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ABSTRACT 
Prospective infectious disease outbreak detection has long been a 
major concern in public health. Using time series analysis method 
for the outbreak detection, a nonlinear Markov switching model is 
better than linear models in modelling time series, due to its 
ability to describe the switching process of time series variables in 
different states. However the estimation difficulty of Markov 
switching model hinders the model’s extensive application in 
practice. The paper proposes using Differential Evolution (termed 
DE) algorithm to obtain maximum likelihood estimator of Markov 
switching model in consideration of DE’s good global 
optimization ability. In addition, to effectively reduce negative 
impact of label switching problem on disease outbreak detection 
validity of the estimated model by maximum likelihood estimation 
(termed MLE) method, the paper introduces identifiability 
constraint on estimation parameters constructed with the heuristic 
information about difference between durations of different states 
into MLE using DE. Encouraging experimental study has 
demonstrated the effectiveness and efficiency of DE in 
maximizing likelihood function of the studied Markov switching 
model as well as the effectiveness of the proposed identifiability 
constraint on improving disease outbreak detection validity of the 
estimated Markov switching model by MLE. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search --- Heuristic methods; G.3 [Probability and Statistics]: 
Time series analysis 

General Terms: Algorithms 

Keywords: Differential Evolution, identifiability constraint, 
label switching problem, Markov switching model, maximum 
likelihood estimation, prospective infectious disease outbreak 
detection, time series analysis 

1. INTRODUCTION 
Prospective infectious disease outbreak detection has long been a 
major concern in public health and important for infectious 
disease controlling. It aims at determining whether disease 
outbreaks currently on the premise that only time series of 
observations made prior to the time of detection are available to 
the detection algorithm [1]. Time series analysis is an important 
quantitative method in the disease outbreak detection. When using 
the method, the time series modeling is a key point. In the current 
available time series models, linear models like Autoregressive 
model, Moving Average model, Autoregressive Moving Average 
model and Autoregressive Integrated Moving Average model are 
easy to use but not as good as nonlinear models for practical 
complex time series [2]-[4]. Markov switching model is an 
excellent nonlinear time series model to describe the switching 
process of time series variables in different states which is a 
complex dynamical evolution process [5]. It is a valuable model 
for prospective infectious disease outbreak detection. However, 
the difficulty in model estimation hinders the model’s extensive 
application in practice. In the current available model estimation 
methods, the Least Square (termed LS) method is suitable for 
linear model estimation, but not for estimating Markov switching 
model which includes state variables and is highly nonlinear [5]. 
The Bayesian Parameters Estimation (termed BPE) method 
considers estimation parameters as stochastic variables which 
have certain prior probability distributions. It estimates the values 
of parameters using observed samples through transforming the 
prior probability density into posterior probability density based 
on Bayesian Theorem [6]. However the BPE method assumes that 
the prior probability distributions of the estimation parameters are 
known and requires that the posterior distributions of the 
estimation parameters are valid or able to be imitated using 
standard probability distributions. Therefore it has seldom been 
used in practice. The Maximum Likelihood Estimation (termed 
MLE) method considers estimation parameters as determinate 
variables with unknown values. The method obtains the estimator 
that maximizes probability of generating the observed samples, as 
the best estimator of parameters. MLE has many outstanding 
characteristics. The maximum likelihood estimator is an 
asymptotically unbiased estimator. And the method is easier than 
other methods like BPE to understand and implement so that it is 
extensively applied in practice [7]. But there are two big 
challenges in MLE of Markov switching model, i.e. on the one 
hand, the likelihood function is not easy to solve for obtaining the 
maximum likelihood estimator; on the other hand, when using the 
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estimated model by MLE to detect disease outbreak, the label 
switching problem [8] has a negative impact on detection validity.  

Focusing on the above two challenges of MLE, this paper presents 
a study on using the Differential Evolution (termed DE) algorithm 
[9] to obtain the maximum likelihood estimator of a Markov 
switching model. DE is a simple but efficient evolutionary 
algorithm for global optimization, and has been successfully 
applied in many practical optimization problems derived from 
diverse domain like other computational intelligence algorithms 
[10]-[13]. DE is suitable for MLE of a Markov switching model 
due to its good global search ability and little restriction on the 
optimization function. Moreover, this paper introduces a new 
identifiability constraint on estimation parameters into MLE using 
DE, to reduce the negative impact of the label switching problem. 
The method of constructing identifiability constraint with the time 
series heuristic information about the difference between durations 
of different states in disease outbreak detection is proposed. In 
experimental study, encouraging results have demonstrated that 
introduction of the proposed identifiability constraint improves 
outbreak detection validity of the estimated model. 

The remainder of the paper is organized as follows. Section 2 
describes prospective infectious disease outbreak detection using 
Markov switching model and MLE of the model. Section 3 
reviews DE algorithm and studies on using DE to obtain 
maximum likelihood estimator of the model. Section 4 describes 
the proposed method for reducing the negative impact of the label 
switching problem on disease outbreak detection. In Section 5 the 
experimental study is introduced and the results are given and 
analyzed. Finally, Section 6 draws the conclusions. 

2. DISEASE OUTBREAK DETECTION 
USING MARKOV SWITCHING MODEL 
Given observable time series 0 1 1{ , ,..., , }T T TY y y y y  where ty  is 

the value of time series variable y  (e.g. the count of infected 

residents) in time t ( 0,1,..., 1,t T T  ), prospective infectious 
disease outbreak detection is to determine the disease state of 
current time T, i.e. outbreak or nonoutbreak. The detection method 
follows a two-step procedure. In the first step, a time series model 
is estimated to model TY . In the second step, the estimated model 

is used to determine the current state. 

2.1 Adopted Markov Switching Model 
The Markov switching model used to model TY  [14] is as follows: 

 1=
t tt s s t ty y     (1) 

 {0,1}ts   (2) 

 1 2 1 ,( | , ,...) ( | )t t t t t i jp s j s i s k p s j s i p          (3) 

 2~ (0, )t N   (4) 

where (1) defines how the unobservable state variable ts  (0 for 

nonoutbreak and 1 for outbreak) controls the dynamics of ty . 
ts  

and 
ts  are values of parameters   and   in the corresponding 

state ts . The model presumes that in each state, the dynamics of 

y  can be described as a stationary one-order Autoregressive 

model where 1 1
ts    [15]. The state variable evolves 

following a first-order Markov process as indicated in (3) that the 
impact of previous states on ts  is only through 1ts   with a 

transition probability ,i jp  which is the conditional probability of 

ts  equaling j ( 0,1j  ) when 1ts   equals i ( 0,1i  ). The 

fluctuation t  in time t has a normal distribution with mean 0 and 

variance 2  where 0  . The introduction of state variable is 
helpful for the model to control the underlying time series 
dynamics and model endogenous structural changes. Therefore the 
model is suitable for disease outbreak detection based on the time 
series containing different states [14]. 

2.2 MLE of Adopted Model 
To estimate the model with MLE, the likelihood function should 
be established first. Defining vector of estimation parameters as θ , 
the form ( | ; )f   θ  as the conditional probability density of   

given   regarding to θ , ( | ; )P   θ  as the probability of   given 

  regarding to θ , where   and   are both vectors of time series 
variable y  and state variable s  separated by comma, and tY  as 

the vector consisting of 0y , 1y , ... , 1ty  , ty , the conditional 

logarithmic likelihood (termed likelihood for short) function 
( | )TL Yθ  of the model regarding to θ  is established as (5), 

 11
( | ) lg ( | ; )

T

T t tt
L Y f y Y 

 θ θ  (5) 

For the model, (6) and (7) are valid, 
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Because t  has a normal distribution 2(0, )N  , (8) is established, 
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And (9) to (10) can be established based on Bayesian Theorem, 
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For the model, the estimation parameters are only 0 , 1 , 0 , 

1 , 0,0p , 1,1p  and  . 0,1p  and 1,0p  can be obtained by 

0 1 0 01p p ， ，  and 0 11p p 1， 1，. To obtain ( | )TL Yθ  using (6) to 

(10), the values of 0 0( 0 | ; )P s Y θ  and 0 0( 1 | ; )P s Y θ  are needed 

to be initialized. We adopt the method given in [15] to initialize 
the two values. The method infers the probabilities of the state 
variable having different values unconditionally according to the 
characteristic of ergodicity in the Markov chain. Defining that 

 2 1 0 0 0 0= ( 0 | ; ) ( 1| ; )θ θP s Y P s Y
   , state transition 
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probability matrix 0,0 1,0
2 2

0,1 1,1

=
p p

T
p p

 
 
 

, 2 2E   is a 2 2  identity 

matrix, 3 1F   is the third column of the 3 3  identity matrix, 1 2I   

is a 1 2  matrix with each element is 1, 0 0( 0 | ; )P s Y θ  and 

0 0( 1| ; )P s Y θ  can be obtained by (11), 

 1,1 0,01

1,1 0,0 1,1 0,0

1 1
( ) =

2 2

p p
A A A F

p p p p


  
    

     
 (11) 

where 3 2

E T
A

I

 
  
 

. More details can be referred in [15]. 

MLE takes the estimator θ̂  with the maximum of ( | )TL Yθ  as the 

best estimator of θ . To search for θ̂ , the common differentiation 
method for MLE and the iterative search algorithms based on 
derivative like Gauss-Newton method [16] and Newton-Raphson 
method [17] are not suitable and convenient. Hamilton proposed a 
particular form of the Expectation-maximization (termed EM) 
algorithm [15] which has a fast convergence speed. However it is 
possible that the algorithm converges to a local maximum instead. 

This paper proposes using DE algorithm to search for θ̂ . As an 
evolutionary algorithm, DE has good global optimization ability 
and no restriction on differentiability, continuity and unimodality 
of the objective function. It is suitable to maximizing ( | )TL Yθ . 

2.3 Disease Outbreak Detection Using 
Estimated Model 
After obtaining the maximum likelihood estimator of θ , i.e. θ̂ , 

Ts  can be determined by calculating the value of ˆ( 1| ; )T TP s Y θ  

(aliased alarm score below). If the obtained alarm score is larger 
than a prescribed threshold (termed alarm threshold)  , then Ts  
equals 1, i.e. T is a disease outbreak time, and a alarm will be 
triggered to alert the monitors. Otherwise Ts  equals 0, i.e. T is a 

nonoutbreak time, and no alarm will be triggered. 

3. DE ALGORITHM FOR MLE 
3.1 Review of DE Algorithm 
DE searches for a global optimum in a feasible search space 
maintaining a population, i.e. a set of parameter vector 

,1 ,2 ,{ [ , ,..., ], 1,2,..., }g g g g
i i i i Dx x x i NP x , where NP is the size of the 

population, g denotes the index of the current generation, and D is 
the number of parameters in the vector also the dimension of the 
search space. DE initializes the population in the beginning of 
evolution when g=0. The jth component of the ith parameter 
vector 0

,i jx  is set by (12), 

 0
, rand(0,1) ( )i j j j jx xmin xmax xmin     (12) 

where jxmax  and jxmin  are prescribed upper and lower bounds 

of the jth component of parameter vector respectively, rand(0,1)  
is a random number generation function that returns a uniform 
random real number in the range [0,1] . After initialization, DE 
involves the general evolution operators in order, i.e. mutation, 

crossover and selection, to iteratively evolve the population for 
optimizing the objective until meeting the end condition. 

1) Mutation: The operator is used on each parameter vector g
ix  

(aliased target vector below) to generate a corresponding mutant 
vector g

iv . Although various sophisticated mutation strategies 

have been proposed, there are five most frequently used basic 
mutation strategies, i.e. DE/rand/1, DE/rand/2, DE/best/1, 
DE/best/2 and DE/target-to-best/1 [10]. Due to the page limit of 
this paper, (13) describes DE/rand/2 only. More details about 
other mutation strategies can be referred in [10], 

 
1 2 3 4 5

( ) ( )g g g g g g
i r r r r rF F      v x x x x x  (13) 

where indices 1r , 2r , 3r , 4r  and 5r  are distinct random integers 

uniformly sampled in the rage [1, ]NP  and all different from i. 
Scale factor F is a positive control parameter to amplify the 
difference vectors. 

2) Crossover: The operator is used to determine which 
components of g

iv  and g
ix  form the trial vector g

iu  by (14), 

 ,
,

,

,  if rand(0,1)  or 

,  otherwise                             

g
i j randg

i j g
i j

v CR j j
u

x

   


 (14) 

where ,
g
i ju , ,

g
i jv  and ,

g
i jx  denote the jth component of the ith trial 

vector, mutant vector and target vector respectively in the current 
generation. Function rand(0,1)  returns a random real number in 

the range [0,1] . Crossover probability CR ( 0 1CR  ) is another 
control parameter of DE to determine the fraction of components 
in the mutant vector which can be used to generate the trial vector. 

randj  is a random integer uniformly selected in the range [1, ]D . 

The branch condition stated in (14) ensures that the trial vector 
has at least one component inherited from the mutant vector in 
order to enhance the population diversity. 

3) Selection: The operator is performed after mutation and 
crossover to determine whether the trial vector can survive to the 
next generation. For every target vector, if the fitness of the 
corresponding trial vector isn’t worse than its, it will be replaced 
by the trial vector for the next generation. The determination 
mechanism can be formulated as (15), 

 1 ,  if fitness of  isn't worse than that of 

,  otherwise                                                  

g g g
g i i i
i g

i

  


u u x
x

x
 (15) 

3.2 MLE Using DE Algorithm 
Figure 1 gives the pseudo code of DE algorithm with DE/rand/2 
mutation strategy for MLE. Although in the literature there are 
various alternative mutation strategies for us to choose, we 
consider adopting DE/rand/2 for the below considerations: On the 
one hand, if the simplest DE with basic mutation strategy would 
give good result, we are confident in the sense that more 
sophisticated mutation strategy could only work better regardless 
of time consuming. On the other hand, DE/rand/2 is one of the 
mutation strategies that bear strongest exploration capability to 
avoid premature convergence or stagnation in the five most 
frequently used basic mutation strategies [18]. 
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In the algorithm shown by Figure 1, the dimension of parameter 
vector D is 7 and the components of each parameter vector 
correspond to 0 , 1 , 0 , 1 , 0 0p ， , 1 1p ，  and   in sequence. 

Because 0 11 , 1     and 0 0 10 , 1p p ， 1， , so for 0  and 1 , 

the upper bounds are both set to be 1 and the lower bounds 1 , 
and for 0 0p ，  and 1 1p ， , the upper bounds are both set to be 1 and 

the lower bounds 0. For 0 , 1  and  , the upper and lower 

bounds can be set according to the observed time series in the 
specific scenario. For each parameter vector, the fitness evaluation 
function is ( | )TL Yθ  denoted by (5). Therefore the larger fitness a 

parameter vector has, the better it is. 

Algorithm: DE Algorithm for MLE 
1.  initialize index of current generation g:=0 and the population 
2.  evaluate the parameter vectors in the population and record the searched optimum 
3.  while (number of fitness evaluations is smaller than the prescribed value) do 
4.      for i:=1 to NP do 
5.          generate mutant vector g

iv  according to the DE/rand/2 mutation strategy     //Mutation 

6.          for j:=1 to D do 
7.              if ,

g
i j jv xmax  or ,

g
i j jv xmin  then , : rand( , )g

i j j jv xmin xmax  End if 

8.          End for 
9.         randj := a random integer uniformly selected in the range [1, D] 

10.        for j:=1 to D do     //Crossover 
11.              if j= randj  or rand(0,1) CR  then , ,:g g

i j i ju v  else , ,:g g
i j i ju x  End if 

12.        End for 
13.        evaluate the fitness of g

iu  and update the searched optimum if necessary 

14.        if g
iu  is not worse than g

ix  then 1 :g g
i i
 x u  else 1 :g g

i i
 x x  End if     //Selection 

15.     End for 
16.     g:=g+1 
17.  End while 

18.  output the searched optimum as θ̂  

Figure 1. Pseudo code of DE algorithm for MLE

4. MLE WITH PARAMETERS 
IDENTIFIABILITY CONSTRAINT 
In the context of disease outbreak detection, a serious drawback of 
MLE is the label switching problem, i.e. for a certain parameters 
estimator 1θ , a new parameters estimator 2θ  is obtained by 

respectively switching the values between 0  and 1 , 0  and 

1 , 0,0p  and 1,1p  in 1θ . It can be proved according to (5)-(10) 

that 1( | )TL Yθ  = 2( | )TL Yθ , 2( 1 | ; )T TP s Y θ    1( 0 | ; )T TP s Y θ  

and 2( 0 | ; )T TP s Y θ  = 1( 1| ; )T TP s Y θ . Details of the proof are 

not demonstrated due to the page limit. Although 1θ  and 2θ  share 

the equal likelihood, they have opposite detection result according 
to a certain alarm threshold. Therefore the existence of label 
switching problem can cause detection error. A common response 
to the problem is to impose an identifiability constraint on 
parameters [8]. In MLE of the studied model, the paper imposes 
identifiability constraint on the values of 0 0p ，  and 1 1p ， , which is 

constructed exploiting the heuristic information of the difference 
between durations of different states. For the outbreak state, the 
expected duration outbreakD  is obtained by (16), 

 2 3
outbreak 1,1 1,1 1,1 1,1

1,1

1
lim(1 )=

1
n

n
D p p p p

p
     


  (16) 
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Figure 2. Data set used for experiment 

For the nonoutbreak state, the expected duration nonoutbreakD  is 

obtained by (17), 

 2 3
nonoutbreak 0,0 0,0 0,0 0,0

0,0

1
lim(1 )=

1
n

n
D p p p p

p
     


  (17) 

Generally for the studied disease outbreak detection, the 
nonoutbreak state has a longer duration than the outbreak state. 
Therefore (18) is established, 

 0,0 1,1
1,1 0,0

1 1

1 1
p p

p p
  

 
 (18) 

Due to the simplicity of DE, it is easy to implement the 
identifiability constraint shown by (18) in MLE. The 
modifications of the algorithm showed in Figure 1 are only made 
in the initialization of the population in Line 1 and before 
evaluating the fitness of g

iu  in Line 13. For each parameter vector 
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in the initialized population and g
iu , if the values of the 

components corresponding to 0 0p ，  and 1 1p ，  do not satisfy (18), 

the two values should be swapped. Comparatively speaking, the 
identifiability constraint is difficult to be implemented and 
satisfied in the EM algorithm proposed in [15]. 

5. EXPERIMENTAL STUDY 

5.1 Experimental Design 
In this section, an experiment is performed to validate the 
effectiveness and efficiency of DE on obtaining the maximum 
likelihood estimator of the Markov switching model as well as the 
effectiveness of the proposed identifiability constraint on reducing 
the negative impact of label switching problem on disease 
outbreak detection. The experiment uses a disease outbreak 
detection scenario based on a data set developed by International 
Society for Disease Surveillance [19]. The adopted data set is 
“OTC-train-01” available in the Zip file 
“ISDS_contest_training_data.zip” downloadable in 
http://isds.wikispaces.com/Resources and contains a daily time 
series of 5 years with explicit disease state relating to each day for 
ease of test. The data set is plotted in Figure 2, where the 
horizontal ordinate denotes the dates marked starting from 
“01/01/2101” to “12/31/2105”, the vertical ordinate denotes the 
time series variable y , i.e. the count of aggregated OTC 
antidiarrheal and antinauseant sales. The time series contains an 
outbreak starting from “12/14/2104” to “02/02/2105”. For ease of 
experiment without loss of generality, in the used scenario, the 
disease outbreak detections operated on the days starting from 
“11/19/2104” to “02/28/2105” are studied where there are 51 
outbreak days and 51 nonoutbreak days consisting of 25 days 
before the outbreak and 26 days after the outbreak. On each 
detection day, the time series starting from “01/01/2101” up to the 
day are available to aid in detection. For MLE of the model using 
DE, the upper bounds of 0  and 1  are both set to be 10000, and 

the lower bounds 0. For   the upper bound is set to be 20000, 
and the lower bound 1. Due to the fact that DE is a 
nondeterministic algorithm, for the purpose of experiment, DE 
independently runs 5 times in MLE of the studied model on each 

detection day, and then the resultant estimator θ̂  with the 
maximum likelihood in 5 runs is used to determine the disease 
state relating to the day. 

5.2 Study on Effectiveness and Efficiency of 
DE Algorithm for MLE 
To study the effectiveness and efficiency of DE for MLE of the 

Markov switching model, the experiment tests the obtained θ̂  by 
DE. Because the search space is changed by introduction of 
identifiability constraint on estimation parameters, the experiment 
is carried for both MLE with identifiability constraint (termed 
MLEic) and MLE without identifiability constraint (termed 
MLEn). The results obtained by DE are compared with a Particle 
Swarm Optimization (termed PSO) algorithm, a well-known 
swarm intelligent based numerical optimization algorithm [20]. 
Furthermore, the EM algorithm is implemented for MLEn. Due to 
the fact that PSO is also a nondeterministic algorithm and the 
randomness of EM in initializing estimation parameters, PSO and 
EM both run 5 times on each detection day like DE. 

In each independent run, the maximum fitness evaluations of DE 
and PSO are both 50000 and the sizes of population 20. For DE its 
scale factor F is 0.5 and the crossover probability CR is 0.4 which 
are determined by a prior trial-and-error procedure. For PSO its 
inertia weight is linearly decreasing from 0.9 to 0.4 generation by 
generation, self-cognitive and social-influence weights are both 2, 
and the upper bound of speed for each parameter is 20% of each 
parameter’s domain size. The setting of the control parameters for 
PSO is determined by a prior trial-and-error procedure and can be 
referred in the literature [20]-[22]. 

Figure 3 and Figure 4 respectively gives a comparison on results 
of DE and PSO in MLEic and those of DE, PSO and EM in MLEn 
for each detection day T. In the figures, the average value and 
standard deviation of the obtained optimal ( | )TL Yθ  which has a 

0.01 precision in 5 runs are calculated and presented by error bar 
graph for DE. And for PSO and EM, the maximum of obtained 
optimal ( | )TL Yθ  in 5 runs is chosen and plotted. It is obvious that 

DE obtains better estimator than PSO and EM for each detection 
day. PSO and EM converge to a local maximum on most detection 
days. The values of obtained optimal ( | )TL Yθ  in DE’s 5 runs are 

equal for most days excluding 12 days with clear top and bottom 
error bars presented in Figure 3 and 4 days in Figure 4. In the 
study on convergence speed of DE and PSO, we learn that DE has 
a higher convergence speed than PSO in both MLEic and MLEn 
which is not demonstrated in detail due to the page limit. 
Furthermore we find that the maximum values of obtained optimal 

( | )TL Yθ  in DE’s 5 runs for MLEic and MLEn are equal for each 

detection day T. These make us confident of that DE works well 
in maximizing the likelihood function for the Markov switching 
model. 
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Figure 3. Results Comparison of DE and PSO in MLEic 
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Figure 4. Results Comparison of DE, PSO and EM in MLEn 
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Figure 5. Values of 0  and 1  obtained by DE in MLEic 
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Figure 6. Values of 0  and 1  obtained by DE in MLEic 
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Figure 7. Values of 0,0p  and 1,1p  obtained by DE in MLEic 
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Figure 8. Values of 0  obtained by DE in MLEn 
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Figure 9. Values of 1  obtained by DE in MLEn 
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Figure 10. Values of 0  obtained by DE in MLEn 
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Figure 11. Values of 1  obtained by DE in MLEn 
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Figure 12. Values of 0,0p  obtained by DE in MLEn 
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Figure 13. Values of 1,1p  obtained by DE in MLEn 
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Figure 14. Values of   obtained by DE in MLEic and MLEn 

To closely learn the estimators obtained by DE in MLEic and 
MLEn, on each detection day, we have a statistics on parameters 
values of the resultant estimators with the maximum likelihood in 
5 runs. For each parameter, the average value and standard 
deviation are calculated and presented by error bar graph. Figure 5 
presents the error bars of 0  and 1  in MLEic, and Figure 6 0  

and 1 , Figure 7 0,0p  and 1,1p . Figure 8 to Figure 13 respectively 

present the error bars of 0 , 1 , 0 , 1 , 0,0p  and 1,1p  in MLEn. 

Figure 14 presents the error bars of   in both MLEic and MLEn. 
In MLEic, each parameter has a standard deviation equals or 
approximates to 0 in value which can be obviously observed in 
Figure 5 to Figure 7 and Figure 14. 

However it is not optimistic for MLEn that each parameter 
excluding   has an intolerable large standard deviation in value 
which can be obviously observed in Figure 8 to Figure 13. 
However the observation is not surprising because of the existence 
of label switching problem. Defining the obtained optimal 

likelihood is ( | )TL Yθ  in DE’s any run on a detection day T, 1θ  
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and 2θ  share the same likelihood ( | )TL Yθ  where 2θ  is obtained 

by respectively switching the values between 0  and 1 , 0  and 

1 , 0,0p  and 1,1p  in 1θ , then 1θ  and 2θ  have a same probability 

of being the obtained estimator. Therefore there are large 
fluctuations in values of 0 , 1 , 0 , 1 , 0,0p  and 1,1p  in the 

statistics. The observation also demonstrates the advantage of the 
proposed identifiability constraint in MLE. 

5.3 Study on Effectiveness of Proposed 
Identifiability Constraint 
To study the effectiveness of the proposed identifiability 
constraint to reduce the negative impact of label switching 
problem on the estimated model’s disease outbreak detection 
validity, on each detection day, the experiment respectively uses 
the estimated model with the maximum likelihood in DE’s 5 runs 
in MLEic and MLEn to determine the disease state. 

Table 1. Statistics on detection metrics when   is 0.5 

 MLEn MLEic 

FAR 56.9% (29) 39.2% (20) 

Per-day Sensitivity 47.1% (24) 82.4% (42) 

Table 2. Statistics result under different tolerable FAR 

Per-day Sensitivity 
FAR 

MLEn MLEic 

0% (0) 2.0% (1) 17.6% (9) 

1.25% (1) 9.8% (5) 25.5% (13) 

2.5% (2) 9.8% (5) 35.3% (18) 

5% (3) 11.8% (6) 54.9% (28) 

7.50% (4) 11.8% (6) 54.9% (28) 

10% (5) 11.8% (6) 54.9% (28) 
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Figure 15. Alarm score of each detection day with MLEic 

11/18/2104 12/08/2104 12/28/2104 01/17/2105 02/06/2105 02/26/2105

0.0

0.2

0.4

0.6

0.8

1.0

A
la

rm
 S

co
re

Date  

Figure 16. Alarm score of each detection day with MLEn 

To measure the detection validity, we choose two intuitive metrics 
which are used by most disease outbreak detection studies [14], i.e. 
per-day sensitivity and false alarm rate (termed FAR). Per-day 
sensitivity is defined as the probability of having alarms on 
outbreak days, and FAR the probability of having alarms on 
nonoutbreak days. In practice, too high FAR will cause 
unnecessary fear and waste of public health resource, too low per-
day sensitivity will lead to bad disease control timeliness. Table 1 
gives statistics on the two metrics relating to the estimated models 
by MLEic and MLEn when the alarm threshold   is prescribed as 
0.5. The parentheses in the second row are the numbers of 
nonoutbreak days having alarms, and those in the third row the 
numbers of outbreak days having alarms. It is obvious the 
estimated model by MLEic has better detection validity. 

To better understand the difference in detection validity, 
according to the obtained alarm score on each detection day, we 
respectively adjust the value of alarm threshold   for the 
estimated models by MLEn and MLEic, to restrict FAR. The per-
day sensitivity under different tolerable FAR is given in Table 2 
where the parentheses in the first column are the numbers of 
nonoutbreak days having alarms according to the tolerable FAR, 
and the parentheses in the last two columns are the numbers of 
outbreak days having alarms. When the tolerable FAR is between 
0% and 10%, the per-day sensitivity of the estimated model by 
MLEn is still obviously worse than that by MLEic. 

For each detection day, the obtained alarm score based on the 
MLEic’s resultant estimator is plotted in Figure 15. The two dash 
lines in the figure marks the start and end dates of the outbreak. 
The dot line identifies the corresponding alarm threshold   when 
the tolerable FAR is 10%. The days starting from “12/29/2104” to 
“01/17/2105” have corresponding alarm score larger than  . That 
is to say, the estimated model by MLEic detects an outbreak 
lasting 20 days. 

Figure 16 plots the obtained alarm score for each detection day 
based on the MLEn’s resultant estimator. The dash lines are 
defined as same as those in Figure 15. The dot line identifies the 
corresponding alarm threshold   when the tolerable FAR is 10% 
and the value of   is different from that of Figure 15. To lower 
the FAR, the value of  is adjusted to approximate to 1 extremely. 
In spite of this, under the tolerable FAR, very few outbreak days 
and no lasting outbreak are detected. The obvious contrast on 
validity of outbreak detection can be explained by the negative 
impact of label switching problem. On the detection day T, 
assume that the maximum of obtained optimal likelihood function 

values in DE’s 5 runs for MLEn is ( | )TL Yθ , and parameters 

estimators 1θ  and 2θ  share the same likelihood ( | )TL Yθ  where 

2θ  is obtained by respectively switching the values between 0  

and 1 , 0  and 1 , 0,0p  and 1,1p  in 1θ , then the two models 

respectively determined by 1θ  and 2θ  have a same probability of 

being used to determine the current disease state. However, the 
calculated values of 1( 1| ; )T TP s Y θ  and 2( 1| ; )T TP s Y θ , i.e. 

the alarm score, are quite different and the detection results are 
opposite according to a prescribed alarm threshold. Suppose that 
the model determined by 1θ  gives a right detection result, then 

that determined by 2θ  would give a wrong detection result. The 
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probability of using the model corresponding to 2θ  for 

determining the current disease state lowers the disease outbreak 
detection validity. 

6. CONCLUSION 
The paper proposes using DE algorithm to obtain the maximum 
likelihood estimator of Markov switching model for prospective 
infectious disease outbreak detection. Due to its simplicity, good 
global optimization ability and no restriction on differentiability, 
continuity and unimodality of the objective function, DE is 
suitable and effective to optimize the complex likelihood function 
for Markov switching model. The encouraging experimental 
results make us confident of that DE provides a good and easy 
solution for the challenge of estimating Markov switching model. 

To reduce negative impact of the label switching problem on the 
disease outbreak detection validity of the estimated Markov 
switching model by MLE, the paper introduces the identifiability 
constraint constructed with the heuristic information about the 
difference between durations of different states on the estimation 
parameters. The identifiability constraint is easy to implement in 
MLE using DE due to DE’s simplicity in algorithm design. And 
the contrastive experimental study has demonstrated the 
effectiveness of the proposed identifiability constraint on 
improving the detection validity of estimated model. 

The work reported in the paper suggests a promising future of the 
use of DE in time series analysis. We plan to extend our study to 
other more complex time series models and explore opportunities 
to study other time series application areas beyond prospective 
infectious disease outbreak detection. 
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