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ABSTRACT 
Accelerating the convergence of Genetic Algorithms (GAs) is a 
significant and promising research direction of evolutionary 
computation. In this paper, a novel Index-based GA (termed 
IndexGA) is proposed for the acceleration of convergence by 
reducing the number of fitness evaluations (FEs) in the 
reproduction procedure, i.e. the process of crossover and mutation. 
The algorithm divides the solution space into multiple regions, 
each represented by a unique index. Individuals in the IndexGA 
are redefined as indexes instead of solutions. In the reproduction 
procedure, an evaluated region is never evaluated again, and the 
fitness is directly obtained from the memory. Moreover, to 
improve the fitness of the promising regions, the algorithm 
performs an orthogonal local search (OLS) operator on the best-
so-far region in each generation. Numerical experiments have 
been conducted on 13 benchmark functions and an application 
problem of power electronic circuit (PEC) to investigate the 
performance of IndexGA. The results show that the index-based 
strategy and the OLS in IndexGA significantly enhance the 
performance of GAs in terms of both convergence rate and 
solution accuracy. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search – heuristic methods. 

General Terms 
Algorithms, Design, Experimentation 

Keywords 
Genetic algorithm, convergence acceleration, orthogonal 
local search 

1. INTRODUCTION 
Genetic algorithms (GAs) [1]-[3] are a class of evolutionary 
algorithms (EAs) for global optimization. A typical GA 
maintains a population of solutions in the search space. In 
each generation, the population undergoes the operations of 

selection, crossover, and mutation. Characterized by their 
robustness and the global convergence property, GAs have 
been applied in many fields like neural network training [4], 
image processing [5] and power electronics [6], etc. 

However, as population-based optimization techniques, 
traditional GAs suffer from slow convergence. The 
algorithms consume large amounts of fitness evaluations 
(FEs) before converging to the global optimum. 

To overcome the weakness of slow convergence, there are 
mainly two groups of GAs developed for enhancing the 
algorithms in terms of convergence rate. The first group of 
GAs is developed based on the fact that controlling the 
crossover probability px and mutation probability pm can 
benefit the search [7]. GAs in the first group control the two 
parameters adaptively by utilizing information from the 
fitness values [8], population distribution in search space [9], 
or a second-level GA [10]. However, these algorithms do 
not consider the improvement of solution refinement ability, 
and the acceleration of convergence is limited. The second 
group of GAs can be classified as the memetic algorithms 
(MAs) [11]-[13], which employ an additional local learning 
procedure [14]. The local learning procedure adopts three 
types of strategies, i.e. static [14], adaptive [15], and self-
adaptive [16] strategies, according to the classification 
scheme in [11]. The static strategy uses the same local 
search operator during the whole search process, whereas 
the local search operators are altered with the feedback of 
algorithms in the adaptive and the self-adaptive strategies. 
Although the additional procedure succeeds in both 
improving the convergence rate and refining the solutions, 
the reproduction procedure of GAs, i.e. the crossover 
operator and the mutation operator, still consumes a large 
number of FEs. 

In many real-world applications like power electronic circuit 
(PEC) optimization [6][9], the dimension of problem is low 
whereas the evaluation of fitness is expensive. These 
applications require the optimization algorithms to converge 
globally with fewest FEs. However, it is observed that the 
reproduction procedure of GAs usually reproduces similar 
individuals, especially on low-dimensional problems. Since 
the procedure focuses on global exploration instead of local 
exploitation, frequent evaluations of these similar 
individuals are a waste of the computational time. 

The proposed IndexGA utilizes an index-based strategy to 
reduce the FEs in the reproduction procedure, especially on 
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low-dimensional problems with expensive evaluation 
functions. The algorithm divides the solution space into 
multiple regions, and assigns a unique index to each region. 
Individuals in the IndexGA are indexes instead of solutions, 
with each index representing a region in the solution space. 
The evaluation of an individual is defined to be the 
evaluation of a representative position in the corresponding 
region, and the algorithm memorizes the fitness of every 
evaluated region in a hash table. In the reproduction 
procedure, an evaluated region is never evaluated again, and 
the fitness is directly obtained from the memory. This way, 
the algorithm reduces the FEs in the reproduction process of 
GAs. 

To improve the fitness of the promising regions, in each 
generation the algorithm performs an orthogonal local 
search (OLS) operator on the best-so-far region. Based on 
the orthogonal experimental design [19][20], the OLS views 
the process of local search as conducting experiments for a 
multifactor problem. According to an orthogonal array, the 
method first generates a set of solutions in the neighborhood 
for experiments. Then experiments are conducted by 
evaluating these solutions, and the experimental results are 
finally analyzed to estimate a promising position in the 
neighborhood. The estimated promising position is not 
necessarily included in the experiments. In addition, the 
proposed method adopts a strategy to adjust the step size of 
OLS adaptively. 

In order to verify the effectiveness of the index-based 
strategy and the OLS in IndexGA, experiments are 
conducted on 13 benchmark functions and an application 
problem of power electronic circuit (PEC) [17]. The 
experimental results show that the proposed IndexGA is 
promising. 

The rest of this paper is organized as follows. Section II 
describes the IndexGA in detail, followed by experiments on 
benchmark functions in Section III. In Section IV, the 
performance of IndexGA is further tested by application to a 
PEC design problem. Section V concludes the paper. 

2. INDEX-BASED GA 
2.1 Solution Space Division and Index 

Assignment 
2.1.1 Solution Space Division 

The IndexGA divides the solution space into multiple 
regions, and assigns each region an index. An index is 
defined as an integer that can be used as the unique 
representation of one region. In this paper, the strategies 
adopted for space division and index assignment are as 
follows. 

For the division of D-dimensional continuous solution 
space with upper bounds U =[U(1), U(2),…, U(D)] and lower 
bounds L=[L(1), L(1),…, L(D)], the i-th dimension of the space 
is uniformly partitioned into R intervals [L(i), 
L(i)+(U(i)−L(i))/R],[L(i)+(U(i)−L(i))/R,L(i)+2×(U(i)−L(i))/R], …, 
[L(i)+(R−1)×(U(i) −L(i))/R, U(i)]. Each region of the space is a 
hyper rectangle, which takes one of the R intervals on each 

dimension as its legal range for the corresponding variable. 
Thus, the divided solution space consists of RD different 
regions, where R is the resolution of space partition.  

According to the space division strategy, one region has 
the upper bound L(i)+(k(i)+1)×(U(i)−L(i))/R and the lower 
bound L(i)+k(i)×(U(i)−L(i))/R on the i-th dimension. Here we 
define the vector [k(1), k(2),…, k(D)] (0≤k(i)<R, i=1, 2, …, D) 
as the key vector of the region, which can be used to 
represent the region uniquely. An example of space division 
in 2-dimensional solution space and the key vectors for all 
the regions is illustrated in Fig. 1. 

2.1.2 Index Assignment 

In IndexGA, the index is utilized to identify a region. 
Since the fitness of each region is stored in a hash table, the 
index is also used as the key for hashing. 

To assign every region an index, the key vector of the 
region is coded into an integer. For a key vector K=[k(1), 
k(2),…, k(D)], an integer nK is calculated through the equation 

1

1

D
i

K i
i

n k R 



     (1) 

where R is the resolution of space division. Take a key 
vector Ke=[2, 1] of a region in Fig. 1 for example, when 
R=3, the corresponding index is 0 12 3 1 3 5Ken      . 
Note that two different regions in the solution space will 
never share the same index according to the above coding 
strategy. 

2.2 Evolutionary Process of IndexGA 
The traditional real-coded GAs maintain a population of 

N individuals, i.e. N positions   in the D-dimensional 
solution space. In each generation, the operations of 
selection and reproduction, namely crossover and mutation, 
are performed on the population. The algorithm evaluates 
every individual reproduced in the crossover and mutation 
operators.  

Differently, in IndexGA, the individuals in a population 

are redefined to be indexes instead of solutions. A 
population is comprised of N indexes, with each 
representing a region in the solution space. The evaluation of 
an individual is defined as the evaluation of a representative 
position in the corresponding region. The representative 
position together with the fitness of every evaluated region 
is memorized in a hash table. In the reproduction procedure, 

 
Figure 1. Regions in a 2-dimensional space when 

resolution R=3.
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a reproduced individual is evaluated when and only when 
the region has never been evaluated. For evaluated regions, 
the fitness values are directly obtained from the memory. To 
improve the fitness of the promising regions, in each 
generation the algorithm performs an OLS operator on the 
best-so-far region. 

The flowchart of IndexGA is given in Fig. 2. According 
to the figure, the basic flow of IndexGA is the same as that 

of traditional GA, except that in IndexGA an additional 
procedure of local search is performed. The flow of 
IndexGA is described in detail as follows. 

Step 1) Initialization: N different regions are randomly 
picked from the solution space to form the initial population 
P0, where N is the size of population. For each region, the 
algorithm calculates its index, randomly generates one 
position in the region as its representative position, and 
evaluates the region. The fitness and the representative 
position of the region are memorized in a hash table. 

Moreover, the step size of local search is initialized to be 

S=(U−L)/R,   (2) 

where U and L are the upper and lower bounds of the 
solution space, and R is the resolution of space division. The 
counter of generation is set as gen=0. 

Step 2) Reproduction: The algorithm reproduces N 
offspring through crossover and mutation to form Ogen in the 
following way. a) Two individuals are selected for 
reproduction from Pgen using a binary tournament strategy. 
Reselect if two identical indexes are selected. This way, 
crossover will never happen between identical regions. b) 
Two offspring are reproduced through crossover and 
mutation on the two selected regions. The crossover operator 
is performed with a probability of px, and the mutation 
operator is performed with a probability of pm. When a 
region is reproduced, the algorithm immediately calculates 
its index. c) Terminate if N offspring are generated, 
otherwise go back to a).  

Note that although the individuals in IndexGA are 
indexes instead of solutions, the reproduction operators of 
traditional real-coded GAs can still be utilized. The 
crossover and mutation operators are performed on the 
representative positions in the regions, thus traditional 
operators like blend crossover (BLX) [21] and uniform 
mutation for real-valued individuals can be directly applied.  

Step 3) Evaluation: For each of the individuals in Ogen, 
the region is evaluated if and only if it has never been 
evaluated. Since the fitness evaluated regions are memorized 
in a hash table, the fitness values of these regions in Ogen can 
be immediately obtained from the memory.  

Step 4) Selection: According to the fitness values, N 
regions are selected from Pgen   Ogen to comprise Pgen+1. 

The selection operator employed in IndexGA adopts elitism 
and never selects duplicates. Traditional selection operators 
like tournament selection can be modified in the following 
way to satisfy the above requirement. a) The best-so-far 
region is selected in the first place. b) After a region with 
index n is selected, all the regions in PgenOgen that share 
the same index n are removed from the previous population. 

Step 5) Local search: Since a region will never be 
reevaluated in the reproduction procedure, the fitness of a 

Begin

Initialize population P0,
step size S, gen←0

Reproduce Ogen from Pgen

Select Pgen+1 from Ogen Pgen

Evaluate Ogen



Local search on the best-so-far 
solution

End

Terminate?

gen←gen+1

No

Yes

 
Figure 2. Basic flow of IndexGA. 

Table 1. An Example of Multifactor Problem

Factors 
 

Temperature Irrigation 
Amount of 
fertilizer 

20℃ 10mm 100g/m2 
25℃ 20mm 150g/m2 Levels 
30℃ 30mm 200g/m2 

 
Table 2.  An Multifactor Problem of Local Search 

Factors  
1st dimension 2nd dimension 3rd dimension 

+ + + 

/ / / Levels 

− − − 
 

Table 3. Orthogonal Experimental Design and the 
Experimental Results for the Problem in TABLE II 

Factor No. of 
Experiment 1st 

dimension 
2nd 

dimension 
3rd 

dimension 
Fitness 

1 − − − 10 
2 − / − 15 
3 − + + 30 
4 / − − 15 
5 / / + 30 
6 / + − 25 
7 + − + 30 
8 + / − 25 
9 + + / 35 
F+ 90 90 90 
F/ 70 70 70 
F− 55 55 55 

Estimated Best 
Combination 

+ + + 
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region never improves if local search is not performed. In 
IndexGA, the OLS is applied to the best-so-far region for 
fitness improvement. The method is based on orthogonal 
experimental design, and its detailed description will be 
presented in the following part. 

Step 6) Termination Check: If the number of FEs 
exceeds the predefined maximum number, the algorithm 
terminates. Otherwise, increase gen by 1, go back to step 2) 
and start a new generation. 

The orthogonal local search (OLS) is a local learning 
strategy for the fitness improvement of a region. Based on 
the orthogonal experimental design [19][20], the method 
considers the local search in a neighborhood to be a 
multifactor problem. The OLS first generates a set of 
solutions for experiments according to an orthogonal array. 
Then the procedure conducts experiments by evaluating 
these solutions, and finally analyzes the experimental results 
to estimate a promising position in the neighborhood.  

2.3 OLS 

2.3.1 Multifactor Problems 
The orthogonal experimental design technique is a 

method for experiment planning on multifactor problems 
[19][20]. The multifactor problems involve multiple factors 
and multiple levels for each factor. To solve these problems, 
experiments are conducted to find the best combination of 
levels. An example of multifactor problem in agriculture is 
given in Table I, which shows three factors, i.e. temperature, 
irrigation and fertilizer, and three levels for each factor. To 
improve the yield of crops, experiments are conducted to 
find a best combination of levels for the factors. Since there 
are totally combinations, a maximum number of 3×3×3=27 
experiments are required.  

The local search in the neighborhood of a solution can be 
considered as a multifactor problem, an example of which is 
given in Table II. In Table II, each dimension of the 3-
dimensional search space is a factor, the increased, 
unchanged and decreased values (denoted as ‘+’, ‘/’ and ‘−’, 
respectively) of the variable on the corresponding dimension 
are considered as three levels. To find the combination of 
levels with best fitness, a maximum number of 27 
experiments (i.e. 27 evaluations) are required. 

2.3.2 Orthogonal Experimental Design 
For a multifactor problem with N factors and Q levels, 

the total number of combinations QN grows exponentially 
with N. Thus, experimenting on all the combinations 
becomes infeasible when N is large. 

The orthogonal experimental design technique is 
introduced to plan the experiments for multifactor 
problems. Based on the orthogonal array [19][20], the 
method designs M (M<QN) experiments to represent all the 
QN combinations. Moreover, it analyzes the experimental 
results to estimate the best combination. The estimated best 
combination is not necessarily included in the experiments. 
For more detailed information on orthogonal array and 

orthogonal experimental design, interested readers can refer 
to [19][20]. 

As an example, Table III presents the experiments 
designed for the problem in Table II according to an 
orthogonal array. The geometric interpretation of Table III 
is illustrated in Fig. 3. In Table III, 9 instead of all the 27 
experiments are planned. For each experiment, the symbol 
‘+’, ‘−’ and ‘/’ denotes the three levels, i.e. the increased, 
decreased and unchanged values of the variable on the 
corresponding dimension, respectively. It can be observed 
from Table III and Fig. 3 that the designed experiments 
satisfy the following rules. a) For any two factors, each 
combination of levels appears the same number of times. b) 
For any factor, each level appears the same number of 
times. Therefore, experiments conducted according to Table 
III can well represent all the possible combinations of 
factors. 

In Table III, the results for experiments, i.e. the fitness 
values, are given in the column ‘Fitness’. The rows ‘F+’, 
‘F−’, and ‘F/’ calculate the total fitness when the 
corresponding factor takes the levels ‘+’, ‘−’ and ‘/’, 
respectively. For example, F+ on the first dimension is the 
total fitness of the 7-th, 8-th, and 9-th experiments. 

The estimated best combination of factors is presented 
in the row ‘Estimated Best Combination’, which is chosen 
based on the rows ‘F+’, ‘F−’, and ‘F/’. For each factor, the 
level with the best F-value is chosen. In this example, the 
best combination is the level ‘+’ for all the factors, which is 
not included in the 9 experiments. 

2.3.3 Procedure of OLS 
The OLS can be considered as conducting experiments 

for a multifactor problem and analyzing the results for the 
best combination. The procedure is described in detail as 
follows. 

a) The representative position of the best-so-far region is 
denoted as X=[x(1), x(2), …, x(D)]. Generate a set of m 
positions E1, E2, …, Em in the solution space according to 
the orthogonal array T. To generate the k-th solution Ek, for 
each ‘+’, ‘−’ and ‘/’ in   (i=1, 2, …, D), set the value of x(i) 
to be x(i)+|N(0, s(i))|, x(i)−|N(0, s(i))|, and x(i), respectively. Here 

 
Figure 3. Geometric interpretation of TABLE III. 
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S=[s(1), s(2), …, s(D)] is the step size for local search, and N(0, 
s(i)) is a real number generated according to normal 
distribution with mean value of 0 and standard deviation of 
s(i). 

b) To estimate a promising position in the neighborhood, 
evaluate E1, E2, … Em to obtain the fitness values f1, f2,…, 
fm. Define three D-dimensional vectors ‘F+’, ‘F−’, and ‘F/’  
according to the equations. 

( )

T ' '

 ( 1, 2,..., ) 
i

j
j

ij

F f j D
 

    (3) 

( )

T ' '

 ( 1,2,..., ) 
i

j
j

ij

F f j D
 

    (4) 

( )
/

T '/ '

 ( 1, 2,..., ) 
i

j
j

ij

F f j D


    (5) 

The vectors ‘F+’, ‘F−’, and ‘F/’ reflect whether the 
increased, decreased, and unchanged values of the variables 
on different dimensions are promising, respectively. For 
example, a larger value of   than   and   encourages an 
increase of x(i), whereas a larger value of   than   and   
encourages a decrease of x(i). 

c) With the values of ‘F+’, ‘F−’, and ‘F/’, generate a new 
solution EBest according to 

    

Otherwise                      

  and      

  and      




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


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i

x

FFFFsNx

FFFFsNx
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i

 (6) 

d) Update the fitness values and the representative 
position of the corresponding regions using E1, E2,…, Em 
and EBest. 

e) Update the step size S. If any one of E1, E2,…, Em and 
EBest improves the fitness of the best-so-far region, the 
orthogonal local search is considered to be a success, and the 
step size S is expended by multiplying a predefined real 
number EXP (EXP>1.0). Otherwise, the local search fails, 
and the step size S shrinks by multiplying a predefined real 
number SHR (SHR<1.0). 

3. EXPERIMENTS ON BENCHMARKS 
3.1 Benchmarks and Exerimental 
Configurations 

Experiments are conducted on both unimodal and 
multimodal benchmark functions to study the performance 
of the proposed IndexGA. The 13 test functions, which are 
given in Table IV, are all minimum problems taken from the 
work of Yao et al. [22]. Among these functions, f1-f7 are 
unimodal functions, and f8-f12 are multimodal functions with 
local optima. In Table IV, the column ‘  ’ presents the 
acceptable error, and only when the error of a solution 
reaches within [0, ] is the run considered successful. The 
minimum values of the functions are given in the column 
‘Opt’, and the upper and lower bounds are in the column 
‘domain’. Since all the 13 functions are dimensionwise 
scalable, both 2-dimensional and 4-dimensional functions 
are tested in the following experiments.  

In the experiments, three algorithms are tested, including 
the traditional real-coded GA (rGA), real-coded GA with 
OLS (rGA+OLS), and the proposed IndexGA. The 
rGA+OLS is a traditional GA that uses the same OLS as in 
IndexGA, and is tested to study the effect of the region-
based strategy of IndexGA. Each test is run 30 independent 
trials and a maximum of 8×104 FEs is limited. 

Table 4. Test Functions 
   Functions Opt Domain 
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Three parameters are shared by all of the rGA, 

Table 5.  Results Comparisons of the Three Test Algorithms on 2-dimensional Functions 

 rGA rGA+OLS IndexGA 
 Avg. Std dev. Eval Avg. Std dev. Eval Avg. Std dev. Eval 

f1 0.000220641 0.000744573 -- 8.9815×10-14 4.83653×10-13 1351 0 0 1203 

f2 0.000595222 0.000541483 -- 1.89834×10-13 1.01882×10-12 1513 0 0 1347 

f3 0.00262603 0.00255895 -- 4.20726×10-31 1.07264×10-30 1196 0 0 995 

f4 0.0106169 0.00699289 -- 4.3327×10-17 2.33323×10-16 1961 0 0 1496 

f5 0.757738 1.03022 -- 7.65226×10-6 2.97917×10-5 36669 6.82975×10-27 1.7529×10-27 16748 

f6 0 0 1215 0 0 179 0 0 267 

f7 0.000523491 0.00050037 1487 0.000634287 0.000545264 3158 0.0012897 0.00149373 432 

f8 -837.965 0.00111909 1264 -837.966 1.227×10-13 1080 -837.966 8.03887×10-14 940 

f9 2.7482×10-5 5.5309×10-5 13952 5.921×10-17 3.188×10-16 3223 0 0 919 

f10 0.00608043 0.00725876 44783 1.522×10-7 7.504×10-7 729 8.25569×10-16 8.86202×10-16 775 

f11 0.00439234 0.00368851 31021 0.00049307 0.0018449 3427 0.00641089 0.00369072 1355 

f12 4.55362e-005 0.000119837 17219 9.62248×10-20 3.04873×10-19 1579 2.35566×10-31 8.75812×10-47 628 

f13 9.65714e-005 0.000297685 16742 5.57078×10-13 2.99996×10-12 665 1.34969×10-32 5.47382×10-48 650 
 

Table 6.  Results Comparisons of the Three Test Algorithms on 4-dimensional Functions 

 rGA rGA+OLS IndexGA 
 Avg. Std dev. Eval Avg. Std dev. Eval Avg. Std dev. Eval 

f1 9.21302×10-5 0.000137975 -- 0 0 2287 0 0 2404 

f2 0.00117603 0.000818223 -- 1.52009×10-266 0 2584 0 0 2487 

f3 0.232851 0.166609 -- 2.52435×10-30 2.86897×10-30 2329 0 0 2292 

f4 0.0349781 0.0204387 -- 1.58595×10-225 0 3246 0 0 3068 

f5 1.47119 1.4443 -- 0.357517 0.68861 -- 0.00104904 0.00564849 72790 

f6 0 0 2603 0 0 564 0 0 796 

f7 0.00128997 0.00119848 7189 0.00130867 0.00116896 10355 0.000285295 0.00021327 1184 

f8 -1675.93 0.000429359 25510 -1675.93 2.87607×10-13 2088 -1675.93 1.76123×10-13 2556 

f9 0.000109476 0.000164333 28519 8.87442×10-11 4.77902×10-10 5175 0 0 3073 

f10 0.00844547 0.00607087 28290 3.43089×10-15 1.92416×10-15 1473 3.43089×10-15 2.13163×10-15 1602 

f11 0.0166971 0.00829507 40590 0.0121566 0.00778985 33203 0.0133832 0.00726012 18525 

f12 6.9769×10-5 0.000143477 13338 1.17783×10-31 4.37906×10-47 1981 1.21655×10-31 1.16169×10-32 1438 

f13 5.46616×10-5 9.88089×10-5 15399 1.34969×10-32 5.47382×10-48 1389 1.43187×10-32 2.23535×10-33 1561 
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Figure 4. Evolutionary curves of the three tested algorithms on 2-dimensional functions. 

1034



rGA+OLS, and the IndexGA: the size of population N, the 
crossover probability px, and the mutation probability pm. 
For these parameters, the settings are as follows: N=50, 
px=0.7, pm=0.01. The OLS in rGA+OLS and IndexGA 
involves three parameters: the initial step size S0, the 
expending rate EXP and the shrinking rate SHR for step size 
adjustment. These parameters are set as S0= (U−L)/R, 
EXP=(0.85)-1 and SHR=0.7, where U and L are the upper and 
lower bounds of solution space, and R is the resolution of 
space division.Specially for IndexGA, one more parameter, 
i.e. the resolution R for space division, is introduced. In the 
experiments, the resolution R is set as R=80 for unimodal 
functions f1-f7, and R=1600 for multimodal functions f8-f13. 

3.2 Results and Discussions 
The experimental results for the rGA, rGA+OLS, and the 

proposed IndexGA on 13 test functions are reported in Table 
V-VI, with Table V containing results on 2-dimensional 
functions and Table VI presenting results on 4-dimensional 
functions. In Table V-VI, the results are presented in three 
columns for each algorithm. The column ‘Avg.’ contains the 
mean value of solutions averaged over 30 independent runs, 
and the column ‘Std dev.’ reports the standard deviation of 
the solutions obtained. The column ‘Eval’ presents the 
average FEs needed to reach within the errors defined in 
Table IV. In each of the three columns, the best results 
among the three algorithms are marked in boldface. 

3.2.1 Comparison on Solution Accuracy 
According to Table V-VI, the traditional GA suffers from 

difficulty in solution refinement. In contrast, both rGA+OLS 
and IndexGA improve the rGA significantly in terms of 
mean results and standard deviation. Since rGA+OLS and 
IndexGA both employ the OLS strategy for local search, the 
results validate the effectiveness of OLS.  

For the comparison between rGA+OLS and IndexGA, in 
general, the IndexGA uses less FEs to reach the errors than 
rGAs+OLS on most of the 2-dimensional functions (f1-f5, f7-
f10, f12, f13) and the 4-dimensional functions (f1-f5, f7-f9). The 
results confirm that the index-based strategy in IndexGA is 
effective in improving the solution accuracy. This is possibly 
because the index-based strategy reduced the FEs in the 
global exploration, and thus provides more chances for on 
local learning in the promising regions. 

3.2.2 Comparison on Search Speed 
According to the results presented in the column ‘Eval’ 

in Table II-III and the evolutionary curves illustrated in Fig. 
4, the rGA+OLS and IndexGA consume much less FEs to 
reach the errors than rGA does. Especially on f1-f5, both 
rGA+OLS and IndexGA can achieve solutions within the 
errors on 2-dimensional functions, whereas the rGA can not 
reach the errors. These results show the effectiveness of 
OLS in accelerating convergence.  

For the comparison between rGA+OLS and IndexGA, 
the IndexGA uses less FEs to reach the predefined errors on 
most of the 2-dimensional functions (f1-f5, f7-f10, f12, f13) and 
the 4-dimensional functions (f2-f5, f7, f9, f11, f12). These results 

indicate faster convergence of IndexGA. The accelerated 
converging speed is possibly because the index-based 
strategy reduces the FEs in the global exploration. However, 
it should also be noted in Table II-III that the effect of 
IndexGA on reducing FEs weakens as the dimension of 
problem increases and the number of regions increases. 
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Figure 5. Evolutionary curves of the three tested algorithms on 

a PEC design problem. 

4. INDEXGA FOR PEC APPLICATION 
4.1 Design Example 

In this section, the indexGA is applied to the PEC design 
and optimization problem. The design example is a buck 
regulator with overcurrent protection [17][18]. A power 
conversion stage (PCS) and a feedback network (FN) 
comprise the circuit. The components R1, R2, RC3, R4, C2, C3 
and C4 in the FN are to be optimized by the traditional real-
coded GA and the proposed IndexGA.  

According to [17], the optimization problem can be 
formulated as a maximization problem defined as 
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. (7) 

Here FN=[R1, R2, RC3, R4, C2, C3, C4] is the solution 
vector, the upper and lower bounds of all the components 
are presented in Table IV. RL_min and RL_max, Vin_min and 
Vin_max are the upper and lower bounds of RL and vin, 
respectively.  The functions OF5, OF6, OF7 and OF8 are 
objective functions defined in [17].  

Three algorithms are tested on the problem, including the 
rGA, rGA+OLS, and the proposed index GA. Parameter 
configurations for all the tested algorithms are the same as 
that used in Section III, and all of the algorithms are 
executed 10 independent trials. For each trial, the maximum 
number of FEs is limited to 15000. 

4.2 Results 
The experimental results of the rGA, rGA+OLS, and the 

proposed index GA are reported in Table V. In Table V, the 
column ‘Avg.’ presents the averaged results of 10 
independent runs, the column ‘Best’ presents the best results 
obtained in the 10 trials, and the column ‘Std dev.’ reports 
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the standard deviation. Fig. 5 illustrates the evolutionary 
curves of the tested algorithms on functions f1, f3, f9, f12. 

According to Table V and Fig. 4, the two algorithms 
with OLS, i.e. rGA+OLS and IndexGA can obtain better 
average results than the traditional rGA. Moreover, the 
IndexGA outperforms rGA+OLS in terms of mean results, 
best result, and the standard deviation. These results further 
confirm the effectiveness of IndexGA when applied to the 
PEC problem. 

5. CONCLUSIONS 
A GA with index-based strategy to reduce the FEs in the 

reproduction procedure is proposed. The IndexGA divides 
the solution space into multiple regions, with each region 
identified by a unique index. Individuals in the IndexGA are 
redefined to be indexes instead of solutions. In the 
reproduction procedure, an evaluated region is never 
evaluated again. In addition, an OLS procedure is adopted to 
improve the fitness of promising regions. The IndexGA 
improves the performance of GAs in terms of both 
convergence rate and solution accuracy. The effectiveness of 
the index-based strategy and the OLS are verified by 
numerical experiments on 13 benchmark functions and an 
application problem of PEC. Moreover, the experimental 
results show that the IndexGA is especially promising on 
low-dimensional real-world application problems with 
expensive evaluation functions. 

The performance of IndexGA on high-dimensional 
problems deserves further study. In addition, the modified 
version of IndexGA can be applied to discrete real-world 
application problems. They are our future work. 

Table 7. Results Comparisons on the PEC Design Problem 

 Avg. Best Std dev. 
rGA 136.159 167.461 20.1519 

rGA+OLS 149.453 190.847 23.919 
IndexGA 178.987 192.238 22.8683 
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