
Index-based Genetic Algorithm for Continuous
Optimization Problems

Ni Chen and Jun Zhang (Corresponding Author)
Department of Computer Science, Sun Yat-sen University

Key Laboratory of Digital Life, Ministry of Education
Key Laboratory of Software Technology, Education Dept. of Guangdong

Province, P.R. China

junzhang@ieee.org

ABSTRACT
Accelerating the convergence of Genetic Algorithms (GAs) is a
significant and promising research direction of evolutionary
computation. In this paper, a novel Index-based GA (termed
IndexGA) is proposed for the acceleration of convergence by
reducing the number of fitness evaluations (FEs) in the
reproduction procedure, i.e. the process of crossover and mutation.
The algorithm divides the solution space into multiple regions,
each represented by a unique index. Individuals in the IndexGA
are redefined as indexes instead of solutions. In the reproduction
procedure, an evaluated region is never evaluated again, and the
fitness is directly obtained from the memory. Moreover, to
improve the fitness of the promising regions, the algorithm
performs an orthogonal local search (OLS) operator on the best-
so-far region in each generation. Numerical experiments have
been conducted on 13 benchmark functions and an application
problem of power electronic circuit (PEC) to investigate the
performance of IndexGA. The results show that the index-based
strategy and the OLS in IndexGA significantly enhance the
performance of GAs in terms of both convergence rate and
solution accuracy.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search – heuristic methods.

General Terms
Algorithms, Design, Experimentation

Keywords
Genetic algorithm, convergence acceleration, orthogonal
local search

1. INTRODUCTION
Genetic algorithms (GAs) [1]-[3] are a class of evolutionary
algorithms (EAs) for global optimization. A typical GA
maintains a population of solutions in the search space. In
each generation, the population undergoes the operations of

selection, crossover, and mutation. Characterized by their
robustness and the global convergence property, GAs have
been applied in many fields like neural network training [4],
image processing [5] and power electronics [6], etc.

However, as population-based optimization techniques,
traditional GAs suffer from slow convergence. The
algorithms consume large amounts of fitness evaluations
(FEs) before converging to the global optimum.

To overcome the weakness of slow convergence, there are
mainly two groups of GAs developed for enhancing the
algorithms in terms of convergence rate. The first group of
GAs is developed based on the fact that controlling the
crossover probability px and mutation probability pm can
benefit the search [7]. GAs in the first group control the two
parameters adaptively by utilizing information from the
fitness values [8], population distribution in search space [9],
or a second-level GA [10]. However, these algorithms do
not consider the improvement of solution refinement ability,
and the acceleration of convergence is limited. The second
group of GAs can be classified as the memetic algorithms
(MAs) [11]-[13], which employ an additional local learning
procedure [14]. The local learning procedure adopts three
types of strategies, i.e. static [14], adaptive [15], and self-
adaptive [16] strategies, according to the classification
scheme in [11]. The static strategy uses the same local
search operator during the whole search process, whereas
the local search operators are altered with the feedback of
algorithms in the adaptive and the self-adaptive strategies.
Although the additional procedure succeeds in both
improving the convergence rate and refining the solutions,
the reproduction procedure of GAs, i.e. the crossover
operator and the mutation operator, still consumes a large
number of FEs.

In many real-world applications like power electronic circuit
(PEC) optimization [6][9], the dimension of problem is low
whereas the evaluation of fitness is expensive. These
applications require the optimization algorithms to converge
globally with fewest FEs. However, it is observed that the
reproduction procedure of GAs usually reproduces similar
individuals, especially on low-dimensional problems. Since
the procedure focuses on global exploration instead of local
exploitation, frequent evaluations of these similar
individuals are a waste of the computational time.

The proposed IndexGA utilizes an index-based strategy to
reduce the FEs in the reproduction procedure, especially on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07...$10.00.

1029

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2001576.2001716&domain=pdf&date_stamp=2011-07-12

low-dimensional problems with expensive evaluation
functions. The algorithm divides the solution space into
multiple regions, and assigns a unique index to each region.
Individuals in the IndexGA are indexes instead of solutions,
with each index representing a region in the solution space.
The evaluation of an individual is defined to be the
evaluation of a representative position in the corresponding
region, and the algorithm memorizes the fitness of every
evaluated region in a hash table. In the reproduction
procedure, an evaluated region is never evaluated again, and
the fitness is directly obtained from the memory. This way,
the algorithm reduces the FEs in the reproduction process of
GAs.

To improve the fitness of the promising regions, in each
generation the algorithm performs an orthogonal local
search (OLS) operator on the best-so-far region. Based on
the orthogonal experimental design [19][20], the OLS views
the process of local search as conducting experiments for a
multifactor problem. According to an orthogonal array, the
method first generates a set of solutions in the neighborhood
for experiments. Then experiments are conducted by
evaluating these solutions, and the experimental results are
finally analyzed to estimate a promising position in the
neighborhood. The estimated promising position is not
necessarily included in the experiments. In addition, the
proposed method adopts a strategy to adjust the step size of
OLS adaptively.

In order to verify the effectiveness of the index-based
strategy and the OLS in IndexGA, experiments are
conducted on 13 benchmark functions and an application
problem of power electronic circuit (PEC) [17]. The
experimental results show that the proposed IndexGA is
promising.

The rest of this paper is organized as follows. Section II
describes the IndexGA in detail, followed by experiments on
benchmark functions in Section III. In Section IV, the
performance of IndexGA is further tested by application to a
PEC design problem. Section V concludes the paper.

2. INDEX-BASED GA
2.1 Solution Space Division and Index

Assignment
2.1.1 Solution Space Division

The IndexGA divides the solution space into multiple
regions, and assigns each region an index. An index is
defined as an integer that can be used as the unique
representation of one region. In this paper, the strategies
adopted for space division and index assignment are as
follows.

For the division of D-dimensional continuous solution
space with upper bounds U =[U(1), U(2),…, U(D)] and lower
bounds L=[L(1), L(1),…, L(D)], the i-th dimension of the space
is uniformly partitioned into R intervals [L(i),
L(i)+(U(i)−L(i))/R],[L(i)+(U(i)−L(i))/R,L(i)+2×(U(i)−L(i))/R], …,
[L(i)+(R−1)×(U(i) −L(i))/R, U(i)]. Each region of the space is a
hyper rectangle, which takes one of the R intervals on each

dimension as its legal range for the corresponding variable.
Thus, the divided solution space consists of RD different
regions, where R is the resolution of space partition.

According to the space division strategy, one region has
the upper bound L(i)+(k(i)+1)×(U(i)−L(i))/R and the lower
bound L(i)+k(i)×(U(i)−L(i))/R on the i-th dimension. Here we
define the vector [k(1), k(2),…, k(D)] (0≤k(i)<R, i=1, 2, …, D)
as the key vector of the region, which can be used to
represent the region uniquely. An example of space division
in 2-dimensional solution space and the key vectors for all
the regions is illustrated in Fig. 1.

2.1.2 Index Assignment

In IndexGA, the index is utilized to identify a region.
Since the fitness of each region is stored in a hash table, the
index is also used as the key for hashing.

To assign every region an index, the key vector of the
region is coded into an integer. For a key vector K=[k(1),
k(2),…, k(D)], an integer nK is calculated through the equation

1

1

D
i

K i
i

n k R 



  (1)

where R is the resolution of space division. Take a key
vector Ke=[2, 1] of a region in Fig. 1 for example, when
R=3, the corresponding index is 0 12 3 1 3 5Ken      .
Note that two different regions in the solution space will
never share the same index according to the above coding
strategy.

2.2 Evolutionary Process of IndexGA
The traditional real-coded GAs maintain a population of

N individuals, i.e. N positions in the D-dimensional
solution space. In each generation, the operations of
selection and reproduction, namely crossover and mutation,
are performed on the population. The algorithm evaluates
every individual reproduced in the crossover and mutation
operators.

Differently, in IndexGA, the individuals in a population

are redefined to be indexes instead of solutions. A
population is comprised of N indexes, with each
representing a region in the solution space. The evaluation of
an individual is defined as the evaluation of a representative
position in the corresponding region. The representative
position together with the fitness of every evaluated region
is memorized in a hash table. In the reproduction procedure,

Figure 1. Regions in a 2-dimensional space when

resolution R=3.

1030

a reproduced individual is evaluated when and only when
the region has never been evaluated. For evaluated regions,
the fitness values are directly obtained from the memory. To
improve the fitness of the promising regions, in each
generation the algorithm performs an OLS operator on the
best-so-far region.

The flowchart of IndexGA is given in Fig. 2. According
to the figure, the basic flow of IndexGA is the same as that

of traditional GA, except that in IndexGA an additional
procedure of local search is performed. The flow of
IndexGA is described in detail as follows.

Step 1) Initialization: N different regions are randomly
picked from the solution space to form the initial population
P0, where N is the size of population. For each region, the
algorithm calculates its index, randomly generates one
position in the region as its representative position, and
evaluates the region. The fitness and the representative
position of the region are memorized in a hash table.

Moreover, the step size of local search is initialized to be

S=(U−L)/R, (2)

where U and L are the upper and lower bounds of the
solution space, and R is the resolution of space division. The
counter of generation is set as gen=0.

Step 2) Reproduction: The algorithm reproduces N
offspring through crossover and mutation to form Ogen in the
following way. a) Two individuals are selected for
reproduction from Pgen using a binary tournament strategy.
Reselect if two identical indexes are selected. This way,
crossover will never happen between identical regions. b)
Two offspring are reproduced through crossover and
mutation on the two selected regions. The crossover operator
is performed with a probability of px, and the mutation
operator is performed with a probability of pm. When a
region is reproduced, the algorithm immediately calculates
its index. c) Terminate if N offspring are generated,
otherwise go back to a).

Note that although the individuals in IndexGA are
indexes instead of solutions, the reproduction operators of
traditional real-coded GAs can still be utilized. The
crossover and mutation operators are performed on the
representative positions in the regions, thus traditional
operators like blend crossover (BLX) [21] and uniform
mutation for real-valued individuals can be directly applied.

Step 3) Evaluation: For each of the individuals in Ogen,
the region is evaluated if and only if it has never been
evaluated. Since the fitness evaluated regions are memorized
in a hash table, the fitness values of these regions in Ogen can
be immediately obtained from the memory.

Step 4) Selection: According to the fitness values, N
regions are selected from Pgen  Ogen to comprise Pgen+1.

The selection operator employed in IndexGA adopts elitism
and never selects duplicates. Traditional selection operators
like tournament selection can be modified in the following
way to satisfy the above requirement. a) The best-so-far
region is selected in the first place. b) After a region with
index n is selected, all the regions in PgenOgen that share
the same index n are removed from the previous population.

Step 5) Local search: Since a region will never be
reevaluated in the reproduction procedure, the fitness of a

Begin

Initialize population P0,
step size S, gen←0

Reproduce Ogen from Pgen

Select Pgen+1 from Ogen Pgen

Evaluate Ogen



Local search on the best-so-far
solution

End

Terminate?

gen←gen+1

No

Yes

Figure 2. Basic flow of IndexGA.

Table 1. An Example of Multifactor Problem

Factors

Temperature Irrigation
Amount of
fertilizer

20℃ 10mm 100g/m2
25℃ 20mm 150g/m2 Levels
30℃ 30mm 200g/m2

Table 2. An Multifactor Problem of Local Search

Factors
1st dimension 2nd dimension 3rd dimension

+ + +

/ / / Levels

− − −

Table 3. Orthogonal Experimental Design and the
Experimental Results for the Problem in TABLE II

Factor No. of
Experiment 1st

dimension
2nd

dimension
3rd

dimension
Fitness

1 − − − 10
2 − / − 15
3 − + + 30
4 / − − 15
5 / / + 30
6 / + − 25
7 + − + 30
8 + / − 25
9 + + / 35
F+ 90 90 90
F/ 70 70 70
F− 55 55 55

Estimated Best
Combination

+ + +

1031

region never improves if local search is not performed. In
IndexGA, the OLS is applied to the best-so-far region for
fitness improvement. The method is based on orthogonal
experimental design, and its detailed description will be
presented in the following part.

Step 6) Termination Check: If the number of FEs
exceeds the predefined maximum number, the algorithm
terminates. Otherwise, increase gen by 1, go back to step 2)
and start a new generation.

The orthogonal local search (OLS) is a local learning
strategy for the fitness improvement of a region. Based on
the orthogonal experimental design [19][20], the method
considers the local search in a neighborhood to be a
multifactor problem. The OLS first generates a set of
solutions for experiments according to an orthogonal array.
Then the procedure conducts experiments by evaluating
these solutions, and finally analyzes the experimental results
to estimate a promising position in the neighborhood.

2.3 OLS

2.3.1 Multifactor Problems
The orthogonal experimental design technique is a

method for experiment planning on multifactor problems
[19][20]. The multifactor problems involve multiple factors
and multiple levels for each factor. To solve these problems,
experiments are conducted to find the best combination of
levels. An example of multifactor problem in agriculture is
given in Table I, which shows three factors, i.e. temperature,
irrigation and fertilizer, and three levels for each factor. To
improve the yield of crops, experiments are conducted to
find a best combination of levels for the factors. Since there
are totally combinations, a maximum number of 3×3×3=27
experiments are required.

The local search in the neighborhood of a solution can be
considered as a multifactor problem, an example of which is
given in Table II. In Table II, each dimension of the 3-
dimensional search space is a factor, the increased,
unchanged and decreased values (denoted as ‘+’, ‘/’ and ‘−’,
respectively) of the variable on the corresponding dimension
are considered as three levels. To find the combination of
levels with best fitness, a maximum number of 27
experiments (i.e. 27 evaluations) are required.

2.3.2 Orthogonal Experimental Design
For a multifactor problem with N factors and Q levels,

the total number of combinations QN grows exponentially
with N. Thus, experimenting on all the combinations
becomes infeasible when N is large.

The orthogonal experimental design technique is
introduced to plan the experiments for multifactor
problems. Based on the orthogonal array [19][20], the
method designs M (M<QN) experiments to represent all the
QN combinations. Moreover, it analyzes the experimental
results to estimate the best combination. The estimated best
combination is not necessarily included in the experiments.
For more detailed information on orthogonal array and

orthogonal experimental design, interested readers can refer
to [19][20].

As an example, Table III presents the experiments
designed for the problem in Table II according to an
orthogonal array. The geometric interpretation of Table III
is illustrated in Fig. 3. In Table III, 9 instead of all the 27
experiments are planned. For each experiment, the symbol
‘+’, ‘−’ and ‘/’ denotes the three levels, i.e. the increased,
decreased and unchanged values of the variable on the
corresponding dimension, respectively. It can be observed
from Table III and Fig. 3 that the designed experiments
satisfy the following rules. a) For any two factors, each
combination of levels appears the same number of times. b)
For any factor, each level appears the same number of
times. Therefore, experiments conducted according to Table
III can well represent all the possible combinations of
factors.

In Table III, the results for experiments, i.e. the fitness
values, are given in the column ‘Fitness’. The rows ‘F+’,
‘F−’, and ‘F/’ calculate the total fitness when the
corresponding factor takes the levels ‘+’, ‘−’ and ‘/’,
respectively. For example, F+ on the first dimension is the
total fitness of the 7-th, 8-th, and 9-th experiments.

The estimated best combination of factors is presented
in the row ‘Estimated Best Combination’, which is chosen
based on the rows ‘F+’, ‘F−’, and ‘F/’. For each factor, the
level with the best F-value is chosen. In this example, the
best combination is the level ‘+’ for all the factors, which is
not included in the 9 experiments.

2.3.3 Procedure of OLS
The OLS can be considered as conducting experiments

for a multifactor problem and analyzing the results for the
best combination. The procedure is described in detail as
follows.

a) The representative position of the best-so-far region is
denoted as X=[x(1), x(2), …, x(D)]. Generate a set of m
positions E1, E2, …, Em in the solution space according to
the orthogonal array T. To generate the k-th solution Ek, for
each ‘+’, ‘−’ and ‘/’ in (i=1, 2, …, D), set the value of x(i)
to be x(i)+|N(0, s(i))|, x(i)−|N(0, s(i))|, and x(i), respectively. Here

Figure 3. Geometric interpretation of TABLE III.

1032

S=[s(1), s(2), …, s(D)] is the step size for local search, and N(0,
s(i)) is a real number generated according to normal
distribution with mean value of 0 and standard deviation of
s(i).

b) To estimate a promising position in the neighborhood,
evaluate E1, E2, … Em to obtain the fitness values f1, f2,…,
fm. Define three D-dimensional vectors ‘F+’, ‘F−’, and ‘F/’
according to the equations.

()

T ' '

 (1, 2,...,)
i

j
j

ij

F f j D
 

  (3)

()

T ' '

 (1,2,...,)
i

j
j

ij

F f j D
 

  (4)

()
/

T '/ '

 (1, 2,...,)
i

j
j

ij

F f j D


  (5)

The vectors ‘F+’, ‘F−’, and ‘F/’ reflect whether the
increased, decreased, and unchanged values of the variables
on different dimensions are promising, respectively. For
example, a larger value of than and encourages an
increase of x(i), whereas a larger value of than and
encourages a decrease of x(i).

c) With the values of ‘F+’, ‘F−’, and ‘F/’, generate a new
solution EBest according to

Otherwise

 and

 and














 



)(

)(
/

)()()()()(

)(
/

)()()()(

)(|),0(|

|),0(|
)(

i

iiiiii

iiiii

i

x

FFFFsNx

FFFFsNx

Ebest

i

 (6)

d) Update the fitness values and the representative
position of the corresponding regions using E1, E2,…, Em
and EBest.

e) Update the step size S. If any one of E1, E2,…, Em and
EBest improves the fitness of the best-so-far region, the
orthogonal local search is considered to be a success, and the
step size S is expended by multiplying a predefined real
number EXP (EXP>1.0). Otherwise, the local search fails,
and the step size S shrinks by multiplying a predefined real
number SHR (SHR<1.0).

3. EXPERIMENTS ON BENCHMARKS
3.1 Benchmarks and Exerimental
Configurations

Experiments are conducted on both unimodal and
multimodal benchmark functions to study the performance
of the proposed IndexGA. The 13 test functions, which are
given in Table IV, are all minimum problems taken from the
work of Yao et al. [22]. Among these functions, f1-f7 are
unimodal functions, and f8-f12 are multimodal functions with
local optima. In Table IV, the column ‘  ’ presents the
acceptable error, and only when the error of a solution
reaches within [0,] is the run considered successful. The
minimum values of the functions are given in the column
‘Opt’, and the upper and lower bounds are in the column
‘domain’. Since all the 13 functions are dimensionwise
scalable, both 2-dimensional and 4-dimensional functions
are tested in the following experiments.

In the experiments, three algorithms are tested, including
the traditional real-coded GA (rGA), real-coded GA with
OLS (rGA+OLS), and the proposed IndexGA. The
rGA+OLS is a traditional GA that uses the same OLS as in
IndexGA, and is tested to study the effect of the region-
based strategy of IndexGA. Each test is run 30 independent
trials and a maximum of 8×104 FEs is limited.

Table 4. Test Functions
  Functions Opt Domain

10-

12
2

1 1
D
i if x 0 [-100,100]D

10-8 2 1 1| | | |D D
i i i if x x    0 [-10,10]D

10-8
2

3 1 1()D i
i j jf x   0 [-100,100]D

10-8 4 max (| |, 1)i if x i D   0 [-100,100]D

10-8 1 2 2 2
5 1 1[100() (1)]D

i i i if x x x
     0 [-30,30]D

U
ni

m
od

al

10-2
2

6 1(0.5)D
i if x     0 [-100,100]D

 10-2 4
7 1

[0,1)
D

ii
f ix random  0 [-1.28,1.28]D

10-2 8 1
sin(| |)

D
i ii

f x x 
-

418.983D
[-500,500]D

10-3 2
9 1

[() 10cos(2) 10]
D

i ii
f x x   0 [-5.12,5.12]D

10-2 2
10 1 1

1 1
20exp 0.2 () exp cos(2) 20

D D
i ii i

f x x e
D D

 

               
  0 [-32,32]D

10-2 2
11 1 1

1 / 4000 cos(/)
DD

i ii i
f x x i 

    0 [-600,600]D

10-3
 12 2 2 2

12 1 11

1

10sin () (1) [1 10sin () (1)]

 (,10,100,4)

D
j j Dj

D
ji

f y y y y
D

u x

  




     






* 0 [-50,50]D

M
ul

ti
m

od
al

10-3  
2

1
13 1 12 2 2 2

11

10sin (3)1
(,5,100,4)

10 (1) [1 sin (3)] (1) 1 sin (2)

D
jD i

j j D Dj

x
f u x

x x x x



  


    
      


*

0 [-50,50]D

1033

Three parameters are shared by all of the rGA,

Table 5. Results Comparisons of the Three Test Algorithms on 2-dimensional Functions

 rGA rGA+OLS IndexGA
 Avg. Std dev. Eval Avg. Std dev. Eval Avg. Std dev. Eval

f1 0.000220641 0.000744573 -- 8.9815×10-14 4.83653×10-13 1351 0 0 1203

f2 0.000595222 0.000541483 -- 1.89834×10-13 1.01882×10-12 1513 0 0 1347

f3 0.00262603 0.00255895 -- 4.20726×10-31 1.07264×10-30 1196 0 0 995

f4 0.0106169 0.00699289 -- 4.3327×10-17 2.33323×10-16 1961 0 0 1496

f5 0.757738 1.03022 -- 7.65226×10-6 2.97917×10-5 36669 6.82975×10-27 1.7529×10-27 16748

f6 0 0 1215 0 0 179 0 0 267

f7 0.000523491 0.00050037 1487 0.000634287 0.000545264 3158 0.0012897 0.00149373 432

f8 -837.965 0.00111909 1264 -837.966 1.227×10-13 1080 -837.966 8.03887×10-14 940

f9 2.7482×10-5 5.5309×10-5 13952 5.921×10-17 3.188×10-16 3223 0 0 919

f10 0.00608043 0.00725876 44783 1.522×10-7 7.504×10-7 729 8.25569×10-16 8.86202×10-16 775

f11 0.00439234 0.00368851 31021 0.00049307 0.0018449 3427 0.00641089 0.00369072 1355

f12 4.55362e-005 0.000119837 17219 9.62248×10-20 3.04873×10-19 1579 2.35566×10-31 8.75812×10-47 628

f13 9.65714e-005 0.000297685 16742 5.57078×10-13 2.99996×10-12 665 1.34969×10-32 5.47382×10-48 650

Table 6. Results Comparisons of the Three Test Algorithms on 4-dimensional Functions

 rGA rGA+OLS IndexGA
 Avg. Std dev. Eval Avg. Std dev. Eval Avg. Std dev. Eval

f1 9.21302×10-5 0.000137975 -- 0 0 2287 0 0 2404

f2 0.00117603 0.000818223 -- 1.52009×10-266 0 2584 0 0 2487

f3 0.232851 0.166609 -- 2.52435×10-30 2.86897×10-30 2329 0 0 2292

f4 0.0349781 0.0204387 -- 1.58595×10-225 0 3246 0 0 3068

f5 1.47119 1.4443 -- 0.357517 0.68861 -- 0.00104904 0.00564849 72790

f6 0 0 2603 0 0 564 0 0 796

f7 0.00128997 0.00119848 7189 0.00130867 0.00116896 10355 0.000285295 0.00021327 1184

f8 -1675.93 0.000429359 25510 -1675.93 2.87607×10-13 2088 -1675.93 1.76123×10-13 2556

f9 0.000109476 0.000164333 28519 8.87442×10-11 4.77902×10-10 5175 0 0 3073

f10 0.00844547 0.00607087 28290 3.43089×10-15 1.92416×10-15 1473 3.43089×10-15 2.13163×10-15 1602

f11 0.0166971 0.00829507 40590 0.0121566 0.00778985 33203 0.0133832 0.00726012 18525

f12 6.9769×10-5 0.000143477 13338 1.17783×10-31 4.37906×10-47 1981 1.21655×10-31 1.16169×10-32 1438

f13 5.46616×10-5 9.88089×10-5 15399 1.34969×10-32 5.47382×10-48 1389 1.43187×10-32 2.23535×10-33 1561

0 20000 40000 60000 80000
10-180
10-170
10-160
10-150
10-140
10-130
10-120
10-110
10-100
10-90
10-80
10-70
10-60
10-50
10-40
10-30
10-20
10-10
100

0 20000 40000 60000 80000
10-180
10-170
10-160
10-150
10-140
10-130
10-120
10-110
10-100
10-90
10-80
10-70
10-60
10-50
10-40
10-30
10-20
10-10
100

0 20000 40000 60000 80000

10-12

10-7

10-2

0 20000 40000 60000 80000
10-32

10-22

10-12

10-2

F
it

ne
ss

FEs
(a) f

1

 rGA
 rGA+OLS
 IndexGA

F
it

ne
ss

FEs
(b)f

3

 rGA
 rGA+OLS
 IndexGA

Fi
tn

es
s

FEs
(c) f

9

 rGA
 rGA+OLS
 IndexGA

Fi
tn

es
s

FEs
(d) f

12

 rGA
 rGA+OLS
 IndexGA

Figure 4. Evolutionary curves of the three tested algorithms on 2-dimensional functions.

1034

rGA+OLS, and the IndexGA: the size of population N, the
crossover probability px, and the mutation probability pm.
For these parameters, the settings are as follows: N=50,
px=0.7, pm=0.01. The OLS in rGA+OLS and IndexGA
involves three parameters: the initial step size S0, the
expending rate EXP and the shrinking rate SHR for step size
adjustment. These parameters are set as S0= (U−L)/R,
EXP=(0.85)-1 and SHR=0.7, where U and L are the upper and
lower bounds of solution space, and R is the resolution of
space division.Specially for IndexGA, one more parameter,
i.e. the resolution R for space division, is introduced. In the
experiments, the resolution R is set as R=80 for unimodal
functions f1-f7, and R=1600 for multimodal functions f8-f13.

3.2 Results and Discussions
The experimental results for the rGA, rGA+OLS, and the

proposed IndexGA on 13 test functions are reported in Table
V-VI, with Table V containing results on 2-dimensional
functions and Table VI presenting results on 4-dimensional
functions. In Table V-VI, the results are presented in three
columns for each algorithm. The column ‘Avg.’ contains the
mean value of solutions averaged over 30 independent runs,
and the column ‘Std dev.’ reports the standard deviation of
the solutions obtained. The column ‘Eval’ presents the
average FEs needed to reach within the errors defined in
Table IV. In each of the three columns, the best results
among the three algorithms are marked in boldface.

3.2.1 Comparison on Solution Accuracy
According to Table V-VI, the traditional GA suffers from

difficulty in solution refinement. In contrast, both rGA+OLS
and IndexGA improve the rGA significantly in terms of
mean results and standard deviation. Since rGA+OLS and
IndexGA both employ the OLS strategy for local search, the
results validate the effectiveness of OLS.

For the comparison between rGA+OLS and IndexGA, in
general, the IndexGA uses less FEs to reach the errors than
rGAs+OLS on most of the 2-dimensional functions (f1-f5, f7-
f10, f12, f13) and the 4-dimensional functions (f1-f5, f7-f9). The
results confirm that the index-based strategy in IndexGA is
effective in improving the solution accuracy. This is possibly
because the index-based strategy reduced the FEs in the
global exploration, and thus provides more chances for on
local learning in the promising regions.

3.2.2 Comparison on Search Speed
According to the results presented in the column ‘Eval’

in Table II-III and the evolutionary curves illustrated in Fig.
4, the rGA+OLS and IndexGA consume much less FEs to
reach the errors than rGA does. Especially on f1-f5, both
rGA+OLS and IndexGA can achieve solutions within the
errors on 2-dimensional functions, whereas the rGA can not
reach the errors. These results show the effectiveness of
OLS in accelerating convergence.

For the comparison between rGA+OLS and IndexGA,
the IndexGA uses less FEs to reach the predefined errors on
most of the 2-dimensional functions (f1-f5, f7-f10, f12, f13) and
the 4-dimensional functions (f2-f5, f7, f9, f11, f12). These results

indicate faster convergence of IndexGA. The accelerated
converging speed is possibly because the index-based
strategy reduces the FEs in the global exploration. However,
it should also be noted in Table II-III that the effect of
IndexGA on reducing FEs weakens as the dimension of
problem increases and the number of regions increases.

0 2000 4000 6000 8000 10000 12000 14000 16000

100

110

120

130

140

150

160

170

180

190

F
it

ne
ss

FEs

 rGA
 rGA+OLS
 IndexGA

Figure 5. Evolutionary curves of the three tested algorithms on

a PEC design problem.

4. INDEXGA FOR PEC APPLICATION
4.1 Design Example

In this section, the indexGA is applied to the PEC design
and optimization problem. The design example is a buck
regulator with overcurrent protection [17][18]. A power
conversion stage (PCS) and a feedback network (FN)
comprise the circuit. The components R1, R2, RC3, R4, C2, C3
and C4 in the FN are to be optimized by the traditional real-
coded GA and the proposed IndexGA.

According to [17], the optimization problem can be
formulated as a maximization problem defined as

)(

)],,(),,(),,([)(

8

, ,
765

max_

min_

max_

min_

FNOF

FNvRLOFFNvROFFNvROFFN
L

LLL

in

ininin

R

RRR

V

vvv
ininLinLF



  
 

 

. (7)

Here FN=[R1, R2, RC3, R4, C2, C3, C4] is the solution
vector, the upper and lower bounds of all the components
are presented in Table IV. RL_min and RL_max, Vin_min and
Vin_max are the upper and lower bounds of RL and vin,
respectively. The functions OF5, OF6, OF7 and OF8 are
objective functions defined in [17].

Three algorithms are tested on the problem, including the
rGA, rGA+OLS, and the proposed index GA. Parameter
configurations for all the tested algorithms are the same as
that used in Section III, and all of the algorithms are
executed 10 independent trials. For each trial, the maximum
number of FEs is limited to 15000.

4.2 Results
The experimental results of the rGA, rGA+OLS, and the

proposed index GA are reported in Table V. In Table V, the
column ‘Avg.’ presents the averaged results of 10
independent runs, the column ‘Best’ presents the best results
obtained in the 10 trials, and the column ‘Std dev.’ reports

1035

the standard deviation. Fig. 5 illustrates the evolutionary
curves of the tested algorithms on functions f1, f3, f9, f12.

According to Table V and Fig. 4, the two algorithms
with OLS, i.e. rGA+OLS and IndexGA can obtain better
average results than the traditional rGA. Moreover, the
IndexGA outperforms rGA+OLS in terms of mean results,
best result, and the standard deviation. These results further
confirm the effectiveness of IndexGA when applied to the
PEC problem.

5. CONCLUSIONS
A GA with index-based strategy to reduce the FEs in the

reproduction procedure is proposed. The IndexGA divides
the solution space into multiple regions, with each region
identified by a unique index. Individuals in the IndexGA are
redefined to be indexes instead of solutions. In the
reproduction procedure, an evaluated region is never
evaluated again. In addition, an OLS procedure is adopted to
improve the fitness of promising regions. The IndexGA
improves the performance of GAs in terms of both
convergence rate and solution accuracy. The effectiveness of
the index-based strategy and the OLS are verified by
numerical experiments on 13 benchmark functions and an
application problem of PEC. Moreover, the experimental
results show that the IndexGA is especially promising on
low-dimensional real-world application problems with
expensive evaluation functions.

The performance of IndexGA on high-dimensional
problems deserves further study. In addition, the modified
version of IndexGA can be applied to discrete real-world
application problems. They are our future work.

Table 7. Results Comparisons on the PEC Design Problem

 Avg. Best Std dev.
rGA 136.159 167.461 20.1519

rGA+OLS 149.453 190.847 23.919
IndexGA 178.987 192.238 22.8683

6. ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China (NSFC) No. 61070004, and by
NSFC Joint Fund with Guangdong under Key Project
U0835002. The authors are with the Key Laboratory of
Digital Life, Ministry of Education, China, and also with the
Key Laboratory of Software technology, Education
Department of Guangdong Province. The corresponding
author is Jun Zhang, email: junzhang@ieee.org.

7. REFERENCES
[1] Holland, J. H. "Adaptation in natural and artificial systems". Ann

Arbor: Univ. Michigan Press, 1975.

[2] Holland, J. H. Genetic algorithms. Scientific American, 1992, pp.
44-50.

[3] Cavicchio, D. J. Adaptive search using simulated evolution.
Ph.D. Dissertation, University of Michigan, 1970.

[4] Leung, Frank H.F., Lam, H.K., Ling, S. H. and Tam, Peter K.S.,
"Tuning of the structure and parameters of a neural network
using an improved genetic algorithm," IEEE Trans. on Neural
Networks, Vol. 14, No.1, pp. 79-86, 2003.

[5] Maulik, U. "Medical image segmentation using genetic
algorithms," IEEE Trans. on Infomation technology in
biomedicine, Vol. 13, No.2, pp.166-173, 2009.

[6] Zhang, J., Chung, Henry S. H., Lo, W. L. "Pseudocoevolutionary
genetic algorithms for power electronic circuits optimization,"
IEEE Trans. on Syst, Man, and Cybrnetics-Part C: Applications
and reviews, Vol. 36, No.4, pp.590-598, 2006.

[7] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter
control in evolutionary algorithms,” IEEE Trans. on Evol.
Comput., vol. 3, no. 2, pp. 124–141, Jul. 1999.

[8] Srinivas, M. and Patnaik, L.M. "Adaptive probabilities of
crossover and mutation in genetic algorithms," IEEE Trans. on
Syst, Man, and Cybernetics, Vol. 24, pp. 656-667, 1994.

[9] Zhang, J., Chung, Henry S. H., Lo, W. L. "Clustering-based
adaptive crossover and mutation probabilities for Genetic
Algorithms," IEEE Trans. on Evol. Comput., Vol. 11, pp. 326-
335, 2007.

[10] John J. Grefenstette, “Optimization of control parameters for
genetic algorithms,” IEEE Trans. on Syst, Man, and Cybernetics,
Vol. SMC-16, pp.122-128, 1986.

[11] Krasnogor, Natalio and Smith, Jim, “A tutorial for competent
memetic algorithms: model, taxonomy, and design issues,” IEEE
Trans. on Evol. Comput., Vol. 9, No. 5, 2005.

[12] Ong, Yew Soon and Keane, Andy J., “Meta-lamarckian learning
in memetic algorithms,” IEEE Trans. on Evol. Comput., Vol. 8,
No. 2, 2004.

[13] Smith, J. E., “Coevolving memetic algorithms: a review and
progress Report,” Systems, Man, and Cybernetics, Part B:
Cybernetics, vol. 37, pp. 6-17, 2007.

[14] Holstein, D. and Moscato, P., “Memetic algorithms using guided
local search: A case study,” in New Ideas in Optimization, D.
Corne, F. Glover, and M. Dorigo, Eds. New York: McGraw-Hill,
pp. 235–244, 1999.

[15] Krasnogor, N., Blackburne, B., Burke, E., and Hirst, J.,
“Multimeme algorithms for protein structure prediction,” in
Lecture Notes in Computer Science, 2002, Proc. Parallel
Problem Solving From Nature—VII, pp. 769–778.

[16] Krasnogor, N. and Gustafson, S., “A study on the use of “self-
generation” in memetic algorithms,” Natural Comput., vol. 3, no.
1, pp. 53–76, 2004.

[17] Zhang, J., Chung, S. H., Lo, W. L., Hui, S. Y. R., and Wu, A.,
“Implementation of a decoupled optimization technique for
design of switching regulators using genetic algorithm,” IEEE
Trans. Power Electron., vol. 16, no. 5, pp. 752-763, Nov. 2001.

[18] Zhang, J., Shi, Y., and Zhan, Z. H., “Power electronic circuits
design: A particle swarm optimization approach,” The 7th
International Conference on Simulated Evolution And Learning,
X. Li et al. (Eds.): SEAL 2008, LNCS 5361, pp. 605–614, 2008.

[19] Montgomery, D. C., Design and Analysis of Experiments, 3rd
ed. New York: Wiley (1991).

[20] Hicks, C. R., Fundamental Concepts in the Design of
Experiments, 4th ed. TX: Saunders College Publishing (1993).

[21] Eshelman, L. J. and Schaffer, J. D., “Real-coded genetic
algorithms and interval-schemata,” in Foundations of Genetic
Algorithms 2. San Mateo, CA: Morgan Kaufman, 1993, pp. 187–
202.

[22] Yao, X., Liu, Y., and Lin, G. M., “Evolutionary programming
made faster,” IEEE Trans. on Evol. Comput., vol. 3, no. 2, pp.
82–102, Jul. 1999.

1036

