Expert Systems with Applications 37 (2010) 4966-4973

Contents lists available at ScienceDirect g 4
S
Expert Systems with Applications i

journal homepage: www.elsevier.com/locate/eswa

A quantum-inspired genetic algorithm for k-means clustering

Jing Xiao®®, YuPing Yan®, Jun Zhang®, Yong Tang ®*

aSchool of Computer Science, South China Normal University, Guangzhou 510631, PR China
Key Lab of Machine Intelligence and Sensor Network (Sun Yat-sen University), Ministry of Education, Guangzhou 510006, PR China

ARTICLE INFO ABSTRACT

The number of clusters has to be known in advance for the conventional k-means clustering algorithm
and moreover the clustering result is sensitive to the selection of the initial cluster centroids. This sensi-
tivity may make the algorithm converge to the local optima. This paper proposes a quantum-inspired
genetic algorithm for k-means clustering (KMQGA). In KMQGA, a Q-bit based representation is employed
for exploration and exploitation in discrete 0-1 hyperspace using rotation operation of quantum gate as
well as the typical genetic algorithm operations (selection, crossover and mutation) of Q-bits. Different
from the typical quantum-inspired genetic algorithms (QGA), the length of a Q-bit in KMQGA is variable
during evolution. Without knowing the exact number of clusters beforehand, KMQGA can obtain the opti-
mal number of clusters as well as providing the optimal cluster centroids. Both the simulated datasets
and the real datasets are used to validate KMQGA, respectively. The experimental results show that

Keywords:

k-means clustering

Genetic algorithms
Quantum-inspired genetic algorithms

KMQGA is promising and effective.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering plays an important role in many unsupervised learn-
ing areas, such as pattern recognition, data mining and knowledge
discovery. Clustering problem can be summarized as: Given n
points in R space and an integer k, find a set of k points, called cen-
troids, such that the sum of the distances of each of the n points to
its nearest centroid is minimized. Generally speaking, conventional
clustering algorithms can be grouped into two main categories,
namely hierarchical clustering algorithms and partitional cluster-
ing algorithms. A hierarchical clustering algorithm outputs a den-
drogram, which is a tree structure showing a sequence of
clusterings with each clustering being a partition of the dataset
(Leung, Zhang, & Xu, 2000). Unlike the hierarchical clustering algo-
rithm, the partitional clustering algorithms partition the data set
into a number of clusters, and the output is only a single partition
of the data set. The majority of partitional clustering algorithms
obtain the partition through the maximization or minimization
of some criterion functions. Recent researches show that the part-
itional clustering algorithms are well suited for clustering a large
dataset due to their relatively low computational requirements
(Steinbach, Karypis, & Kumar, 2000). And the time complexity of
the partitional algorithms is almost linear, which makes them
widely used (Abraham, Das, & Konar, 2006).

* Corresponding author. Tel.: +8620 85211532 201.
E-mail addresses: jingsxiao@gmail.com (J. Xiao), yuson_yan@163.com (Y. Yan),
junzhang@ieee.org (J. Zhang), ytang@scnu.edu.cn (Y. Tang).

0957-4174/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2009.12.017

Among the partitional clustering algorithms, the most famous
one is k-means clustering (Hartigan, 1975). K-means clustering
algorithm first randomly generates k initial cluster centroids. After
several iterations of the algorithm, data can be classified into cer-
tain clusters by the criterion function, which makes the data close
to each other in the same cluster and widely separated among clus-
ters. However, the traditional k-means clustering algorithm has
two drawbacks. The one is that the number of clusters has to be
known in advance, and the other is that the clustering result is sen-
sitive to the selection of initial cluster centroids and this may lead
the algorithm converge to the local optima. Different datasets have
different number of clusters, which is difficult to known before-
hand, and the initial cluster centroids are selected randomly, which
will make the algorithm converge to the different local optima.
Therefore, a lot of research efforts have been conducted on mitigat-
ing the two drawbacks of the conventional k-means clustering
algorithm. The genetic algorithm (GA) is one of the methods to
avoid local optima and discover good initial centroids that lead
to superior partitions under k-means. In Krishna and Murty
(1999), the authors proposed a novel hybrid genetic algorithm that
finds a globally optimal partition of a given dataset into a specified
number of clusters for k-means algorithm. Lu, Lu, Fotouhi, Deng,
and Brown (2004) proposed a fast genetic k-means algorithm
which is an improved version of the work in Krishna and Murty
(1999) with faster convergence to the global optima. Laszlo and
Mukherjee (2007) presented a genetic algorithm using a novel
crossover operator that exchanges neighboring centers for select-
ing centers to seed the k-means method for clustering.

http://dx.doi.org/10.1016/j.eswa.2009.12.017
mailto:jingsxiao@gmail.com
mailto:yuson_yan@163.com
mailto:junzhang@ieee.org
mailto:ytang@scnu.edu.cn
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

J. Xiao et al. / Expert Systems with Applications 37 (2010) 4966-4973 4967

Recently, the work of combining quantum computing and evo-
lutionary computing has stimulated the studies of quantum-in-
spired evolutionary algorithms and their applications. The most
important work to classical computer was done by Han and Kim
(2002). They proposed a quantum-inspired evolutionary algorithm
(QEA) which was used to solve combinational problem on classical
electronic computer. QEA used a Q-bit as a probabilistic represen-
tation and a Q-bit individual is defined by a string of Q-bits. Since
the Q-bit representation in quantum computing can represent lin-
ear superposition of states probabilistically, it has a better charac-
teristic of population diversity than binary, numeric, or symbolic
representations. The ensemble of quantum-inspired algorithms
has been successfully employed in a series of optimization prob-
lems due to its effectiveness. In Wang, Wu, Tang, and Zheng
(2005), a quantum-inspired genetic algorithm was proposed for
flow shop scheduling problem with a single objective. And in Li
and Wang (2007), the authors proposed a hybrid quantum-in-
spired genetic algorithm for multi-objective flow shop scheduling
problem. The concept of quantum computing was also applied to
some other applications, such as solving the travelling salesman
problem (Talbi, Draa, & Batouche, 2004), image segmentation (Kar-
ima, Mouloud, Yacine, & Nadjib, 2006), and face detection (Jang,
Han, & Kim, 2004).

In this paper, we attempt to utilize the quantum-inspired ge-
netic algorithm to alleviate the drawbacks in the k-means cluster-
ing method. An improved K-means clustering algorithm based on
quantum-inspired genetic algorithm (KMQGA) is proposed.
KMQGA uses Q-bits as its chromosome’s representation and Da-
vies-Bouldin rule index (Bouldin, 1979) as criterion function. Every
chromosome in KMQGA denotes cluster centroids of a partition.
Different chromosomes can have different string lengths of Q-bits,
that is, different chromosomes denote different partitions. Before
performing the GA operations (selection, crossover, and mutation)
and the quantum operation (rotation), the Q-bit representation
firstly has to be encoded into the binary representation, and then
the real-coded representation. When the GA operations and the
quantum operation are conducted during the iterations of KMQGA,
the chromosome may change its string length, that is, the cluster
centroids of a partition are changed. After several iterations of
KMQGA, the improved algorithm can find the optimal number of
clusters as well as the initial cluster centroids, due to the string
length variation of chromosomes. The simulated datasets and the
real datasets are used to verify the effectiveness of KMQGA and
to compare KMQGA with a K-means clustering algorithm based
on the famous variable string length genetic algorithm (KMVGA)
(Bandyopadhyay & Mauilk, 2001; Mauilk & Bandyopadhyay,
2002) respectively.

The rest part of this paper is organized as follows: Section 2
briefly introduces the background of quantum computing. The
implementation details of KMQGA are described in Section 3.
Experimental results and analysis are presented in Section 4. We
conclude this paper in Section 5.

2. Quantum computing

Before describing KMQGA, we introduce the quantum comput-
ing briefly. Unlike the two-state (0/1) representation in conven-
tional computing, the smallest information representation in
quantum computing is called quantum bit (Q-bit) (Hey, 1999).
The state of Q-bit may be “0” state, “1” state or any superposition
of the two. So the state of Q-bit can be represented in formula (1):

[>= /0> B|1 > (1)

where o and B are complex numbers that specify the probability
amplitudes of the corresponding states. Thus, o> and ||* denote

probabilities that the Q-bit will be found in the “0” state and the
“1” state, respectively. Normalization of the state to the unity guar-
antees in formula (2):

o2 + |2 =1)

Thus, a Q-bit can be represented as the linear superposition of
the two conventional binary genes (0 and 1). A Q-bit individual
as a string of m Q-bits is defined in formula (3):
|:OC]|062|... O(m:| (3)

Bl Bpl oo By

If there is a string of m Q-bits, then the string can represent 2™
states at the same time. The state of a Q-bit can be changed by the
operation with a quantum gate, such as the NOT gate, the rotation
gate, etc. However, the superposition of “0” state and the “1” state
must collapse to a single state in the action of observing a quantum
state, that is, a quantum state have to be the “0” state or “1” state.
In the evolutionary computing, the Q-bit representation has a bet-
ter characteristic of population diversity than other representa-
tions, because it can represent linear superposition of states
probabilistically.

Here is an example that can explain the essence of quantum’s
Q-bit. If there is a Q-bit individual with three-Q-bits in formula (4)

1 1111

ARAE
{4_ vz xﬁ} 4)
V2 | v3 1] 2

Then the state of Q-bit individual can be formulated as formula

(5)

1000) + ——[001) + ——[010) + —~|100) + ——|101)

2v” 2vr

1110) +

2v” 2vr' 2vr

Vf- Vf4111> (5)

That is to say, the probabilities of the Q bit individual being 000,
001, 010, 011, 100, 101, 110, 111 are 55, 5, 34, 54 5, 74 3 [eSPeC-
tively. Obviously, a single Q-bit individual in the above contains
eight states with a certain probability to get each state while the
conventional evolutionary algorithms just contain a single state
in a single individual.

More examples of Q-bit representation can be found in Han and
Kim (2002). Inspired by the concept of the representation of Q-bit
in quantum computing, KMQGA is designed with this novel Q-bit
representation and the quantum rotation operation is one of the
various operations in the algorithm.

3. KMQGA

In this section, we first propose the overall algorithm of
KMQGA. Then the chromosome representation and the fitness
function of this algorithm will be presented. At last, four main
operations and an accessional operation (GA selection, GA cross-
over, GA mutation, quantum rotation operation and quantum
catastrophe operation) will be interpreted.

3.1. The overall flowchart of KMQGA

KMQGA uses Davies-Bouldin (DB) rule index as its criterion
function, which is also called fitness function, to evaluate whether
the partition of a dataset is good or not. One of the important fea-
tures of Davies-Bouldin run index is that it justifies a partition of a
dataset based on both the inter-cluster and the intra-cluster. It
means that a partition is good enough if all the data in the same
cluster are similar, and data in different cluster are far too similar
(Bouldin, 1979).

4968 J. Xiao et al./ Expert Systems with Applications 37 (2010) 4966-4973

The overall procedure of this algorithm is shown in Fig. 1.

The algorithm begins with initializing the population randomly.
Each chromosome (also called individual) in the population de-
notes a certain partition of a dataset. More specifically, each chro-
mosome is represented by the Q-bit representation at first. Then
the Q-bit string is collapsed into a certain state, which is a binary
string. After the collapse operation, there is another operation to
change this binary string into real-coded string. Then a Q-bit indi-
vidual consists of a group of real-coded numbers, and each real
number in the real-coded string denotes a pattern of the dataset.
That is to say that a Q-bit individual consists of several centroids
and it can be represented some kinds of partition accordingly. Then
the algorithm runs conventional K-means clustering algorithm on
each chromosome just one time and evaluates each chromosome
by the DB rule index fitness function. The fitness value and the
probabilities which are used in the later GA selection operation
are calculated accordingly. The performance of a certain partition

Initialize the population

Y

Compute fitness

Is the stopping criterion
satisfied?

false

Is the prematurity criterion
satisfied?

false

Roulette Selection & Elite
Selection

Crossover with the
probability of Pc

Mutation with the probability
of Pm

{

of a dataset is evaluated by the fitness value. Based on the proba-
bilities, the algorithm can produce a new population through the
roulette selection and the elite selection operations. The GA cross-
over operation affects each chromosome in terms of the crossover
probability. In the process of GA crossover operation, the length of
each chromosome may be changed. Due to this change, the parti-
tion denoted by the chromosome is changed accordingly, and after
several iterations of this algorithm, the better chromosome may be
shown up. Then the GA mutation and quantum rotation operation
are performed, both of which may make the searching space of
KMQGA more diversified. In order to avoid the degeneration of
the chromosome and prematurity of the algorithm, KMQGA uses
elite selection operation and quantum catastrophe operation. The
overall procedure of KMQGA is summarized as follows:

(a) Randomly generating an initial population using Q-bit
representation.

Best result

true

Roulette Selection & Elite
Selection

Crossover with the
probability of Pcc

Mutation with the probability
of Pmm

{

false

Update individual with
quantum rotation operation

{

Is the catastrophe criteriom

satisfied?

true

Perform catastrophe
operation

{

Save the best chromosome

Fig. 1. The overall flowchart of KMQGA.

J. Xiao et al. / Expert Systems with Applications 37 (2010) 4966-4973 4969

(b) Collapsing the Q-bit representation into the binary represen-
tation, and then the real-coded representation. Using the DB
fitness function to evaluate each chromosome.

(c) If the stopping criterion is satisfied, then output the best
result; otherwise save the best chromosome and go to the
next steps.

(d) If the prematurity criterion is satisfied, then go to step (f);
otherwise go to step (e).

(e) Adjusting the probabilities of crossover and mutation as P,
and P,,, respectively. Then go to step (g).

(f) Adjusting the probabilities of crossover and mutation as P
and P, respectively. Then go to step (g).

(g) Performing selection operation, crossover operation and
mutation operation.

(h) If the catastrophe criterion is satisfied, then go on step (j);
otherwise go to step (i).

(i) Look up table of rotation angle (refer to Table 1), and then
perform rotation operation. Go back to step (b).

(j) Perform catastrophe operation. Go back to step (b).

KMQGA sets a maximal iteration number Ny as its stopping
criterion, which should be as big as possible in order to find the
optimal solution. The prematurity criterion is satisfied when the
best chromosome saved by the algorithm does not change after
Nmex iterations, where ny,q < Npox. That is to say, if the best chro-
mosome in current iteration is the same as the best one which is
Nmex iterations ago, then the probabilities of the crossover (P;)
and the mutation (P,,) should be adjusted to P, and Py, respec-
tively, for the sake of jumping out of the local trap. Since the larger
probability of the crossover can exchange more information among
a couple of chromosomes, and the larger probability of the muta-
tion can enlarge the diversity of the population, the algorithm ad-
justs P, and P, to larger probabilities (P, and Pun). The
catastrophe criterion (Wang et al., 2005) is similar to the prematu-
rity criterion. We think it is trapped in local optima if the best solu-
tion does not vary in Mpgy (Mmaex < Nmex) CONsecutive number of
generations. Then the best solution is reserved and the others will
be replaced by randomly generated solutions.

The four probabilities (p.,Pm,Pe>Pmm) are real numbers less
than 1.0, where p. > Pc,Pmm > Pm:Pec = random(p,, 1), and
Dmm = random(p,,,2 x p,,), and p,,,, = random(p,,2 x p,,) Here, we
set p,, < 0.5 and random(a, b) is a function that generates a random
real number between a and b.

3.2. Representation of chromosome in KMQGA

Inspired by the Q-bit representation and the modified variable
string length genetic algorithm (Song & Park, 2006) (MVGA),
KMQGA employs a modified variable Q-bit string length represen-
tation. Before coding the chromosomes, the range of K (number of
clusters) [Kmin, Kmax] should be defined first, where K.;, > 2 and
Kinax < N (N is the number of instances). As long as the K is

Table 1

The lookup table of rotation angle.
ri b F()<Fb) A s(o%, Bi)

oif; >0 oif; <0 o; =0 pi=0

0 0 False 0 0 0 0 0
0 0 True 0 0 0 0 0
0 1 False 0 0 0 0 0
0 1 True 0.057 -1 +1 +1 0
1 0 False 0.017 -1 +1 +1 0
1 0 True 0.0257t +1 -1 0 +1
1 1 False 0.0057 +1 -1 0 +1
1 1 True 0.0257t +1 -1 0 +1

not less than the exact number of clusters, the algorithm could ob-
tain the optimal solution. However, if Ko« is much greater than the
exact number of clusters, the cost of both the computation time
and the storage space will be high. Research shows that the opti-
mal K is not larger than /N (Yang, Li, Hu, & Pan, 2006). In this pa-
per, the range of K is set to [2, VN + 1].

Knowing the amount N, we are also aware of the number of bin-
ary string length B to denote a pattern ID, that is, 2°~' < N < 28, For
example, if the number of instances is 178, then B = 8. When cod-
ing the chromosome, a number # is randomly generated first,
where £ € [Kmin, Kmax]- Thus, the Q-bit string length of this chromo-
some is # x B. In the conventional QGA or QEA, the lengths of all Q-
bit individuals are the same. After several operations of selection,
crossover, mutation and quantum gate, the length of every Q-bit
individual do not change and still are the same. In KMQGA, we pro-
pose a quite different method from the conventional QGA and QEA.
The length of a Q-bit individual depends on the number 4, and the
is a random number ranging in [Kpin, kmax]- Therefore, every Q-bit
individual may be different from each other and the crossover
operation which we will mention in the following section may
change the length of Q-bit individual. Because of the variable
length representation, a Q-bit individual denotes different number
of centroids. And after several iterations, KMQGA may find the
number of centroids in the best partition. The chromosome repre-
sentation is presented as in formula (6).

O | 02 Ol¢xB
Bil Ba Bxp

Then the Q-bit string will be collapsed into a certain state,
which is a binary string. That is, randomly generating a float num-
ber 5, where # € (0,1). If § < |oy|* the corresponding binary state is
0, otherwise is 1.

After the collapse operation, there is another operation to
change this binary string into real-coded string. The algorithm con-
verts every B binary string into a real number. Each real number in
the real-coded string denotes a pattern of the dataset.

= ©)

3.3. Fitness function of KMQGA

In order to evaluate whether the quality of a certain partition is
good or not, we should use a criterion function (also called fitness
function). A good fitness function can give a high value to a good
partition solution and give a low value to a bad partition. There
are many fitness functions to evaluate clustering nowadays, such
as Euclidean distance, Davies-Bouldin rule index (Bouldin, 1979),
Dunn index (Dunn, 1974), and Turi (Turi, 2001), S_DBW (Halkidi
& Vazirgiannis, 2001), CDBW (Halkidi & Vazirgiannis, 2002).

Since the DB rule index can evaluate the distance of intra-clus-
ter and the distance of inter-cluster, KMQGA employs DB as its fit-
ness function. We describe DB as follows (Zhang, Liu, & Guan,
2006) in formulas (7) and (8):

1
Si =N dIX-zi| (7)
XeG;
1
Zi=5 > X)
b XeG;

where G; is the set the ith cluster, z; is the amount of instances in the
cluster G;, N; is the centroids of G;, | X — Z;|| is the Euclidean distance
between pattern X and Z;, S; means the average cohesion of G;.

dij = Zi — Z| (9)

In formula (9), d;; denotes the distance between Z; and Z; and for-
mula (11) denotes the DB rule index.

4970 J. Xiao et al. / Expert Systems with Applications 37 (2010) 4966-4973

Ri = man_j#,‘{Si +SJ}, l?éj (10)

1 k
DB:EZR,- (11)

The smaller the DB value is, the better the partition is. So we let
3z be the KMQGA's fitness function as formula (12):

1
F = DB (12)
Since the Q-bit representation cannot denote the expression
of the pattern ID directly, the Q-bit representation has to be col-
lapsed to binary string representation first. A Q-bit string # with
length # x B is firstly collapsed to a certain state (0-1 state)
according to the probability amplitudes of the individual. For
i=1,2,3,...,# x B, we generate a random number 7 between
[0,1]. If o of chromosome % satisfies |oi | > n, then set #; to
0, otherwise set it to 1. After the binary string is constructed,
we encode every #-length binary string into a real number,
which is a pattern ID. That is to say, KMQGA first changes the
Q-bit string to binary string, and then converts it to real number.
Thus, a Q-bit string with length # x B denotes a partition with #
centroids. By doing this, the DB fitness function can evaluate
every partition.

3.4. Selection operations in KMQGA

Roulette selection and elite selection are employed in
KMQGA. Roulette selection runs according to the selected prob-
ability. Usually, the chromosome with high fitness value will be
chosen to the next iteration with a high probability. However,
in order to avoid the case where the optimum chromosome
with good fitness value is not selected occasionally, KMQGA
performs the elite selection after the roulette selection opera-
tion. The elite selection guarantees that the best chromosome
in a certain generation would not be lost in the evolutionary
process. The basic idea of elite selection is as follows: if a
certain individual in the former generation is better than the
best individual in the current generation, some individuals
in the current generation will be replaced by the better ones
in the former generation. The pseudo code of elite selection is
expressed as follows:

For the ¢th generation, the population is {P(t) = {P(t, 1),
P(t,2),...,P(t,N)};
and Fpa(t) is the best individual in the /th generation.
Fmax(t) = max{F(P(t, 1)), F(P(t,2)),...,F(P(t,N))};
Fonax(t + 1) = max{F(P(t + 1,1)),
F(P(t +1,2)),...,F(P(t + 1,N))};
if Fingx(t) > Finax(t + 1) then
replicate
{P(6, k) [F(P(£,k)) > Fax(t + 1), P(t, k) € P(0)};
replace randomly
{P(t+1,j) eP(t+1)} with
Fmax(t +1),p(t,K) € P(t)};
enf if

{P(t,k)[F(P(t,k)) >

3.5. Crossover operation in KMQGA

KMQGA uses a special crossover operation which can change
the lengths of parental chromosomes. For each chromosome, the
crossover point is randomly chosen according to its own string
length. Take for an instance, there are two chromosomes
(%, and #,) in formulas (13) and (14) with length 8 and 5,
respectively:

P |:’11 Oy | O3 | Olg | Os| Og | 07 | Og (13)
Bl Bal B3l Bal Bs| Bs | By | Ps

y o | 0 | o | o O‘%}

% :)/ / / / / 14

‘ [ﬂl AVAVAY o

A random integer between 1 and its length is generated as the
crossover point for each chromosome. For example, the crossover
point of #, are 6 and 2, respectively. Then, the new chromosomes
(%7 and #,) are shown as in formulas (15) and (16):

’ 01| Oy | O3 | Olg| Ols | Olg | O | Oty | Ol

R b P 15
‘ {ﬁl ATATAT AT ATAY (1)

oy | o 0‘8}

Ry | 16
2 {/31 aray (16)

Now, we can see both of the chromosomes’ lengths are changed.
Due to this change, the partition solution denoted by the chromo-
some is changed accordingly. Thus, the search space is larger and
the optimal solution could be found.

3.6. Mutation operation in KMQGA

For the diversity, mutation is employed. Based on the mutation
probability, mutation point is generated randomly according to the
chromosome’s length. For example, there is a chromosome (#5) as
in formula (17) with the length of 7.

O | o3| O | 05 | Og | O
2 | O3 | Ola| Os | O | %7 } (17)

B By Bl Bal Bs | B | By

The mutation point is a number between 1 and its string length
7.1f 25 mutation point is 5, then KMQGA changes the position of os
and Bs. The new chromosome is #; is shown as formula (18).

N

o

b

0l

B2

o3

Bs

021

Ba

s

Bs

e | Oy
ol) a9

s [5,

3.7. Rotation operation in KMQGA

A rotation gate U(0) is employed to update a Q-bit individual as
formula (19):

o o cosf; —sinb; o

L) v (5] = [Gmn oo | 19
Bi Bi sinf; cos0; Bi

where {z'} is the ith Q-bit and 0; is the rotation angle of each Q-bit

toward either O or 1 state depending on its sign.

The rotation operation used in KMQGA is to adjust the probabil-
ity amplitudes of each Q-bit. According to the rotation operation in
formula (19), a quantum gate U(0;) is a function of 0; = s(o;, ;) x
A6;, where s(o;, 3;) is the sign of 6; which determines the direction
and A¢; is the magnitude of rotation angle (Li & Wang, 2007). The
lookup table of A¢; is shown in Table 1, where b; and r; are the ith
bit of the best solution b and a binary solution of a, respectively. In
particular, if the length of b is not the same as the length of b, an
additional correcting performance will be employed. In this paper,
we increase/delete the r’s Q-bits randomly if the length of r is less/
more than the length of b. Because b is the best solution in KMQGA,
the use of quantum gate rotation is to emphasize the searching
direction towards b.

3.8. Catastrophe operation in KMQGA

We consider that it is trapped in local optima if the best solution
does not change in a certain number of consecutive generations.
KMQGA records the fitness of best solution for each iteration and
compares the best fitness in current iteration with the best fitness

J. Xiao et al. / Expert Systems with Applications 37 (2010) 4966-4973 4971

Table 2
Details of clusters’ ranges in sds1 dataset.

Coordinate Range of sds1
Cluster1 Cluster2 Cluster3
X [0,20] [40,60] [80,100]
Y [0,20] [40,60] [80,100]
Table 3
Details of clusters’ ranges in sds2 dataset.
Coordinate Range of sds2
Cluster1 Cluster2 Cluster3 Cluster4
X [0,20] [40,60] [80,100] [0,20]
Y [0,20] [40,60] [80,100] [80,100]

in the last previous iteration. To avoid premature convergence, a
catastrophe operation (Li & Wang, 2007) is used in KMQGA. If
the algorithm obtains the same best fitness in a certain number
of consecutive generations, we consider KMQGA traps in prema-
ture convergence and perform the catastrophe operation. KMQGA
keeps the best individual and the other individuals are re-gener-
ated randomly.

4. Experimental evaluation of KMQGA

In this section, we test the performance of the proposed
KMQGA. First, we test KMQGA's effectiveness using three simu-
lated datasets. Then four datasets from famous UCI machine learn-
ing repository (Blake, Keogh, & Merz, 1998) are utilized to compare
the performance and the effectiveness of KMQGA with those of
KMVGA. In both the simulated data and the real data experiments,
we empirically set the size of population to 100,
P.=09,2, =0.01, 5mex = 15, wemax = 25. We set AN ey = 100 and
N 'mex =300 in simulated data and real data respectively.
N 'max = 100 and A ex = 300 are randomly generated as described
in Section 3.1.

4.1. Simulated datasets

We randomly generate three simulated datasets (sds1, sds2,
sds3). There are three, four and eight clusters in sds1, sds2, sds3,
respectively. Each cluster in simulated datasets has 100 data vec-
tors. To get the direct vision from the coordinate easily, we define
each data vector as two dimensions. Details of clusters’ ranges of
sds1, sds2 and sds3 are given in Tables 2-4 respectively.

After a certain range is given, these data vectors are generated
in uniform probability distribution within the given range. We
run KMQGA with the three simulated datasets for 30 times, and
each time we can obtain the number of clusters 3, 4, 8 for sds1,
sds2 and sds3, respectively.

KMQGA also obtains the best initial cluster centroids of each
dataset. One of the 30 runs experiments’ results are shown as fol-
lows. Figs. 2-4 depict the partitions solutions of sds1, sds2, sds3,
respectively.

Table 4
Details of clusters’ ranges in sds3 dataset.

T T T T T T T T T T T
100 4 -
A 4
80 -
60 - -
@
x
3 .
>-
40 4 -
20 4 -
0- -

T T T T T T T T T T T
0 20 40 60 80 100

X Axis

Fig. 2. Initial centroids obtained by KMQGA for sds1 dataset.

100

80 -

60 -

Y Axis

404 -

20-

] A]
Centroid
04 -
T T T T T T T T T T T
0 20 40 60 80 100

X Axis

Fig. 3. Initial centroids obtained by KMQGA for sds2 dataset.

In Figs. 2-4, the initial cluster centroids obtained by KMQGA are
reasonable since each centroid is almost in the center of corre-
sponding data vectors from a visual point of view. Thus, the cor-
rectness of KMQGA is proved by the simulated datasets in our
experiment.

4.2. Real datasets (UCI datasets)

The four real datasets from UCI machine learning repository are
Glass, Wine, SPECTF-Heart and Iris. The details of the four datasets,
which can be found in the .names file of every dataset’s fold, are
summarized in Table 5.

Coordinate Range of sds3

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6 Cluster7 Cluster8
X [0,20] [40,60] [80,100] [80,100] [0,20] [180,200] [180,200] [180,200]
Y [0,20] [40,60] [80,100] [0,20] [180,200] [0,20] [80,100] [180,200]

4972 J. Xiao et al./ Expert Systems with Applications 37 (2010) 4966-4973

T T T T T
200 :
-
150 -
L2
2 100 -
>
50 A i
A A A
04 u
T T T T T T T T T
0 50 100 150 200
X Axis
Fig. 4. Initial centroids obtained by KMQGA for sds3 dataset.
Table 5
Details of UCI real datasets.
Dataset Number of Number of Number of
instances attributes clusters
Glass 214 9 2
Wine 178 13 3
SPECTF- 187 44 2
Heart
Iris 150 4 3
Table 6
Comparison between KMQGA and KMVGA.
Dataset KMQGA KMVGA
Clusters Ave. Std Clusters Ave. Std
fitness fitness
Glass 2 64.106 2.682 35.492 2.439
Wine 3 11.186 2932 12 4.124 3.035
SPECTF- 2 10.496 3204 2 7.162 2.766
Heart
Iris 3 14.131 3.549 6 5.864 3.428

For each dataset, KMQGA and KMVGA run 30 times, respec-
tively. For each dataset, we record the best fitness values KMQGA
and KMVGA get for each run. And after 30 runs, we calculate the
average best fitness value. And the average results are shown as
follows in Table 6.

We can see from the results from Table 6 that, for all the four
real datasets, KMQGA obtains the exact K. But the KMVGA just gets
the optimal result in Glass dataset and SPECTF-Heart dataset and
cannot get the exact K in another two datasets. For the average best
fitness value, KMQGA gets the higher value than KMVGA does. In
Glass dataset, KMQGA'’s best fitness value is 1.8 times higher than
KMVGA'’s. In Wine dataset, KMQGA's best fitness value is 2.7 times
higher than KMVGA’s. In SPECTF-Heart dataset, KMQGA's best fit-
ness value is 1.5 times higher than KMVGA’s. In Iris dataset,
KMQGA'’s best fitness value is 2.4 times higher than KMVGA's.

And we also calculated the standard deviation in the experi-
ments of real datasets. In each dataset, the standard deviation that
KMQGA obtains is similar to those of KMVGA, which means the
stability of KMQGA is similar to that of KMVGA. Therefore, with
the same stability, the better fitness that KMQGA gets means the
better performance KMQGA makes.

In the real datasets experiment, we set both the same popula-
tion size and the same generation numbers for KMQGA and
KMVGA. KMQGA can achieve the better results in terms of the
number of K and the average best fitness. Therefore, we can say
that KMQGA is better than KMVGA in real datasets in our
experiments.

From the above results of both the simulated datasets and the
UCI real datasets, the effectiveness of KMQGA is proved. And the
effectiveness of KMQGA is better than that of KMVGA.

5. Conclusion

In this paper, we propose an improved K-means clustering algo-
rithm based on quantum-inspired genetic algorithm (KMQGA).
This algorithm employs the Q-bit representation and the concept
of quantum computing. Four main operations and an accessional
operation (GA selection, GA crossover, GA mutation, quantum rota-
tion operation and quantum catastrophe operation) are performed
to search the optimal partition solution for a certain dataset. And
the Q-bit string length can be changed in crossover operation.
Due to this change, the partition denoted by a chromosome is ad-
justed, accordingly. Thus, the algorithm’s searching space is large
enough to get the optimal solution after several iterations of evo-
lution. The simulated datasets in our experiment proved the cor-
rectness of KMQGA, and the UCI real datasets are performed to
compare the difference between KMQGA and KMVGA in the effec-
tiveness. The experiment results show that KMQGA is better than
the KMVGA. Our future work is to investigate how to explore the
search space using small number of individuals (even using only
one individual).

Acknowledgement

This work was supported in part by the NSFC Joint Fund with
Guangdong under Key Project U0835002, the National High Tech-
nology Research and Development Program (”863”Program) of Chi-
na, No. 2009AA01Z208 and the NSFC Funds with Nos. 60970044,
60736020, and 60673135.

References

Abraham, A, Das, S., & Konar, A. (2006). Document clustering using differential
evolution. In Proceedings of 2006 IEEE congress on evolutionary computation (pp.
1784-1791).

Bandyopadhyay, S., & Mauilk, U. (2001). Nonparametric genetic clustering:
Comparison of validity indices. IEEE Transactions on System, Man, and
Cybernetics - Part C Applications and Reviews, 31(1), 120-125.

Blake, C., Keogh, E., & Merz, C.]. (1998). UCI repository of machine learning databases.
<http://www.ics.uci.edu/~mlearn/MLRepository.html>.

Bouldin, D. (1979). A cluster separation measure. [EEE Transactions Pattern Analysis
Machine Intelligence, 1(2), 224-227.

Dunn, J. C. (1974). Well separated clusters and optimal fuzzy partitions. Cybernetics
and Systems, 4(1), 95-104.

Halkidi, M., & Vazirgiannis, M. (2001). Clustering validity assessment: Finding the
optimal partitioning of a data set. In Proceedings of ICDM conference, CA, USA (pp.
187-194).

Halkidi, M., & Vazirgiannis, M. (2002). Clustering validity assessment using multi
representative. In Proceedings of SETN conference, Thessaloniki, Greece (pp. 237-
248).

Han, K. H., & Kim, J. H. (2002). Quantum-inspired evolutionary algorithm for a class
of combinatorial optimization. IEEE Transactions on Evolutionary Computation,
6(6), 580-593.

Hartigan, J. A. (1975). Clustering algorithms. New York, NY: John Wiley and Sons, Inc..

Hey, T. (1999). Quantum computing : An introduction. Computing and Control
Engineering Journal, 10(3), 105-112.

Jang, J. S, Han, K. H., & Kim, J. H. (2004). Face detection using quantum-inspired
evolutionary algorithm. In Proceedings of 2004 IEEE congress on evolutionary
computation (pp. 2100-2106).

Karima, B., Mouloud, K., Yacine, B., & Nadjib, B. (2006). Image segmentation using
quantum genetic algorithms. In Proceedings of IEEE 2006 - 32nd annual
conference on industrial electronics (pp. 3556-3563).

Krishna, K., & Murty, M. (1999). Genetic K-means algorithm. IEEE Transactions on
Systems, Man and Cybernetics - Part B: Cybernetics, 29(3), 433-439.

http://www.ics.uci.edu/~mlearn/MLRepository.html

J. Xiao et al./Expert Systems with Applications 37 (2010) 4966-4973 4973

Laszlo, M., & Mukherjee, S. (2007). A genetic algorithm that exchanges neighboring
centers for k-means clustering. Pattern Recognition Letters, 28, 2359-2366.
Leung, Y., Zhang, J., & Xu, Z. (2000). Clustering by space-space filtering. IEEE

Transactions Pattern Analysis Machine Intelligence, 22(12), 1396-1410.

Li, B. B, & Wang, L. (2007). A hybrid quantum-inspired genetic algorithm for
multiobjective flow shop scheduling. IEEE Transactions on System, Man and
Cybernetics, Part B, Cybernetics(37), 576-591.

Ly, Y., Ly, S., Fotouhi, F., Deng, Y., & Brown, S.]. (2004). FGKA: A fast genetic k-means
clustering algorithm. In Proceedings of the 2004 ACM symposium on applied
computing (pp. 622-623).

Mauilk, U., & Bandyopadhyay, S. (2002). Performance evaluation of some clustering
algorithms and validity indices. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(12), 1650-1654.

Song, W., & Park, S. C. (2006). Genetic algorithm-based text clustering technique:
Automatic evolution of clusters with high efficiency. In Proceedings of the
seventh international conference on web-age information management workshops
(pp. 17-24).

Steinbach, M., Karypis, G., & Kumar, V. (2000). A comparison of document clustering
techniques. In TextMining workshop, KDD. <http://citeseer.ist.psu.edu/
steinbachOOcomparison.html>.

Talbi, H., Draa, A, & Batouche, M. (2004). A new quantum-inspired genetic
algorithm for solving the travelling salesman problem. In Proceedings of 2004
IEEE international conference on industrial technology (Vol. 3, pp. 1192-1197).

Turi, R. H. (2001). Clustering-based colour image segmentation. PhD thesis, Monash
University, Australia.

Wang, L., Wy, H,, Tang, F., & Zheng, D. Z. (2005). A hybrid quantum-inspired genetic
algorithm for flow shop scheduling. Lecture Notes in Computer Science, 3645,
636-644.

Yang, S. L, Li, Y. S., Hy, X. X,, & Pan, P. (2006). Optimization study on k value of K-
means algorithm. System Engineering — Theory and Practice, 26(2), 97-101.
Zhang, D. X,, Liu, X. Z., & Guan, Z. H. (2006). A dynamic clustering algorithm based
on PSO and its application in fuzzy identification. In Proceedings of the 2006
international conference on intelligent information hiding and multimedia signal

processing (pp. 232-235).

http://citeseer.ist.psu.edu/steinbach00comparison.html
http://citeseer.ist.psu.edu/steinbach00comparison.html

	A quantum-inspired genetic algorithm for k-means clustering
	Introduction
	Quantum computing
	KMQGA
	The overall flowchart of KMQGA
	Representation of chromosome in KMQGA
	Fitness function of KMQGA
	Selection operations in KMQGA
	Crossover operation in KMQGA
	Mutation operation in KMQGA
	Rotation operation in KMQGA
	Catastrophe operation in KMQGA

	Experimental evaluation of KMQGA
	Simulated datasets
	Real datasets (UCI datasets)

	Conclusion
	Acknowledgement
	References

