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Abstract—Maximizing the lifetime of a sensor network by
scheduling operations of sensors is an effective way to construct
energy efficient wireless sensor networks. After the random
deployment of sensors in the target area, the problem of finding
the largest number of disjoint sets of sensors, with every set
being able to completely cover the target area, is nondeterministic
polynomial-complete. This paper proposes a hybrid approach
of combining a genetic algorithm with schedule transition op-
erations, termed STHGA, to address this problem. Different
from other methods in the literature, STHGA adopts a forward
encoding scheme for chromosomes in the population and uses
some effective genetic and sensor schedule transition operations.
The novelty of the forward encoding scheme is that the maximum
gene value of each chromosome is increased consistently with
the solution quality, which relates to the number of disjoint
complete cover sets. By exerting the restriction on chromosomes,
the forward encoding scheme reflects the structural features of
feasible schedules of sensors and provides guidance for further
advancement. Complying with the encoding requirements, ge-
netic operations and schedule transition operations in STHGA
cooperate to change the incomplete cover set into a complete one,
while the other sets still maintain complete coverage through the
schedule of redundant sensors in the sets. Applications for sensing
a number of target points, termed point-coverage, and for the
whole area, termed area-coverage, have been used for evaluating
the effectiveness of STHGA. Besides the number of sensors and
sensors’ sensing ranges, the influence of sensors’ redundancy
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on the performance of STHGA has also been analyzed. Results
show that the proposed algorithm is promising and outperforms
the other existing approaches by both optimization speed and
solution quality.

Index Terms—Coverage, disjoint set covers problem, encoding
scheme, evolutionary algorithm, genetic algorithm, memetic algo-
rithm, redundancy, schedule, SET k-cover problem, wireless
sensor network.

I. INTRODUCTION

IRELESS sensor networks (WSNs) use a large quantity
W of sensors in a target area for performing surveillance
tasks such as environmental monitoring, military surveillance,
animal tracking, and home applications [1]-[6]. Each sensor
collects information by sensing its surrounding region and
transfers the information to a sink (also called a data center)
via wireless transmission. Because of the features of sensors,
WSNs have been implemented in harsh environments such
as in the deep sea, arctic areas, and hazardous war zones.
Different from other battery-powered apparatuses, recharging
a sensor’s battery is generally impossible. Although solar and
wind energy can be used, such energy supplies are not reliable.
Equipped with limited energy supplies, WSNs are much more
demanding on energy conservation than the other kinds of
networks. How to maximize the network’s lifetime is a critical
research topic in WSNs.

Various methods have been proposed in the literature for
organizing energy efficient WSNs [7]-[15], in which sensing
coverage and network connectivity are two fundamental issues.
Since it has been proven that the network connectivity of
active sensors in complete coverage is guaranteed by having
the communication range of each sensor at least twice of its
sensing range [16]-[18], only the sensing coverage problem
is considered in this paper. There are two ways for deploying
sensors to completely cover a target area, i.e., controlled de-
ployment and random deployment [2]. Controlled deployment
is to deploy sensors based on a well-designed plan. Examples
for designing a required deployment plan can be referred
to [19]-[23]. Most of the controlled deployment methods
aim at assigning the smallest number of sensors under the
cost limitation in an area [19]-[23], whereas some methods
consider dispatching a set of mobile sensors to satisfy the
coverage and connectivity requirements [23]-[25]. However,
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sometimes it is difficult to place sensors to the positions
prearranged, because the number of sensors is too large to
place the sensors one by one, or the position is difficult to be
approached. In those cases, random deployment is performed
to place the sensors (e.g., dropping from a plane) to the target
area.

In order to ensure complete coverage to the target area, a
large number of sensors are deployed densely to the area by
random deployment. Scheduling is an important mechanism
for controlling sensors’ activities so as to prolong a network’s
lifetime [1], [26]. A sensor generally has two operation modes,
i.e., an active mode and a sleep mode. When in an active
mode, a sensor can carry out its full operations, such as
sensing, computation, and communication. To maintain those
operations, sensors need to consume a relatively large amount
of energy. In contrast, a sensor in a sleep mode uses only a
small amount of energy and can be awoken in a scheduled
working interval for full operations. Since a subset of sensors
in the area can already cover the target area completely, the
other sensors can be scheduled to be in the sleep mode to save
energy.

Different scheduling rules determine when sensors change
to be active or sleep. In localized and distributed realizations,
sensors periodically investigate their neighborhood and decide
whether to change their operation modes [18], [27]-[30]. In
those situations, the lifetime of a WSN for accomplishing the
surveillance task cannot be guaranteed. Moreover, in order to
save energy, many existing scheduling methods (e.g., [27]-
[33]) only consider selecting a subset of sensors which can
satisfy the surveillance task using the minimum energy, but the
influence of the selected sensors for the lifetime of the WSN
is neglected. If the selected sensors happen to be the critical
points in the network, the WSN may fail to work after the
selected sensors run out of energy. Therefore, exploiting the
redundancy in a WSN and finding out the possible scheduling
sequence of sensors can maximize the lifetime of the network.
This paper aims at finding the maximum number of disjoint
complete sensor cover sets in a WSN and assigns the sensors
to the sets for maximizing the lifetime of the network. Each
sensor cover set forms complete coverage to the target area
and the WSN can fulfill the surveillance task with only one set
of sensors active at any time. Finding the maximum number
of disjoint complete sensor cover sets in a WSN is called
the disjoint set covers problem or the SET k-cover problem,
which has been proven to be nondeterministic polynomial
(NP)-complete [34], [35].

Finding the optimal complete coverage scheme in WSNss is
not easy, because the number of sensors in a target area is
so huge that the computation is time-consuming. Cardie and
Du [34] proposed a “maximum covers using mixed integer
programming (MC-MIP)” algorithm to find the maximum
number of disjoint complete cover sets for covering a set of
target points. They transformed the problem into a maximum-
flow problem and then formulated it as a mixed integer
programming. By using a branch and bound method, MC-MIP
acts as an implicit exhaustive search which guarantees finding
the optimal solution. However, as the numbers of sensors
and targets become larger, the running time of MC-MIP in-

creases exponentially. Slijepcevic and Potkonjak [35] proposed
a greedy deterministic approach called the “most constrained—
minimally constraining covering (MCMCC)” heuristic to com-
pletely cover the target area. MCMCC cannot guarantee find-
ing the optimum, but it works much faster than MC-MIP for
problems in a large scale. In MCMCC, a function is defined
favoring the sensor which covers the most constrained field,
whereas the other fields covered by the sensor are minimally
constraining. Whether a field is constrained or not depends
on the number of sensors that can cover the field. Each
complete cover set in MCMCC is constructed by selecting
sensors according to the heuristic objective function. The work
in [36]-[41] also provides methods for constructing working
subsets of sensors, but their solutions trade off complete
coverage in exchange for prolonging the network lifetime.
For example, in the randomized scheduling methods in [36],
sensors are randomly assigned to multiple working subsets
of sensors. For each subset of sensors, the algorithm used
an extra-on rule for guaranteeing network connectivity and
then updated the working schedule accordingly. Lin and Chen
[37] later improved the approach of [36] by detecting and
eliminating coverage holes in the subsets. Abrams et al. [38]
designed three approximation algorithms for a variation of the
SET k-cover problem. However, none of the three algorithms
guarantees complete coverage.

In addition to heuristic methods, genetic algorithms (GAs)
have also been applied. GAs [42] are population based search
algorithms, which simulate biological evolution processes and
have successfully solved a wide range of NP-hard optimization
problems [43]-[47]. Compared with MC-MIP and MCMCC,
using a GA for finding the maximum number of disjoint
complete cover sets is expected to search the domain more
effectively and reduce the computation time. Lai et al. [48]
introduced a GA for point-coverage problems. They termed
it the genetic algorithm for maximum disjoint set covers
(GAMDSC) and encoded each gene in the chromosome as an
integer index of the set that the sensor joined. Using traditional
genetic operations and a scatter operator, their algorithm was
reported to be able to get near-optimal solutions. However, it
can be observed that their algorithm lacks the consideration for
redundant sensors in cover sets and the guidance for joining
sensors to form complete coverage. Their algorithm is only
suitable when the numbers of targets and sensors are small.
Moreover, the problems addressed by MC-MIP and GAMDSC
are point-coverage problems, whereas MCMCC can be applied
to both point-coverage and area-coverage problems. Area-
coverage involves a much larger number of coverage targets
than point-coverage, because each field in the target area must
be completely covered.

In this paper, an enhanced GA is proposed, aiming at
solving disjoint set covers problems for maximizing the WSN
lifetime. The proposed algorithm, termed the schedule transi-
tion hybrid genetic algorithm (STHGA), can be applied to both
point-coverage and area-coverage disjoint set covers problems.
The distinct feature of STHGA is that it adopts a forward
encoding scheme for the representation of chromosomes in
the population and uses some effective genetic and sensor
schedule transition operations. The forward encoding scheme
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is novel because the maximum gene value of each chromo-
some is increased consistently with the solution quality, which
relates to the number of disjoint complete cover sets. In the
forward encoding scheme, each gene in a chromosome maps
to a sensor. The forward encoding scheme exerts a restriction
on each chromosome that, except for the largest gene value,
the genes having the same value form a complete sensor cover
set respectively. Such an encoding scheme not only reflects the
structural features of feasible schedules of sensors in chromo-
somes, but also provides guidance for further advancement,
because the primary task of the algorithm is to schedule
sensors to change the unique incomplete cover set into a
complete one, without influencing the other sets’ complete
coverage to the targets. The genetic operations and schedule
transition operations in the proposed STHGA are designed
based on the forward encoding scheme and they cooperate
to search for the maximum number of disjoint complete
cover sets. Moreover, the schedule transition operations utilize
the redundancy information among the scheduled sensors for
finding better scheduling schemes. The performance of the
proposed STHGA has been compared with the state-of-the-
art MCMCC heuristic [35] and GAMDSC [48]. Results show
that the proposed algorithm can achieve high-quality solutions
with a much faster optimization speed.

The remainder of this paper is organized as follows.
Section II presents the definition of the optimization problem
and makes some discussions on the estimation of the upper
limit of the maximum number of disjoint complete cover
sets, the redundancy rate of a deployment, and the way of
measuring the coverage percentage. Section III describes the
implementation of the proposed algorithm in detail, including
the encoding method of chromosomes, the design of the
fitness function, and the operations. A series of experiments
are conducted and the results are analyzed in Section IV to
illustrate the performance of the proposed algorithm. Finally,
conclusions of our research and guidelines for future work are
given in Section V.

II. PROBLEM DEFINITION AND DISCUSSIONS
A. Problem Definition

In order to prolong the lifetime of WSNs, the number of
disjoint complete cover sets of sensors should be maximized.
Suppose a set S = {sy, 5, ..., sy} of sensors are deployed in
an L x W area, the objective of the sensor set covers problem
is to find the maximum number 7' of disjoint complete cover
sets and the corresponding cover sets S, satisfying:

1) each set S; = {s;,, si,, ""Si\S,-I} C S of sensors forms
complete coverage to the target area, where |S;| is the
number of sensors that are activated in the ith schedule,
i=1,2,..,T;

2) each sensor belongs to no more than one cover set, that
is

Si(1S;=0 (1)
where i # j, i, j=1,2,...,T.

As each sensor s; monitors a certain area, complete coverage
to a target area means that the whole area is under-monitored

Fig. 1. Illustration of complete coverage to an L x W area. Each sensor s; is
marked as a dot and has a sensing range r;. Each circle represents the sensing
area of the corresponding sensor.

£

Fig. 2. Example of six fields formed by three sensors. The area contained
in the same field is covered by the same set of sensors.

by sensors. An illustration of complete coverage to an L x W
area is shown in Fig. 1. Each sensor s; in the figure covers
the area within a sensing range r;. Note that in practical
applications, the sensing area covered by a sensor may not be
a circular area, but can be any irregular shapes. For simplicity,
in this paper we only consider the case that the sensing area
of a sensor is a circle.

B. Discussions

The maximum disjoint complete cover set number 7" of the
above maximization problem depends on the size of the target
area, the total number of sensors, the sensors’ locations, and
their sensing ranges. When all of the sensors are activated, the
whole target area must be completely covered. Otherwise, the
deployment of sensors fails.

1) Upper Limit of T: It can be observed from Fig. 1 that the
areas covered by sensors overlap each other, forming separate
fields [35]. The area contained in the same field is covered
by the same set of sensors. An example of fields is shown in
Fig. 2, where six fields are formed by three sensors. When
all of the sensors are activated and the fields are formed, the
upper limit of 7, which is denoted as T, can be estimated as
the minimum number of sensors that cover a field in the target
area as

' minn (F;]) ()

where F; denotes the set of sensors that cover the field j, np
is the number of fields formed by all of the sensors. In the
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Fig. 3. Example for evaluating the coverage percentage of sensors to an area
by dividing the target area into grids with a size d. The three circular sensing
areas A1, Aa, Az are covered by s, 52, and s3 respectively. The number in
grids indicates their field indexes. Note that the grids contained in the same
field are covered by the same set of sensors.

case of Fig. 2, the values of |F,|, |F3|, ..., |F¢| are 1, 2, 1, 2,
3, 2, respectively, so the value of 7 is 1.

In fact, the calculation of 7 is also a well-known K-coverage
problem [20], which can be addressed by polynomial-time
algorithms. Because there are fields only covered by 7" sensors,
the maximum number of disjoint complete cover sets is no
larger than T (e, T < D).

2) Redundancy Rate of a Deployment: According to
Williams [49], the minimum number M of sensors for com-
plete coverage to an L x W area satisfies

MnR? _ 27
LW — /27

where all of the sensors have the same sensing range as R.
Therefore, for the N sensors in a successful deployment in
this paper, we have

3

N 7 R? 2
=———>"_=x1.21 4
" TLW ~ 27 @

where 7 is termed the redundancy rate. It will be shown in
Section IV-C-3 that disjoint complete cover sets are much
easier to be found in a problem with a larger n than in a
problem with a smaller 7.

3) Calculation of the Coverage Percentage: In practice, it
is difficult to calculate the exact coverage percentage of the
sensors to an L x W area. Therefore, we divide the target area
into grids to approximate the coverage percentage. Only the
grids being totally inside a sensor area are considered as being
covered. For example (as Fig. 3), there are three active sensors
S1, 2, and s3 in a target area, which is composed of grids
with a size d. The sensors’ circular sensing areas are denoted
as Ay, Ay, and Aj;. The numbers of grids covered by the
three sensors are counted as 21, 21, and 20, respectively. The
total number of grids covered by the sensors is 44. Therefore,
the coverage percentage of the sensors to the target area
with 13 x 8 grids is approximately % ~ 42.3%. Although
the estimated coverage percentage is smaller than the actual
coverage percentage, there are no blind points in the target
area when the estimated coverage percentage is 100%.

Initialization
v
Evaluate the population
v
g0
v
.| Recombination & selection,
create a new population
v
Perform mutation every G,
generations

v

Mixed schedule transition

v

Forward schedule transition
v

Critical schedule transition
v

Evaluate the population

v

g«g+1

Fig. 4. Flowchart of the proposed STHGA, where g represents the genera-
tion index.

The indexes of fields have also been exemplified in Fig. 3.
The grids in the same field are covered by the same set of
sensors. The higher the resolution of grids is, the higher the
accuracy is for representing fields in the target area. In order
to approximate fields better, the grid size is selected based on
the sensors’ sensing ranges. After determining the coverage
percentage of each field, the fields can be regarded as targets
[35] and can be used for computing the coverage percentage
of sensors instead of using grids.

III. PROPOSED SCHEDULE TRANSITION HYBRID GENETIC
ALGORITHM

This paper proposes a hybrid genetic algorithm with sched-
ule transition operations for maximizing the lifetime of a
sensor network. In this section, the forward encoding scheme
is firstly introduced to the representation of chromosomes.
Then the implementation of the proposed STHGA is presented
step by step, including the initialization, the evaluation of the
population, the genetic operations, and the schedule transition
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TABLE I
NOTATIONS
Symbol | Descriptions
S Set of sensors deployed in the target area
S Sensor i
N Total number of sensors
L Length of the target area
w Width of the target area
Si Cover set to the target area
T Maximum number of disjoint complete cover sets
ri Sensing range of s;
T Upper limit of T’
F; Set of sensors that cover the field j
ng Number of fields formed by all of the sensors
M Minimum number of sensors for complete coverage to an
area
R Sensing range
n Redundancy rate
d Size of the grid for discritizing the target area
m Number of chromosomes in the population
C; Chromosome i
ci Maximum number of disjoint complete cover sets of chro-
mosome C;
8ij Jjth gene of chromosome C;
Gimax Maximum gene value in chromosome C;
] Predefined weight for the maximum number of complete
coverage
) Predefined weight for the coverage percentage
Dei+l Coverage percentage of the (c; + 1)th cover set
G Generation interval for performing mutation
% Mutation rate
K Number of genes selected in the initialization and in the
forward schedule transition operation
K> Number of genes selected in the mixed schedule transition
operation

operations. A complete flowchart of the proposed STHGA is
shown in Fig. 4. Table I tabulates the notations used in this

paper.

A. Representation of Chromosomes

Each gene in the chromosome is mapped to a sensor and the
gene value indicates the sensor’s scheduling number for acti-
vation. Each chromosome C; in the population is represented
as

Ci = (gi1, 825 s &iN) ()
where g;; € {1,2, ..., T + 1} represents sensor S;’s scheduling
number, j = 1,2,..., N, N is the total number of sensors

in the target area, i = 1,2, ...,m, and m is the number of
chromosomes in the population. The sensors with the same
scheduling number form a disjoint cover set.

The forward encoding scheme proposed in this paper re-
quires that the sensors with the same scheduling number,
which is smaller than g; max(g;ii, 82, ---» &in), form
complete coverage to the target area, respectively. That is, all
the cover sets with the scheduling number from 1 to g; . —1
(f g, > 1) are disjoint complete cover sets to the target
area. Whether the g;  th schedule forms complete coverage
depends on its coverage percentage. If the sensors in the

8i... th schedule cannot completely cover the target area, the
number of disjoint complete cover sets of chromosome C; is

Ci = iy — 1 (6)

Otherwise, the number of disjoint complete cover sets of
chromosome C; is

¢ = gimax' (7)

For example, suppose a chromosome is Cy = (1, 1,2, 2,
1,3,2,1). It means that there are eight sensors in the target
area and set 1 and set 2 are complete cover sets. If the sensors
with the gene value 1 are scheduled to be activated at first,
the other sensors will keep in a sleep mode until the second
set of sensors is activated.

Although the chromosome in the traditional and the
proposed encoding schemes is both a series of numbers, the
meaning behind is different. For example, the representation
of chromosomes in GAMDSC [48] uses integers to represent
the sets that the sensors joined, but it does not use the
forward encoding scheme. The main difference between the
encoding scheme of our method and the one in [48] is that
any sensors with the same scheduling number in [48] do
not guarantee forming complete coverage to the target area.
Moreover, according to [48], there may be no complete cover
set represented by the chromosomes, even though the sensors
have been assigned with different numbers, resulting in an
invalid solution.

The forward encoding scheme not only indicates the
number of disjoint complete cover sets in a chromosome, but
also provides guidance for fulfilling the (¢; + 1)th schedule of
sensors into a complete cover set. Such an encoding scheme
has a proactive effect in search of better chromosomes,
because at most one set of sensors is not a complete cover
set and the other sensors in the complete cover sets can be
adjusted to achieve a higher coverage percentage for the
incomplete cover set.

The forward encoding scheme actually exerts a restriction
on chromosomes so that they can reflect the structural features
of solutions. The set covers problem considered in this paper
is to identify the maximum number of subsets that can com-
pletely cover the target area, forming a pattern in the solution
structure. Therefore, the forward encoding scheme is used to
represent the pattern of the sensor subsets in chromosomes,
with each subset being able to completely cover the target
area. The forward encoding scheme is especially suitable
for the problems that have the feature of regular patterns in
the solution. Encoding the structural features of solutions in
chromosomes can accelerate the optimization speed.

The operations in the proposed algorithm are designed based
on the forward encoding scheme so that the new chromosomes
always comply with the scheme. The effectiveness of the
encoding scheme and the operations in STHGA will be tested
via a series of experiments in this paper.

B. Initialization

Initially, a population with m chromosomes is created.
Based on the forward encoding scheme, the scheduling num-
bers of all genes are firstly assigned as 1, i.e., C; = (1, 1, ..., 1),
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i =1,2,..,m, meaning that all of the sensors are activated.
If the schedule does not form complete coverage to the
target area, the deployment of sensors fails and the proposed
algorithm will not be started.

In a successful sensor deployment, redundant sensors
can be turned to sleep without influencing the coverage
percentage. For every chromosome, K; genes are randomly
chosen, where K, is a predefined parameter. If the selected
genes are redundant sensors for the initial schedule, the
values of the selected genes add 1, which means that the
selected sensors will be activated in the next schedule.
After resetting the genes for each chromosome, the initial
population Cy, Cs, ..., C,, is generated.

C. Evaluation of the Population

The fitness function of a chromosome C; in the population
is defined as

fi=wici + wape+1 8)

where ¢; (¢;> 1) is the number of disjoint complete cover
sets S1, 82, ... 8¢, and pe+1 (pe+1 € (0, 1)) is the coverage
percentage of the (c; + 1)th cover set, which is an incomplete
cover set, i = 1,2, ...,m. The parameters w; and w, are the
predefined weights for ¢; and p.;. The larger the value of c;
is, the higher the fitness of chromosome C; is. If the values
of ¢; and ¢; for two chromosomes C; and C; are equal,
the chromosome with a larger coverage percentage in the
incomplete cover set is the better one. Because the values of
¢i and p.4; are already sufficient for distinguishing the two
parts, the values of w; and w, are both set as 1 in this paper.

D. Genetic Operations

1) Recombination and Selection: Different from the im-
plementation in classical GAs, the recombination and selection
operations in STHGA are combined for taking advantage of
the interactions of chromosomes to generate a better popula-
tion. The process is described as follows.

Randomly select two chromosomes C; and C; from the
population Cy, Cs, ..., C,,. Then select each gene with equal
probability from the two chromosomes and recombine the
genes to form a new offspring Cy as

{giz, if g0 <0.5
8kl =
8jl»

if go > 0.5

where ¢gq is a uniform random number in [0, 1), k =m+1, m+
2,...,2m is the index of the newly generated chromosome,
l=1,2,..,N, i j e {1,2,..,m}. The recombination tech-
nique is actually a kind of uniform crossover and it generates
a new offspring for every two parents. Using the uniform
crossover can combine the genes from two chromosomes in a
more uniform way. An example for generating a new offspring
is illustrated in Fig. 5. The selected genes are marked gray in
the figure.

After recombination, the fitness of the new offspring Cy is
then evaluated according to (8) and compared with its parents.
Only the offspring that has no worse fitness than its parents
are selected in the new population. Otherwise, the offspring
Cy is replaced by the better parental chromosome.

®

select

G
Cfrfafafzfufa]zfufifi] G
recombine
G — 12 afufurjufu]
HHONEENENnnDn
Fig. 5. Randomly choose two chromosomes C; and C; and select genes to

recombine a new chromosome Cy.

/* generate m new chromosomes */

1. for k:=m+l to2m do

2. i:=rand(1, m),

3. doj :=rand(1, m); while /=i,

/* recombine genes to form a new offspring */

4, for/:=1to Ndo
5 go =rand01( );
6. ifgo<0.5

7. 8 = gir:

8. else

9. 8 = gjis

10. end if

11.  end for

/* select the best chromosome to the new population */
12.  evaluate Ci = (g1, gi2s..., grw) according to (8);

13. iffi<fi

14. Ce «Cifo =F;
15. endif

16. iffi<f

17 Cio «Cifi =1
18. endif

19. end for

Fig. 6. Pseudocode of the proposed combination and selection, where
rand(1, m) is a function returning a uniform random integer number in {1,
2, ..., m}, rand01( ) is a function returning a uniform random float-point
number in [0, 1).

The above recombination and selection process repeats for
m times, and thus a new population C,41, Cp2, ..., Com 18
generated. Because each chromosome in the new population is
no worse than its parents and the largest gene value is no larger
than that of its parents, the chromosomes in the new population
still satisfy the forward encoding scheme. The pseudocode for
the selection and combination is depicted in Fig. 6.

2) Reverse Mutation: The reverse mutation, as its name
indicates, performs reverse operations by changing the sensors
in the incomplete cover set back to one of the complete cover
sets. Note that the forward encoding scheme confines that
only the set with the largest scheduling number can be an
incomplete cover set. The other sets are disjoint complete
cover sets to the target area. Because the reverse mutation may
reduce the fitness of chromosomes (that is, reduce the coverage
percentage of the incomplete cover set but not influence the
already complete cover sets), it is carried out only once every
G, generations.

For the best chromosome C; in the current population, if
its g; . th set is an incomplete cover set (i.e., ¢; = g;,,, — 1),
every gene g;; that corresponds to the incomplete cover set
will be mutated according to a mutation rate . If the g;
th set is already a complete cover set, the mutation operation
is not performed. For every gene g;; in the incomplete cover
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/* perform mutation every Gy, generations */

1. ifgmod G, =1

2. bh=0:

/* find out the iteration best chromosome in the m chromosomes */
3. for i:=m+1 to2m

4, iffi>bh

5. b=f;

6. end if

7. end for

8. for i .= m+1 to2m

/* perform mutation to the iteration best chromosome that has an
incomplete cover set */

9. iffi=band ¢; =g, 1
10. forj:=1to N
11. if gij=gipnand rand01()<u
12. g = |erand01() J+1;
13. end if
14. end for
15. evaluate C; = (gi. gi2..... ) according to (8):
16. end if
17.  end for
18. end if
Fig. 7. Pseudocode of the proposed reverse mutation, where g represents

the generation index, rand01( ) is a function returning a uniform random
float-point number in [0, 1).

set (i.e., 8j = &in)s if g1 < w, the mutated gene value is
generated as

gij = leiga] + 1 (10
where ¢g; and ¢, are uniform random numbers in [0, 1), the
Lcig2] represents the largest integer that is less than or equal
to ¢iq>.

The reverse mutation is an important operation for maintain-
ing diversity in the population so as to avoid trapping in local
optima. It eliminates search bias by reducing the fitness of
the current scheduling scheme. The pseudocode of the reverse
mutation is shown in Fig. 7.

E. Schedule Transition Operations

The schedule transition operations, including the mixed
schedule transition, the forward schedule transition, and the
critical schedule transition, utilize the redundancy information
among the scheduled sensors for each chromosome. The three
schedule transition operations have their own characteristics
and cooperate to search for a better scheduling scheme.

1) Mixed Schedule Transition: The mixed schedule tran-
sition operation schedules redundant sensors from a cover set
to the other cover set. For every chromosome C;, i = m + 1,
m+2, ...,2m, each schedule from 1 to ¢; forms complete cov-
erage to the target area. Suppose the disjoint complete cover
sets of chromosome C; are denoted as S;;, Si2, ..., Si.,, and the
incomplete cover set is §;+1. Possible transition directions
of the mixed schedule transition operation are illustrated in
Fig. 8. Redundant sensors can be changed between an incom-
plete coverage schedule and a complete coverage schedule,
or between the complete coverage schedules. This operation
helps reschedule sensors among different cover sets without
influencing the complete cover sets. For every chromosome

Fig. 8. Illustration of the transition directions of the mixed schedule transi-
tion operation for chromosome C;.

L s | |

Fig. 9. Illustration of the transition directions of the forward schedule
transition operation for chromosome C;.

Ci,i=m+1,m+2,...,2m, the process of the mixed schedule
transition is described as follows.

Firstly, randomly select a sensor. If the sensor is redundant
to the corresponding cover set, we change the schedule of the
sensor to a randomly selected complete coverage schedule.
If the selected scheduling number is the same as that of
the sensor, the sensor is scheduled to the incomplete cover
set, making it different from the sensor’s original schedule.
The above process is repeated for K, times, where K, is a
predefined parameter.

The difference between the reverse mutation operation and
the mixed schedule transition operation is obvious. In muta-
tion, sensors are selected by a probability, regardless whether
it is redundant to the incomplete cover set. Therefore, after
mutation, the fitness of the chromosome may be reduced.
However, in the mixed schedule transition operation, only
redundant sensors can be rescheduled and the fitness of the
chromosome is not reduced.

2) Forward Schedule Transition: The forward schedule
transition operation is used for enhancing the coverage per-
centage of the incomplete cover set. After rescheduling sensors
among different cover sets by the mixed schedule transition,
the forward schedule transition operation schedules some
redundant sensors from complete cover sets to the incom-
plete cover set. For every chromosome C;, i = m + 1,m +
2,...,2m, K; genes are selected. If the corresponding sensors
are redundant, the selected sensors are rescheduled into the set
Sic+1. Fig. 9 presents the possible transition directions of the
forward schedule transition.

Note that when ¢; = g;,,., initially the set S;.+1 = ¢. By
transferring redundant sensors to the set S;..+1, the coverage
percentage of S;.. is increased so that the fitness of the
chromosome is enhanced.

3) Critical Schedule Transition: Sensors are not uniformly
distributed in the target area by a random sensor deployment.
Some fields are covered densely, while some fields are covered
sparsely. Sparsely covered fields restrict the maximum number
of disjoint complete cover sets. In order to accelerate the
algorithm, the fields that are covered by the minimum number
of sensors, termed critical fields, are checked.

The critical schedule transition operation is used for facili-
tating the critical fields to be covered by at least one sensor in
the incomplete cover set. Once critical fields are covered, there
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TABLE I
SUMMARY OF THE FUNCTIONS OF OPERATIONS IN STHGA

Operations

Functions \

Recombination and Selection

Use interactions between chromosomes to improve solution quality

Genetic Operations -
P Reverse Mutation

Eliminate search bias by reducing the fitness of the current scheduling scheme

Mixed Schedule Transition

Schedule redundant sensors from one cover set to the other cover set

Schedule Transition Operations | Forward Schedule Transition

Schedule redundant sensors to enhance the coverage of the incomplete cover set

Critical Schedule Transition

Ensure that critical fields can be covered in the incomplete cover set

are higher chances for scheduling sensors to the incomplete
sensor set to form complete coverage.

The fields covered by only 7 sensors are critical fields,
which can be determined in the initialization step. Every
chromosome C;, i =m+1,m+2, ..., 2m, performs the critical
schedule transition as follows. For every critical field, if it
is not covered in the incomplete cover set, we randomly
choose a redundant sensor that covers the critical field from
the complete cover sets and reschedule the sensor to the
incomplete cover set. After performing the critical schedule
transition, critical fields are covered in the incomplete coverage
schedule if corresponding redundant sensors are found.

FE. Summary Discussions on STHGA

Table II summarizes the functions of the operations used
in the proposed STHGA. The genetic operations and schedule
transition operations cooperate to search for the best schedul-
ing scheme of sensors. The generated chromosomes by the
operations comply with the requirements of the forward en-
coding scheme. The effectiveness of the operations in STHGA
will be analyzed in the next section via a series of experiments.

After performing the genetic operations and the schedule
transition operations in every generation, the new popula-
tion is evaluated according to the fitness function (8). The
best-so-far chromosome is thus updated and the chromo-
somes in Cyy1, Cpy2, ..., Coyy replace the chromosomes in
Ci, Cs, ..., C,, respectively. When T disjoint complete cover
sets are found or the predefined maximum number of fit-
ness function evaluations is reached, the proposed STHGA
terminates. If the termination condition is not satisfied, a new
population will be generated in the next generation.

The number of fitness function evaluations in each gener-
ation of the proposed STHGA is analyzed as follows. The
evaluation number used in the recombination and selection
operation is m, because m new chromosomes are generated.
Since the reverse mutation is performed every G,, generations
and the worst case is to mutate all the chromosomes in the
population, the average evaluation number for every generation
is thus no larger than m/G,,. After the three schedule tran-
sitions, the population is evaluated again, so that m function
evaluations are needed. In summary, the number of fitness
function evaluations in every generation is approximately
2+1/Gp)m.

IV. EXPERIMENTAL STUDY AND DISCUSSIONS

In this section, the proposed STHGA is tested with differ-
ent sensor deployments for point-coverage and area-coverage

problems. The performance of STHGA will be compared
with the state-of-the-art algorithms, i.e., MCMCC [35] and
GAMDSC [48]. Analysis and discussions on the operations
of the proposed STHGA are also presented.

If not specially stated, all experiments for STHGA use the
same parameters settings as the population size m = 3, the
interval for performing mutation G, = 100, the mutation
rate 4 = 0.5, and the parameters K; = K, = 5. These
parameter values are set empirically and their influences to the
performance of STHGA will be analyzed. Parameter settings
of MCMCC and GAMDSC can be referred in [35] and [48].
For STHGA and GAMDSC, each case is tested 100 times
independently. The sensors are deployed in a 50 x 50 rectangle
area and the coordinates of sensors’ locations are randomly
generated as float-point values in [0, 50]. All cases are run by
a computer with a Pentium IV 2.8 GHz CPU.

A. Experiments on Point-Coverage Problems

As has been stated in Section I, GAMDSC is proposed
for solving point-coverage problems, whereas MCMCC and
STHGA can be used for both point-coverage and area-
coverage problems. Seven point-coverage cases with different
numbers N of sensors are tested. The number of targets is
fixed as 10 and the sensing range R is 22 for all the sensors.
Using the same stopping criterion as GAMDSC in [48], the
maximum number of fitness function evaluations for both
GAMDSC and STHGA is 20 100. If the number of disjoint
complete cover sets reaches T, the algorithm also stops.

Table III tabulates the results computed by STHGA,
GAMDSC, and MCMCC. The T in the table represents the
upper limit of the maximum number of disjoint complete cover
sets. Because MCMCC is a deterministic algorithm, it is run
only once and the result and the time used for computation
are recorded. From the table, MCMCC obtains results that
are equal to 7 in four out of the seven cases. In contrast,
the proposed STHGA achieves results that are equal to 7 in
all of the seven cases. The time used by STHGA is much
shorter than MCMCC in most of the cases except for Cases
5 and 6. However, MCMCC cannot achieve the optima of
the two cases but STHGA can by using a slightly longer
time. In comparison with GAMDSC, the advantage of STHGA
is obvious. STHGA can find the optima in all of the 100
independent runs, so that only the mean results are tabulated.
However, GAMDSC cannot always obtain the optima within
the predefined maximum number of function evaluations ex-
cept for Case 3, which is the case with the smallest T value.
The best and mean results of GAMDSC are presented in the
table, plus the average number of function evaluations (avgE)
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TABLE III
TEST RESULTS FOR POINT-COVERAGE CASES WITH DIFFERENT NUMBERS N OF SENSORS
Cases STHGA GAMDSC MCMCC
No. N T Mean | avgE | ok% | Time (ms) | Best | Mean avgE ok% | Time (ms) | Result | Time (ms)
1 90 30 30 596 100 17 30 28.63 | 19822 8 965 29 31
2 100 23 23 214 100 5 23 22.83 | 11939 84 569 23 31
3 110 21 21 156 100 4 21 21 6141 100 303 21 31
4 120 35 35 422 100 15 35 3350 | 19899 5 1249 35 62
5 130 41 41 1856 | 100 84 41 40.99 | 10297 99 741 40 78
6 140 44 44 3568 100 172 43 40.72 | 20100 0 1550 43 93
7 150 42 42 532 100 25 42 40.82 | 19132 24 1517 42 109

The number of targets is 10 and the sensing range R is 22 for all the sensors. The best results among the three algorithms for each case are bold.

TABLE IV

TEST RESULTS FOR AREA-COVERAGE CASES WITH DIFFERENT NUMBERS N OF SENSORS AND SENSING RANGES R

Cases STHGA GAMDSC MCMCC

No. N R ng T Mean | avgE | ok% | Time (ms) | Best | Mean avgE ok% | Time (ms) | Result | Time (ms)
1 100 20 385 7 7 93 100 33 7 7 874 100 126 7 1438
2 | 300 [15] 673 |16 | 16 509 | 100 400 15 | 13.19 | 20100 | © 9713 16 33922
3 300 20 400 32 32 713 100 468 29 26.06 | 20100 0 10080 32 44047
4 | 400 [ 10 | 1556 | 9 9 598 | 100 797 8 624 | 20100 | 0 13764 9 54844
5 400 15 676 23 23 800 100 767 20 16.90 | 20100 0 13268 23 81766
6 | 500 | 8 | 2400 | 7 7 878 | 100 1588 6 404 | 20100 | 0 17413 7 76296
7 500 10 | 1586 | 15 15 9223 100 11386 8 5.81 20100 0 18527 15 124922
8 | 1000 | 5 | 6076 | 5 5 890 | 100 4534 3 0.89 | 20100 | © 38105 5 263469
9 1000 8 2498 | 17 17 1925 100 5901 6 3.19 20100 0 37830 17 683 890
The best results among the three algorithms for each case are bold.

and the average time in microsecond (ms) used for obtaining 30

the best result in each run, and the successful percentage i’ ( mmmnTTT T o

(0k%). STHGA outperforms GAMDSC both in the solution 5 251 e

quality and the optimization speed. 3

Using the point-coverage Case 1 as an example, we analyze £ 29 .

how STHGA performs better than GAMDSC. Fig. 10 shows %‘ sk

the average optimization curves of STHGA and GAMDSC o H

when solving Case 1 within the maximum function evaluation g 10 :

number. It can be seen that STHGA finds high-quality results g £

much faster than GAMDSC. Note that GAMDSC does not Z s ’

use the proposed forward encoding scheme to chromosomes § s P 1 “

so that the initialization of STHGA and GAMDSC is different. “ 0 . . T T

In STHGA, all sensors are initially in the same complete cover 0 3000 1I0000 13000 20000

Evaluations

set and redundant sensors are then scheduled to form a new
cover set. So the initial number of complete cover sets is small.
In GAMDSC, each sensor is initially assigned to a random
cover set. From the inner figure in Fig. 10, the initial number
of complete cover sets found by GAMDSC is 9, which is
bigger than that of STHGA. However, STHGA soon catches
up and then surpasses GAMDSC because the incomplete set
is continuously completed through the operations in STHGA.
The above results demonstrate that STHGA is very efficient.

B. Experiments on Area-Coverage Problems

The characteristics of the nine area-coverage cases with
different numbers N of sensors and sensing ranges R are
presented in Table IV. In the area-coverage cases, the grid
size d is set as L/ [L/(R/8)] so that the resolution of grids
is big enough. The value of ng shows that the number of
target fields to be covered in the area-coverage problems is

Fig. 10. Average optimization curves of STHGA and GAMDSC when
solving the point-coverage Case 1 (N = 90 and the maximum number of
disjoint cover sets is 30). The inner figure shows more details within the first
600 evaluations.

much larger than the number of targets in the point-coverage
problems in the previous subsection.

The results in Table IV show that GAMDSC is not suitable
for solving area-coverage problems, because it can only find
the optimum of the smallest Case 1 within the predefined max-
imum number of function evaluations. In contrast, STHGA and
MCMCC can find the optima of the nine area-coverage cases
successfully. By comparing the time used by STHGA and
MCMCC for achieving the optimal solution, the computation
speed of STHGA is much faster than that of MCMCC. Take
Case 5 as an example, the average time used by STHGA is
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Fig. 11. Mean number of disjoint complete cover sets with R increasing
from 1 to 50 for the test case N =400. The optimization results of STHGA
and GAMDSC are obtained by calculating the average number of disjoint
complete cover sets in 100 independent runs. The predefined maximum
number of function evaluations for both STHGA and GAMDSC is 150 000.
(a) Ilustration of the sensing ranges from 1 to 32. The results obtained by the
STHGA and the MCMCC are identical, so their curves are drawn together.
(b) Ilustration of the sensing ranges from 33 to 50.
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Fig. 13.  Comparison of the time used by STHGA with different interval

values G, (from 1 to 150) for performing mutation on the test case N = 500
and R = 10. The algorithm is run for 100 times independently with every G,
value.

767 ms, which is shorter than 1s, whereas MCMCC needs
81766 ms, which is approximately 82 s. The reason why
MCMCC uses a longer time than STHGA is because of its
mechanism in building cover sets. MCMCC builds each cover
set by successively adding a sensor to the set until all fields
have been covered. Before each step for choosing a sensor,
a new critical field that is formed by the remaining sensors
to the uncovered fields must be determined. Then each of the
sensors that cover the new critical field is evaluated by an
objective function. The sensor that has the maximum function
value is selected into the cover set. The worst runtime of
MCMCC is O(N?) and it needs to calculate the values of
its objective function several times for choosing an unselected
sensor to a new cover set. Because the update of the crit-
ical field and the calculation of the objective function are
time-consuming, MCMCC generally uses a long time before
termination.

When the number and positions of sensors are fixed in the
target area, the sensing ranges of sensors influence the lifetime
of the WSN. Without considering the energy consumption by
different sensing ranges, a sensor deployment with 400 sensors
using sensing ranges from 1 to 50 is checked. Fig. 11 compares
the results computed by STHGA, GAMDSC, and MCMCC.
According to Fig. 11(a), when the sensing range is smaller
than 6, the sensor deployment is a failure for no complete
coverage to the target area. When the range R increases,
the maximum number of complete cover sets also increases.
The numbers of complete cover sets that are achieved by the
three algorithms are the same when R = 6 to 8. However,
for the larger sensing ranges (R > 8), the performance of
GAMDSC becomes worse than both STHGA and MCMCC.
Fig. 11(a) shows that the results obtained by STHGA and
MCMCC are identical when R = 6 to 32. When R =33 to 50
[shown in Fig. 11(b)], STHGA performs better than MCMCC.

Fig. 12 shows the average time used by the three algorithms
for the above experiment. The time used by STHGA is always
shorter than GAMDSC. When the sensing range R < 40, the
time used by STHGA is much shorter than MCMCC. The



776 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 5, OCTOBER 2010

computation time of STHGA increases rapidly after R > 33,
during which MCMCC fails to find the optimal solution.
Even though MCMCC has terminated with a suboptimal
solution, STHGA continues to search for better solutions. The
results show that STHGA is more robust to different sensing
applications than the other algorithms.

C. Further Analysis on the Performance of STHGA

Note that the proposed STHGA is a hybrid of a GA
and some schedule transition operations. Therefore, in this
subsection, we firstly analyze the influence of different pa-
rameter settings in the genetic operations on the performance
of STHGA and then evaluate the effects of the schedule
transition operations through experiments. We also discuss the
performance of STHGA in solving problems with different
redundancy in cover sets.

1) Influence of Parameter Settings in Genetic Operations:
The parameters in the genetic operations of STHGA include
the population size m, the mutation rate u, and the interval
G, for performing mutation. Table V tabulates the results of
STHGA with different numbers of population size m when
solving area-coverage problems. The results show that using a
big population size slows down the convergence speed of the
proposed algorithm by taking more evaluation steps (avgE).
The best performance of STHGA is achieved when the popu-
lation size m = 3. By hybridizing with other effective search
methods in a GA, the results show that a small population is
enough for evolving better chromosomes in STHGA.

The mutation operation is used to avoid trapping in local
optima. When a mutation procedure starts, the mutation rate
determines the probability of mutating the gene in the in-
complete cover set into another randomly selected complete
cover set. Table VI compares the results of STHGA when
using different mutation rates p for solving area-coverage
problems. When p = 0.5, the genes have 50% probability
to be mutated. No gene is mutated when p = 0, whereas all
genes in the incomplete cover set are mutated when pu = 1.
The performances of STHGA using the three mutation rates
are similar except for Case 7. Without the mutation operation
(u = 0), the algorithm can only achieve the optimum with
21% successful percentage for Case 7. Meanwhile, using the
mutation operation can obtain 100% success. Therefore, the
mutation operation is useful for STHGA.

Different values of the interval G,, for performing mutation
have also been tested. Fig. 13 illustrates the comparison results
by testing different interval values (G,,) from 1 to 150 on the
test Case 7 with N =500 and R = 10. Although STHGA can
find the optimal solution using all of the tested G,, values in
the test case, the time used by the algorithm is the longest
when G,, = 1. It means that if mutation is performed in
every generation, the mutation operation is so destructive that
the algorithm takes much more steps for finding the optimal
solution. It is recommended to use a relatively large G,, so as
to avoid being trapped and lowering the performance of the
algorithm.

2) Effects of Schedule Transition Operations in STHGA:
Among the three schedule transition operations, the forward
schedule transition is the major operation for enhancing the in-

complete cover set. The mixed and critical schedule transition
operations facilitate searching for better solutions. Table VII
compares the results of STHGA with default settings, without
the mixed schedule transition, and without critical schedule
transition. Although the three algorithms can find the optimal
solutions for the test cases, the average numbers of function
evaluations used by the latter two algorithms are larger than
those used by STHGA with default settings. It shows that the
mixed and critical schedule transition operations can accelerate
searching for the optimal solution.

Different values of K; and K, have been checked for
evaluating the effectiveness of the forward and mixed schedule
transition operations, respectively. Fig. 14 shows the average
time used by STHGA for finding the optimal solutions with
K; = 1 to 100. When the value of K, increases from 1,
the time decreases for achieving the optimal solution. As
the value of K; continues to increase, the time gradually
becomes larger instead. The tolerance of STHGA to a large
K, is higher for the cases with a larger number of sensors.
In the cases with a large number of sensors, more sensors
are redundant and can be scheduled to the incomplete cover
set by the forward schedule transition operation. However,
if the value of K; exceeds a threshold, the performance of
the algorithm deteriorates because of the lack of redundant
sensors in complete cover sets. The best parameter setting of
K, is in the range of [20, 40] for most cases. Note that the
default setting of K in this paper is K| = 5, which is not in
the best value range. It means that although the performance
of STHGA using the default parameter settings has outper-
formed other state-of-the-art algorithms, the performance of
STHGA for the test cases in this paper still can be further
enhanced.

Fig. 15 compares the time used by STHGA with different
values of K,. All the curves in the figure show a significant
turning point near the value K, = 5. The larger the number
of sensors in the problem, the best value of K, is slightly
bigger. For example, the turning points for the cases in the
figure appear when K, = 3,5, 6, 7, respectively, for the cases
with N =100, 300, 400, and 1000. The existence of a turning
point shows that an appropriate scheduling of sensors to the
other cover sets is necessary but more mixed scheduling may
waste time.

3) Influence of Redundancy in Set Covers Problems:
Besides the number and positions of the sensors and their
sensing range, the redundancy rate n is also an important
factor for measuring the optimization difficulty of a set covers
problem. Note that the three schedule transition operations
are designed for utilizing the redundancy information among
sensors. When the value of n reduces, redundant sensors are
fewer and the proposed schedule transition operations are
harder to take effect. The values of n for the N = 400
cases with different sensing ranges have been illustrated in
Fig. 12. As the sensing range increases, the number of disjoint
complete cover sets becomes bigger and the value of n shows a
decreasing trend. When the value of 1 suddenly increases (e.g.,
when R = 13 or 17), the time used by the three algorithms
also reduces. It can be observed from the figure that the
problem with a larger value of 5 is easier to be solved than
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TEST RESULTS OF STHGA WITH DIFFERENT NUMBERS OF POPULATION SIZES m = 3, 6, OR 10

TABLE V

Cases m=3 m=6 m =10
No. N R ng T | Mean | avgE | ok% | Mean avgE 0ok% | Mean avgE ok%
1 100 | 20 | 385 7 7 93 100 7 165 100 7 256 100
2 300 15 | 673 16 16 509 100 16 851 100 16 1304 100
3 300 | 20 | 400 | 32 32 713 100 32 1167 100 32 1791 100
4 400 10 | 1556 | 9 9 598 100 9 947 100 9 1393 100
5 400 15 | 676 | 23 23 800 100 23 1282 100 23 1964 100
6 500 8 | 2400 | 7 7 878 100 7 1269 100 7 1775 100
7 500 10 | 1586 | 15 15 9223 100 15 13395 | 100 15 14161 100
8 1000 | 5 | 6076 | 5 5 890 100 5 1426 100 5 2153 100
9 1000 | 8 | 2498 | 17 17 1925 | 100 17 3086 100 17 4585 100
TABLE VI
TEST RESULTS OF STHGA WITH DIFFERENT MUTATION RATES =0, 0.5, OR 1
Cases n=0.5 n=0 w=
No. N R ng T | Mean | avgE | ok% | Mean avgE ok% | Mean avgE ok%
1 100 | 20 | 385 7 7 93 100 7 95 100 7 96 100
2 300 15 | 673 16 16 509 100 16 531 100 16 513 100
3 300 | 20 | 400 | 32 32 713 100 32 691 100 32 710 100
4 400 10 | 1556 | 9 9 598 100 9 592 100 9 600 100
5 400 15 | 676 | 23 23 800 100 23 788 100 23 784 100
6 500 8 | 2400 | 7 7 878 100 7 884 100 7 797 100
7 500 10 | 1586 | 15 15 9223 100 | 14.21 | 17306 21 15 10214 | 100
8 1000 | 5 | 6076 | 5 5 890 100 5 858 100 5 943 100
9 1000 | 8 | 2498 | 17 17 1925 100 17 1866 100 17 1933 100
TABLE VII

777

TEST RESULTS OF STHGA WITH DEFAULT SETTINGS, WITHOUT MIXED SCHEDULE TRANSITION (NO_MIX_SCHEDULE), AND WITHOUT CRITICAL
SCHEDULE TRANSITION (NO_ CRIT_ SCHEDULE)

Cases STHGA no_mix_schedule no_crit_schedule
No. N R ng T | Mean | avgE | ok% | Mean avgE ok% | Mean avgE ok%
1 100 20 385 7 7 93 100 7 298 100 7 142 100
2 300 15 673 16 16 509 100 16 971 100 16 774 100
3 300 20 400 32 32 713 100 32 1318 100 32 934 100
4 400 10 | 1556 9 9 598 100 9 949 100 9 834 100
5 400 15 676 23 23 800 100 23 1326 100 23 1109 100
6 500 8 2400 | 7 7 878 100 7 1887 100 7 1890 100
7 500 10 | 1586 | 15 15 9223 100 15 16753 100 15 19953 100
8 1000 5 6076 5 5 890 100 5 1225 100 5 1062 100
9 1000 8 2498 | 17 17 1925 100 17 2709 100 17 2489 100
TABLE VIII

TEST RESULTS FOR TWO GROUPS OF AREA-COVERAGE CASES WITH DIFFERENT VALUES OF 7

Test Cases STHGA MCMCC
N R n T | Mean avgE Time (ms) | Result | Time (ms)
1000 | 5| 628 | 5 5 1087 4976 5 255094
650 51408 |5 5 1578 3728 5 67390
Group 1 564 51354 |5 5 3214 5774 5 41859
482 51303 |5 5 20379 27701 4 22266
427 51268 |5 5 556083 613942 4 13797
560 8 | 500 | 9 9 1693 2975 9 113453
Group 2 372 8 [ 3329 9 4399 4454 9 32062
305 8 [ 273 | 9 9 67 634 50586 7 16250
280 8| 250 | 9 9 394940 267337 7 11937

The best results among the three algorithms for each case are bold.
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Fig. 14. Comparison of the time used by STHGA when K increases from 1 to 100. The time [in microseconds (ms)] is an average of 100 independent
runs for each test case. (a) N =100, R =20. (b) N =300, R=15. (¢c) N =400, R=15. (d) N =1000, R = 8.

the one with a smaller 1. The above conclusion fits to all the
three algorithms.

It can be seen that the value of n for the N =400 cases is
no smaller than 4.0 in Fig. 12. In order to reduce the value of
n to smaller values so as to analyze its influence, test cases are
generated as follows. Firstly, a random sensor deployment with
a large number of sensors is generated. The sensing ranges
are set to be small but there must be complete coverage to the
target area. When the optimum of the set covers problem is
found by STHGA, keep running the algorithm for 200 more
generations. Suppose the final best chromosome is C;. The
sensors in the set S; .+ are redundant sensors, which are then
removed. Thus a new deployment that has fewer sensors but
with the same maximum number of disjoint complete cover
sets is generated. Repeat the above process several times and
a series of test cases with smaller numbers of sensors and
smaller n values are built.

In this experiment, two groups of area-coverage cases
are generated from different initial sensor deployments. The
characteristics of the generated cases and the n values are
listed in Table VIII. As GAMDSC works not as well as the
other two algorithms, which have been shown in the previous
experiments, only the performances of STHGA and MCMCC
are compared. From Table VIII, the proposed STHGA can find

the best solutions in all test cases, whereas MCMCC cannot
find the best solutions in test cases when the value of 1 drops
below 3.1. For the cases that both algorithms can find the best
solutions, STHGA performs better than MCMCC by using a
much shorter time.

Fig. 16 illustrates the average optimization results computed
by STHGA for solving the first group of area-coverage cases.
The maximum number of disjoint complete cover sets is 5
for all the cases with different values of N and n. When
the value of n decreases, the number of function evaluations
needed for achieving the optimum increases rapidly. In the first
600 evaluations, STHGA finds better results faster when the
number N is smaller. As the optimization goes on, STHGA
spends more time on the case with a smaller n to find the
optimum. A reason for this phenomenon is that when the
value of n decreases, redundant sensors are more and more
difficult to be selected by the schedule transition operations
for constructing a new complete cover set successfully. It
should be noted that STHGA uses fewer than 1500 function
evaluations to obtain four disjoint complete cover sets in the
first group of area-coverage cases. Compared with the results
of Cases N =482 and N = 427 in Table VIII, STHGA still
performs much faster than MCMCC for achieving the same
sub-optimal solution.
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Fig. 16. Average optimization curves of STHGA when solving the first
group of area-coverage cases in Table VIII. The cases are generated by
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V. CONCLUSION

In this paper, a GA based approach termed STHGA has been
proposed to find the maximum number of disjoint complete
cover sets of sensors for maximizing the lifetime of a WSN.
Its distinct features and importance are concluded as follows.

1y

2)

3)

4)

The advantage of STHGA in solving the disjoint set
covers problems lies in its adoption of a forward encod-
ing scheme and some well-designed operations. These
operations are very suitable for finding the maximum
number of disjoint complete cover sets for maximizing
the lifetime of WSNs.

Encoding the structural features of solutions in chro-
mosomes so that the maximum gene value of each
chromosome is increased consistently with the solution
quality is the novelty of our encoding scheme of chro-
mosomes. The forward encoding scheme for represent-
ing chromosomes not only reflects the best scheduling
scheme of sensors that has been found, but also provides
guidance for further advancement of chromosomes.
Complying with the forward encoding scheme, the ge-
netic operations and schedule transition operations in
STHGA cooperate to search for the best scheduling
scheme of sensors. In particular, the usage of redun-
dancy information among the scheduled sensors has
been shown to be efficient in this paper.

STHGA is applicable to both point-coverage and
area-coverage problems in WSNs. Even though area-
coverage problems are more difficult than point-
coverage problems, because area-coverage problems in-
volve a whole area instead of only a few target points in
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point-coverage problems, the proposed algorithm can
achieve high-quality solutions in a fast optimization
speed and outperform the other state-of-the-art algo-
rithms.

Further applications of the proposed algorithm to other sim-
ilar problems are important parts of our future research work.
First, the problems addressed in this paper can be regarded
as a type of constrained subset optimization problems, in
which the maximum number of subsets that can meet the
objective requirements is needed to be identified. In this paper,
the objective requirement of each subset is to form complete
coverage to the targets. Therefore, the proposed STHGA also

has
the

presented a new implementation method of GAs for
problems. On the other hand, we will investigate the

application of STHGA by considering the energy consumption
of sensors by using different sensing ranges, and find out the
best configuration between different working modes and the
lifetime of complete cover sets.
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