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ABSTRACT 
This paper addresses a complicated problem in project 
management termed the payment scheduling negotiation problem 
(PSNP). The problem is a practical extension of the classical 
multi-mode resource constrained project scheduling problem 
(MRCPSP) and it considers the financial aspects of both the 
project client and contractor in a contracting project. The client 
and contractor negotiate with each other to determine an optimal 
payment schedule and an activity schedule so as to maximize 
their net present values (NPVs). As the NPV of the client and the 
NPV of the contractor are conflicting objectives, this paper first 
formulates the PSNP as a bi-objective optimization problem. To 
solve this problem effectively, a non-dominated sorting genetic 
algorithm II (NSGA-II) approach is proposed. In the negotiation, 
the client and contractor may have two preferences: the ideal 
NPVs for the client and the contractor, and the optimization 
degree of the activity schedule. In order to tackle these 
preferences, this paper further introduces a new dominance 
relation named the extended r-dominance (er-dominance) relation. 
The er-dominance relation extends the r-dominance relation and 
is able to deal with multiple preferences described by aspiration 
functions. Experimental results show that by incorporating the 
NSGA-II with the er-dominance, the proposed approach is 
promising for the PSNP.  

Categories and Subject Descriptors  
I.2.8 [Artificial Intelligence]:Problem Solving, Control Methods 
and search-Heuristic methods; 

General Terms 
Algorithms, Experimentation. 

Keywords 
Multi-objective Optimization, Preference, NSGA-II, Payment 
Scheduling, Project Scheduling 

1. INTRODUCTION 
The resource constrained project scheduling problem (RCPSP) is 
important and challenging in project management [1]. It involves 
scheduling the activities of a project subject to precedence and 
resource constraints. The classical RCPSP has been proven to be 
NP-complete [2]. In a more complicated and practical form of 
RCPSP which termed the multi-mode RCPSP (MRCPSP), each 
activity can be implemented in different alternative processing 
modes [3]. Kolisch [4] proved that finding a feasible solution for 
the MRCPSP with more than one nonrenewable resource is 
already NP-complete. Due to the importance and difficulty of the 
problem, RCPSP has been widely studied and various methods 
including exact algorithms [5], heuristic approaches [6] and 
metaheuristic approaches [7][8] have been proposed. 

Traditional studies of RCPSP usually aim at minimizing the 
makespan of a project [1]. During the last decade, the research 
into considering financial aspects in project scheduling has 
attracted increasing attention [9]-[11]. The most commonly used 
financial criterion is the net present value (NPV) of discounted 
cash flows [12]. It is evaluated by summating the present values 
of all cash inflows (positive values) and cash outflows (negative 
values). With the NPV criterion, the objective function becomes 
nonlinear, making the scheduling problem even more complicated. 
Several works have been done on proposing metaheuristic 
approaches to the MRCPSP with the NPV criterion, e.g., the 
genetic algorithm (GA) approach by Ulusoy [9], the simulated 
annealing (SA) and tabu search (TS) approaches by Mika [10], 
and the ant colony optimization (ACO) approach by the authors 
[11]. 

In the above-mentioned studies, the optimization objective is to 
maximize the NPV of the project contractor. However, in a 
contracting project, cash flows are involved by two players: client 
and contractor. The client determines a schedule for payments, 
while the contractor devises a schedule for processing the 
activities of the project. Both the schedules significantly influence 
the cash inflows and outflows of the two players. To achieve 
optimal NPVs for both the client and contractor, the two players 
have to negotiate with each other to find satisfying schedules. 
This negotiation activity results in a practical and very 
complicated problem in project scheduling – the payment 
scheduling negotiation problem (PSNP). 

According to the latest survey [3], the PSNP has only been 
considered in three papers. Ulusoy [13] first introduced the 
payment scheduling negotiation problem and developed a double-
loop GA approach. The double-loop GA uses an outer-loop GA to 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
GECCO'12, July 7-11, 2012, Philadelphia, Pennsylvania, USA. 
Copyright 2012 ACM 978-1-4503-1177-9/12/07…$10.00. 

1063

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2330163.2330311&domain=pdf&date_stamp=2012-07-07


optimize the payment schedule of the project for the interest of 
the project client. To evaluate the fitness of each payment 
schedule generated by the outer-loop GA, an inner-GA is used to 
optimize the activity schedule and maximize the NPV of the 
project contractor. Although the working process of the double-
loop GA fits the negotiation process of the client and contractor in 
a contracting project, the algorithm is too time-consuming. 
Because each objective function evaluation in the outer-loop GA 
is an inner-loop GA, for medium to large scale projects, the 
double-loop GA has to run for weeks to return a solution. In 
[14][15], He et al. proposed simulated annealing based 
approaches to the multimode project payment scheduling problem. 
But they relaxed the project model by ignoring resource 
constraints, which makes the model less practical. Overall, 
designing practical optimization models and effective algorithms 
for PSNP is still an emerging topic and more works are needed to 
help the client and contractor plan payment and activity schedules 
more efficiently [3]. 

In this paper, we intend to propose a novel approach to the PSNP 
by viewing the problem as a bi-objective optimization problem. 
Multi-objective optimization is a rapid developing research topic 
in optimization and operations research [16]. Different from 
single-objective optimization, multi-objective optimization treats 
various optimization objectives of the problem simultaneously. 
Instead of obtaining a single solution, the goal of multi-objective 
optimization is to find a set of tradeoff solutions to facilitate 
decision making. In the PSNP, the project client has to determine 
the payment schedule and the project contactor has to determine 
the activity schedule. Both of these two players want to optimize 
their own cash flows, but the NPV of the client and the NPV of 
the contractor are usually conflicting. Therefore, it is natural to 
regard the maximization of the client’s NPV and that of the 
contractor’s NPV as two optimization objectives. The payment 
schedule (time and amount of payments) and the activity schedule 
(when and how to implement activities) are the decision variables 
to be optimized. In this way, the PSNP can be formulated as a bi-
objective optimization problem. The benefit of the bi-objective 
formulation is that it can consider the interests of the client and 
contractor in a more fair and comprehensive way. As it provides a 
set of tradeoff solutions, the client and contractor can have better 
information to negotiate and achieve maximum integrated utility. 

In order to solve the PSNP, this paper also develops an 
evolutionary multi-objective optimization (EMO) approach. 
Because evolutionary computation algorithms can provide a set of 
solutions in a single run, and they are insensitive to the 
mathematical properties of the objective functions of the problem, 
multi-objective evolutionary algorithms (MOEAs) have been 
found to be suitable and very promising for solving multi-
objective optimization problems (MOPs) [16][17]. Some well-
known MOEAs include the non-dominated sorting GA II (NSGA-
II) [16], the strength Pareto EA II (SPEA2) [18], the Pareto 
archived evolutionary strategy [19], and the MOEA based on 
decomposition (MOEA/D) [20]. In this paper, we develop an 
EMO approach to the PSNP based on NSGA-II. Because the 
algorithm can take both the optimization objectives into account 
in a single run, compared with the double-loop GA algorithm [13], 
the computational cost of the EMO approach can be significantly 
reduced. 

Traditional EMO approaches usually aim at approximating the 
whole Pareto front (PF) of a problem. However, in practice of the 
PSNP, not all the solutions in the PF are of sense for the client 

and contractor. For example, the payment schedule that arranges 
all the payments to the beginning of the project is good for the 
contractor, but is unacceptable for the client. Only a subset of 
solutions in the PF that are acceptable and preferred by both the 
client and the contractor belong to the region of interest (ROI) [17] 
of the problem. To focus on searching for the ROI instead of the 
whole PF, we further develop a preference-based EMO for the 
PSNP. Preference-based EMO is a new direction in EMO 
research and has attracted increasing emphasis in recent years 
[21]-[22]. Usually, preferences can be integrated in EMO 
algorithms in three ways: a priori, a posteriori, and interactively 
[17]. Preference information is usually given by weights of 
objectives, solution ranking, reference point, reference direction 
and preference thresholds [17]. In PSNP practice, the project 
client and contractor may specify their ideal NPVs. Such ideal 
NPVs can be viewed as a reference point of the problem. In 
addition, given a certain payment schedule, the contractor will 
always try to optimize the activity schedule to maximize his NPV. 
Therefore, the solutions with better optimized activity schedules 
are usually more stable and preferred in negotiation.  In order to 
address both preferences, this paper further introduces an 
extended r-dominance (er-dominance) relation based on the r-
dominance relation developed by Said et al. [17]. The er-
dominance relation is capable of tackling multiple preferences 
described by aspiration functions. By incorporating the NSGA-II 
approach with the er-dominance, the proposed approach is able to 
deal with the two kinds of preferences simultaneity. Experimental 
results on 20 instances demonstrate the effectiveness of the 
proposed approach. 

The rest of this paper is organized as follows. Section 2 
introduces the PSNP. Section 3 presents the bi-objective approach 
based on the NSGA-II. Section 4 further proposes the preference-
based EMO approach by introducing the extended r-dominance 
relation. Experimental results are given in Section 5. Conclusions 
are finally drawn in Section 6. 

2. PROBLEM DESCRIPTION 
In the traditional research on project scheduling with financial 
aspect, only the NPV of the contractor is considered. But in the 
PSNP, both the client and the contractor are involved. The client 
needs to determine a payment schedule, i.e., the timing and the 
amount of the payments that he is going to pay to contractor for 
project implementation. The contractor needs to determine an 
activity schedule for processing the activities of the project. Both 
the payment and activity schedules have a significant influence on 
the NPVs of the client and the contractor. Both the client and the 
contractor intend to maximize their own NPVs. But the increase 
of one’s NPV usually induces the decrease of the other one’s 
NPV. The detailed description for this problem is as follows. 

2.1 Project Network 
The project network defines the precedence relations among the 
activities of the project. A project network is typically a directed 
acyclic graph. There are two types of commonly-used project 
networks, i.e., the activity-on-node (AoN) network and the 
activity-on-arc (AoA) network. In this paper, the AoA network is 
adopted for project description [11]. 

An AoA network G=(E,A) is a graph where the node set E={e1, 
e2, …, em} corresponds to the set of events of the project and the 
arc set A={a1, a2, …, an} corresponds to the set of activities. Here 
m is the number of events and n is the number of tasks in the 
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project. Based on the AoA network, the precedence constraint of 
the project is defined as follows: a) Event ei takes place as soon as 
all direct predecessor activities of ei have finished. b) Only after 
the occurrence of ei can the direct successor activities of ei start. 

2.2 Resource Constraints 
Renewable resource constraint is considered in this paper. We 
assume that R types of resources are used in the project. For each 
time period during the processing course of the project, the 
number of the available resources of the k-th type (i=1,2,…,R) is 
limited by rk. 

2.3 Multi-Mode 
Each activity ai(i=1,2,…,n) can be processed by any mode out of 
a finite alternative mode set },...,,{ ||21 iMiiii mmmM  , where mij 

is the j-th processing mode for ai and | Mi| is the total number of 
available modes for ai [11].  

Different modes for ai represent the time/cost/resource tradeoffs 
for the processing of ai. That is, to implement ai, different modes 
may consume different amounts of time, cost and resources. For a 
mode mij, we denote its duration as mij.d, cost as mij.c, and 
consumption of the k-th resource as mij.rk. To schedule projects 
with multi-mode, we need to map each activity ai to an execution 
mode from Mi for activity processing. 

2.4 The Payment Model 
In the considered problem, the commonly-used payment at event 
occurrences (PEO) [9] model is adopted. In this payment model, 
payments are occurred at events. To build a payment schedule, 
the client has to specify a payment list 

),...,,( :listpayment 21 mpaypaypay                    (1) 

where payi means the percentage of payments that the client plans 
to pay to the contractor at event i. The payment list must satisfy 
the following two constraints: 





m

i

mpay
1

1                                     (2) 

prepayRatepay 1                                (3) 

Here, the equation (2) means that the summation of all the 
payment percentages must equal to 1, so that the total payment 
equals to the total value U of the project in the contract. The 
inequation (3) means that the payment at the beginning of the 
project (event e1) must be not smaller than a predefined 
prepayment rate prepayRate. 

2.5 NPV of the Client 
After the payment schedule and the project schedule have all been 
determined, the NPV of the client can be estimated. 

We denote the start time of each activity ai(i=1,2,…,n) as ai.st, 
and the time when the event ei(i=1,2,…,m) occurs is denoted as 
ei.t. The NPV of the client NPVclient is given by 





m

i

miiclient terevenueteUpayNPV
1

).exp().exp(   (4)             

Here the first item of the right side of the equation means the cash 
outflows of the client due to payments. The second item means 
the expected revenue of the client after the project is complete. It 
is important to note that all the cash inflows and outflows have to 
be discounted to their present values according to the discounted 
rate α. 

2.6 NPV of the Contractor 
For the contractor, his cash inflows are derived from the payments 
from the client. The cash outflows are mainly caused by the 
expenditure of activity processing. Thereby, suppose the start 
time of ai is ai.st and the time when ei occurs is ei.t, the NPV of 
the contractor NPVcont is given by 

 ).exp(.).exp(
11




n

i

iij

m

i

iicont stacmteUpayNPV    (5) 

where mij is the mode for processing ai in the project schedule, 
and mij.c is the cost of mij. 

2.7 Optimization Goal 
Based on the above discussions, the goal of the PSNP is to find a 
payment schedule in the form of (1) and an activity schedule that 
maps each activity ai to an available execution mode iij Mm   

and specifies the start time and end time of all the activities, so 
that the NPV of the client given in (4) and the NPV of the 
contractor given in (5) are maximized. 

3. THE BI-OBJECTIVE APPROACH WITH 
THE NSGA-II 
3.1 Background of Multi-objective 
Optimization 
To present the proposed approach, here we first briefly introduce 
the background and basic concepts in multi-objective 
optimization. Let us suppose 

 xfxfxfxF K    )),...,(),(()( maximize 21           (6) 

is a MOP with K objectives, where x is the decision variable to be 
optimized, and Ω is the definition domain of x. As the objectives 
usually contradict each other, it is impossible to find a solution 
that optimizes all the objectives simultaneously. Therefore, the 
goal of MOP is usually to find a set of tradeoff solutions that 
balance the objectives. A commonly used criterion for evaluating 
the quality of a solution is the Pareto dominance relation. 

Definition 1 (Pareto Dominance): Let vu,  are two feasible 
solutions to the problem, u is said to Pareto dominate v if and only 
if )()( vfuf ii   for all objectives (i=1,2,…,K), and )()( vfuf jj   

for at least one objective },...,2,1{ Kj . 

Based on this definition, if u dominates v, we usually consider u is 
better than v. If there is no other solution from Ω that can 
dominate a solution x*, we call x* a Pareto optimal solution. The 
set of all Pareto optimal solutions is call the Pareto set (PS). The 
objective function vectors of all the Pareto optimal solutions form 
the Pareto front (PF) [20]. 

Taking the bi-objective formulation of the PSNP for example, we 
show the objective function vectors of some feasible solutions in 
Fig. 1. In the figure, the point A Pareto dominates B, as A yields 
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better NPVs for both the client and the contractor. The points A 
and C are Pareto equivalent, as A achieves better NPV for the 
contractor, and C achieves better NPV for the client. The points 
marked by solid black circles in the figure form the PF of the 
instance. 
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Figure1. An illustration of multi-objective optimization 

3.2 Background of NSGA-II 
To find a set of solutions for a MOP, we usually need to address 
two issues: 1) how to improve the quality of the solutions so that 
they converge to the Pareto optimal set; and 2) how to maintain 
the diversity of the solutions so that they cover the whole PF. 
Various MOEAs have been developed for solving MOPs. One 
famous MOEA is the non-dominated sorting GA II (NSGA-II) 
proposed by Deb et al. [16]. 

To overcome the above two issues, NSGA-II introduces two 
methods, i.e., non-dominated sorting method and crowding-
distance assignment. The non-dominated sorting method divides 
solutions into different non-domination levels based on the Pareto 
dominance relation among the solutions. For example, in Fig. 1, 
we suppose that the points marked by triangles and squares are 
the solutions found by the algorithm. In this case, the solutions 
marked by triangles belong to the first non-domination level, as 
no other solution found by the algorithm can dominate any of 
these solutions. The solutions marked by squares belong to the 
second non-domination level. Obviously, the solutions belonging 
to the first level are considered to be more promising than the 
solutions in higher levels. For the solutions in the same non-
domination level, the crowding-distance assignment method is 
applied to estimate the density of solutions surrounding those 
solutions and the solutions with lower density are preferred. For 
example, in Fig. 1, the solution E is considered to be better than D 
as the density of the solutions surrounding E is much lower. 

For detailed information of the non-dominated sorting and the 
crowding-distance assignment methods, please refer to [16]. 
Based on these methods, the NSGA-II has been found to be 
promising for solving MOPs. In this paper, we propose a NSGA-
II based approach for the considered PSNP. 

3.3 Encoding Scheme 
In the considered PSNP, both the payment schedule and the 
project schedule have to be optimized. To represent all the 
decision variables to be optimized, a three-section encoding 
scheme is designed. A solution to the considered problem is 
encoded by 

),...,,(     :list mode

),...,,(   :listactivity 

),...,,( :listpayment 

21

21

2021

n

n

modmodmod

actactact

shareshareshare

                  (7) 

Here, (share1, share2, …, share20) is an integer encoding of the 
payment list given in (1). In this representation scheme, the total 
payment (except for the minimal prepayments) is divided into 20 
shares. (We can also divide it into 30 or more shares. But 20 
shares are usually enough for many projects [13].) Each share 
means 5% of the total payment. If we assign sharei to the event ej 

(denoted as sharei=ej), it means that this 5% of the toal payment 
will occur at ej. In this way, the presentation (share1, share2, …, 
share20) can be transformed to the standard form of the payment 
list (i.e., the form of (1)) as follows: 




























otherwise              ,)1(%5)(

1 if  ,)1(%5)(

20

1

20

1

prepayRatei

jprepayRateprepayRatei

pay

i

j

i

j

j
 



 


     otherwise  ,0

 if  ,1
)( where ji

j
eshare

i                    (8) 

In (7), the activity list specifies the priority of activities to 
consume resources. The mode list specifies the processing mode 
of each activity. Based on the activity list and the mode list, the 
serial schedule generation scheme (SSGS) [8][11] can be applied 
to obtain the actual schedule (i.e., the start time and end time of 
each activity and the occurrence time of each event). (For more 
information about the SSGS, please refer to the references 
[8][11].) 

3.4 Selection 
According to Deb [16], the binary tournament selection operator 
is applied in the NSGA-II algorithm. 

3.5 Crossover 
In the proposed algorithm, individuals are selected to perform 
crossover with a probability px. The crossover operator can be 
performed on either the payment list, the activity list or the mode 
list randomly. 

For the crossover on payment list and mode list, the classical one-
point crossover operator is applied. 

For the crossover on activity list, in order to guarantee that the 
newly generated activity lists can always obey the precedence 
constraints defined by the AoA network, a one-point order-based 
crossover operator is applied. The basic idea of this crossover 
operator is that a) for the positions before the randomly selected 
crossover point, the activities remain unchanged; and b) for the 
positions after the crossover point, the activities are rearranged 
based on their order of appearances in the other parent. An 
example of this crossover operator is illustrated in Figure. 2. 

1 3 6 2 8 4 7 10 5 9 11

1 2 3 5 4 6 8 9 7 10 11

p1

p2

1 3 6 2 8 5 4 9 7 10 11

1 2 3 5 4 6 8 7 10 9 11

p1

p2

crossover

 

Figure 2. The crossover operator for activity list 
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Figure 3. Flowchart of the NSGA-II algorithm 

3.6 Mutation 
In the algorithm, the genes are selected to perform mutation with 
a probability of pm. 

 If a gene sharei belonging to the payment list is selected to 
mutate, sharei is randomly assigned to an event eran, 
where ran is a random number uniformly distributed in 
the set },...,2,1{ m . 

 If a gene acti belonging to the activity list is selected to 
mutate, we swap the values of acti and acti+1 if the 
precedence constraints are not violated. Otherwise, the 
chromosome remains unchanged. 

 If a gene modi belonging to the mode list is selected to 
mutate, the value of modi is reset to a random mode 
mi,ran, where ran is a random number uniformly 
distributed in the set |}|,...,2,1{ iM . 

3.7 Overall Flowchart of the NSGA-II 
Based on the above encoding schemes and operators, the overall 
flowchart of the NSGA-II algorithm for the considered problem is 
given in Fig. 3. At the beginning, a population of popsize 
solutions are randomly generated as P0. Then these solutions are 
evaluated and the non-dominated sorting and crowding-distance 
assignment method are applied on these solutions. The selection, 
crossover and mutation operators of GA are performed on these 
solutions to form a new population Q0. Based on the results of 
non-dominated sorting and crowding-distance sorting, a number 
of popsize solutions are selected from the set 00 QP   to form a 

new generation of population P1. These procedures run iteratively 
until the number of generations has reached a predefined 
maximum generation number GEN. 

4. THE PREFERENCE-BASED 
APPROACH  
4.1 Preferences in the PSNP 
In the practice of multi-objective decision making, the decision 
makers usually do not concern the whole Pareto set of the 
problem, but only a preferred subset of the Pareto set. To 
facilitate decision making, the research into preference-based 
multi-objective optimization has attracted increasing attention in 
recent years [21]-[22]. Instead of wasting time on searching for 
the unpreferred Pareto optimal solutions, preference-based 
approaches only focus on searching for the ROI. In this way, they 
can usually provide better and more preferred solutions for 
decision making. 

In the PSNP considered in this paper, there are two kinds of 
preference information: 

4.1.1 Ideal NPVs 
In a contracting project, the project client and contractor usually 
have their expected ideal NPVs. We denote the ideal NPVs of the 
client and the contractor as idealclient and idealcont, respectively. 
These two ideal NPVs (idealclient, idealcont) can be viewed as a 
reference point in multi-objective decision making. 

An example of the reference point and the related ROI of the PF 
is shown in Fig. 1. In the figure, the point marked by a star is the 
reference point. As the point is given by the ideal NPVs of the 
client and contractor, it is usually impossible to achieve the ideal 
values for both the players at the same time. Therefore, the 
reference point is usually out of the feasible area in the objective 
function vector space bounded by the PF. However, this reference 
point is of significance as it specifies a ROI for the problem. The 
solutions that are close to the reference point (idealclient, idealcont) 
are considered to be more preferred in decision making. 

4.1.2 Optimization Degree of the Activity Schedule 
In addition to the ideal NPVs, the optimization degree of the 
activity schedule under a certain payment schedule is also 
preference information for decision making. 

In the PSNP, the client determines the payment schedule given in 
the form of (1), and the contractor determines the activity 
schedule given by the activity list and the mode list (7). As both 
the client and the contractor want to optimize their own NPVs and 
achieve maximal integrated utility, it is reasonable that they 
cooperate together to negotiate and make the final decision of 
payment and activity schedules. However, in practice, the 
payment schedule is usually determined by the client first, and 
then the contractor determines the activity schedule. If the activity 
schedule is not well optimized, the resulting solution is not likely 
to be preferred, because a rational contractor can change the plan 
and use a better optimized activity schedule to obtain higher 
NPVs for his own. Therefore, in negotiation, only the solutions 
that optimize the activity schedule to an acceptable degree are 
preferred. Given a certain payment schedule, the problem of 
optimizing the activity schedule to maximize the NPV of the 
contractor is just the MRCPSP with discounted cash flows 
considered in traditional research [9]-[11]. To address this 
preference information, we should guarantee that the activity 
schedule in the solution is well optimized in terms of the 
MRCPSP with discounted cash flows. 
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As mentioned in Section I, the MRCPSP is strongly NP-hard. 
Thus it is not easy to judge how good the activity schedule is 
optimized. In order to model this preference information for 
decision making, we develop a criterion for evaluating the 
optimization degree of a solution based on the difference between 
the upper bound value of the contractor’ NPV and the actual NPV 
achieved by the activity schedule. Given a solution x with a 
payment schedule PS (in the form of the payment list in (7)) and 
an activity schedule AS (in the form of the activity and mode lists 
in (7)), its optimization degree of the activity schedule is 
evaluated as follows. 

Step 1): Evaluating the upper bound PSupper
contNPV /  of the 

contractor’s NPV when the payment schedule PS is fixed. 

The upper bound is obtained by 

i) ignoring all the resource constraints in the problem; 

ii) supposing all events happen at their earliest possible 
time, so that the payments occur as early as possible; 

iii) supposing all activates begin at their latest start time 
without delaying the project, so that the expenditures occur as late 
as possible; and 

iv) supposing every activity is executed by the mode 
with the lowest cost 

Step 2): Calculating the difference between the upper bound 
PSupper

contNPV /  and the actual NPV of the contractor contNPV  

cont
PSupper

cont NPVNPVxOD  /)(                   (9) 

If the optimization degree value )(xOD  is small, it means that the 
activity schedule in the solution x is well optimized. Otherwise, 
the activity schedule in x is not optimized well and thus the 
solution x is not preferred in the decision making. 

4.2 The Extended r-Dominance 
To consider preference information in multi-objective 
optimization, various preference-based MOEAs have been 
proposed recently [17][21][22]. One promising approach is to 
modify the Pareto dominance relation [17][21]. In a recent work 
of Said et al. [17], in order to incorporate the preference 
information given by a reference point, a novel dominance 
relation named the reference solution-based dominance (r-
dominance) is developed. 

Definition 2 (r-Dominance): Let vu,  are two feasible 
solutions, and ref is a reference point, u is said to r-dominate v if 
and only if one of the following statements holds true: 

i) u Pareto dominates v; 

ii) u and v are Pareto equivalent and D(u, v, ref)<-δ, 
where ]1,0[ is a parameter called the non-r-dominance 

threshold, and the function D(u, v, ref) is defined as 

minmax

),(),(
),,(

DistDist

refvDistrefuDist
refvuD




                 (10) 

),(maxmax refxDistDist POPx                         (11) 

),(minmin refxDistDist POPx                         (12) 

where POP is the population of solutions, Dist(x, ref) is the 
weighted Euclidean distance (WED) between the solution x and 
the reference point ref [22], and Distmax and Distmin are the 
maximum and the minimum WED between the individuals in the 
population POP and the reference point ref, respectively. Dist(x, 
ref) is given by 
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minmax
1  ,

)()(
),(               (13) 

where max
if and min

if are the upper bound and the lower bound 

of the i-th objective function, respectively, and i  is the weight 

for the i-th objective. 

In [17], Said et al. also proved the compatibility and completeness 
of the r-dominance with respect to the Pareto dominance. In 
addition, by incorporating the r-dominance relation with the 
NSGA-II, they showed that the extend of the obtained ROIs can 
be easily controlled by tuning the parameter δ, and the resulted 
algorithm managed to achieve very promising results compared 
with other preference-based MOEAs. However, the definition of 
the r-dominance relation only considers the preference 
information given by the reference point. In order to consider both 
the two kinds of preference information for the PSNP, in this 
paper, we further extend the r-dominance relation to the extended 
r-dominance relation (er-dominance). 

Definition 3 (er-Dominance): Let vu,  are two feasible 
solutions to the problem, AF={g1, g2, …, gQ} is a set of aspiration 

functions, and each of the aspiration function gj: 
 R  is a 

mapping from the solution space to the real space, specifying one 
type of preference information for the decision maker (if 
gj(u)<gj(v), we consider u is preferred in terms of the preference 
information gj), u is said to er-dominate v if and only if one of the 
following two statements holds true: 

i) u Pareto dominates v; 

ii) u and v are Pareto equivalent, ED(u, v, gj)≤δ holds 
true for all AFg j  , and ED(u, v, gk)<-δ holds true for at least 

one aspiration function AFgk  , where ]1,0[ is a parameter 

and ED(u, v, gj) is defined as 

minmax

)()(
),,(

jj

jj
j

gg

vgug
gvuED




                       (14) 

)(maxmax xgg jPOPxj                           (15) 

)(minmin xgg jPOPxj                            (16) 

Based on this definition, we set 

),()(1 refxDistxg                               (17) 

)()(2 xODxg                                    (18) 

where Dist() is defined in (13), and OD() is defined in (9). If we 
set AF={g1}, the preference information given by the reference 
point in considered. The resulting er-dominance relation is just 
equivalent to the r-dominance relation in Definition 2.  If we set 
AF={g1, g2}, then both the two types of preference information 
are considered. By incorporating this er-dominance relation with 
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the NSGA-II approach, we can address both the preferences for 
the PSNP. 

5. EXPERIMENTAL RESULTS 
In order to validate the proposed approach, we study the 
performance of the following five approaches in the experiment: 1) 
the double-loop GA proposed by Ulusoy [13] (denoted as D-GA 
for short); 2) the NSGA-II using the Pareto dominance relation 
(denoted as PD); 3) the NSGA-II using the r-dominance relation 
(denoted as r-D); 4) the NSGA-II using the er-dominance relation 
with AF={g2} (denoted as er-D(OD)); and 5) the NSGA-II using 
the er-dominance relation with AF={g1, g2} (denoted as er-
D(both)). These five approaches are compared on 20 randomly-
generated project instances. We name these random instances as 
“ins1” to “ins20”. The sizes of these instances are shown in Table 
1. The parameters in the instances, including the costs, durations 
and resources of processing modes are all randomly generated. In 
the experiment, the parameters of the double-loop GA are set 
according to [13]. The parameters of the NSGA-II and its 
extensions with the r-dominance and the er-dominance are set 
empirically as listed in Table 1. In addition, we set the non-r-
dominance threshold 5.0  in the comparison. The weights for 
evaluating the weighted Euclidean distance are set to 

5.021   , as both the objective functions (i.e., the client’s 

NPV and the contractor’s NPV) are in the same magnitude. For 
every NSGA-II based approach, we perform 20 independent runs 
on each instance. Because the double-loop GA involves thousands 
of inner-loop GAs per run, it is very time-consuming and takes 
several days to perform a single run. We run it for five 
independent times on each instance. 

The experimental results are showed in Table 2. In the table, “avg 
client” is the mean NPV of the client averaged over all the non-
Pareto-dominated solutions found by an algorithm. “avg cont” is 
that of the contractor. To facilitate comparison, we report the 
ratios between the averaged NPV of the client (contractor) and the 
reference value idealclient (idealcont) in the table. We also plot the 
objective function vectors found by these algorithms on the 
instances ins1 and ins11 in Fig. 4. From Table 2 and Fig. 4, it can 
be seen that the “PD” scheme fails to get satisfying NPVs for the 
contractor. Because the NPV optimization problem for the 
contractor in the traditional MRCPSP model is strongly NP-hard 
[4], the optimization for the contractor’s NPV is a relatively more 
difficult objective in the PSNP. Without preference information, it 
is not easy for the NSGA-II approach with the conventional 
Pareto dominance relation to drill into the objective of the 
contractor’s NPV to yield satisfying solutions. On the other hand, 
because the strategy in the double-loop GA is to first optimize the 
contractor’s NPV and then optimize the client’s NPV, it cannot 
guarantee to yield Pareto optimal solutions in all cases. Therefore, 
compared to the double-loop GA, the proposed er-D(both) 
scheme is able to get higher integrated utility for the client and the 
contractor. For example, for the instances ins11-20, the “avg 
client” and the “avg cont” are 98% and 81%, which are all higher 
than the “90%” and “72%” yielded by the double-loop GA. 

 

Table 1. Configurations for the experiment 

instance n m popsize px pm GEN 
ins1-ins10 40 22 100 0.9 1/40 2500 
ins11-ins20 48 32 100 0.9 1/48 2500 

 

Table 2. Resullts on the 20 instances 

instance  D-GA PD r-D 
er-
D(OD) 

er-
D(both) 

avg client 84% 94% 88% 71% 84% 

avg cont 86% 64% 83% 103% 94% 

avg Dist 1.00 2.41 1.05 1.82 1.07 

averaged on 
the ten 
instances 
ins1-10 

avg OD 1.00 1.60 1.37 0.99 1.04 

avg client 90% 110% 107% 83% 98% 

avg cont 72% 48% 62% 95% 81% 

avg Dist 1.00 1.92 1.00 1.25 1.05 

averaged on 
the ten 
instances 
ins11-20 

avg OD 1.00 1.64 1.29 0.96 1.01 
 

We also compare these approaches from the view point of the 
satisfaction of preferences. In Table 2, “avg Dist” means the 
averaged distance between the solutions found by the algorithm 
and the reference point, and “avg OD” means the averaged 
optimization degree of the activity schedule. These two criteria 
correspond to the two preferences considered for the PSNP. To 
facilitate comparison, we use the averaged distance and the 
averaged optimization degree found by the double-loop GA as the 
norms. The ratios between the averaged distance (averaged 
optimization degree) found by the algorithm in comparison and 
the one found by the double-loop GA are reported in the Table. 
From these results, we can see that the averaged distances found 
by the schemes “PD” and “er-D(OD)” are significantly longer 
than other approaches, because these two schemes do not consider 
the reference point in the dominance relation. Similarly, the 
averaged optimization degrees found by the schemes “PD” and 
“r-D” are significantly larger than other approaches, because these 
two schemes do not consider the optimization degree of the 
activity schedule in the dominance relation. By using the 
proposed er-dominance relation with AF={g1, g2} to consider both 
preferences, the scheme “er-D(both)” manages to find acceptable 
averaged distances and averaged optimization degrees. In other 
words, these results show that the proposed er-dominance relation 
is effective in dealing with both the preferences. 

Overall, compared to the double-loop GA, the proposed approach 
manages to find solutions with higher integrated utility. 
Compared to the NSGA-II with the Pareto dominance relation and 
the r-dominance relation, the proposed approach with the er-
dominance relation can better deal with both of the preferences in 
the problem. In addition, the double-loop GA has to run for 
several days to get a single solution. But the proposed approach 
just needs to run for an hour to get a set of promising solutions for 
negotiation. These results reveal that the proposed approach is 
promising for the PSNP. 
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Figure 4. Comparison between the objective vectors obtained 
by different approaches 
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6. CONCLUSION 
In this paper, the payment scheduling negotiation problem in 
project scheduling has been addressed. We formulate the problem 
as a bi-objective optimization problem. An extended r-dominance 
relation is proposed to address the two kinds of preferences in the 
problem. By incorporating the er-dominance relation with the 
NSGA-II, a preference-based EMO approach is developed. 
Experimental results demonstrate that the proposed approach is 
effective. 

In future study, we plan to develop other metaheuristic 
approaches like ant colony optimization (ACO) [24] and particle 
swarm optimization (PSO) [25][26] for the problem. Adaptively 
tuning the parameters of the algorithm is also a desirable research 
topic [27]-[29]. 
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