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ABSTRACT 
Many real-world applications can be modeled as multi-objective 
optimization problems (MOPs). Applying differential evolution (DE) 
to MOPs is a promising research topic and has drawn a lot of 
attention in recent years. To search high-quality solutions for MOPs, 
this paper presents a robust adaptive DE (termed AS-MODE) with 
following two features. First, a stochastic coding strategy is used to 
improve the solution quality. This coding strategy represents each 
individual by a stochastic region, which enables the algorithm to 
fine-tune solutions efficiently. Second, a probability-based adaptive 
control strategy is utilized to reduce the influence of parameter 
settings. The adaptive control strategy associates each parameter 
with a candidate value set. Better candidate values would have 
higher selection probabilities to generate new individuals. The 
performance of the proposed AS-MODE is compared with several 
highly regarded multi-objective evolutionary algorithms. Simulation 
results on ten benchmark test functions with different characteristics 
reveal that AS-MODE yields very promising performance. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]:Problem Solving, Control Methods 
and search-Heuristic methods; G.1.6 [Numerical Analysis]: 
Optimization-Global optimization 

General Terms 
Algorithms, Design, Experimentation. 

Keywords 
Adaptive parameter control, differential evolution, evolutionary 
algorithm, multi-objective optimization, stochastic coding. 

1. INTRODUCTION 
Many real-world applications require optimizing multiple 
conflicting objectives simultaneously [1]. These problems are 
called multi-objective optimization problems (MOPs), which can 
be mathematically expressed as 

1 2Min{ ( ), ( ),..., ( )}

     subject to 
mf x f x f x

x
                                  (1) 

where Ω is the search space and fi : Ω→R is the i-th objective 
function. As objectives in MOPs are conflicting, no single 
solution is able to optimize all objectives at the same time. Hence 
in most cases, MOP is addressed by finding a set of alternative 
solutions which provide different trade-offs among the objectives. 
The recent years have seen an increasing interest in applying 
evolutionary algorithms (EAs) to MOPs. EAs are very suitable to 
solve MOPs, because they are population-based algorithms that 
can provide multiple alternative solutions simultaneously [1]-[5]. 

Differential evolution (DE) is a new class of evolutionary algorithm 
proposed by Storn and Price for single-objective continuous 
optimization [6]. With a simple principle and few parameters, DE has 
become one of the most popular optimization techniques and has 
been successfully applied to a wide range of applications such as the 
power flow problem [7] and the microwave filter design [8]. Over the 
past few years, extending DE for multi-objective optimization has 
drawn a lot of attention. In[9], Abbass et al proposed a Pareto 
differential evolution (PDE) for multi-objective optimization, where 
only non-dominated solutions are utilized to produce offspring. PDE 
is examined on two test problems and is reportedly better than the 
Strength Pareto evolutionary algorithm (SPEA), a state-of-the-art 
multi-objective evolution algorithm (MOEA). In[10], Babu et al. 
proposed a new multi-objective differential evolution (MODE). The 
authors utilized the weighting factor method and penalty function 
method to solve bi-objective problems. Later, Lampinen extended the 
selection operator in the basic DE algorithm and formed the 
generalized differential evolution (GDE) [11] for MOPs. The GDE is 
reported to have good convergence properties, but the distribution of 
alternative solutions need to be improved. Later, an enhanced GDE 
(GDE2) was presented in [12] where the crowdedness was taken into 
account in the selection process. The third version of GDE (GDE3) 
was proposed in [13], where new individuals were stored in the 
population. At the beginning of the next generation, the non-
dominated sorting strategy and crowding-distance operations are 
carried out to reduce the population size. To reduce the impacts of 
parameter settings, Huang et al. [14] presented a self-adaptive 
MODE, termed MOSaDE, which adaptively adjusted the parameter 
settings. The MOSaDE was further improved by using an objective-
wise learning strategy in [15]. 

Existing researches have shown good potential in applying DE to 
MOPs. However, there are still two significant and challenging 
tasks to be addressed. First, the solution quality is not high 
enough, especially for problems containing linkages [13]. Second, 
the parameter settings have significant influences on the 
performance of MODEs [14][15]. To address these two issues, 
this paper presents an adaptive MODE with stochastic coding 
strategy (termed AS-MODE). 
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The proposed AS-MODE improves the solution quality by using a 
stochastic coding strategy [16]. In the stochastic coding strategy, 
each individual is represented by a stochastic region in the search 
spaces. The stochastic region is defined by a normal distribution. 
The center of the region is used for fitness evaluation, while the 
size of the region determines the step sizes for local refinement. 
By adaptively adjusting the centers and sizes of stochastic region, 
individuals are more sensible to their surrounding regions. In this 
way, the algorithm can explore the search space in a region-by-
region manner which is very efficient to fine-tune the solutions. 
Meanwhile, the AS-MODE reduces the influences of parameter 
settings by using a novel probability-based adaptive control 
strategy. In AS-MODE, the value of each parameter is randomly 
selected from a related discrete set before generating a new 
individual. When all new individuals are created, the efficiency of 
each candidate value in generating promising individuals is 
measured. Better candidate values would have higher selection 
probabilities in the next generation. The proposed AS-MODE is 
validated by testing ten benchmark functions used in CEC09 
competition [17]. The experimental results reveal that the 
performance of the proposed AS-MODE is very promising. 

The rest of the paper is organized as follows. Section II describes 
the framework of DE. Section III illustrates the implementations 
of the proposed AS-MODE. The experiment studies are presented 
in Section IV. At last, Section V draws the conclusions. 

2. DIFFERENTIAL EVOLUTION 
Differential Evolution (DE) is a stochastic evolution algorithm 
(EA) which is first proposed by Storn and Price. Like many other 
EAs, DE initializes a set of individuals at the beginning, and then 
generates new individuals by combination of other individuals 
which are randomly selected from the current population. 

At each generation, a mutation operation is carried out to generate 
a set of new individuals, as expressed by 

1 ( ), 1,2,...,i a b c
G G G Gy x F x x i N                        (2) 

where N is the population size, , , [1, ]a b c N are random integers 

with a b c  , F is the scaling factor, G represents the current 
generation. To bring in more diversity, a set of trial individuals 

, 1,2,...,i
Gu i N are generated by combines i

Gx  and 1
i
Gy  . The j-th 

variable value of i
Gu can be obtained by 

1( ),  if (0,1) <  or  
( )

 ( )

i
Gi

G i
G

y j rand CR j k
u j

x j

  


       (3) 

where [0,1]CR  is the crossover rate, k is a random integer, 
rand (0,1) returns a random number uniformly distributed 
between 0 and 1. Finally, the selection operation creates a new 
population by using the following rule. 

1

,   if ( ) ( )

 ,  otherwise

i i i
G G Gi

G i
G

u f u f x
x

x


  


                         (4) 

where ( )i
Gf u is the objective value of i

Gu . It should be noted that 

the above scheme is just one of the simple and effective DE 
frameworks. There are various DE variants which use different 
mutation strategies. More details can be found in [6] and [18]. 

3. THE PROPOSED AS-MODE 
3.1 Coding Mechanism 

Figure 1. Coding mechanism 

In most traditional EAs, each individual represents a feasible 
solution in the search space, as shown in Fig. 1 (a). As the 
individuals contain no information about its surrounding area, it 
may become difficult and inefficient in fine-tuning the values of 
decision variables to produce the best results. 

To improve the fine-tuning capability, the proposed AS-MODE 
adopts a stochastic coding strategy. As shown in Fig. 1(b), each 
individual is represented by a stochastic region. The stochastic 
region is defined by a normal distribution, thus we can use the 
following formulary to express an individual. 

X=((x1,σ1), (x2,σ2), …, (xD,σD))                         (5) 

The mean vector [x1, x2 ,…, xD] represents the center of the region 
for fitness evaluation, while the variance vector [σ1, σ2 ,…, σD] 
defines the size of the region for local refinement. During the 
evolution, individuals would be updated by sampling solutions 
within the stochastic region. In this way, individuals are more 
sensible to their surrounding regions and the algorithm can fine-
tune solutions efficiently. 

3.2 Adaptive Strategy 
Finding suitable parameter settings is a critical issue in DE 
designing. Frequently, parameter setting has significant influence 
on the behavior of the algorithm and the best parameter setting is 
problem dependent. Traditional trial-and-error method requires 
multiple optimization runs, which may not be convenient in 
practices. In this section, we present a probability-based strategy 
to adaptively control the mutation factor F and the crossover 
probability CR.  

First of all, two discrete sets are created as  

1 2 1 2

1 2 1 2

{ , ,..., },0 ... 2

{ , ,..., },0 ... 1
F A A

CR B B

S a a a a a a

S b b b b b b

     
      

               (6) 

where A and B were respectively the number of elements in SF 
and SCR. Before generating a new individual, the values of F and 
CR are respectively selected from these two sets. Our goal is to 
make better parameter values have higher probability of being 
selected. Assuming that new individuals produced when using 
better parameter values are more likely to survive, we set the 
selection probability of each parameter value according to its 
efficiency in producing good individuals surviving in the 
population. Specifically, the selection probability of each 
parameter value is computed by 
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                            (7) 

where cFi and cCRi are respectively the number of individuals in 
the current population which are generated by using the i-th 
candidate value in SF and SCR. For example, if 20% of the 
individuals in the current population are generated with CR = 0, 
then CR = 0 would have a probability of 0.2 to be chosen to 
generate new individuals in the next generation. 

3.3 Algorithm Framework 

 

Figure 2. Flowchart of AS-MODE. 

The flowchart of the proposed algorithm is shown in Fig. 2, and 
the implementation details are described as follows. 

1) Step 1 - Initialization 

This step aims to generate an initial population. Let P(0) be the 
initial population. It contains N individuals {I1, I2, …, IN}, as 
expressed by 

1 11 11 12 12 1 1

2 21 21 22 22 2 2

1 1 2 2

( , ),( , ),...,( , )

( , ),( , ),...,( , )
(0)

... ...

( , ),( , ),...,( , )

D D

D D

N N N N N ND ND

I x x x

I x x x
P

I x x x

  
  

  

   
   
    
   
   
      

         (8) 

For each individual Ii, i=1,2,…,N, the mean vector is randomly 
sampled from the search space,  as expressed by 

( , )ij j jx rand L U                                  (9) 

where Lj and Uj are respectively the lower bound and the upper 
bound of the j-th variable, ( , )rand a b returns a random number 
uniformly distributed within a and b. Notice that, the initial mean 
vector could be set according to problem-specific knowledge, so 
as to improve the search efficiency. As for the variance vector, we 
empirically initialize it by 

( ) /10ij j jU L                              (10) 

After generating the mean vector and variance vector of an 
individual, values of F and CR associated with it are initialized by 
randomly choosing values from the candidate sets. 

2) Step 2 – Updating operation 

The main objective of this process is to fine-tune the individuals 
by sampling neighbor solutions within their stochastic regions. 
For individual 1 1 2 2(( , ),( , ),...,( , ))i i i i i iD iDI x x x   , its neighbor 

' ' ' ' ' ' '
1 1 2 2(( , ),( , ),...,( , ))i i i i i iD iDI x x x    is generated by (11) and 

(12). 

'
(0,1) ,  if (0,1)  or 

,                       otherwise

ij ij

ij
ij

x N rand p l j
x

x

    


     (11) 

'
ij ij                                    (12) 

where p is a parameter within [0,1], l is a random integer between 
1 and D (D is the dimension of the problem), N(0,1) returns a 
random number with a standard normal distribution. The random 
number l is used to ensure that there is at least one variable in '

iI  

that is different from the one in iI . The parameter values 

associated with '
iI  are set the same as those with iI . If 

'
iI dominates Ii, then Ii would be replaced by '

iI  immediately. 

Otherwise, if '
iI  and Ii are non-dominated by each other, '

iI  

would be inserted into the archive A. This process is repeated for 
M times. If none of these M neighbors can dominate Ii, the 
variance values of Ii would be reduced. Otherwise, the variance 
values of Ii would be extended, as expressed by 

' ,  reduce case

/ ,  extend case
i

i
i

 


 


 


                          (13) 

where (0,1)  is the reducing rate. In order to reduce 
computational cost, we use the Roulette wheel selection strategy 
to select K better individuals to generate neighbors. 

3) Step 3 –Mutation，Crossover and Selection 

This step applies the DE operators to generate N new individuals. 
For each target individual 1 1 2 2(( , ),( , ),...,( , ))i i i i i iD iDI x x x    in 

the current population, the mutation and crossover operations 
generate a new individual ' ' ' ' ' ' '

1 1 2 2(( , ),( , ),...,( , ))i i i i i iD iDI x x x   by 
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'
( ),  with probability 

,                           with probability 1

aj bj cj

ij
ij

F CR

CR

  




    
        (15) 

where F and CR are two parameter values sampled according to 
(7); a, b, c with a b c  , are three random individual indexes. 
These three indexes are selected by using the tournament 
selection strategy. We have made additional experiments to 
compare the effect of different selection strategies and we find 
that the tournament selection strategy performs better that the 
traditional random method. If '

ijx  exceeds the search range, it 

would set to be the nearest value in the search range. Meanwhile, 
if the variance value '

ij  is larger than max , '
ij  would set equal 

to max . Here max is computed by 

max

1
( )

10

U L MAXEVALS evals

MAXEVALS
   

                      (16) 

where MAXEVALS is the maximum number of evaluations, evals 
is the number of evaluations in the current state. In Eq.(16), we 
reduce the variance values as the evolution goes on, so as to fine-
tune solutions more efficiently. 

After obtaining the mean vector and the variance vector of a new 
individual, its fitness value is evaluated. If the new individual 
dominates Ii, Ii would be replaced by the new individual. 
Otherwise, if Ii and the new individual are non-dominated by each 
other, the new individual would be inserted into the extra set A. 

4) Step 4 – Create New Population 

The aim of this step is to choose N promising individuals to form 
a new population. First of all, a pool of individuals U is created 
by unioning the current population and A. Then the non-
dominated sorting strategy and the crowding-distance operation [4] 
are carried out to rank all individuals in U and the best N 
individuals are chosen from U one by one. 

5) Step 5 – Update probabilities of candidate values. 

In this step, the adaptive control strategy given in subsection 3.2 
is utilized to update the probability of each candidate values. To 
ensure that each candidate value has at least a small probability to 
be selected, if the value of cFi (or cCri ) exceeds the range of 
[Cmin,Cmax], it would set to be the nearest value in the range. 

There is a repetition from Step2 to Step5 until the termination 
criteria are met. 

4. EXPERIMENTS AND COMPARISONS 

4.1 Experimental Settings 
In this section, the proposed AS-MODE is validated by testing ten 
benchmark functions used in CEC 2009 multi-objective 
competition, including seven 2-objective functions (i.e., UF1-UF7) 
and three 3-objective functions (i.e., UF8-UF10) [17]. These test 
problems contains variable linkages and are very difficult for 
traditional MOEAs to solve. We choose them to investigate the 
performance of AS-MODE in finding high-quality solutions for 

complicated multi-objective problems. Moreover, these functions 
have different features and need different parameter settings of 
MODE to solve them. Thus they are suitable to examine the 
effectiveness and the efficiency of the proposed adaptive control 
strategy. 

The initial parameter settings of the proposed AS-MODE are 
listed in Table 1. We compare the proposed algorithm with two 
multi-objective differential evolution algorithms. The first one is 
the well-known generalized differential evolution 3 (GDE3), 
which is a simple but effective MODE with fixed parameter 
settings [13]. The second is the OW-MOSaDE whose parameter 
settings is adaptively adjusted by using an objective-wise learning 
strategy [15]. We also compare AS-MODE with NSGA-II-ls [19] 
and MOEA/D [17][20]. As evolution algorithms are stochastic 
algorithms that provide different results in different runs, we run 
AS-MODE for 30 times on each test problem and use the average 
inverted generational distance (IGD) for comparison. 

The IGD is defined as follows [5]: Suppose P* is a set of Pareto 
solutions which is uniformly distributed along the Pareto front of 
a MOP, and P is a set of approximation Pareto solutions. The 
IGD from P* to P is defined as: 

*
( , )

( *, )
| * |

v P
d v P

IGD P P
P

                        (17) 

where ( , )d v P represents the distance between v and the points in 

P. | * |P  denotes the number of solutions in P*. It has been shown 
that the IGD can measure both the diversity and convergence of P, 
when | * |P is set large enough. In the experiment, the algorithms 
terminate when the number of function evaluations reaches 

53 10 . The number of points selected to compute IGD are 100 
for 2-objective functions and 150 for 3-objective functions. 

Table 1. Parameter settings of AS-MODE 

parameter value summary 

N 200 Population size 

T 10 Tournament size 

K 40 Number of individuals to be updated 

M 5 Number of update attempts 

 0.5 Stochastic region shrink rate 

[Cmin,Cmax] [1, 50] Lower and upper bounds of cFi and cCRi  

SF {0.5,1,1.5} Candidate values of F 

SCR {0, 0.5, 1} Candidate values of CR 

4.2 Comparison Results 
In this subsection, we compare AS-MODE with the GDE3, OW-
MOSaDE, NSGA-II-ls and MOEAD. The experimental results are 
listed in Table 2, where “Mean” represents the average IGD 
values of the 30 runs and “Std.” represents the standard deviations 
of the IGD values. It can be observed that the proposed AS-
MODE has found the best (lowest) IGD values on seven of the ten 
functions (i.e., UF1, UF2, UF3, UF4, UF7, UF9, and UF10). 
Moreover, the results provided by AS-MODE on UF5, UF6, and 
UF8 are also very promising. According to the standard 
deviations, the proposed AS-MODE performs very stably in 
finding high quality solutions. Overall, AS-MODE generally 
outperforms other algorithms, in terms of the IGD values and the 
stability of performance. Fig. 3 shows the best approximation 
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Pareto fronts found by the AS-MODE in 30 runs. The results 
demonstrate that the proposed AS-MODE can find good 
approximation Pareto fronts on UF1, UF2, UF3, UF4, UF7, UF8 
and UF9, but performs relatively poor on UF5, UF6, and UF10. 
Nevertheless, compared with the published results in [15][13], 
[19], and [20], the approximation Pareto fronts found by AS-
MODE on these three functions are also very promising. 

4.3 Adaptive Control Strategy Investigation 
In this subsection, we investigate the influence of the adaptive 
parameters control strategy and the stochastic coding strategy. 
First, we remove the updating operation in AS-MODE and form a 
simplified A-MODE. Then we remove the adaptive control 
strategy from AS-MODE to form a simplified S-MODE. S-
MODE with different parameter settings are carried out and 
compared with AS-MODE. The final results are listed in Table 3, 
where S-MODE (a, b) means S-MODE with F = a and CR = b.  

It can be observed that A-MODE outperforms OW-MOSaDE on 
eight of the ten problems. Nevertheless, without updating 
operation, A-MODE generally performs worse than AS-MODE. 
Hence, the stochastic coding strategy is necessary and effective in 
improving the algorithm performance. Meanwhile, results of S-
MODE indicate that parameter settings have significant impacts 

on the algorithm performance and the best parameter settings are 
problem dependent. For example, S-MODE with F=0.5 and CR = 
1 performs much better than the one with F =0.5 and CR =0 on 
UF1, UF2, UF3, and UF7. However, the latter performs 
significantly better than the former on UF4, UF6 and UF9. By 
using the adaptive control strategy, AS-MODE can always obtain 
the best or near best IGD values. These results demonstrate that, 
the adaptive control strategy is also necessary and effective in 
improving the algorithm performance. 

Fig. 4 and Fig. 5 show the evolution trend of selection probability 
related to each candidate parameter value. From Fig. 4, we can 
see that AS-MODE generally increases the selection probability 
of F = 0.5 on UF3, while the select-probabilities of F=0.5, F=1.0 
and F = 1.5 are not much different on UF4. Meanwhile, Fig. 5 (a) 
demonstrates that the selection probability of CR = 1 increases 
dramatically on UF3, while the selection probability of CR = 0 
increases quickly on UF4. According to the results in Table 3, CR 
= 1 and CR = 0 are respectively good parameter setting for UF3 
and UF4. The above results demonstrate that the proposed 
adaptive control strategy is effective to make the algorithm select 
promising parameter values to generate offspring. 

Table 2 IGD values of GDE3, OW-MOSade, NSGA-II-ls, MOEAD, and AS-MODE on 10 test problems 

F 
GDE3 OW-MOSaDE NSGA-II-ls MOEAD AS-MODE 

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. 

UF1 0.00534 0.000342 0.0122 0.0012 0.01153 0.0073 0.00435 0.00029 0.00405 5e-005 

UF2 0.01195 0.001541 0.0081 0.0023 0.01237 0.009108 0.00679 0.00182 0.00438 0.000261 

UF3 0.10639 0.012900 0.103 0.0190 0.10637 0.06864 0.00742 0.00589 0.00392 0.000138 

UF4 0.0265 0.000372 0.0513 0.0019 0.0584 0.005116 0.06385 0.00534 0.02378 0.001148 

UF5 0.03928 0.003947 0.4303 0.0174 0.5657 0.1827 0.18071 0.06811 0.10634 0.026610 

UF6 0.25091 0.019573 0.1918 0.0290 0.31032 0.19133 0.00587 0.00171 0.08633 0.059950 

UF7 0.02522 0.008891 0.0585 0.0119 0.02132 0.01946 0.00444 0.00117 0.00393 0.000216 

UF8 0.24855 0.035521 0.0945 0.0244 0.0863 0.01243 0.0584 0.00321 0.09796 0.039460 

UF9 0.08248 0.022485 0.0983 0.0885 0.0719 0.04504 0.07896 0.05316 0.04959 0.035446 

UF10 0.43326 0.012323 0.743 0.0384 0.84468 0.1626 0.47415 0.07360 0.26915 0.069972 

Table 3 IGD values of A-MODE, OW-MOSaDE, S-MODE and AS-MODE on 10 test problems 

F A-MODE OW-MOSaDE 
S-MODE 

(0.5, 1) 

S-MODE 

(0.5, 0) 

S-MODE 

(0.5, 0.5) 

S-MODE 

(0.1, 0.9) 

S-MODE 

(0.9, 0.1) 
AS-MODE 

UF1 0.00646 0.0122 0.00401 0.01107 0.02331 0.00732 0.02484 0.00405 

UF2 0.00778 0.0081 0.00562 0.00985 0.01029 0.00828 0.0104 0.00438 

UF3 0.00655 0.103 0.00508 0.11268 0.11273 0.07294 0.10708 0.00392 

UF4 0.03197 0.0513 0.03046 0.02284 0.02971 0.03156 0.02809 0.02378 

UF5 0.1174 0.4303 0.22590 0.13193 0.1659 0.23067 0.16492 0.10634 

UF6 0.06805 0.1918 0.13442 0.08476 0.11751 0.17653 0.13815 0.08633 

UF7 0.00771 0.0585 0.00384 0.01105 0.01458 0.00721 0.03213 0.00393 

UF8 0.11115 0.0945 0.11841 0.17481 0.1598 0.11318 0.12712 0.09796 

UF9 0.09879 0.0983 0.16010 0.05996 0.06908 0.15571 0.09127 0.04959 

UF10 0.32457 0.743 0.31780 0.30163 0.37881 0.33450 0.33106 0.26915 
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Figure 3. The approximation Pareto front with the lowest IGD value for each test problem 
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Figure 4 Evolution trends of selection probability related to F 
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Figure 5. Evolution trends of selection probability related to CR 

5. CONCLUSIONS 
This paper presents a novel adaptive multi-objective differential 
evolution algorithm with stochastic coding strategy, namely AS-
MODE, for multi-objective optimization. The stochastic coding 
strategy encodes each individual with a stochastic region which 
defined by a normal distribution. The stochastic coding strategy 
makes individuals more sensible to their surrounding region and 
improves the efficiency of the algorithm in fine-tuning solutions. 
In order to reduce the influence of parameter settings, a 
probability-based adaptive control strategy is also proposed. The 
main idea of the control strategy is to make promising parameter 
values have higher probability of being selected to generate 
offspring. The proposed AS-MODE has been validated over a 
suite of ten benchmark test functions, including seven 2-objective 
functions and three 3-objective functions. The experimental 
results show that AS-MODE outperforms GDE3, OW-MOSaDE, 
NSGA-II-ls and MOEA/D on most of the test functions. 
Moreover, the effectiveness and efficiency of the proposed 
adaptive control strategy has also examined to demonstrate the 
advantages of AS-MODE. 
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