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Abstract—This paper proposes to use the binary particle 
swarm optimization (BPSO) approach to solve the disjoint set 
covers (DSC) problem in the wireless sensor networks (WSN). 
The DSC problem is to divide the sensor nodes into different 
disjoint sets and schedule them to work one by one in order to 
save energy while at the same time meets the surveillance 
requirement, e.g., the full coverage. The objective of DSC is to 
maximal the number of disjoint sets. As different disjoint sets 
form and work successively, only the sensors from the current 
set are responsible for monitoring the area, while nodes from 
other sets are sleeping to save energy. Therefore the DSC is a 
fundamental problem in the WSN and is significant for the 
network lifetime. In the literature, BPSO has been successfully 
applied to solve the optimal coverage problem (OCP) which is 
to find a subset of sensors with the minimal number of sensors 
to fully monitor the area. In this paper, we extend the BPSO 
approach to solve the DSC problem by solving the OCP again 
and again to find the disjoint subsets as many as possible. Once 
finding the minimal number of sensors for the OCP to fully 
monitor the area, we mark these sensors as unavailable and 
repeatedly find another subset of sensors in the remained WSN 
for the OCP. This way, BPSO can find disjoint subsets of the 
WSN as many as possible, which is the solution to the DSC 
problem. Simulations have been conducted to evaluate the 
performance of the proposed BPSO approach. The 
experimental results show that BPSO has very good 
performance in maximizing the disjoint sets number when 
compared with the traditional heuristic and the genetic 
algorithm approaches. 

Keywords- Wireless sensor networks (WSN), disjoint set 
covers (DSC), particle swarm optimization (PSO) 

I. INTRODUCTION

Wireless sensor network (WSN) is a very new 
technology which has become one of the hottest and most 
challenging research areas recently [1]. The WSN consists of 
lots of sensor nodes that monitor the area for specialized 
applications such as battlefield surveillance, habitat 
monitoring, environmental observation, health applications, 
and many others [2]. The environments of these applications 
are usually not friendly and it is difficult to deploy the 
sensors determinately. Therefore, a large amount of nodes 
are randomly deployed in the area, resulting in more sensors 
than required. Current researches have found that optimally 
scheduling the sensor nodes and making the redundant nodes 

turned off to sleep can significantly save the energy to 
prolong the network lifetime [3]. 

In the literature, many researches transform the issue of 
saving energy for prolonging network lifetime to the optimal 
coverage problem (OCP) [4]. The OCP is based on the fact 
that the WSN contains a large number of sensor nodes. As a 
result, many nodes may share the same monitored regions, 
and some of the nodes are redundant and can be turned off to 
preserve the energy while the others still work to provide the 
full coverage. Activating only the necessary sensor nodes at 
any particular moment can save energy. Therefore, the OCP 
is a fundamental problem in WSN with the objective of 
finding out a minimal set of nodes to monitor the area, and 
turning off the other redundant nodes to save energy, while 
at the same time meeting the full coverage requirement. This 
way, not only the nodes can reduce the energy consumption 
caused by the nodes confliction or the neighborhood 
communication, but also the network lifetime can be 
significantly prolonged because the nodes can be scheduled 
to work in turn. In the literature, many approaches have been 
proposed to solve the OCP [3][4]. In Zhan et al.’s work [4], 
the authors formulated OCP as a 0/1 programming problem 
and designed evolutionary computation algorithms to 
efficiently solve the problem. As the binary particle swarm 
optimization (BPSO) approach proposed in [4] outperforms 
many existed approaches and a genetic algorithm (GA) in 
solving the OCP, we will further use the BPSO approach 
when extend OCP to the disjoint set covers (DSC) problem 
in this paper. 

DSC is to divide the sensor nodes into different disjoint 
sets and schedule them to work one by one in order to save 
energy while at the same time meets the surveillance 
requirement, e.g., the full coverage. The objective of the 
DSC is to maximal the number of disjoint sets. Even though 
minimizing the work nodes (i.e., solving the OCP) can 
prolong the network lifetime, it is more interesting to 
investigate the division of the nodes (i.e., solving the DSC 
problem) because the later one is more intuitive for prolong 
the network lifetime. In the literature, some approaches such 
as those in [5], [6], and [7] focused on dividing the original 
deployed sensor nodes into disjoint sets as many as possible 
and schedule the sets to work in turn. It should be noticed 
that the approach in [5] can guarantee the full coverage while 
the ones in [6] and [7] can not. In this paper, we extend the 
BPSO approach in [4] which is for solving the OCP to solve 
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the DSC problem. The BPSO approach for the DSC problem 
is to solve the OCP again and again to find the disjoint 
subsets as many as possible. Therefore, in this paper, the 
DSC problem is not directly defined, but is defined based on 
the OCP. Once the OCP is solved by BPSO [4], that is, have 
found the minimal number of sensors to fully monitor the 
area, we can regard these sensors being a subset cover. Then, 
we mark these sensors as unavailable and repeatedly find 
another subset of sensors in the remained WSN for the OCP. 
This way, BPSO can find disjoint subsets of the WSN as 
many as possible, which is the solution to the DSC problem. 

Simulations are conducted to evaluate the performance of 
the BPSO approach in solving the DSC problem by 
repeatedly solving the OCPs. Moreover, the GA which was 
proposed in [4] to solve the OCP is also extended in this 
paper to solve the DSC problem and is compared with BPSO. 
The state-of-the-art approach proposed in [5] is also adopted 
in the comparisons because it can provide full coverage. 
Experimental results show that the BPSO approach wins 
both the GA and some state-off-the-art approaches in 
maximizing the disjoint sets number of WSN in different 
network environment. 

The rest of this paper is organized as follows. Section II 
gives the problem formulations of the OCP and DSC in 
WSN. Then Section III proposes the methodology that uses 
the BPSO approach to solve the DSC problem. Section IV 
gives the experimental results and comparisons. At last, 
conclusions are summarized in Section V. 

II. OCP AND DSC

A. OCP
The problem definition for the OCP can be referred to [4], 

and is briefly described as follows. Given an L�W
(Length�Width) rectangle area A for monitoring, and an 
amount of N sensors are randomly deployed in the area. The 
OCP is to determine using only a sub-set of M sensors from 
the N sensors to fully cover the monitored area, supposed 
that the area can be fully covered by the original N sensors 
(as the N sensors are randomly deployed, the area may be not 
fully covered in the original network topology, we do not 
consider this situation in our paper). The objective of the 
OCP is to minimize the number of M. In order to know 
whether the area A is fully covered by the sensors network, 
we assume that the location of the sensor is prior known. 
Moreover, the area is divided into grids and the coverage 
issue can be transformed to check whether each of the grids 
is covered by at least one active sensor. 

All the N sensors form the sensors set S={s1, s2, …, sN},
where each sensor node si is with the location (xi, yi) and the 
sensor radius R. For any grid g=(x, y)�A in the monitored 
area, the relationship between the si and the g is defined as: 

2 2 21,      if  ( ) ( )
( , )

0,     otherwise
i i

i
x x y y R

P s g
� � � � ��	 

��

      (1) 

where 1 means that the grid g is covered by the sensor si
while 0 means the sensor si does not cover the grid g.
Therefore, for any grid point g, if there exists at least one 
sensor si(1�i�N) that makes P(si,g)=1 follow, we say that the 

g is covered by the sensor network. In this sense, the 
monitored area A is fully covered if any grid point g in the 
area is covered by the sensor network. 

In the OCP, the area is monitored by an optimally 
selection sub-set S*={si, | si is selected, 1�i�N} with M
sensors from the N sensors, with the constraint that the area 
A is still fully covered by the M sensors, and with the 
objective of minimizing the value of M, as: 

*
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Here, the operator  results in a value of 0 if all the 
elements are 0. Otherwise, the result is 1 if at least one of the 
elements is 1. 

B. DSC
The DSC problem is defined as: 

1
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Here, the K is the number of DSC, the (i) constraint 
means that the unitization of all the sub-sets Si must belongs 
to the original set S. The (ii) indicates that there is no 
intersection between any two different sub-sets Si and Sj. The 
operator  in (iii) results in a value of 0 if all the elements 
are 0. Otherwise, the result is 1 if at least one of the elements 
is 1. Therefore this constraint guarantees that each sub-set Si
can fully cover the monitored area. 

In this paper, the DSC problem is based on the OCP. The 
OCP model is very suitable for extending to the DSC 
problems in the WSN. This is because that minimizing the 
number of the active sensor nodes has a direct impact on the 
number of the disjoint sets. Finding a solution to DSC is to 
repeatedly find optimal solution to OCP. The first solution to 
OCP is the first sub-set cover in DSC. Then the sensors in 
this sub-set cover are marked as unavailable and the rest 
sensor nodes form a new WSN. By solving the OCP again 
and again, we can obtain the second, the third, the fourth 
sub-set cover in DSC, and so on. This way, the DSC problem 
can be solved. 

III. METHODOLOGY: BPSO FOR DSC
By using the BPSO approach to solve the OCP, the DSC 

problem can be solved by the BPSO approach as Fig. 1. 
Given a WSN with a set of sensors, the approach firstly 

checks whether the sensors can fully cover the monitor area. 
If not, the process reports a fail result K=0 and terminates. 
During the process, the algorithm repeatedly uses BPSO 
approach to minimize the number of active sensor nodes for 
the OCP [4]. These active nodes form the first sub-set. Then 
these nodes are marked as unavailable and the rest sensor 
nodes form another network topology. The BPSO approach 
is performed on the new topology to minimize the number of 
active sensor nodes, forming the second sub-set. The similar 
process goes on until the last network topology can not 

320328

Authorized licensed use limited to: Hanyang University. Downloaded on December 04,2023 at 06:04:24 UTC from IEEE Xplore.  Restrictions apply. 



provide a full coverage for the area. In this sense, the number 
of maximal disjoint sets can be determined. 

It should be noticed that this is a general extend 
technique that can also be used in other approach. For 
example, it is easy to extend the GA approach to solve the 
DSC problem by replacing BPSO to GA in the Fig. 1. 

Figure 1. The flowchart of using BPSO to solve DSC. 

IV. EXPERIMENTS AND COMPARISONS

The BPSO approach for solving the DSC problem is 
implemented and evaluated. The parameters configurations 
are the same as the ones in [4] used for solving the OCP. 
Refer to Section III, the core of using BPSO to solve the 
DSC problem is to use BPSO to solve OCP. Therefore, the 
parameters in [4] are directly used herein. Moreover, the GA 
parameters are the same as the ones proposed in [4]. 

Even though the work in [5], [6], and [7] addresses the 
maximization disjoint sets problem, but only the approach 
used in [5] can guarantee the full coverage. Therefore, we 
compare our approaches and the one of [5] in dealing with 
the maximization disjoint sets problem. 

We adopt the same simulation environment as in [5] 
where the monitored area is a 500m�500m square. Different 
number of sensor nodes and different sensing ranges are 
tested, as shown in Table I. For each combination 
configuration of the sensor nodes N and the sensing range R
in Table I, we randomly generate 3 network topologies and 
run the approaches 3 independent times for each topology. 
The mean results are calculated and compared with the upper 
bound of the disjoint sets number for each topology, as 
shown in Table II and Table III for the GA approach and the 
BPSO approach respectively. 

TABLE I. THE SIMULATION ENVIRONMENT

Environment Sensor nodes N Sensing range R
E1 100 200 
E2 120 200 
E3 150 200 
E4 180 150 
E5 300 80 
E6 400 80 

TABLE II. RESULTS OF GA IN SOLVING THE DSC PROBLEM

Envir Cases Run1 Run2 Run3 Mean UP Run-
Mean

UP-
Mean Accuracy

Case1 10 10 10 10 11 

Case2 11 10 10 10.33 12 E1 

Case3 10 11 10 10.33 12 

10.22 11.67 87.62% 

Case1 13 13 10 12 15 

Case2 10 7 8 8.33 11 E2 

Case3 7 8 8 7.67 10 

9.33 12.00 77.78% 

Case1 13 10 13 12 16 

Case2 12 10 10 10.67 15 E3 

Case3 9 10 7 8.67 12 

10.44 14.33 72.87% 

Case1 8 5 6 6.33 9 

Case2 7 7 8 7.33 8 E4 

Case3 8 8 9 8.33 12 

7.33 9.67 75.86% 

Case1 3 2 2 2.33 3 

Case2 1 1 1 1 3 E5 

Case3 2 3 2 2.33 3 

1.89 3.00 62.96% 

Case1 3 4 3 3.33 4 

Case2 3 3 4 3.33 4 E6 

Case3 2 4 3 3 5 

3.22 4.33 74.36% 

TABLE III. RESULTS OF BPSO IN SOLVING THE DSC PROBLEM

Envir. Cases Run1 Run2 Run3 Mean UP Run-
Mean

UP-
Mean Accuracy

Case1 10 11 11 10.67 11 

Case2 11 12 11 11.33 12 E1 

Case3 12 11 12 11.67 12 

11.22 11.67 96.19% 

Case1 15 15 14 14.67 15 

Case2 11 11 11 11.00 11 E2 

Case3 10 10 10 10.00 10 

11.89 12.00 99.07% 

Case1 15 15 15 15.00 16 

Case2 15 15 14 14.67 15 E3 

Case3 12 11 12 11.67 12 

13.78 14.33 96.12% 

Case1 9 9 8 8.67 9 

Case2 8 8 8 8.00 8 E4 

Case3 11 12 12 11.67 12 

9.44 9.67 97.70% 

Case1 3 2 3 2.67 3 

Case2 3 3 3 3.00 3 E5 

Case3 2 3 3 2.67 3 

2.78 3.00 92.59% 

Case1 4 4 4 4.00 4 

Case2 4 4 4 4.00 4 E6 

Case3 5 5 5 5.00 5 

4.33 4.33 100.00%

321329

Authorized licensed use limited to: Hanyang University. Downloaded on December 04,2023 at 06:04:24 UTC from IEEE Xplore.  Restrictions apply. 



The upper bound of disjoint sets number for each 
topology can be determined as follows. As the area has been 
divided into grids, for each grid, we can find out the number 
of sensors that cover it. Compare all these numbers and the 
minimal one is the upper bound of the disjoint sets number 
for this network topology. This method is also always used 
to study the k-cover of the WSN. The k-cover of the WSN 
tells that every point of the monitored area is covered by at 
least k different sensor nodes. Therefore, the nodes can be at 
most divided into k disjoint sets with the constraint that each 
set can fully cover the whole area. In this sense, the value k
can be the upper bound number of the disjoint sets for this 
network topology. However, the k is a rough number and the 
true optimal number may be smaller than k.

The data presented in Table II and Table III shows that 
BPSO generally outperforms GA in solving the DSC 
problem. In most of the test cases, the BPSO approach can 
obtain the upper bound number of disjoint sets and the 
accuracy (denote by the quotient of Mean/UP) can reach 
higher than 96% in all the test environments. 

We also compare the results obtained by the simulated 
annealing (SA) approach and the heuristic approach [5] in 
Table IV. The results show that both the GA and BPSO 
approaches outperform the SA approach. When compare the 
performance of the heuristic approach in [5] with GA and 
BPSO, the GA outperforms the heuristic on environment 1 
and environment 4, while the BPSO outperforms the 
heuristic on environments 1, 2, and 4. This demonstrates that 
BPSO is more promising in solve the DSC problem to 
maximize the disjoint sets number of WSN. 

TABLE IV. COMPARISONS OF DIFFERENT APPROACHES IN SOLVING 
THE DSC PROBLEM

Environment SA [5] Heuristic [5] GA BPSO 

E1: 100-200 6.8 9.7 10.22 11.22 
E2: 120-200 7 11.5 9.33 11.89 
E3: 150-200 10.5 18.5 10.44 13.78 
E4: 180-150 2.9 6.6 7.33 9.44 
E5: 300-80 2.6 4.3 1.89 2.78 
E6: 400-80 3.2 4.5 3.22 4.33 

V. CONCLUSION

The BPSO approach has been extended to solve the DSC 
problem in WSN in this paper. We do not directly model the 
DSC problem in this paper but to solve it by repeatedly 
solving the OCP problem. We have described the 
implementation of using the BPSO approach to solve the 
problem. The performance is evaluated and compared with 
the state-of-the-art approaches and the GA approach. The 
experimental results have shown the effectiveness and 
efficiency of the proposed BPSO approach. 

In the future work, we will try to use the most recent 
adaptive strategy [8], orthogonal learning strategy [9], 
machine learning technique [10], set-based method [11], 
aging leader strategy [12], and co-evolutionary technique [13] 
in to BPSO to design more efficient algorithm for solving the 
DSC problem in WSN. Moreover, other evolutionary 

computation algorithms like clustering-based adaptive GA 
[14], ant colony optimization [15][16], differential evolution 
[17][18], estimation of distribution algorithm [19], and brain 
storm optimization [20] are also promising to be applied to 
solve DSC, and more comparisons will be conducted by 
comparing with some recent algorithms [21][22][23]. 
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