. For each instance, the three algorithms 
all optimize the objective function (4) by taking 50 different 
values of � to obtain the approximative efficient frontier. 
Each value of � is set as �i= ( 1) 49i � , where i=1, 2, ..., 50. 
For each value of �, each algorithm terminates when the 
fitness evaluation number reaches 1000N. 

The section consists of two independent experiments. In 
the first experiment, K=N, �i =0, and �i =1 (i=1, 2, ..., N), i.e., 
the number of the invested assets is not constrained and the 
proportion of capitial associated with each asset is between 
0 and 1. As a result, the CCPS problem is same as the PS 
problem based on the MV model. Whereas in the second 
experiment, there exits a cardinality constraint that the 
number of invested assets must equal 10. Moreover, the 
proportion of capitial associated with each invested asset 
must lie in [0.01,1]. 

B. Experiment of PS without Cardinality Constraint 
To evaluate the results of the algorithms, we compare 

them with the standard efficient frontiers of the instances 
respectively. [20] provides the subset of each instance’s 
standard efficient frontier for the PS problem based on the 
MV model. The subset includes 2000 distinct portfolios 
with different combinations of risk and expected return. 
Based on the portfolios, the approximative efficient frontier 
can be traced out by the method of the linear interpolation as 
the standard efficient frontier [2]. 

In each instance, let the set V consist of 50 obtained 
portfolios for the 50 objective functions (4) differing from �. 
And evaluate V in the way detailedly described in Part C. 
Table I gives the comparison on the resulting V of each 
algorithm. For each instance, the three algorithms run 15 
trials respectively. The avgMeanPE and the avgMedianPE 
respectively denote the average values of the obtained 
MeanPEs and MedianPEs of V in 15 trials. In the five 
instances, the avgMeanPE and avgMedianPE of PBIL-
CCPS are both less than those of GA and PSO except the 
avgMedianPE in HS and the avgMeanPE in FTSE. The 
comparison results demonstrate that evaluating a same 
number of feasible portfolios, PBIL-CCPS can achieve 
better solutions.  
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TABLE I. RESULTS OF PS WITHOUT CARDINALITY CONSTRAINT 

Instance  GA PSO PBIL-CCPS

HS avgMeanPEa (%) 0.0191 0.1422 0.0003b

avgMedianPEa (%) 0.0166 1.07×10-5 1.24×10-5 

DAX avgMeanPE(%) 0.0350 1.1044 0.0023 
avgMedianPE(%) 0.0124 4.77×10-5 3.51×10-5

FTSE avgMeanPE(%) 0.0109 1.1430 0.0186 
avgMedianPE(%) 0.0020 0.0084 2.45×10-5

S&P avgMeanPE(%) 0.0430 2.0249 0.0137 
avgMedianPE(%) 0.0085 0.5133 2.85×10-5

Nikkei avgMeanPE(%) 0.3715 8.1781 0.0606 
avgMedianPE(%) 0.0068 4.7023 2.69×10-5

a. In each instance, the avgMeanPE and avgMedianPE are respectively the average values of the 
obtained MeanPEs and MedianPEs of the algorithm’s resulting V in 15 trials. 

b. The best result among the three algorithms for each instance is bold. 

C. Evaluating an Obtained Set of Portfolios 
Each obtained portfolio A can be represented by (r,e), 

where r and e denote the associated risk and expected return. 
The nearer A is to the standard efficient frontier, the better 
A is. The closeness between A and the standard efficient 
frontier is measured by calculating the percentage error of A 
to the standard efficient frontier like [2]. 

Let B represent the portfolio with the same expected 
return as A in the standard efficient frontier, and C represent 
the one with the same risk as A. Suppose (rk,ek) represents 
any portfolio in the given subset of standard efficient 
frontier with the risk rk and the expected return ek, (ri,ei) 
represents the portfolio satisfies ei=min{ek|ek � e} and 
( , )j jr e  represents the portfolio satisfies ej=max{ek|ek � e} in 
the subset. If (ri,ei) and ( , )j jr e both exit, the point B ( , )r e� �  

exits and e e� � . Assuming that s r� , i is r� , j js r� , 

and s r� �� , s� can be acquired by the method of linear 
interpolation that ( ) ( ) ( )j i j j i js s s s e e e e� �� � � � � � . Note 
that, i je e� may equal 0. In the case, it is 
obvious i js s s� � � and i jr r r� � � . Based on the obtained B, 

the percentage error in the risk’s square root of A to B, 
termed pAB, is defined to equal | ( ) | 100%s s s� �� � . pAB will 
not be calculated if B does not exit. 

Similarly, let (rm,em) represent the portfolio satisfies 
rm=min{rk|rk � r} and (rn,en) represent the portfolio satisfies 
rn=max{rk|rk � r}. If (rm,em) and (rn,en) both exit, the point 
C ( , )r e�� �� exits and r r�� � . Assuming that s r r�� ��� � , 

m ms r� , and n ns r� , it can be acquired by linear 
interpolation that ( ) ( ) ( )n m n n m ne e e e s s s s�� ��� � � � � � . In 
the case that m ns s� equals 0, m ne e e�� � � . Then the 
percentage error in the expected return of A to C, termed 
pAC, equals | ( ) | 100%e e e�� ��� � . pAC will not be calculated if 
C does not exit. 

Thus, if pAB and pAC are both calculated, the percentage 
error of A to the standard efficient frontier is the minimum 
of pAB and pAC. Otherelse, if there is only one calculated, the 
percentage error will be the calculated one. Or it will not be 
calculated when neither pAB nor pAC is calculated. 

To evaluate an obtained set of portfolios, the mean 
percentage error MeanPE and the median percentage error 
MedianPE are defined as the mean and median of the 
calculated percentage errors of the portfolios in the set to the 
standard efficient frontier respectively. The smaller the 
MeanPE and MedianPE are, the better the obtained set of 
portfolios is. 

D. Experiment of CCPS  
In the experiment, the standard efficient frontier of each 

instance is unknown. We still use the standard efficient 
frontiers adopted in the first experiment and evaluate the 
resulting V of each algorithm in the way described by Part C. 
Note that, for each portfolio in V, the obtained percentage 
error is just an upper bound of the exact percentage error 
which is unable to obtain [2]. Table II shows the comparison 
on the average MeanPE (avgMeanPE) and the average 
MedianPE (avgMedianPE) of the resulting V in 15 trials. 

TABLE II. RESULTS OF CCPS 

Instance GA PSO PBIL-CCPS 
Va Hb V H V H 

HS 
avgMeanPEc(%) 1.0993e 0.9518 1.1018 0.8643 1.1026 0.8472 

avgMedianPEc(%) 1.2181 1.1845 1.2181 1.1243 1.2190 1.1013 
Portfolio#d 1407 1395 1540 

DAX 
avgMeanPE(%) 3.0479 2.3456 2.4610 1.8493 2.5163 2.0781 

avgMedianPE(%) 2.5914 2.3098 2.5544 1.7658 2.5739 2.2783 
Portfolio# 1404 1449 1933 

FTSE 
avgMeanPE(%) 1.1887 0.8737 1.1908 0.8546 0.9960 0.7658 

avgMedianPE(%) 1.0841 0.6442 1.0841 0.5188 1.0841 0.4132 
Portfolio# 1516 1421 1638 

S&P 
avgMeanPE(%) 2.2599 1.4567 2.0530 1.7289 2.2320 1.6340 

avgMedianPE(%) 1.1972 1.0761 1.1485 1.0068 1.1536 0.8453 
Portfolio# 1761 1917 2177 

Nikkei 
avgMeanPE(%) 1.7314 0.8637 0.6101 0.4996 1.0017 0.6451 

avgMedianPE(%) 0.6187 0.6183 0.5907 0.5335 0.5854 0.5596 
Portfolio# 2086 1930 1468 

a. For each algorithm, V is the set of the portfolios obtained by solving the objective function (4) with 50 different values for �. 
b. H is the set of the portfolios searched during the course of solving the problem. 

c. For V and H, avgMeanPE and avgMedianPE are respectively the averages of obtained MeanPEs and MedianPEs in 15 trials. 
d. For each algorithm, Portfolio# denotes the number of portfolios in the resulting H whose MeanPE ranks medially in 15 trials. 

e. The best result among the three algorithms for each instance is bold. 
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As stated in Section II, the efficient frontier of CCPS 
may be discontinuous due to the presence of cardinality 
constraint and the bounds for the proportion of capital 
associated with each invested asset. Therefore it is not very 
appropriate to investigate the effectiveness of PBIL-CCPS 
solely using the resulting V. Similar to [2], we define a set 
H. For each value of �, suppose that B(�) is the current best 
portfolio found by the algorithm. During the course of 
evaluating 1000N feasible portfolios, a searched portfolio is 
added to H if it has better fitness than B(�). As a result, the 
set H will contain a large number of portfolios which are 
dominated by other portfolios in the set. Therefore, the 
dominated portfolios must be removed from H. Moreover, 
in the set H, there will be some equivalent portfolios which 
share the same risk and expected return. For these 
equivalent portfolios, only one is reserved in H. The 
resulting H is evaluated in the same way as evaluating V. 
For the three algorithms, the comparison on the resulting H 
is showed in Table II where PBIL-CCPS and PSO achieve 
better V and H than GA. And for each algorithm, the 
number Portfolio# of portfolios in the resulting H whose 
MeanPE ranks medially in 15 trials, is given in Table II. 
For each instance, the Portfolio# of PBIL-CCPS is larger 
than those of GA and PSO except Nikkei. 

To better investigate the portfolios in the resulting H, in 
each instance, we choose the resulting H whose MeanPE 
ranks medially in 15 trials for each algorithm, and pool the 
chosen resulting Hs of the three algorithms to be one set P 
and remove from P the portfolios which are dominated by 
other portfolios in P. Table III gives the number of 
portfolios contributed by each algorithm’s resulting H in P. 
The data show that PBIL-CCPS contributes most portfolios 
to P except the Nikkei instance. Fig. 3 describes the 
distribution of portfolios contributed by each algorithm’s 
resulting H in P. The three different kinds of columns 
correspond to different algorithms. For each instance, the 
vertical axis lists the intervals of the expected returns, and 
the horizontal axis of each column in every interval denotes 
that in P, how many portfolios contributed by the 
corresponding algorithm’s resulting H, have the expected 
returns lie in the interval. For the DAX, FTSE, and S&P 
instances, it is obvious that, in the two highest intervals of 
expected returns, the resulting H of PBIL-CCPS contributes 
most portfolios to P. The figure demonstrates that PBIL-
CCPS performs well in searching the nondominated 
portfolios with high expected returns. 

TABLE III. NUMBER OF PORTFOLIOS IN Pa 

Instance GA PSO PBIL-CCPS 
HS 1105 1145 1292b

DAX 991 1273 1627 
FTSE 1011 1091 1303 
S&P 1098 1585 1736 

Nikkei 1234 1461 1218 
a. The table lists the number of portfolios contributed by each algorithm’s resulting H in P. 

b. The best result among the three algorithms for each instance is bold. 

V. CONLUSION 
In this paper, a novel PS algorithm is proposed to solve 

the CCPS problem. The algorithm has the features for 
handling the problems involving both discrete and 
continuous space by hybridizing a discrete EDA and a 
continuous EDA. In addition, an adaptive parameter control 
strategy and an elitist strategy are adopted in the algorithm.  

The proposed algorithm is applied to both the PS 
without cardinality constraint and the CCPS. The results 
obtained have been compared to those obtained using a GA 
and a PSO algorithm. The comparisons conclude that the 
proposed algorithm is a competitive PS algorithm, and it 
has an advantage in searching the optimum portfolios with 
high expected returns. 
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Figure 3. The distribution of portfolios contributed by each algorithm’s resulting H in P for each instance. (a), (b), (c), (d), and (e) are for the HS, 
DAX, FTSE, S&P, and Nikkei instances, respectively. The three different kinds of columns correspond to different algorithms. The vertical axis 
lists the intervals of the expected returns and the horizontal axis of each column in an interval denotes that in P, how many portfolios contributed 
by the corresponding algorithm’s resulting H, have the expected returns lie in the interval. 
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