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ABSTRACT 
Crossover is a very important operation in current differential 
evolution (DE) algorithms. The existing crossover strategies in 
DE show promising effects especially when the algorithms are 
applied to separable functions. However, the operation fails to 
work well when applied to the ill-conditioned and inseparable 
problems because the recombination of good genes is no longer 
promising for generating better individuals. In this paper, we 
propose to use the principal component analysis (PCA) technique 
to rebuild a coordinate system. With this system, the correlations 
among variables are decreased for the crossover operation of DE 
and the crossover operation become more efficient.  

Categories and Subject Descriptors 
B.2.4 [Arithmetic and Logic Structures]: High-Speed 
Arithmetic –Algorithms, Cost/performance. 

General Terms 
Algorithms. 

Keywords 
Differential Evolution; principle component analysis; CMA-ES; 
crossover; 

1. INTRODUCTION 
Differential evolution (DE) algorithm has been one of the most 
popular evolutionary continuous optimization methods since its 
first publication [1] [2]. Like other continuous optimization 
methods such as particle swarm optimization (PSO)   
[7][9][10][11] algorithm, the DE algorithm uses real-coded genes 
and linear combination searching strategy. Such strategy is shown 
to be more effective for the continuous optimization problems 
than the original binary coding scheme and random mutation 
based search method in genetic algorithm (GA) [8]. DE is 
different from PSO on that it applies the crossover operation of 
GA. The crossover operation in DE is still important because it 
shows good performance on the separable functions. Currently the 
most popular online method to solve the correlation problem in 
evolution computing was proposed by covariance matrix 
adaptation-evolution strategy (CMA-ES) [4]. The coordinate 
system built in CMA-ES by the eigenvectors of the covariance 
matrix of the population is actually the coordinate system used in 
principal component analysis (PCA) [5]. Here we propose the 
PCA-based crossover operation for DE. 

2. PCA-based Crossover for DE Algorithm 
The new coordinate system rebuilt by PCA is useful for the 
crossover operation to work theoretically. To do the crossover in 
the new coordinate system, the generated temporary mutated and 
the parent population should be rotated into the new coordinate 
system to do the crossover and then the newly generated 
population should be rotated back to be evaluated. Suppose the 
mutated temporary population is indicated by a matrix V and the 
parents’ population by matrix P, with their rows standing for 
individuals. The mean vector of P is put into a matrix M with its 
each row set to be the mean vector. Then the rotation from the 
original coordinate system to the new coordinate system can be 
done by (1) and (2):  

1)(  BMVVr ,                               (1) 
1)(  BMPPr ,                               (2) 

where B is the eigenvectors matrix and D is the eigenvalues 
diagonal matrix of the covariance matrix of the current population. 
After the crossover operation, temporary population in the new 
coordinate system 

rU  is generated from the recombination of 

rV and rP . Then rU will be rotated back to the original system 

by (8).  

MBUU r                               (3) 

Equation (3) gives the donor population U in the original 
coordinate system which will be further compared with the 
original population in the selection process of DE. 

During the evolution process, the rotation matrix B should be 
updated every K generations. K is not necessary to be 1 (i.e., 
update B at every generation). Usually K can be set larger because 
the distribution of the population evolves eventually and no 
sudden great change will happen. 

3. Experiments 
To test the PCA-based crossover for DE, we use one of the best 
and simplest DE variants JADE [3] as the test DE algorithm. All 
the original parameters of JADE are kept unchanged [4] while the 
new parameters caused by PCA-based crossover are set as follows. 
The number of generations K to do the updating of B is set to 
different values 30, 40 and 50 to test its affects to the performance 
of the algorithm. The JADE/PCACR is compared in Table 1 with 
the original JADE algorithm on the 30-dimensional CEC’05 test 
suite [6]. The stop condition is set to end when the maximum 
number of function evaluations (NFEs) is encountered. The 
maximum NFEs is set to be 5103 for most of the test functions. 
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For test function 1 and 9, the maximum NFEs are set to 
4105 and 5101 . 

4. Conclusion 
In this paper, the PCA-based crossover is tested for DE algorithm. 
As the crossover operation in DE requires the variables to be as 
separable as possible, the PCA-based coordinate system rotation 
can be useful to decompose the correlations among the original 
variables.  
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Table 1. JADE/PCACR compared to the original JADE with K=30, 40 and 50 on 30-dimensional CEC’05 test suite. The mean 
fitness values and standard deviations of 50 independent runs are shown. Better mean fitness values are shown in bold type. 

D=30 JADE JADE_PCACR/K=30 JADE_PCACR/K=40 JADE_PCACR/K=50 
F(x) mean std mean std mean std mean std 

1 1.15E-15 4.54E-15 9.29E-16 1.93E-15 5.85E-16 1.38E-15 6.56E-16 1.36E-15 

2 2.65E-28 1.31E-28 8.97E-29 4.76E-29 8.52E-29 5.74E-29 6.73E-29 4.81E-29 

3 6.68E+03 4.03E+03 2.89E-22 6.28E-22 1.47E-22 3.58E-22 8.08E-23 7.23E-23 

4 1.44E-16 4.94E-16 2.82E-13 1.84E-12 2.47E-18 1.62E-17 2.80E-23 1.98E-22 

5 2.86E-07 1.39E-06 1.52E+01 5.02E+01 7.62E-04 5.37E-03 3.56E+01 1.89E+02 

6 7.13E+00 2.52E+01 4.93E+00 2.91E+01 7.55E-01 1.92E+00 8.95E-01 2.69E+00 

7 8.38E-03 6.07E-03 3.70E-03 5.64E-03 2.96E-03 5.38E-03 3.94E-03 6.21E-03 

8 2.09E+01 1.74E-01 2.09E+01 1.06E-01 2.09E+01 6.79E-02 2.09E+01 1.43E-01 

9 5.99E-05 3.58E-05 4.98E+01 7.50E+00 4.76E+01 6.53E+00 4.80E+01 8.21E+00 

10 2.54E+01 5.02E+00 2.65E+01 6.24E+00 2.49E+01 5.55E+00 2.63E+01 4.99E+00 

11 2.51E+01 1.66E+00 2.55E+01 1.43E+00 2.54E+01 1.60E+00 2.55E+01 1.72E+00 

12 6.37E+03 4.39E+03 2.40E+03 3.83E+03 3.71E+03 5.33E+03 3.37E+03 3.69E+03 

13 1.48E+00 1.03E-01 4.09E+00 4.56E-01 4.06E+00 4.87E-01 3.97E+00 5.26E-01 

14 1.22E+01 3.69E-01 1.21E+01 3.35E-01 1.21E+01 3.74E-01 1.22E+01 3.07E-01 

15 3.40E+02 1.05E+02 3.84E+02 9.07E+01 3.22E+02 9.20E+01 3.72E+02 8.33E+01 

16 8.85E+01 1.21E+02 9.48E+01 1.07E+02 9.52E+01 1.05E+02 1.15E+02 1.40E+02 

17 1.10E+02 1.14E+02 1.81E+02 1.71E+02 1.28E+02 9.81E+01 1.69E+02 1.54E+02 

18 9.044E+02 1.03E+00 8.94E+02 7.40E+00 8.94E+02 6.12E+00 8.94E+02 5.31E+00 
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