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ABSTRACT 
The selection of parameters in time-delay embedding for phase 
space reconstruction is crucial to chaotic time series analysis and 
forecasting. Although various methods have been developed for 
determining the parameters of embedding dimension and time 
delay for uniform embedding, the study of parameter selection for 
non-uniform embedding is progressed at a slow pace. In a non-
uniform embedding which enables different dimensions in the 
phase space to have different time delays, the optimal selection of 
time delays presents a difficult optimization problem with 
combinatorial explosion. To solve this problem, this paper 
proposes an ant colony optimization (ACO) approach. The 
advantages of ACO for the embedding parameter selection 
problem are in two aspects. First, as ACO builds solution in an 
incremental way, it does not need to use a fixed embedding 
dimension as the encoding length of a solution. Instead, both the 
embedding dimension and the time delays can be optimized 
together. Second, ACO enables the use of problem-based 
heuristics. Therefore heuristics designed based on the original 
observed time series can be used to accelerate the search speed of 
ACO. Experimental results show that the proposed algorithm is 
promising. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control and 
Search – Heuristic methods; G.3 [Probability and Statistics]: 
Time Series Analysis; 

General Terms: Algorithms 

Keywords: Attractor embedding, time series forecasting, 
phase space reconstruction, non-uniform embedding, ant colony 
optimization (ACO) 

1. INTRODUCTION 
A time series is a chronological sequence of data points that are 

measured on a particular variable at successive times. 
Applications of time series can be found in many areas. The 

research into time series analysis and forecasting has attracted a 
considerable amount of research effort during the last decades [1]-
[3]. To predict future values of time series variables based on 
previous observed data, one has to identify the nature of the 
phenomenon that the observed data represent. Usually, time series 
are driven by some underlying dynamical systems, in which the 
state changes with time as a function of its current state [4]. As 
the dynamical system evolves, the set of attracting states forms an 
attractor. If the dynamical system is linear, the corresponding 
attractor exhibits a regular appearance. Thus it is straightforward 
to extract meaningful statistics to characterize the time series. 
However, in many real-world observed time series, the intrinsic 
dynamics is nonlinear [5][6]. The states of a nonlinear dynamical 
system may evolve to a chaotic attractor, exhibiting highly 
irregular geometrical pattern and becoming sensitive to initial 
conditions [7]. As such, analysis of the chaotic time series derived 
from nonlinear dynamical systems has become a challenge in 
many fields of science and engineering [8]. 

One of the most important techniques for the investigation of 
chaotic time series is time delay embedding [1][9]. The technique 
is theoretically supported by the celebrated embedding theorem of 
Takens [10] and its extensions [11]. The theorems showed that for 
a time series of scalar observations of a dynamical system, it is 
possible to reconstruct its underlying dynamics in a phase space 
by a time delay embedding with sufficiently large dimension. To 
correctly reconstruct the attractor in phase space, a key issue is to 
find suitable embedding parameters, i.e., the embedding 
dimension m and the time delay τ. Various methods for optimal 
selection of embedding parameters have been proposed in the 
literature. Methods for selecting an embedding dimension include 
the false nearest neighbor (FNN) method [12], G-P method [13], 
and Cao’s method [14]. Methods for selecting a time delay 
include the correlation method [15] and the averaged mutual 
information (AMI) method [16]. In addition, some methods that 
set the values of embedding dimension and time delay 
simultaneously have also been proposed [18]. However, even with 
these methods, it is found that no single method outperforms all 
others in all situations [1][5], and the research on designing better 
methods for phase space reconstruction continuous [17]. 

In the above mentioned methods for time delay embedding, 
there is an assumption that the time delay in each dimension 
grows uniformly by the same time delay value τ. Therefore, this 
traditional kind of time delay embedding is called uniform 
embedding. Although uniform embedding is simple and effective 
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for classic chaotic dynamical systems such as the Lorenz and 
Rossler systems, Judd and Mees [19] pointed out that uniform 
embedding has difficulties in dealing with the time series with 
multiple strong periodicities with greatly differing timescales. To 
overcome the deficiency of uniform embedding, they proposed 
the non-uniform embedding technique [19]. Different from the 
traditional uniform embedding technique, non-uniform 
embedding allows different dimensions to use different time 
delays. As a result, it manages to deal with the time series with 
multiple timescales and provides more accurate predictions [19]-
[21]. Non-uniform embedding has attracted increasing attention in 
recent years [20]-[24]. 

Although non-uniform embedding is more flexible and 
performs better on chaotic time series forecasting, it brings in a 
new problem. That is, not a single time delay value τ but a group 
of time delay values τi (i=2,3,…,m) has to be optimally selected. 
Suppose the maximum value of a time delay is τmax, the number 

of all possible combinations for (τ2, τ3, …, τm) is 1
max )( m . In 

other words, the selection of time delays in non-uniform 
embedding is a problem where the solution space grows 
exponentially with the increase of the embedding dimension m. In 
this case, the traditional embedding parameter selection methods 
for uniform embedding fail to work. By now, there is still lack of 
standard methods for selecting dimension and time delays for 
non-uniform embedding. In Small [22], a minimum description 
length (MDL) method was proposed to evaluate the performance 
of an embedding and a simple binary genetic algorithm (GA) was 
developed. Another GA approach was designed by Vitrano and 
Povinelli [23]. But the performance of these algorithms is still not 
satisfactory. For the problem of time series forecasting with fuzzy 
inference systems, some specialized deterministic or stochastic 
methods for selecting embedding dimension and time delays also 
exist [4][8][24]. 

To improve the performance of non-uniform embedding, this 
paper aims at proposing an ant colony optimization (ACO) 
algorithm for the optimal selection of embedding parameters. 
ACO is a swarm intelligence method proposed by Dorigo [25][26] 
in inspiration of the foraging behavior of ant colonies. Since its 
proposal in the early 1990s, ACO has evolved into an important 
optimization technique and has been successfully applied to a 
wide range of combinatorial optimization problems [27]-[29]. The 
potential advantages of ACO on the considered optimization 
problem are in the following aspects. First, different from GA 
which encodes the time delays as a fixed-length chromosome, 
ACO builds solutions based on a construction graph and the 
encoding length of a solution can adapt to the actual need of the 
optimization problem. Therefore, ACO provides a more flexible 
way for solving the considered embedding parameter selection 
problem as we do not need to first arbitrarily fix the embedding 
dimension as the length of the chromosome. Instead, the 
embedding dimension m can also be optimized along with the 
time delays in the algorithm. Second, ACO enables the use of 
problem-based heuristics for accelerating the search process [30]. 
Thereby, instead of selecting time delays in a completely random 
way, it is possible to extract useful statistical information from the 
original time series to provide guidance for the selection of 
suitable time delays. 

The rest of the paper is organized as follows. In section 2, the 

background of time delay embedding is introduced. Section 3 
proposes the ACO algorithm for optimal selection of embedding 
dimension and time delays. Experimental results are given in 
section 4. The conclusion finally comes in section 5. 

2. BACKGROUND 
2.1 Uniform Time Delay Embedding 

Time delay embedding is important for chaotic time series 

analysis. Let )}(,),2(),1({)}({ 1 Nxxxtx N
t   be a scalar time 

series of N observations. The uniform time delay embedding 
method is to find an embedding dimension m and a time delay τ to 
obtain a set of vectors 

,...1,)),)1((,),2(),(),((  NNtmtxtxtxtxvt     (1) 

If N
ttx 1)}({   is a chaotic time series, the trajectory of vt in the 

phase space usually behaves with quasi-periodicity. In addition, 
for a properly selected τ, if the number of observations N and the 
embedding dimension m are sufficiently large, Takens theorem 
[10] guarantees that the trajectory of vt in the phase space is 
topologically equivalent to the original dynamical system of the 
scalar time series. In this sense, we can reconstruct the dynamics 
of the time series in the phase space based on the set of vectors vt 
and use it to forecast the future variable values of the time series. 

2.2 Non-Uniform Time Delay Embedding 
The uniform time delay embedding technique has been found 

to be very suitable for the reconstruction of some classic chaotic 
systems such as the Lorenz and the Rossler system. However, for 
the time series with multiple periodicities, the performance of 
uniform embedding becomes poor [19]-[22]. This is because the 
uniform time delay τ usually captures only a single quasi-
periodicity. If the underlying dynamical system of the time series 
contains multiple periodicities, uniform embedding may fail to 
capture all the periodicities and thus its performance becomes 
poor. Judd and Mees [19] suggested that non-uniform embedding 
is a better and more general approach for the reconstruction of 
dynamics of chaotic time series. Different from uniform 
embedding, the non-uniform embedding technique uses different 
time delays in different dimensions. Suppose the time delay for 
the jth dimension is τj, the vector vt reconstructed in the phase 
space becomes 

))(,),(),(),(( 32 mt txtxtxtxv              (2) 

In this way, non-uniform time delay embedding enables a more 
flexible way to reconstruct the dynamics and is able to overcome 
the deficiency of uniform embedding [20][21]. 

In non-uniform embedding, there is a combinatorial explosion 
of the possible settings for (τ2, τ3,…, τm) as the embedding 
dimension m increases. Therefore, the traditional methods for 
selecting m and τ in uniform embedding are not applicable in non-
uniform embedding. The selection of embedding parameters in 
non-uniform embedding becomes an even more important and 
difficult task. Several works have been done in recent years to 
tackle this intractable parameter optimization problem. In [22], a 
GA approach was proposed by Small. The algorithm works by 
specifying a maximum embedding window τmax and encoding the 
solution as a binary string with the length of τmax. For the j-th 
binary digit of the string, “1” means that j is selected as a time 
delay and “0” means the opposite. The simple binary GA is 
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applied to optimize the parameters. The main deficiency of this 
GA approach is that its performance is seriously affected by the 
maximum embedding window τmax. If τmax is small, the encoding 
length of the GA is short. Thus the GA performs well. However, 
if the time series requires a large τmax, the GA usually produces 
solutions with a large embedding dimension. As a result, the 
performance of the GA becomes poor and the solutions built by 
the algorithm are unusable in chaotic time series forecasting. 
Another GA approach for the embedding parameter selection 
problem was proposed by Vitrano and Povinelli [23]. The 
algorithm fixes the length of a chromosome as a predefined 
maximum embedding dimension and uses eight bits for the 
representation of time delays. As such, the definition domain of 
time delays is limited to [0, 127] and the presentation scheme is 
not flexible for different chaotic time series. 

In order to further improve the performance of non-uniform 
time delay embedding, this paper aims to propose an ACO 
approach for the embedding parameter selection problem. 

3. THE ACO APPROACH 

3.1 Basic Idea of the Algorithm 
The basic idea of ACO is to simulate the foraging behavior of ant 

colonies. When a group of ants set out from their nest to search for a 
path to food, they use a special kind of chemical which is called 
pheromone to communicate with each other. Once the ants discover 
a path to food, they deposit pheromones on the path to record their 
previous search experience. By sensing pheromones on the path, an 
ant can follow the trails of other ants to find the food source. As this 
process continues, the shortest path to the food source gradually 
accumulates more and more pheromones, attracting more and more 
ants to choose. In this way, though the capability of a single ant is 
limited, the whole ant colony is able to cooperate to find the best 
path to the food source. Inspired by such intelligent behavior of ants, 
Dorigo [25] proposed ACO in the early 1990s and ACO has now 
become an important swarm intelligence technique. 

Different from other computational intelligence techniques, ACO 
has two main features. First, the artificial ants in ACO build 
solutions to the problem step by step incrementally. In this way, for 
the parameter selection problem in non-uniform embedding, we do 
not need to first fix the embedding dimension m as the encoding 
length. Instead, we can select time delays incrementally until the 
delays of all required dimensions have been chosen and the number 
of dimensions m can also be optimized along with the process of the 
algorithm. In other words, ACO provides a more flexible way for 
the encoding of the parameters m and τj (j=2,3,…,m). Second, ACO 
enables the use of some problem-based heuristics to guide the 
search direction of artificial ants. Therefore, some useful heuristic 
information from the original time series can be extracted to further 
accelerate the search speed of the algorithm. 

Overall, the proposed ACO algorithm for the non-uniform 
embedding parameter selection problem involves the following 
steps: 
Step 1) Initialization – The pheromones and heuristics of the 
algorithm are initialized. 
Step 2) Solution Construction – During each generation, a group of 
ants set out to find suitable embedding parameters for the non-
uniform time delay embedding problem. 
Step 3) Evaluation – The solutions built by ants are evaluated based 

on a fitness function. 
 
Step 4) Pheromone Management – The pheromone values are 
updated based on the local pheromone updating rule and the 
global pheromone updating rule. 
Step 5) Terminal Test – If a predefined number of iterations have 
been processed, the algorithm ends. Otherwise, the algorithm 
continues to run steps 2) -4) iteratively. 

3.2 Solution Construction 
In each iteration of the proposed ACO algorithm, a group of M 

ants is dispatched to build M solutions to the problem. We denote 
the solution built by the i-th ant as 

))(,),(),(),(),(()( )(321 iiiiimiS im           (3) 

where m(i) is the embedding dimension and 
)(,),(),(),( )(321 iiii im   are the time delays. Note that the 

value of )(1 i  is 0 as we usually use x(t) as the first dimension of 

the reconstructed vector in the phase space. To build a solution, 
the i-th ant first selects the embedding dimension m(i) based on 
some pheromones. Then the ant selects m(i)-1 time delays from 
the embedding window to compose the time delay vector 

))(,),(),(( )(32 iii im  . In this way, both the embedding 

dimension m(i) and the time delays ))(,),(),(( )(32 iii im   can 

all be optimized along with the process of the algorithm. The 
procedure of solution construction is described in detail as follows. 

3.2.1 Selection of Embedding Dimension 
To construct an embedding in the phase space, the ant first 

needs to determine the embedding dimension m(i). In the studies 
of time delay embedding [23], because a large embedding 
dimension usually causes much higher computational burden in 
time series analysis and forecasting, building an embedding with 
a very large dimension is meaningless. Therefore, it is reasonable 
to limit the embedding dimension to a maximum value MaxD. As 
such, the selection of embedding dimension is actually to assign 
m(i) to a value from {2,3,…, MaxD}. 

In the proposed ACO algorithm, the selection is based on 
pheromones. Pheromones represent the previous search 
experience of ants. We define the pheromone of setting the 
embedding dimension to k ( },...,3,2{ MaxDk ) as pdk. A larger 

value for pdk means that the previous search experience of ants 
regards m(i)=k as a good choice and vice versa. The rule for the 
selection of embedding dimension m(i)=k is then given by 

















 


otherwise                  ,0

2 if    ,
1

1

))((

2

MaxDk

l
pd

k
pd

kimP MaxD

l

l

k

          (4) 

where P(m(i)=k) is the probability of setting m(i)=k. Equation (4) 
actually shows that the probability of setting m(i) to k is in 

positive proportion to the value of lpdl / . Because an 

embedding with a smaller embedding dimension is more 
convenient for time series analysis, the reason of adding the term 

l/1  is to favor smaller dimension numbers. 
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3.2.2 Selection of Time Delays 
After determining the embedding dimension m(i), the ant 

selects m(i)-1 time delays to complete the construction of an 
embedding. The time delays should satisfy 

Niii im  max)(32 )()()(1           (5) 

where max  is the upper bound of the embedding window and N 

is the size of the time series. Usually, max  can be arbitrarily set 

to a sufficiently large number that satisfies  mmax  [22], 

where m and τ are the embedding dimension and time delay in the 
uniform embedding technique obtained by traditional methods 
such as FNN [12] and AMI [16]. To select m(i)-1 time delays, the 
ant repeats the following steps for m(i)-1 times. 

Step a) For k=1,2,…, max , the value of 
kk htpt  is evaluated. 

Here, ptk is the pheromone of selecting k as a time delay, htk is the 
heuristic of selecting k as a time delay, and β is a parameter of the 
ACO algorithm to weigh the importance of heuristics. As has 
been mentioned before, in ACO, pheromones represent previous 
search experience and heuristics are some problem-based useful 
information. 
Step b) The time delay is selected by 
















otherwise
scheme,selection   wheelroulette  theusing

 if 
),(Ωmaxarg

time_delay 0

,...2,1 max

qran
khtpt kkk




    (6) 

where the function ()Ω  is defined as 





otherwise     ,1
selectedbeen  has if    ,0)(Ω  kk          (7) 

and )1,0(0 q  is a parameter which means the probability of 

choosing the feasible delay with the largest value of 
kk htpt  

directly. To perform (6), a random number ran uniformly 
distributed in (0,1) is generated and is compared with the 
parameter q0. If ran<q0, the time delay that maximizes the value 

of 
kk htpt  will be selected. Otherwise, the roulette wheel 

selection scheme (RWS) is applied. The RWS is to select a time 
delay based on the probabilities defined in (8). For k=1,2,…, 

max , the probability of selecting k as a time delay is given by 









max

1

)(Ω

)(Ω
)( 






l
ll

kk
j

lhtpt

khtpt
kP      (8) 

After running these steps for m(i)-1 times, m(i)-1 different time 
delays are finally selected. We reorder these selected time delays 
in ascending order and assign them to )(,),(),( )(32 iii im  . In 

this way, all embedding parameters are set by the ant and the time 
delays are guaranteed to satisfy 

Niii im  max)(32 )()()(1   . 

3.3 Definition of Heuristics 
One unique characteristic of ACO is that it enables the use of 

heuristics to accelerate the search. Therefore, we can extract some 

useful information from the original time series to define 
heuristics and use them in equation (6) and (8) to direct the 
selection of time delays. In the proposed algorithm, we define two 
types of heuristics, i.e., the two-dimensional-based heuristic (2D 
heuristic) and the three-dimensional-based heuristic (3D heuristic). 
The underlying ideas of these heuristics are derived from the 
concept of nearest neighborhood in time delay embedding. 

For k=1,2,…, max , the 2D heuristic of selecting k as a time 

delay is defined as 

))]()([)]()(([min

11
22

1,...,2,1 klNxkNxlNxNxk
ht

kNl
k






  (9) 

The equation actually shows that the heuristic htk is in inverse 
proportion to the square of the distance between the vector 

))(),(( kNxNx   and its nearest neighborhood vector 

))(),(( klNxlNx   in the two-dimensional phase space. In 

addition, to make the embedding more convenient, short time 

delays are more preferred [22]. Therefore the k/1  item is added 

to the heuristic to favor short time delays. In fact, if 
))(),(( kNxNx   has a very close neighborhood vector, it implies 

that k may possibly be a promising time delay that can lead to a 
good embedding in terms of geometry. Therefore, the definition 
of heuristics encourages artificial ants to select the time delays 
that can find closer nearest neighborhood points of 

))(),(( kNxNx  . 

We also need to notice that the nearest neighborhood of 
))(),(( kNxNx   in the two-dimensional phase space may be a 

false neighborhood point. In other words, ))(),(( kNxNx   and 

its nearest neighborhood point in the two-dimensional phase space 
may not be close to each other any more when the embedding is 
unfolded to the phase space with higher dimension. In this case, 
the 2D heuristic defined in (9) may induce a misleading effect. To 
reduce such effect, we also extend the 2D heuristic to a 3D 
version as follows 

))]2()2([)]()([)]()(([
min

11

222
12,...,2,1

klNxkNxklNxkNxlNxNx
k

ht
kNl

k






  (10) 

In (10), the heuristic htk is in inverse proportion to the square of 
the distance between the vector (x(N), x(N-k), x(N-2k)) and its 
nearest neighborhood vector  (x(N-l), x(N-l-k), x(N-l-2k)) in the 
three-dimensional phase space. As we consider one more 
dimension, the chance of the emergence of false neighborhood 
points is reduced, and thus the 3D heuristic is more reliable. On 
the other hand, the computational cost of the 3D heuristic is also 
higher than the 2D heuristic. In general, we find that the 3D 
heuristic is already enough to facilitate the search of the algorithm 
without significantly reducing its search speed. Thus we do not 
need to define the heuristics in higher dimensions. 

Finally, it is important to note that the heuristics defined in (9) 
and (10) are all static. In other words, once the values of these 
heuristics are initialized, the values remain unchanged during the 
whole process of the algorithm. Therefore, we only need to 
initialize the heuristics for all k (k=1,2,…, max ) once at the 
beginning of the algorithm. In this sense, the evaluation of 
heuristics is not time-consuming. 
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3.4 Evaluation 
Evaluating the performance of the solutions built by the 

algorithm is an important step in swarm intelligence techniques. 
In this paper, we adopt the MDL method for fitness evaluation. 

The MDL principle proposed by Rissanen [31] is an important 
concept in information theory. The idea behind the MDL 
principle is that we can use the regularity in a given set of data to 
construct a model and use the model to compress the data. In this 
sense, the best model is the one that describes the set of data in 
the most concise way. Judd and Mees [19] introduced the MDL 
principle to evaluate the performance of a model for a time series. 
In terms of this principle, if a model has the most concise 
description of a time series, (i.e., the data size required for the 
description of model parameters and prediction errors is the 
smallest,) the model is considered to be the best for the time series. 

Based on this concept, Small and Tse [20][22] set up an 
approximation formula for the description length of an embedding 
and showed that the optimal embedding is the one that minimizes 

)()(
1

ln
2

)())((
1

ln
2

1

2

1

PDLje
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dDLdxjx
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d
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
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


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












 



 (11) 
where d is the length of the actual embedding window of the 
embedding, x  is the mean of the data within the embedding 

window,      0logloglog)(  dddDL  is the description 

length of an integer d, N is the number of data in the time series, 
e(j) is the prediction error of x(j), and DL(P) is the description 
length of the parameters in the model. Given the embedding 
parameter ),,,( 32 m  , we can obtain md   





m

j
m

jxx



1

)(
1

      (12) 

In addition, according to [22], for the class of local constant 
models, we have DL(P)=0 and )1()1()1(  lxjxje  where 

}{\},...,2,1{ jNl  is the one that minimizes )()( lxjx  . 

3.5 Pheromone Management 
During the process of ACO, pheromones are updated frequently 

to record the previous search experience of artificial ants. In the 
proposed algorithm, we follow the mechanism of the ant colony 
system (ACS) algorithm proposed by Dorigo [26] to design the 
pheromone management rules. 

First, at the beginning of the algorithm, all pheromones 
(including the pheromones for embedding dimension selection 
and the pheromones for time delay selection) are initialized by 

MaxDkppd initialk ,...,3,2       ,                     (13) 

max,...,2,1       ,  lppt initiall                       (14) 

where pinitial is the initial value of pheromones. In the proposed 
algorithm, we set pinitial=1. 

Second, after the i-th artificial ant selects an embedding 
dimension m(i) based on equation (4), the local pheromone 
updating rule for pd given in (15) is applied. 

initialimim ppdpd   )()( )1(              (15) 

Here, )1,0(  is a parameter of the algorithm. Similarly, after 

the i-th artificial ant selects a time delay τl(i) based on equation 
(6), the local pheromone updating rule for pt given in (16) is 
applied. 

initialii pptpt ll    )()( )1(             (16) 

In fact, the function of the local pheromone updating rules (15) 
and (16) is to reduce the pheromones on the selected components 
so that the chances for the following ants to choose a different 
unexplored component are increased. In other words, the local 
pheromone updating rule is designed to increase the search 
diversity of the algorithm. 

Finally, at the end of each iteration, after all ants in the colony 
have completed their solutions, additional pheromones are added 
to the components of the best-so-far solution. Note that the 
performance of a solution is evaluated by the MDL criterion 
defined in Section 3.4. Suppose ))(,),(),(,0|)(( )(32 iiiim im   

is the best-so-far solution, the pheromones on m(i) and 
)(il (l=2,3,…,m(i)) are updated by the global pheromone 

updating rule as follows 
MaxDpdpd imim   )()( )1(               (17) 

max)()( )1(    ii ll ptpt                (18) 

The function of the global updating rule is to increase the 
pheromones on the components of the best-so-far solution to 
make them more attractive. 

Based on the above-mentioned procedures, the overall 
flowchart of the proposed ACO algorithm is summarized in Fig. 1. 
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iteration=1

i=1

The i-th ant selects m(i) time 
delays based on (6) and updates 
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Return the best 
solution

Yes

No

The i-th ant selects an embedding 
dimension m(i) based on (4) and 
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based on (15).
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global pheromone updating 
rules (17) and (18)

Yes

No

 
Fig. 1 Flowchart of the proposed ACO algorithm 
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4. EXPERIMENTAL RESULTS 
4.1 Parameter and Heuristic Configurations 

The proposed ACO algorithm has the following parameters: the 
number of artificial ants M, the parameter β in (6) and (8) to 
weigh the importance of heuristics, the parameter q0 in (6), and 
the pheromone updating rate ρ in (15)-(18).  In the experiment, 
these parameters are set as M=10, β=1, q0=0.5 and ρ=0.1. 
Basically, the parameters are set according to the original ACO 
algorithm [26] and we slightly adjust the values of β and q0 

empirically. Overall, these parameter settings are found to 
contribute to the good performance of the proposed ACO 
algorithm. 

One unique characteristic of ACO is that it enables the use of 
heuristics. Therefore, we define the 2D and 3D heuristics in (9) 
and (10) based on the geometry topology of the embedding to 
accelerate the search speed of ACO. To test if the heuristics can 
really improve performance, we test the algorithm on the 
Mackey-Glass time series. The Mackey-Glass time series is a 
well-known chaotic time series [32] and is expressed as 

)(1.0
)(1

)(2.0
10

tx
tx

tx

dt

dx









                (19) 

We adopts the Mackey-Glass time series with λ=17 in the 
experiment. The length of the time series is N=1000. The 
performance of the ACO versions with the 2D heuristic, the 3D 
heuristic, or without using heuristics is compared. In each single 
run of the algorithm, 100 iterations are executed. For each version, 
20 independent trials are run based on the MDL criterion and the 
best result achieved by the algorithm in each run is recorded. 

Table 1 compares the performance of different versions in terms 
of two-sample t-tests and the t values are tabulated. It can be seen 
that the difference between the performance of the algorithm with 
the 2D heuristic and the one without using heuristics is not 
significant. This is because in the two-dimensional phase space 
the proportion of FNNs is too large. This phenomenon induces a 
misleading effect and causes poor performance. On the other hand, 
when the dimension of the phase space is extended to three, the 
proportion of FNNs becomes much smaller, and thus the 3D 
heuristic is much more meaningful and manages to yield 
significantly better results. Overall, these results demonstrate that 
the proposed 3D heuristic is effective to improve the performance 
of the ACO algorithm for the embedding parameter selection 
problem. 

 
Table 1. Comparison of Different Heuristics Based on Two 

Sample t-tests on the Mackey-Glass Time series 
 Heuristic 

2D 
Heuristic 

3D 
No 

Heuristic 
Heuristic 2D  19.571# -1.371 
Heuristic 3D -19.571*  -16.301* 
No Heuristic -1.371 16.301#  

* The results obtained by the ACO version of the corresponding row are 
significantly smaller (better) than those obtained by the ACO version of 
the corresponding column at the 0.05 level. 
# The results obtained by the ACO version of the corresponding row are 
significantly larger (worse) than those obtained by the ACO version of the 
corresponding column at the 0.05 level. 
 

Table 2. Comparison of the Optimization Performance of GA 
and ACO in Terms of Two-Sample t-tests 

 M-G sunspot 
τmax 30 70 

ACO-GA -2.247# -4.628# 
Dimension of ACO 4 4 
Dimension of GA 5 30 

4.2 Comparison with Other Approaches 

4.2.1 Experimental Settings 
To further demonstrate the performance of the proposed 

algorithm, we compare the proposed ACO with the GA proposed 
by Small [22] in terms of optimization performance based on the 
MDL criterion.  

In the experiment, the parameters of GA are configured as 
follows: crossover rate px=0.7, mutation rate pm=0.1, and the 
population size is 20. These parameters are commonly used in the 
classic simple GA. The parameters of the proposed ACO are set 
based on the discussions provided in Section 4.1. For the 
traditional uniform embedding technique, the time delay τ is 
yielded by the AMI method [16] and the embedding dimension m 
is determined by the FNN method [12]. The experiments are run 
on the following time series: 

 The Mackey-Glass time series 
The Mackey-Glass time series has been defined in (19). In the 

experiment, the data 1000
1)}({ ttx  will be used as the training set 

and the forecasting window is t=1001, 1002, …, 1200. 
 The sunspot time series 

The sunspot time series is a time series of the numbers of sunspots 
in May from 1700-2009. The time series exhibits quasi-
periodicity and we usually call the periodicity as sunspot cycles. 
In the experiment, we use the sunspot data from 1700-1960 as the 
training set and the forecasting window is 1961-2009. 

4.2.2 Comparison in Terms of Optimization 
Performance 

Both algorithms are run on the training sets of the above two 
time series based on the MDL criterion and the best result 
obtained in each single run is recorded. In each run of these 
algorithms, 1000 solutions are generated. For each algorithm, 20 
independent runs are executed. The maximum embedding 
window τmax used for each time series are defined in Table 2. 

Small [22] suggested that τmax should satisfy m max  where τ 

and m are the time delay and the embedding dimension, 
respectively, for uniform embedding. The values of τ and m can 
be determined by the AMI and the FNN method. Therefore, the 
value of τmax in Table 2 is given by the smallest integer that is 
larger than mτ and is divisible by 10. For the proposed ACO, the 
maximum embedding dimension MaxD is set equal to τmax.  

Table 2 compares the optimization performance of ACO and 
GA in terms of t-tests. According to the t-values, ACO achieves 
significantly better results than GA. The results produced by ACO 
generally have smaller objective function values in terms of the 
MDL criterion given in (11). In addition, the results produced by 
ACO have smaller embedding dimensions. Especially in the case 
of the sunspot time series, the embedding dimension of the best 
solution generated by ACO is only four, while the dimension of 
the best solution produced by GA is 30. In fact, an embedding 
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with such a large dimension is very time-consuming for analyzing 
chaotic time series. Because we define heuristics to prefer smaller 
dimensions and smaller time delays in the proposed ACO, 
artificial ants tend to build solutions with relatively small 
embedding dimensions and short embedding windows. Therefore, 
according to Table 2, the results found by ACO are not only 
better-optimized, but also more practical for time series analysis. 

5. CONCLUSION 
An ACO algorithm has been proposed for the optimal selection 

of embedding parameters in non-uniform embedding for 
analyzing chaotic time series. The main advantages of the 
proposed algorithm is that it provides a flexible way for 
optimizing the embedding dimension and time delays together 
and enables the use of heuristics to accelerate the search speed. 
Experimental results show that the proposed ACO algorithm is 
promising. 
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