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 Article
Review

Evolutionary Computation 
Meets Machine Learning: A Survey

I. Introduction

Evolutionary computation (EC) [1] 
is a kind of optimization method-
ology inspired by the mechanisms 

of biological evolution and behaviors 
of living organisms. In the literature, 
the terminology evolutionary algo-
rithms (EA) [2] is frequently treated the 
same as EC. Generally speaking, EC 
algorithms include genetic algorithm 
(GA), evolutionary programming (EP), 
evolutionary strategies (ES), genetic 
programming (GP), learning classifier 
systems (LCS), differential evolution 
(DE), and estimation of distribution 
algorithm (EDA). Recently, swarm 
intelligence (SI) [3] algorithms like ant 
colony optimization (ACO) and parti-
cle swarm optimization (PSO) have 
also been proposed as optimization 
methodologies and have gained increas-
ing popularity in the EC research com-
munity. SI algor ithms share many 
common characteristics with EAs and 
are also regarded to be in the EC algo-
rithm family [4]. In this article, we 
regard EC algorithms to include both 
EAs and SI algorithms.

Different EC algorithms have similar 
framework in implementation and algo-
rithmic characteristics. Fig. 1 describes a 
general framework with three funda-
mental operations and two optional 
operations for most ECs. In an EC algo-
rithm, the first step is the ‘initialization’ 
step. Then the algorithm enters evolu-
tionary iterations with two operational 

steps, namely, ‘fitness evaluation and selec-
tion’ and ‘population reproduction and varia-
tion’. The new population is then 
evaluated again and the iteration contin-
ues until a termination criterion is satis-
fied. Besides the above three necessary 
steps, EC algorithms sometimes addi-
tionally perform an ‘algorithm adaptation’ 
procedure or a ‘local search’ (LS) proce-
dure. The EC algorithms with LS are 
known as memetic algorithms (MA) [5].

The developments and applications 
of EC algorithms have been one of the 
fastest growing fields in computing sci-
ence. Moreover, research into enhancing 

the EC algorithms via machine learning 
(ML) techniques is witnessed to have 
played an important role in the literature 
[6][7]. ML is one of the most promising 
and salient research areas in artificial 
intelligence, which has experienced a 
rapid development and has become a 
powerful tool in a wide range of appli-
cations [8]. In studies relevant to both 
EC algorithms and ML techniques, 
many attempts have been made to apply 
variants EC algorithms as types of effec-
tive and efficient ML techniques [9].

In contrast with the view of using 
EC algorithms as ML techniques, this 
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article focuses on making a survey of 
researches based on using ML tech-
niques to enhance EC algorithms. In 
the framework of an ML-technique-
enhanced-EC algorithm (MLEC), the 
main idea is that the EC algorithm has 
stored ample data about the search 
space, problem features, and population 
information during the iterative search 
process, thus the ML technique is help-
ful in analyzing these data for enhancing 
the search performance. In this way, use-
ful information can be extracted to 
understand the search behavior and to 
assist with future searches for the global 
optimum. In many applications, EC 
algorithms incorporating ML tech-
niques have been proven to be advanta-
geous in both convergence speed and 
solution quality.

In the literature, variants ML tech-
niques have been used in EC  algorithms 
to enhance the algorithm per  formance. 
These ML techniques can include: sta-
tistical methods (e.g., mean and vari-
ance), interpolation and regression, 
clustering analysis (CA), principle com-
ponent analysis (PCA), orthogonal 
experimental design (OED), opposi-
tion-based learning (OBL), artificial 
neural networks (ANN), support vector 
machines (SVM), case-based reasoning, 
reinforcement learning, competitive 
learning, and Bayesian network.

These ML techniques can be incor-
porated into different EC algorithms in 
various ways and they affect EC also on 
various aspects. Though there are works 
like Jourdan et al. ’s survey [10] to review 
the approaches of using data mining 
techniques to enhance metaheuristics, 
the work of MLEC algorithms is still 
scattered in the literature and need a sys-
tematic consolidation. Therefore, it is 
useful to conduct a comprehensive and 
systematic survey on this topic. In this 
article, we attempt to conduct such a 
survey, not only to provide a taxonomy 
to classify existing research spectrum, 
but also discuss potential future research 
directions in this research arena. The 
taxonomy can be divided into two lev-
els. The higher level is based on the five 
evolutionary steps of an EC algorithm, 
namely, population initialization, fitness 

evaluation and selection, population 
reproduction and variation, algorithm 
adaptation, and local search. The lower 
level is according to the functionality of 
using the ML techniques in each evolu-
tionary step of an EC algorithm. Such a 
taxonomy provides a picture that shows 
how an ML technique can be used to 
enhance an EC algorithm. In order to 
present the literature review, we collect-
ed and selected the representative refer-
ences which are related to this research 
field, by considering their quality, popu-
larity, number of citations, and the cover 
of different aspects of the topic surveyed 
in this article.

The rest of this article is organized as 
follows. Section II surveys existing 
researches with ML techniques incorpo-
rated into ECs for the algorithm perfor-
mance enhancements. In Section III, 
future research directions are discussed 
and proposed, followed by conclusions 
in Section IV.

II. ML Tec hniques 
Used in EC Algorithms
This section reviews the EC algorithms 
that are enhanced by ML techniques. 
The survey is organized from the EC 
perspective, including population initial-
ization, fitness evaluation and selection, 
population reproduction and variation, 
algorithm adaptation, and local search. 
An illustration of the taxonomy in this 
survey is shown in Fig. 2.

A. ML for Population Initialization

1. Organizing Initial 
Solutions Position
The OED technique is a kind of statis-
tical method that can obtain knowl-
edge from data. Therefore it is regarded 
as an ML technique here. The OED is 
developed for designing experiments 
with multiple factors and multiple 
choices (namely levels) per factor. 
Instead of testing all the combinations 

of factor levels, OED only tests orthog-
onal combinations that are constructed 
by following a statistic-based orthogo-
nal array. In this way, OED is able to 
explore the design space comprehen-
sively with a much smaller computa-
tional effort. Leung and Wang [11] used 
OED technique in GA to generate the 
initial population. By doing so, the 
algor ithm can start explor ing the 
search space evenly through the initial-
ization step.

2. Improving Initial 
Solutions Quality
As opposed to OED technique which 
improves initialization by organizing the 
positions of initial solutions, ML tech-
niques such as OBL, interpolation, and 
ANN act in a more straightforward way 
by generating initial solutions of higher 
quality. The EC algorithms are thus 
more likely to start from points closer to 
the global optimum and can converge in 
fewer generations.

OBL is a new machine intelligence 
algorithm inspired by the phenomena of 
sudden and radial changes in social revo-
lution. Given a problem, OBL attempts 
to approximate the optimal solution 
from two opposite sides. As used in [12], 
the initialization step of a DE algorithm 
employs OBL to generate an opposite 
population to the current population. 
Then the algorithm merges the two 
populations and selects only half of the 
best solutions to compose the initial 
population.

Interpolation is also implemented 
on the basis of a set of random solu-
tions when applied to initialize the 
population. It seeks better solutions by 
interpolating the selected random solu-
tions. The best subset of the random 
and interpolated solutions then consti-
tutes the initial population [13]. The 
application of ANN to population ini-
tialization can also be found in the 
 literature [14].

… this article focuses on making a survey of researches 
based on using ML techniques to enhance 
EC algorithms.
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3. Incorporating Historical 
Search Experience
ML techniques can also help with pop-
ulation initialization by acquiring use-
ful information from historical search 
experiences. An example is to use a 
case-based initialization approach [15]. 
This approach is derived from the idea 
of case-based reasoning in ML and 
maintains a case base of solutions of 
solved problems. When dealing with a 
new problem, an EC algorithm with 
case-based initialization retrieves solu-

tions of similar problems from the case 
base and injects them into the initial 
population. In the context of dynamic 
problems, statistical methods are often 
used to study historical experiences to 
help reinitialize the population. Wolde-
senbet and Yen [16] presented a variable 
relocation approach to reinitialize the 
population after a change occurred. 
Kim et al. [17] also designed an 
 evolutionary multi-objective optimiza-
tion algorithm by using the informa -
tion from previously solved problem 

instances to make the search start from 
a more efficient point.

B. ML for Fitness 
Evaluation and Selection

1. Modeling Objective Function
In many practical problems, the objec-
tive function cannot be expressed in an 
analytical form of decision variables or 
the analytical formula can be too costly 
to evaluate. In this case, an approximate 
model of the real objective function is 
needed for evaluating the population. 
Among various modeling methods, the 
ANN technique (for single objective 
function [18] and for multi-objective 
function [19]), statistical methods [20], 
polynomial regression [21], radial basis 
function interpolation [22], and Mar-
kov fitness model [23], to name just a 
few, have been incorporated into the 
evaluation step to model the objective 
function [24].
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FIGURE 2 An illustration of the taxonomy.

In the framework of an ML-technique-enhanced-
EC algorithm (MLEC), the main idea is that the EC 
algorithm has stored ample data about the search 
space, problem features, and population information 
during the iterative search process, thus the ML 
technique is helpful in analyzing these data for 
enhancing the search performance.
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2. Reduci  ng Number 
of Function Evaluations
Some researches use ML techniques to 
reduce the number of function evalua-
tions when the objective functions are 
very expensive for evaluation. For 
example, Zhou and Zhang [25] model 
the objective function of the Minimax 
problem via a Guassian process and 
evaluate the individuals based on the 
surrogate model, where only the best 
individual is evaluated by the actual 
objective function. Another typical 
example is to use the CA technique 
[26]. The CA technique first clusters 
the population and then selects a repre-
sentative individual from each cluster. 
Only the representative individuals are 
evaluated by the objective function. 
The objective values of the other indi-
viduals are approximated in a simplified 
way. By doing so, the number of costly 
function evaluations can be reduced 
and the evaluation time is therefore 
shortened. Jin and Sendhoff reduced 
the number of function evaluations by 
using both the CA and ANN tech-
niques [27].

C. ML for Population 
Reproduction and Variation

1. Reducing Problem Scale
When performing the population 
reproduction and variation operations, 
the problem scale has significant influ-
ences on the algorithm performance. 
ML techniques have drawn significant 
interests in reducing the problem scale 
to generate new individuals effectively 
and efficiently.

In [28], Senjyu et al. adopted a CA 
technique to cluster units with analo-
gous characteristics to support a GA for 
the unit commitment optimization 
problem. Using CA techniques to 
reduce the problem scale is also appeal-
ing when solving large-scale traveling 
salesman problems [29]. The main idea is 
to cluster the cities into different groups 
according to their position distribution 
information. EC algorithms find the 
optimal path in each group first before 
they solve the whole problem by 
regarding each group as a city in a new 

problem. As the algorithm only handles 
a small number of cities each time, qual-
ity solutions are more likely to be gen-
erated [29].

The ANN technique is also used to 
reduce the problem scale and the search 
space. Lee et al. [30] used an ANN to 
restrict the continuous search space so as 
to reduce the difficulty of applying GAs 
to solve large-scale instances of a reli-
ability assignment or redundant alloca-
tion problem. Marim et al. [31] used an 
ANN to restrict the search space for the 
GA when optimizing the ground-state 
geometry of silicon clusters.

The PCA techniques have also been 
used in the EC algorithms to reduce the 
search space. In the ES algorithm with 
covariance matrix adaptation [32], the 
solution space is transformed into a new 
space via an adaptive covariance matrix, 
and the dimension of the new space is 
reduced by using the PCA technique. 
New population is generated in the 
reduced space, and the new population 
is reverse-transformed to the original 
solution space for evaluation.

2. Learning Problem Structure
The reproduction operators of an EC 
algorithm, e.g., crossover and mutation, 
may fail to generate high quality popu-
lation because they are problem inde-
pendent and can hence break up 
converging building blocks or fail to 
combine them effectively [33]. In order 
to address this issue, some researchers 
have proposed to learn the problem 
structure by using ML techniques and 
then to use the obtained information to 
guide the generation of new population. 
One representative example is the EDA, 
which uses a probability modeling tech-
nique to generate a new population. To 
construct probability models accurately 
and efficiently, various ML techniques 

are used. In the literature, statistical 
methods [33], competitive learning 
techniques [34], Bayesian network [35], 
and linkage learning techniques [36] are 
reportedly being used to improve proba-
bility models.

For multimodal optimization prob-
lems, ML techniques have been used to 
construct mixture probability models to 
avoid misleading the search to local 
optima. In [37], Lu and Yao reported 
the use of ‘rival penalized competitive 
learning’ clustering technique to classify 
a selected population without prior 
knowledge. After clustering the selected 
population, Gaussian distribution asso-
ciated with each group is then estimat-
ed. By selecting a different Gaussian 
distribution according to the average 
fitness of the corresponding group, a 
new population with higher diversity 
can be generated. Similar work that 
uses clustering techniques to build 
mixture probability models can be 
found in [38].

Recently, some researchers find that 
Optinformatics is helpful for extracting 
knowledge by using the optimization 
data during the search process. Specially, 
Le et al. [39] and Le and Ong [40] pre-
sented a frequent schemas analysis tech-
nique for binary GA to mine for 
interesting frequent schemas that exist 
implicitly within the GA data. This Opt-
informatics technique is efficient for the 
algorithm to learn the problem structure 
and is helpful for the algorithm to gen-
erate a better population.

3. Maintaining Population Diversity
Maintaining the population diversity is 
significant for improving the perfor-
mance of EC algorithms, especially in 
their applications to multimodal and 
multi-objective problems. ML tech-
niques such as CA and OBL have been 

In order to present the literature review, we collected 
and selected the representative references which are 
related to this research field, by considering their 
quality, popularity, number of citations, and the cover 
of different aspects of the topic surveyed in this article.
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utilized in various ways to achieve 
this goal.

Using CA to divide the population 
into sub-populations has been a popu-
lar method for maintaining the popu-
lation diversity. However, different 
researchers may have different strategies 
in using the obtained sub-populations. 
Some researchers regard each sub-pop-
ulation as a niche, and emphasize the 
independence of each sub-population. 
In [41], the selection operator of a GA 
is applied to different sub-populations 
separately. The population diversity is 
maintained because only individuals 
with similar features (i.e., in the same 
cluster) compete for survival. Con-
versely, some researchers consider 
 different sub-populations to contain 
different information, and emphasize 
the interaction among sub-populations 
for generating a better new population 
[42]. On another hand, some research-
ers argue that different sub-populations 
should run independently but commu-
nicate using designated strategies [43]. 
Using CA techniques to maintain the 
population diversity is also appealing 
when designing multi-objective evolu-
tionary computation algorithms, e.g., 
multi-objective PSO [44] and multi-
objective DE [45].

Besides the CA technique, the OBL 
technique is also adopted in EC opera-
tions to help increase population diversi-
ty. In [12], Rahnamayan et al. first used 
OBL in DE to design a generation 
jumping operator for creating a new 
population every generation. This OBL 
based population generation method, i.e., 
generating a new individual opposite to 
the current individual, is helpful to 
increase the population diversity because 
both the original population and the 
generated OBL-based popu lation are 
considered in the next  generation.

4. Predicting Promising Region
Variants of ML techniques such as statis-
tics and analysis methods have been used 
to predict promising regions in the 
search space and to guide the generation 
of new populations. Liang and Sugan-
than [46] proposed using a history 
learning strategy to create statistics on 

the historical data and to predict the 
promising moving direction of a particle 
when designing PSO algorithm. Zhang 
et al. [47] used a statistical method to 
design intelligent crossover operator for 
GP so as to predict a promising search 
region. Li and Tam [48] used the CA 
technique to cluster the individuals into 
different groups during the search pro-
cess and preserved the best individual of 
each group to predict a promising search 
direction and to help generate a better 
population. CA techniques are also used 
in PSO to predict a promising leader for 
guiding the flying behavior of particles 
[49] and used in DE to generate promis-
ing new population according to the 
cluster centers [50].

Some researchers extended the OED 
technique to predicting promising 
regions, by using factor analysis (FA) 
procedure in the OED. After generating 
orthogonal combinations, the OED 
utilizes FA to analyze the contribution 
of different levels in each factor. The 
combination of the favored levels of 
different factors is likely to be a prom-
ising one. The OED with FA was first 
introduced into EAs by Ho et al. [51] 
for generating a new population. Zhan 
et al. [52] also used the OED in PSO to 
enhance the algorithm performance 
and developed orthogonal learning 
PSO (OLPSO). OLPSO performs 
OED with FA on a particle’s personal 
historical best position and its neigh-
borhood’s best position to construct an 
efficient exemplar, which indicates a 
promising search direction. This 
 constructed exemplar is used in the 
velocity update equation to guide the 
particle to fly steadily towards the 
 global optimum.

The SVM technique is also used to 
predict promising regions to generate 
new populations. In [53], Yan et al. 
improved the global search ability of the 
DE algorithm based on SVM regression 
function approximation. First, several 
best individuals are selected, and then 
the SVM is performed to approximate 
the search region. All the best points of 
the approximation function are generat-
ed and are included in the population. 
These new generated individuals can 

indicate the promising search region and 
can help the algorithm generate a better 
new population.

D. ML for Algorithm Adaptation

1. Parameter Adaptation
Among various adaptive approaches 
used in EC algorithms, the most popu-
larly adopted approach is the use of sta-
tistical methods to analyze search 
process data for a better understanding 
of the search process and hence adap-
tively control the algorithm’s parame-
ters. For example, Zhan et al. [54] used 
statistical method to analyze population 
distribution information and fitness 
information of PSO. An evolutionary 
factor is defined to classify the evolu-
tionary state to be an exploration, an 
exploitation, a convergence, or a jump-
ing-out state in a fuzzy manner. Then 
the PSO parameters are adaptively con-
trolled according to the identified 
 evolutionary state, leading to the devel-
opment of ‘adaptive PSO (APSO)’. The 
idea of using statistical methods for 
parameter adaptation are also reported 
in the self-adaptive DE proposed by 
Qin et al. [55] and in the adaptive DE 
proposed by Zhang and Sanderson 
[56]. Moreover, Rosca and Ballard [57] 
proposed to plug statistical methods 
into GP to adaptively control the algo-
rithm representation.

Besides these simple ML techniques, 
some advanced techniques like CA are 
also used. Zhang et al. [58] proposed the 
use of CA to divide the chromosomes of 
GA into several groups based on their 
position information. The evolutionary 
states are determined by considering the 
relationship between the size (number of 
chromosomes) and the fitness informa-
tion of different groups. The crossover 
and mutation probabilities are adaptively 
controlled according to the evolutionary 
states. Such a CA based parameter adap-
tation strategy is also used in Zhan et al.’s 
work [59] for PSO and Gong et al.’s 
work [60] for ACO, respectively.

2. Operator Adaptation
The adaptive control of operators refers 
to the selection of one or multiple 
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 operators from a candidate set of opera-
tors adaptively, according to the infor-
mation of the optimization process. It 
works in a similar way to parameter 
adaptation except that the adapted 
object is the algorithm’s operators in -
stead of  parameters.

The operator adaptation mecha-
nisms frequently embed the idea of 
reinforcement learning. They utilize 
historical information about the per-
formance of candidate operators to 
select operators. A good example is 
given by Zhang and Lu [61] where the 
mutation operator of EP is adapted by 
accumulated fitness rewards obtained 
from reinforcement learning. The idea 
of reinforcement learning can also be 
found in [62] for the adaptation of 
mutation and crossover operators in 
GA. Similarly, in Qin et al.’ study [55], 
four mutation schemes for DE are used 
adaptively during the evolutionary pro-
cess. The probabilities of selecting dif-
ferent mutation schemes are adaptively 
adjusted by the statistics on the histori-
cal successful experiences.

E. ML for Local Search

1. Designing Local Search Schemes
The LS aims to refine a solution within 
the solution’s neighborhood. Several 
researchers have used ML to design suit-
able LS operators. In [63], Zhang et al. 
proposed a new local search scheme by 
using the OED technique to extend the 
ACO to continuous search space. In 
[64], Lin et al. proposed a contour based 
LS method. By analyzing the solutions 
in the population, the contour of the fit-
ness landscape is interpolated and the 
centroid of the contour is calculated to 
approach the optimal position.

2. Performing Local 
Search Operations
Determining where and when to per-
form the LS operation is important 
because they affect not only the compu-
tational burden, but also the search effi-
ciency. It may be worthwhile to apply 
LS on every individual if the computa-
tional complexity of the LS is relatively 
low. However, if the LS is costly, select-

ing appropriate subset of individuals to 
apply the LS would become more 
 efficient. The simplest way would be to 
select good individuals to perform the 
LS operation. Martinez-Estudillo et al. 
[65] proposed a clustering based method 
to select a subset of individuals to per-
form the LS. In this method, a current 
population is clustered into several 
groups and only the best individual of 
each group is refined by the LS operator. 
Lim et al. [66] proposed introducing a 
classifier into the constrained MA opti-
mization. The classifier-assisted con-
strained MA only performs LS on the 
misclassified individuals that are more 
likely to locate near the global optimum. 
Handoko et al. [67] adopted the Optin-
formatics concept to design a feasibility 
structure modeling technique in order 
to assess whether to perform the LS 
operation on an individual.

3. Controlling Local 
Search Operators
In order to control the LS operators, 
e.g., adaptively control the search inten-
sity and search depth of a single LS 
operator, or adaptively control the utili-
zation of multiple LS operators, various 
ML techniques have been used to 
obtain search information during the 
evolutionary process.

In [68], Nguyen et al. used statistical 
methods to derive a theoretical bound 
for individual learning intensity in their 
proposed probabilistic memetic frame-
work. In addition, ML techniques are 
also used to help control the utilization 
of multiple LS operators. In [69], statisti-
cal methods are applied to measure the 
fitness diversity of the population. The 
statistical values are then used to control 
two designed LS operators, including 
the dynamic parameter settings and the 
adaptive launch of two local searchers 
according to the need of the evolution. 

Noman et al. [70] used Lamarckian 
learning strategies to adaptively deter-
mine the length of the search by taking 
feedback from the search process.

III. Pot ential Research Directions
The idea of using ML techniques to 
enhance the performance of EC algo-
rithms has been successfully implement-
ed by many researchers. While a lot of 
work has been done and the studies 
have been surveyed in the last section, 
we found that the researches in this field 
are still not systematic and many issues 
still remain unexplored. In this section, 
we will discuss several potential direc-
tions for this research area.

A. Broader Use of ML Techniques
In this survey, it is noticed that the most 
frequently used ML techniques in EC 
are statistical methods, CA, OED, and 
ANN. These are likely because these 
ML techniques are the most well known 
and are easily applied to EC algorithms. 
However, different ML techniques may 
be suitable to different application envi-
ronments and offer different advantages. 
Therefore, it may be interesting to try to 
use a broader variant of ML techniques 
in the EC algorithms, and investigate 
how to use different ML techniques to 
enhance different EC algorithms. This 
may bring new ideas to the design of 
novel MLEC algorithms.

B. Using ML Techniques 
As EC Operators
In the literature reviewed, most of the 
studies use ML techniques as data analy-
sis tools to extract useful information 
from the EC search data during the run 
in order to help the EC algorithms. 
However, it could also be interesting to 
investigate the utilization of ML 
 techniques as EC operators to enhance 
the algor ithm performance. Even 

. . . we found that the researches in this field are still 
not systematic and many issues still remain 
unexplored.  . . .  we will discuss several potential 
directions for this research area.
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though some previous studies have been 
conducted to investigate some kinds of 
ML techniques (such as the OED meth-
od as an LS operator) to be an EC oper-
ator and hybr id it into the EC 
algorithms, there are still many issues for 
research. For example, using different 
ML techniques, hybriding with different 
EC algorithms, and designing as differ-
ent operators, are critical issues that can 
be considered.

C. Better Cooperation 
Between ML and EC
While ML techniques can help the 
EC algorithms search more effectively 
and efficiently, they also add to com-
putational burden. There is a tradeoff 
between the benefits and the compu-
tational costs. Better understanding 
and improving cooperation between 
ML and EC will play a significant role 
in enhancing EC algorithms with ML 
techniques efficiently. This thus could 
be a very promising research direction 
which includes, e.g., use of various 
ML techniques (simple or complex), 
balancing the performance improve-
ment and computational burden 
caused by the ML techniques (e.g., 
how often to execute the ML meth-
ods), and so on.

D. Systematical Control 
of MLEC Algorithms
Another problem caused by the ML 
techniques is that more parameters 
would have been introduced into the 
algorithms. This makes the MLEC 
algorithms become much more com-
plex. Therefore, determining how to 
systematically control the MLEC algo-
r ithms and how to automatically 
determine their parameters during the 
search have become s ignif icant 
research topics to be undertaken in the 
MLEC field.

E. Deeper Theoretical Analysis
As the MLEC algorithms become more 
complex by incorporating with the ML 
techniques, it will be more difficult to 
make clear why and how the MLEC 
algor ithms converge. Besides the 
numerical experiments based on bench-
mark functions, it may be appealing and 
significant to make deeper theoretical 
analysis on the new MLEC algorithms 
in order to clarify their search behaviors 
and convergence mechanisms. Therefore, 
it could be a considerable research 
direction to take in allowing for deeper 
theoretical analysis on the MLEC algo-
rithms’ convergence and stability.

F. Further Test on Complex Problems
The good performance of MLEC algo-
rithms are mainly studied on numerical 
benchmark functions and are mainly in 
the field of single objective optimization 
problems. However, the applications of 
ML enhanced EC algorithms in multi-
objective, dynamic and uncertain, large 
scale, and constrained problems are still 
insufficient. Therefore, exploring how to 
design effective and efficient MLEC 
algorithms for these complex problems 
is a potential research direction in the 
near future.

G. Wider Real-World Applications
The good results of MLEC algorithms 
on numerical benchmark functions also 
encourage the research of applying the 
MLEC algorithms to numerous real-
world problems. Owing to the improved 
search speed and accuracy, these algo-
rithms are appealing for a wider range 
of complex real-world applications. 
Moreover, new ideas of using proper 
ML techniques and improving current 
ML techniques when applying to EC 
algorithms may be inspired in the appli-
cation process. We believe that applying 
MLEC algorithms to wider areas of 

practical problems could be a useful 
trend to follow.

IV. Con clusion
In this article, we have provided a com-
prehensive survey on the application of 
ML techniques to enhance EC 
 algorithms. Taxonomy of research in this 
area has been defined according to the 
evolutionary steps of the EC framework 
and the functionalities of the ML tech-
niques. The survey consists of five cate-
gories: ML for population initialization, 
ML for fitness evaluation and selection, 
ML for population reproduction and 
variation, ML for algorithm adaptation, 
and ML for local search. In each catego-
ry, the utilization of ML techniques is 
further classified according to their 
motivations and functionalities. Such a 
structural taxonomy provides a better 
understanding of usages and effects of 
ML techniques in an EC algorithm. It 
also reveals why and how ML tech-
niques can improve the algorithm’s per-
formance in various aspects. Based on 
the survey of the existing approaches in 
the literature, some potential future 
research directions in this area have also 
been discussed and proposed.
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