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ABSTRACT 
The performance of differential e volution (DE) largely  depends 
on an appropriate selection of the values of the algorithmic 
parameters. Usually, it is difficu lt to choose optimal parameter 
values, because they are often ad hoc to the s pecific problem in 
question and also related to the optim ization states that the DE is 
in during its search process. In this paper, a novel adaptive 
parameter control scheme is proposed for DE. Improving from 
existing parameter control schemes, the parameters F and CR in 
DE are adaptively controlled according to the optim ization states, 
namely, exploration state and exploitation state in each generation. 
These optimization states are es timated by measuring the 
population distribution. During th e optimization process of DE, 
the distribution of population varies and reflects the search 
maturity. In the exploration state, individuals in the population 
distribute evenly in the search space. As the optimization matures, 
the population gradually converges on a global or local optimum 
in the exploitation state. This feature enables parameter adaptation 
with a fuller utilization of the prevailing optim ization information 
and hence reduces inappropriate adjustments. The proposed 
adaptive parameter control scheme is applied to the fam ous 
DE/rand/1 algorithm. Experimental results show that this schem e 
can effectively improve the efficiency  and robustness of the 
algorithm.  

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – Heuristic methods 

General Terms 
Algorithms 

 

 

Keywords 
Differential evolution, adaptiv e parameter control, global 
optimization 

1. INTRODUCTION 
Differential evolution (DE), first proposed by  Storn and Price 
[1][2], is a s imple and efficient evolutionary algorithm (EA) for 
global optimization. It has been successfully applied to a variety 
of real-world problems from diverse domains [3][4]. DE involves 
three general evolutionary operators, i.e. mutation, crossover, and 
selection, which are as sociated with certain control parameters. 
The values of these parameters greatly influence the convergence 
speed and population diversity . Therefore, how to choose an 
appropriate parameter setting to improve the performance of the 
algorithm has become a significant and promising research topic 
in DE. 

A large amount of research work has been conducted to analy ze 
the effects of these control parameters and suggest suitable 
parameter settings [2][5][6]. However, optimal parameter settings 
ad hoc to a specific problem are often based on a priori or 
empirical knowledge, and there exists no single value being good 
for all ty pes of problems. Fo r example, a s mall crossover 
probability CR is suitable for separable functions while a large 
one is effective for non-separable functions [7]. Thus, lots of 
studies have been undertaken on parameter control for improved 
DE, where param eters are autom atically adjusted at runtime. In 
the literature, the works on param eter control can be m ainly 
classified into three categories, nam ely, deterministic, adaptive, 
and self-adaptive param eter control. The related works will be 
reviewed in Section 2 of this paper. 

However, most existing m ethods do not explicitly  take the 
runtime state of the optimiza tion into account. For example, 
parameters are varied mechanistically according to the num ber of 
iterations [8]. To improve, different optimization phases should be 
treated differently. In the early phases of DE optim ization, the 
search direction is undetermined and hence more new regions of 
the search space should be explored. As the optimization 
continues, the search directi on will be established and the 
population will gradually  converge. In this phase, accelerating 
convergence and exploitation ar ound some promising points are 
of the highest importance. Thus , adjusting param eter values 
according to characteristics of the states of optimization will help 
enhance the effects of parameter control. 
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The method of parameter cont rol based on the states of 
optimization was first proposed by  Zhang et al. [9], in which a 
fuzzy system was used to adjust the parameter values for a genetic 
algorithm (GA). Zhan et al. [10] and Yu et al. [11] respectively 
introduced an adaptive particle swarm optimization (APSO) and 
an adaptive ant colony system (AACS), which also took the 
evolutionary states into account. However, adaptation strategies 
for GA, PSO and ACS cannot be applied to DE in the same way. 

In this paper, we propose a novel adaptive parameter control 
scheme for DE based on optimi zation state estimation. The 
adaptive parameter control process is im plemented mainly in two 
steps. In the first step, by  measuring the population distribution, 
the optimization state is estimated and thus the search process is 
classified into one of the two s tates, i.e., exploration state and 
exploitation state. The es timation is based on considering the 
relationship between individuals ’ fitness values and their 
distances from the best individual. Then, the values of control 
parameters F and CR are adaptively adjusted according to the 
current estimated optimization st ate. Consequently, the proposed 
scheme can provide adaptive param eters to m atch the search 
requirements of different optimization states. 

In order to validate the effect of this adaptive param eter control 
scheme, we apply  it to the famous DE/rand/1 algorithm. By  
combining DE/rand/1 with parame ter adaptation, we develop an 
adaptive DE algorithm named ADE/rand/1. It is favorably  
compared with DE/rand/1 on a suite of benchmark functions.  

The rest of this paper is organi zed as follows. Section 2 reviews 
the DE algorithm  and the relate d works on parameter control 
methods for DE. Section 3 describes the proposed adaptive 
parameter control scheme in de tails, including optimization sate 
estimation and param eter adjustment. In Section 4, experiments 
are carried out to verify the effect of the proposed parameter 
control scheme. Finally, Section 5 draws the conclusions. 

2. DE ALGORITHM AND RELATED 
WORKS 
2.1 Differential evolution (DE) algorithm 
DE is a population-based stochastic algorithm designed for global 
numerical optimization. Similar to other EAs , DE searches for a 
global optimum in the feasible solution space with a population of 
parameter vectors },...,2,1],,...,,[x{ ,2,1, NPixxx g

Di
g
i

g
i

g
i  , where 

g denotes the current generation, D is the dimension of the search 
space, and NP is the population size. In generation  g=0, the jth 
component of the ith vector can be initialized as 

)()1,0(rand min,max,min,
0
, jjjji xxxx           (1) 

where rand(0,1) is a uniform random number on the interval [0,1], 
and jxmin, , jxmax,  are the prescribed minimum and m aximum 

bounds of the jth dimension, respectively. After initialization, DE 
enters an evolutionary process which includes mutation, crossover, 
and selection operations. 

Mutation: In each generation g, the mutation operation is applied 
to each individual g

ix  (also called target vector) to create its  

corresponding mutant vector g
iv . The five most frequently used 

mutation strategies are listed as follows. 
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 DE/rand/2: 
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It can be seen that the mutant vector g
iv  is generated by combing 

a base vector with one or two s caled difference vectors . In the 
above equations, the indices r1, r2, r3, r4, and r5 are distinct integers 
randomly selected from the range [1, NP], and all are different 
from the index i. g

bestx  is the vector with the best fitness value in 
the current generation. The factor F is a positive control 
parameter for amplifying the difference vectors. 

Crossover: In order to enhance population diversity , a crossover 
operation exchanges some compone nts of the mutant vector g

iv  

with the target vector g
ix  to generate a trial vector g

iu . The 
process can be expressed as 
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where rand(0,1) is a uniformly distributed random number as 
before. jrand is an integer randomly  generated from the range 

],1[ D , which is used to ens ure the trial vector has at least one 
component different from  the target vector. The crossover 
probability CR is another control parameter, which determines the 
fraction of vector components inherited from the mutant vector. 

Selection: To decide whether the target or the trial vector can 
survive to the next generation, the selection operation is  finally 
performed. For a minimization problem, the vector with the lower 
fitness value enters  the next ge neration, which can be expressed 
as follows: 




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                  (8) 

where )x(f  is the objective function for the m inimization 
problem. 
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2.2 Parameter Control Methods for DE 
Control parameters in DE have significant effects on the 
performance of the algorithm  [5][6]. However, there is no fixed 
parameter setting that can achieve the best perform ance for all 
types of problems. Therefore, various parameter control methods 
have been proposed for DE to dy namically adjust the param eter 
values. These methods are capable of enhancing the robustness of 
the DE algorithm. According to the classification by  Eiben et al. 
[12], parameter adaptation m ethods can be classified into three 
categories as follows. 

2.2.1 Deterministic Parameter Control 
Deterministic rules change the param eter values without 
exploiting any information from the evolution. In [8] , Das et al. 
proposed two schem es to control the scale factor F of DE. The 
first one decreases the value of F based on a linear rule, and the 
second one generates the value of F in a random  way. Since the 
linear rule in the first schem e is based on the current number and 
the predefined m aximum number of generations, it is actually 
determined before running the algorithm. 

2.2.2 Adaptive Parameter Control 
By using som e form of feedback from  the D E search process, 
adaptive parameter control s trategies dynamically adjust the 
parameter values which can adapt to different evolutionary states. 
In [13], a fuzzy logic control approach was proposed to adapt the 
DE parameters F and CR. The fuzzy controllers incorporate the 
relative fitness values and i ndividuals of the successive 
generations as their inputs, and the outputs are the values of F and 
CR. In [14] , the value of the param eter F is adaptively adjusted 
based on the m inimum and m aximum fitness values over the 
individuals in each generation. Zaharie [15] proposed a method of 
adapting the parameters of DE guided by the population diversity  
evolution. Based on the same idea, Zaharie and Petcu [16]  further 
developed an adaptive Pareto DE for multi-objective optimization 
problems. 

2.2.3 Self-adaptive Parameter Control 
Each individual in the population m aintains its own set of 
parameter values, w hich are encoded into the chromosome and 
optimized through the evolutionary  process. Brest et al. [17] 
introduced a self-adaptive appro ach for the control param eters F 
and CR. Each individual in the popula tion is associated with its 
own parameter values F and CR. In each generation, new values 
for F and CR are random ly generated in their corresponding 
ranges with probabilities 1  and 2 , respectively. Qin et al. [18] 
proposed a self-adaptive DE (SaDE)  algorithm, in which the trial 
vector generation strategies as well as the control param eters F 
and CR are self-adapted by leaning from the previous experiences. 
Zhang and Sanderson [19]  introduced a new adaptive DE called 
JADE. The control parameters for each individual in JA DE are 
updated based on their historical record of success. More recently, 
Wang et al. [20] proposed a com posite DE (CoDE), which uses 
three trial vector generation strategies and three control parameter 
settings of F and CR. In each generation, each individual 
randomly combines these strategies  and param eters to generate 
trial vectors. 

3. ADAPTIVE PARAMETER CONTROL 
SCHEME 
In this section, we propose a novel adaptive param eter control 
scheme for DE. In the param eter adaptation process, the 
optimization state is first estimated, and then the parameter values 
F and CR are adjusted accordingly. We can apply this scheme to a 
classic DE and develop an adaptive DE. Figure 1 shows the 
process of the adaptive parameter control, and Figure 2 illustrates 
the flowchart of an adaptive DE algorithm. 

 
Figure 1. Flowchart of the adaptive parameter control process. 

 

 
Figure 2. Flowchart of an adaptive DE algorithm. 
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3.1 Optimization State Estimation 
In order to formulate an approach to optimization state estimation 
for DE, the population distribution characteristics are first 
described. Generally, the optim ization process of DE can be 
classified into exploration stat e and exploitation state. In the 
exploration state, the population distribution is relatively  
dispersive, since individuals are scattered in the searching space 
to explore different prom ising regions. As the optim ization 
progresses, the population will gradually converge, and finally  
cluster around a global or local optim um in the exploitation state. 
Due to the variation, the information of population distribution 
can be used to estimate the optimization state in the DE algorithm. 
In the following paragraphs, we describe how to m easure the 
population distribution and how  to use the distribution 
information to estimate the optimization state. 

In the procedure of optim ization state estimation, all individuals 
are first sorted according to both their fitness values and their 
distances from the best individua l. Further, the relationship 
between these two sorting orders  can be used to measure the 
population distribution. The detailed steps are as follows. 

Step 1): In the beginning of each generation, the fitness values of 
all the individuals are sorted in  a descending order (from  the best 
to the worst). Suppose that the ranking of the fitness value of 
individual i is denoted as  fi, where i = 1,2,…, NP and NP is the 
population size. 

Step 2): Compute the distances from  the best individual to the 
other individuals. Then, these distances are sorted in an ascending 
order (from the nearest to the farthest). Suppose that the ranking 
of the distance of individual i is denoted as di, where i = 
1,2,…,NP. 

Step 3): After obtaining the two rankings fi and di for each 
individual i, compute the indicator of the optim ization state (IOS) 
so as to estimate the current optimization state: 





NP

i
ii dfIOS

1

,                             (10) 

If the two rankings for each individual are exactly the same (i.e., fi 
= di for each i), indicating that the better individuals are closer to 
the best individual, IOS has its minimum value: 
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rrIOS                        (11) 

On the contrary, if the tw o rankings for each individual are just 
the opposite (i.e., fi+di = NP+1 for each i), indicating that the 
better individuals are farther from the best individual, IOS has its 
maximum value: 
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even is  if                 ,
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Step 4): The value of IOS is normalized by the difference between 
the values of IOSmax and IOSmin as 

,
minmax

min
IOSIOS

IOSIOSSIO



                        (13) 

where SIO   is the normalized value of IOS, ranging from zero to 
one. 

Step 5): Perform the es timation of the optimization state. 
According to the value of SIO  , the optimization process is 
classified into one of the two optimization states, i.e., exploration 
state and exploitation state: 

,
otherwise  ,

rand(0,1)  if   ,

2

1



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
S

SIOS
                   (14) 

where   is the estimated optimization state, S1 and S2 represent 
the exploration state and explo itation state, respectively , and 
rand(0,1) is a uniform random number within [0,1]. According to 
(14), the optimization process has a probability  of SIO   and (1–

SIO  ) to be classified into exploration state and exploitation state, 
respectively. If the value of SIO   is large, the differences 
between the two rankings fi and di are obvious. In this case, there 
exist many good individuals far aw ay from the best individual, 
which means that the population is exploring different prom ising 
regions. Thus, the optimization process is more likely to be in the 
exploration state. On the contrary , if the value of SIO   is small, 
most of the good individuals ha ve converged around the best 
individual, and thus the optim ization process has a large 
probability to be in the exploitation state. 

3.2 Parameter Adjustment 
Before describing the detail of the control scheme, we first briefly 
discuss the effects of the parameters F and CR. According to (9), 
the control param eter F is used to scale the difference vector. 
Using a large value of F generates a m utant vector largely  
different from the base vector chosen from the population, and 
thus helps maintain the population diversity. In contrast, a sm all 
value of F is more likely to facilitate convergence. According to 
(7), CR is the probability  that a vector com ponent will be 
inherited from the mutant vector. Therefore, a large value of CR 
can speed up convergence [2] [5], whereas a sm all value of CR is 
good for preventing premature convergence of the population. 

Based on the above considerations, the strategies for adjusting the 
control parameter values F and CR in different optimization states 
are defined as follows. 

Exploration State – Increasing F  and Decreasing CR: In the 
exploration state, in order to explore more promising regions, it is 
better to increas e the value of F. Conversely, the value of CR 
should be decreased so that prem ature convergence of the 
population can be avoided. 

Exploitation State – Decreasing F  and Increasing CR: In the 
exploitation state, in order to accelerate the convergence, 
decreasing of the value of F is an appropriate w ay. Meanwhile, 
increasing the value of CR can help increase the convergence 
speed. 

Based on the above strategies, the values of F and CR can be 
adjusted adaptively according to the current estim ated 
optimization state  . The adjustment is based on the values of F 
and CR of the previous generation, as shown in (15) and (16) 
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The coefficients cF and cCR are set as 0.1. A ccording to (17), the 
step of adjustment is related to the value of IOS. The values of F 
and CR are both clamped in the range of [0,1]. 

4. EXPERIMENTAL STUDIES 

4.1 Benchmark Functions and Experimental 
Setup 
In this section, experim ents are carried out to evaluate the effect 
of the proposed adaptive param eter control scheme. We use 8 

benchmark functions which are listed in Table 1 [21]. Functions f1 
is a unim odal function. This function can be used to test the 
convergence speed of the algorithm s. Functions f2 is the 
Rosenbrock function which is unim odal for D  3, but m ay 
become multimodal when the dim ension is high [22] . Functions 
f3-f8 are multimodal functions where the number of local optima 
increases exponentially with the problem dimension. Such 
functions appear to be the m ost difficult class of problem s for 
many optimization algorithms. The algorithm s’ global search 
ability to es cape from local optim a can be verified by these 
multimodal functions. 

We apply the adaptive param eter control s cheme to D E with 
DE/rand/1 mutation strategy. The new adaptive DE algorithm is 
denoted as ADE/rand/1. Three DE/rand/1 algorithm s with 
different parameter settings are compared with ADE/rand/1. All 
the classic DEs set F to 0.5 as suggested in m ost of the literatures 
[2][6], and set CR to 0.1, 0.5, and 0.9 respectively. 

For a fair com parison, all the compared DE algorithms use a 
population size of 100. M oreover, each algorithm is run 25 times 
independently and the results are averaged. For clarity, the results 
of the best algorithms are marked in boldface. 

 

Table 1. Benchmark functions used in this paper 
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4.2 Effect of the Adaptive Parameter Control 
Scheme 
The experimental results of classic D Es and adaptive D Es are 
listed in Table 2. It can be seen that ADE/rand/1 generally  
outperforms DE/rand/1. Moreover, the performance of DE/rand/1 
is very sensitive to the parameter settings. For example, the 
DE/rand/1 (CR = 0.1) is able to find the near-global optimum on 
most of the multimodal functions, but it performs the worst on the 
unimodal function f2. In contrast, the DE/rand/1 ( CR = 0.5) 
obtains the highest accuracy of results on the unimodal function f2, 
but it suffers from  frequent prem ature convergence on the 
multimodal function f4. The perform ance of ADE/rand/1 is less 
dependent on the optimization problems. Not only can it get high 
accuracy solutions on unim odal functions, but also it has strong 
global search ability to escape from local optima on multimodal 
functions. These results demonstrate that our adaptive param eter 
control scheme is helpful to improve robustness of the algorithm . 
This is because the param eter adaptation scheme is able to adapt 
the control param eters to match different characteristics of 
different problems. 

Table 2. Comparison between ADE/rand/1 and DE/rand/1 

Fun. FEs. 
ADE/rand/1 

Mean 
(Std Dev) 

DE/rand/1 
(CR=0.1) 

Mean 
(Std Dev) 

DE/rand/1 
(CR=0.5) 

Mean 
(Std Dev) 

DE/rand/1 
(CR=0.9) 

Mean 
(Std Dev) 

f1 150000 
4.92E-28 

(1.84E-27) 

3.25E-19 

(1.11E-19) 

1.07E-17 

 (4.39E-18)

2.03E-16 

 (1.85E-16)

f2 2000000 
9.36E-01 

(8.71E-01) 

2.25E+01 

(2.07E+00) 

3.44E-17 

(1.23E-16) 

1.59E-01 

(7.81E-01) 

f3 900000 
-12569.49 

 (1.82E-12) 

-12569.49 

(1.82E-12) 

-12569.49 

(1.82E-12) 

-12093.07 

(7.33E+02)

f4 500000 
0.00E+00 

 (0.00E+00) 

0.00E+00 

 (0.00E+00) 

9.62E+01 

(7.21E+00)

7.27E+01 

(2.34E+01)

f5 200000 
4.71E-15 

 (1.30E-15) 

2.90E-14 

(3.48E-15) 

2.01E-13 

(4.80E-14) 

2.18E-12 

(1.18E-12) 

f6 200000 
0.00E+00 

 (0.00E+00) 

0.00E+00 

 (0.00E+00) 

0.00E+00 

 (0.00E+00)

0.00E+00 

 (0.00E+00)

f7 150000 
3.03E-26 

(1.13E-25) 

8.50E-21 

(2.66E-21) 

1.94E-17 

(1.24E-17) 

5.02E-17 

(6.65E-17) 

f8 150000 
1.30E-24 

(3.91E-24) 

5.41E-20 

(2.00E-20) 

6.01E-17 

(5.28E-17) 

1.85E-16 

(1.92E-16) 

5. CONCLUSION 
In this paper, a novel adaptive parameter control scheme for DE 
has been proposed. The control param eters F and CR in DE are 
adaptively controlled based on optim ization state estimation. We 
have applied the proposed schem e to the fam ous DE/rand/1 and 
thus developed an adaptive DE named ADE/rand/1. Experimental 
results showed that the adaptive parameter control schem e can 
effectively improve the perform ance of the algorithm s on both 
unimodal and m ultimodal problems. For future w ork, we will 
apply the adaptive parameter control scheme to other evolutionary 
algorithms [23], such as particle swarm  optimization (PSO) [24]  
and ant colony optimization (ACO) [25]. 
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