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ABSTRACT 
Differential evolution (DE) is one of the most successful 
evolutionary algorithms (EAs) for global numerical optimization. 
Like other EAs, maintaining population diversity is important for 
DE to escape from local optima and locate a near-global 
optimum. Using a multi-population algorithm is a representative 
method to avoid early loss of population diversity. In this paper, 
we propose a multi-population DE algorithm (MPDE) which 
manipulates multiple sub-populations. Different sub-populations 
in MPDE exchange information via a novel mutation operation 
instead of migration used in most multi-population EAs. The 
mutation operation is helpful to balance the fast convergence and 
population diversity of the proposed algorithm. Moreover, the 
performance of MPDE is further improved by an adaptive 
parameter control scheme designed based on the multi-population 
approach. Each sub-population in MPDE evolves with its own set 
of control parameters, and a learning strategy is used to 
adaptively adjust the parameter values. A set of benchmark 
functions is used to test the proposed MPDE algorithm. The 
experimental results show that MPDE performs better than, or at 
least comparably, to the classical single population DE with fixed 
parameter values and three existing state-of-the-art DE variants. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search – Heuristic methods 

General Terms 
Algorithms 

Keywords 
Differential evolution, multi-population, adaptive parameter 
control, global optimization 

1. INTRODUCTION 
Differential evolution (DE), first proposed by Storn and Price 
[1][2], is a simple and efficient global optimizer over continuous 

spaces. It has been successfully applied to a variety of practical 
problems from diverse domains [3]. However, like other 
evolutionary algorithms (EAs), the DE algorithm suffers from the 
problem of premature convergence, i.e., the population loses 
diversity too early and is trapped in local optima of the objective 
function. This challenge is particularly hard when the dimension 
of problems is high and there are a lot of local optima. 

In this paper, we propose a multi-population approach for the DE 
variant known as DE/best/1 which uses the best solution 
information to guide the search. The DE/best/1 strategy has a fast 
convergence rate but easily suffers from premature convergence 
due to early loss of population diversity. Our proposed multi-
population approach is helpful for diversifying the population and 
alleviating the problem of premature convergence. Specifically, in 
our proposed multi-population DE (MPDE), the entire population 
is divided into multiple sub-populations which evolve on their 
own. The size and number of the sub-populations are predefined 
and kept unchanged after initialization. During the evolutionary 
process, each sub-population can exchange information with any 
other sub-populations. Most of the multi-population EAs use 
migration as a means of communication between different sub-
populations. However, the performance of these algorithms is 
sensitive to the choice of control parameters such as migration 
size and rate. Instead of using migration, sub-populations in 
MPDE communicate with each other by means of a novel 
mutation operation, which involves a best vector and a difference 
vector. The best vector is selected from the corresponding sub-
population instead of the entire population, which can balance the 
fast convergence and population diversity. On the other hand, the 
difference vector is generated by two vectors selected from the 
entire population. Therefore, the difference vector may contain 
information from two different sub-populations and can be used 
as a medium of information exchange. 

In order to further improve the robustness and efficiency of the 
proposed algorithm, a learning strategy is designed to adaptively 
control the DE parameters. Since the MPDE manipulates several 
sub-populations, each sub-population is associated with its own 
control parameters F and CR. During the evolutionary process, 
the sub-population with good parameter values is more likely to 
generate more promising solutions. In each generation, the 
parameter values in the poor sub-populations are optimized by 
learning from the parameter values in the good sub-populations. 
Therefore, the MPDE can evolve the parameters for each sub-
population to appropriate values for different evolutionary stages 
and different optimization problems. 
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The rest of this paper is organized as follows. Section 2 reviews 
the DE algorithm and the related works on multi-population 
approaches and parameter control methods for DE. Section 3 
describes the proposed MPDE algorithm in detail. In Section 4, 
the MPDE is compared with the classical DE and other existing 
state-of-the-art DEs on a suite of benchmark problems. Finally, 
Section 5 draws the conclusions. 

2. DE ALGORITHM AND RELATED 
WORKS 
2.1 Differential evolution (DE) algorithm 
DE is a population-based stochastic algorithm designed for global 
numerical optimization. Similar to other EAs, DE searches for a 
global optimum in the feasible solution space with a population of 

parameter vectors },...,2,1],,...,,[x{ ,2,1, NPixxx g
Di

g
i

g
i

g
i  , where 

g denotes the current generation, D is the dimension of the search 
space, and NP is the population size. In generation g=0, the jth 
component of the ith vector can be initialized as 
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where rand(0,1) is a uniform random number on the interval [0,1], 

and jxmin, , jxmax,  are the prescribed minimum and maximum 

bounds of the jth dimension, respectively. After initialization, DE 
enters an evolutionary process which includes mutation, crossover, 
and selection operations. 

Mutation: In each generation g, the mutation operation is applied 

to each individual g
ix  (also called target vector) to create its 

corresponding mutant vector g
iv . The five most frequently used 

mutation strategies are listed as follows. 
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 DE/rand/2: 
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It can be seen that the mutant vector g
iv  is generated by combing 

a base vector with one or two scaled difference vectors. In the 
above equations, the indices r1, r2, r3, r4, and r5 are distinct integers 
randomly selected from the range [1, NP], and all are different 

from the index i. g
bestx  is the vector with the best fitness value in 

the current generation. The factor F is a positive control 
parameter for amplifying the difference vectors. 

Crossover: In order to enhance population diversity, a crossover 

operation exchanges some components of the mutant vector g
iv  

with the target vector g
ix  to generate a trial vector g

iu . The 

process can be expressed as 
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where rand(0,1) is a uniformly distributed random number as 
before. jrand is an integer randomly generated from the range [1, D], 
which is used to ensure the trial vector has at least one component 
different from the target vector. The crossover probability CR is 
another control parameter, which determines the fraction of vector 
components inherited from the mutant vector. 

Selection: To decide whether the target or the trial vector can 
survive to the next generation, the selection operation is finally 
performed. For a minimization problem, the vector with the lower 
fitness value enters the next generation, which can be expressed 
as follows: 
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where )x(f  is the objective function for the minimization 
problem. 

2.2 Multi-population approaches for DE 
Various multi-population approaches for DE have been designed 
to solve different kinds of optimization problems. Most of these 
approaches maintain population diversity via information 
exchange between different sub-populations. Tasoulis et al. [4] 
parallelized DE in a virtual parallel environment so as to improve 
performance. In order to promote information sharing, the best 
individuals from each sub-population are allowed to migrate to 
other sub-populations based on a ring topology. Another 
migration scheme for multi-population was proposed in [5]. The 
authors suggested substituting the oldest individual of the target 
sub-population instead of a randomly chosen one. In [6], a multi-
populated DE (MDE) with a regrouping scheme was presented to 
solve constrained optimization problems. To provide full 
information exchange between sub-populations, the individual 
selection in the mutation phase is from all sub-populations. 

Instead of exchanging information between different sub-
populations, some multi-population approaches use other 
mechanisms to maintain population diversity. Mendes and Mohais 
[7] proposed a multi-population DE algorithm, called DynDE, to 
solve dynamic optimization problems. To maintain population 
diversity, DynDE reinitializes a sub-population if the distance 
between the best individuals of this population and that of another 
population is within a range. Brest et al. [8] investigated a self-
adaptive DE (jDE) where a multi-population method with aging 
mechanism is used for dynamic optimization. In their algorithm, 
no information is exchanged between the sub-populations. 

2.3 Parameter Control Methods for DE 
Control parameters in DE have significant effects on the 
performance of the algorithm [9][10]. However, there is no fixed 
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parameter setting that can achieve the best performance for all 
types of problems. Therefore, various parameter control methods 
have been proposed for DE to dynamically adjust the parameter 
values. These methods are capable of enhancing the robustness of 
the DE algorithm. According to the classification by Eiben et al. 
[11], parameter adaptation methods can be classified into three 
categories as follows. 

1) Deterministic parameter control 

This kind of method simply uses some deterministic rules to 
change the parameter values, without exploiting any information 
from the evolution. In [12], Das et al. proposed two schemes to 
control the scale factor F of DE. The first one decreases the value 
of F based on a linear rule, and the second one generates the value 
of F in a random way. Since the linear rule in the first scheme is 
based on the current number and the predefined maximum 
number of generations, it is actually determined before running 
the algorithm. 

2) Adaptive parameter control 

Strategies for adaptive parameter control dynamically adjust the 
parameter values by using some form of feedback from the search, 
which can adapt to different evolutionary states. In [13], a fuzzy 
logic control approach was proposed to adapt the DE parameters 
F and CR. The fuzzy controllers incorporate the function values 
and individuals of the successful generations as their inputs, and 
the outputs are the values of F and CR. In [14], the value of the 
parameter F is adaptively adjusted based on the minimum and 
maximum objective function values over the individuals in each 
generation. 

3) Self-adaptive parameter control 

For this method, each individual in the population maintains its 
own set of parameter values, which are encoded into the 
chromosome and optimized through the evolutionary process. 
Brest et al. [15] introduced a self-adaptive approach for the 
control parameters F and CR. Each individual in the population is 
associated with parameter values Fi and CRi. In each generation, 
new values for Fi and CRi are randomly generated in their 
corresponding ranges with probabilities 1  and 2 , respectively. 

Qin et al. [16] proposed a self-adaptive DE (SaDE) algorithm, in 
which the trial vector generation strategies as well as the control 
parameters are self-adapted by learning from the previous 
experiences. Zhang and Sanderson [17] introduced a new adaptive 
DE called JADE. The control parameters for each individual in 
JADE are updated based on their historical record of success. In 
the PLADE recently proposed by Zhan and Zhang [18], a learning 
strategy inspired by particle swarm optimization (PSO) is used to 
adaptively adjust the DE parameters. 

3. MULTI-POPULATION DIFFERENTIAL 
EVOLUTION (MPDE) 
There exist several DE variants due to the various mutation 
strategies described in Section 2. For global numerical 

optimization, the experimental studies in [19] indicate that the 
DE/best/1 with binomial crossover is the most competitive 
approach among eight DE variants. In this section, we focus on 
the DE/best/1 algorithm and introduce a multi-population version 
of this algorithm. 

3.1 Multi-population Approach 
In the multi-population approach, the entire population is divided 
into a predefined number of sub-populations. The size and 
population members of these sub-populations are kept unchanged 
during the algorithm’s execution. Each sub-population can 
exchange information with any other sub-populations.  

In most of the multi-population evolutionary algorithms, 
migration is used as a means of communication between sub-
population. Different from these algorithms, sub-populations in 
our multi-population approach exchange information via the 
mutation operation. As mentioned earlier, a mutant vector in 
DE/best/1 is generated by combining a best vector with a scaled 
difference vector. In the multi-population approach, the best 
vector is selected from the sub-population with respect to the 
target vector instead of the entire population. Therefore, each sub-
population is attracted by its own best vector, and the entire 
population is indeed guided by several locally best vectors instead 
of the single globally best vector. Such an approach thus benefits 
from a balance between fast convergence and population diversity. 

On the other hand, the difference vector involved in the mutation 
operation can be generated not only by two vectors from the same 
sub-population, but also by two vectors from different sub-
populations (i.e. the entire population). Since the difference vector 
may contain information from two different sub-populations, such 
a mutation operation can be used as a means of information 
exchange.  

3.2 Adaptive Parameter Control Method 
In order to enhance the robustness of the proposed algorithm, we 
further designed an adaptive parameter control scheme based on 
the multi-population approach. During the evolutionary process, 
each sub-population maintains its own set of control parameters, 
and a learning strategy is used to optimize these parameters for 
each sub-population.  

The learning strategy for adaptive parameter control in this paper 
is inspired by the PSO learning strategy proposed by Zhan and 
Zhang [18]. Each sub-population s is associated with its own 

control parameters sF  and sCR , s = 1, 2, ..., NS, where NS is the 

number of sub-populations. After all sub-populations have 
finished their evolutionary operations in the current generation, 
the one which has generated the most number of successful 
vectors is chosen as the best sub-population. The successful 
vectors are defined as the vectors which have their solution 
quality improved under the control of their own control 

parameters. Then, the parameter values sF  and sCR  in the 

remaining sub-populations are adjusted by approaching those in 
the best sub-population. 
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Table 1. Benchmark functions used in this paper 

Name Test function D S fmin 
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4. EXPERIMENTAL STUDIES 
In this section, the performance of our proposed MPDE algorithm 
is evaluated on a set of benchmark functions listed in Table 1 
[20]. All these functions are high-dimensional problems with 
dimensions D=30. Function f1 is unimodal. Function f2 is the 
Rosenbrock function which is unimodal for D  3, but may 
become multimodal when the dimension is high [21]. Functions 
f3-f8 are multimodal where the number of local minima increases 
exponentially with the problem dimension. Such functions appear 
to the most difficult class of problems for many optimization 
algorithms. 

Two groups of experiments are carried out. The first group 
compares the MPDE with the classical DEs. Since MPDE is 
based on the DE/best/1 strategy, three classical DE/best/1 
algorithms with different parameter settings are used. All the 
classical DE/best/1 set F as 0.5 as suggested in most of the 
literatures [2][10], and set CR as 0.1, 0.5, and 0.9 respectively. In 
the second groups of experiments, we further compare the MPDE 
with three existing state-of-the-art DE variants, i.e., JADE [17], 
jDE [15], and PLADE [18]. We use the parameter settings of 
JADE, jDE, and PLADE according to their original papers. 

For a fair comparison, all DE algorithms use a population size of 
100, and our proposed MPDE divides the entire population into 
10 sub-populations. Moreover, each algorithm is run 50 times 
independently and the results are averaged. For clarity, the results 
of the best algorithms are marked in boldface. 

4.1 Comparison with Classical DE 
Table 2 summarizes the experimental results of the classical 
DE/best/1 algorithms and the proposed MPDE algorithm. MPDE 
performs significantly better than the other three classical 
DE/best/1 on 7 (f2-f8) out of the 8 benchmark functions. In 
addition, it can be observed that the performance of classical 
DE/best/1 is very sensitive to the parameter settings. The 
DE/best/1 (CR = 0.1) is able to find the near-global optimum on 
most of the multimodal functions (f3-f8), but it performs the worst 
on the unimodal functions f1 and f2. In contrast, the DE/best/1 (CR 
= 0.9) obtains the best performance on f1, but it fails to locate the 
near-global optimum on all the multimodal functions except f6. 
The performance of MPDE is less dependent on the optimization 
problems. It is capable of obtaining the near-global optimum on 
both unimodal and multimodal functions. This is because the 
MPDE can maintain population diversity to avoid premature 
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convergence, and its adaptive parameter control strategy is helpful 
to improve robustness. 

Table 2. Comparison between MPDE and the classical DEs 

Fun. Gen. MPDE   
Mean       

(Std Dev) 

DE (CR=0.1) 
Mean       

(Std Dev) 

DE (CR=0.5)
Mean       

(Std Dev) 

DE (CR=0.9)
Mean       

(Std Dev) 

f1 1500 8.62E-43 
(2.82E-42) 

3.63E-34 
(2.85E-34) 

4.44E-100 
(1.20E–99) 

2.41E-174 
(0.00E+00) 

f2 20000 3.76E-30 
(8.43E-30) 

3.08E+01 
(2.06E+01) 

1.04E+00 
(1.75E+00) 

1.51E+00 
(1.94E+00) 

f3 9000 -12567.12 
(1.66E+01) 

-12232.31 
(2.06E+02) 

-10307.72 
(4.35E+02) 

-8316.36 
(7.07E+02) 

f4 5000 0.00E+00 
(0.00E+00) 

2.79E-01 
(4.47E-01) 

2.49E+01 
(7.14E+00) 

7.16E+01 
(1.86E+01) 

f5 2000 4.14E-15 
(0.00E+00) 

7.77E-15 
(8.67E-16) 

1.76E-01 
(4.05E-01) 

4.72E+00 
(1.38E+00) 

f6 3000 0.00E+00 
(0.00E+00) 

2.96E-04 
(1.45E-03) 

5.42E-03 
(7.99E-03) 

2.55E-02 
(2.25E-02) 

f7 1500 1.57E-32 
(1.64E-47) 

1.57E-32 
(1.64E-47) 

7.28E-02 
(2.01E-01) 

1.93E+00 
(2.50E+00) 

f8 1500 1.35E-32 
(8.21E-48) 

1.35E-32 
(8.21E-48) 

1.11E-01 
(4.87E-01) 

2.67E+00 
(4.03E+00) 

 

4.2 Comparison with State-of-the-art DE 
The performance of MPDE is further compared with three other 
state-of-the-art DEs, namely, JADE [17], jDE [15], and PLADE 
[18]. The experimental results averaged over 50 runs are listed in 
Table 3. All these compared algorithms are able to locate a near-
global optimum on most of the benchmark functions, since they 
all use some strategies to enhance the algorithms’ robustness. 
However, the JADE, jDE, and PLADE are all trapped in local 
optima sometimes on the Rosenbrock function f2, while our 
proposed MPDE can obtain the near-global optimum in every run. 
For the JADE, it performs the best on the Sphere function f1, but it 
is sometimes trapped by the Rosenbrock function f2 and the 
Griewank function f6. The jDE and PLADE do the best on the 
Schwefel function f3, followed by our proposed MPDE. For the 
other functions, MPDE has the capability to obtain near-global 
optimum with higher mean solution accuracy than the other 
compared algorithms. Overall, our proposed MPDE algorithm 
achieves the best performance on 6 (f2, f4-f8) out of the 8 
benchmark functions when compared with the other three 
improved DE variants. 

5. CONCLUSION 
In this paper, a multi-population DE with adaptive parameter 
control, MPDE, has been developed. In MPDE, the entire 
population is divided into multiple sub-populations. A novel 
mutation operation is designed and used as a means of 
communication between different sub-populations. Due to the 
multi-population approach, the diversity of the overall population 
can be preserved. In addition, each sub-population is associated 
with its own control parameters F and CR. During the 

evolutionary process, poor sub-populations learn the parameter 
values from the best sub-population in the current generation. 
Thus, the control parameters for each sub-population can be 
adjusted to better values, and the DE evolutionary operations 
become more effective and efficient. The performance of the 
MPDE algorithm has been validated over a set of 8 benchmark 
functions. Experimental results show that the multi-population 
approach is helpful to maintain population diversity. MPDE not 
only performs better than the classical DEs with single population 
and fixed parameter values, but also is competitive when 
compared with other state-of-the-art DEs. 

Table 3. Comparison between MPDE and other state-of-the-
art DEs 

Fun. Gen. MPDE   
Mean       

(Std Dev) 

JADE    
Mean       

(Std Dev) 

jDE        
Mean      

(Std Dev) 

PLADE 
Mean      

(Std Dev) 

f1 1500 8.62E-43 
(2.82E-42) 

2.09E-58 
(1.46E-57) 

3.05E-31 
(2.83E–31) 

1.75E-29 
(5.09E-29) 

f2 20000 3.76E-30 
(8.43E-30) 

7.97E-01 
(1.61E+00) 

2.39E-01 
(9.47E-01) 

7.97E-02 
(5.58E-01) 

f3 9000 -12567.12 
(1.66E+01) 

-12498.40 
(1.20E+02) 

-12569.49 
(7.28E-12) 

-12569.49 
(7.28E-12) 

f4 5000 0.00E+00 
(0.00E+00) 

0.00E+00 
(0.00E+00) 

0.00E+00 
(0.00E+00) 

0.00E+00 
(0.00E+00) 

f5 2000 4.14E-15 
(0.00E+00) 

6.34E-15 
(1.74E-15) 

4.28E-15 
(6.96E-16) 

4.71E-15 
(1.30E-15) 

f6 3000 0.00E+00 
(0.00E+00) 

1.53E-03 
(3.37E-03) 

0.00E+00 
(0.00E+00) 

0.00E+00 
(0.00E+00) 

f7 1500 1.57E-32 
(1.64E-47) 

7.60E-30 
(5.36E-29) 

3.93E-32 
(4.62E-32) 

3.06E-30 
(1.05E-29) 

f8 1500 1.35E-32 
(8.21E-48) 

1.35E-32 
(8.29E-48) 

2.84E-31 
(6.08E-31) 

4.69E-30 
(9.11E-30) 
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