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ABSTRACT

In outsourcing data storage, privacy and utility are significant con-

cerns. Techniques such as data encryption can protect the privacy

of sensitive information but affect the efficiency of data usage ac-

cordingly. By splitting attributes of sensitive associations, database

fragmentation can protect data privacy. In the meantime, data util-

ity can be improved through grouping data of high affinity. In this

paper, a benefit-driven genetic algorithm is proposed to achieve a

better balance between privacy and utility for database fragmen-

tation. To integrate useful fragmentation information in different

solutions, a matching strategy is designed. Two benefit-driven op-

erators for mutation and improvement are proposed to construct

valuable fragments and rearrange elements. The experimental re-

sults show that the proposed benefit-driven genetic algorithm is

competitive when compared with existing approaches in database

fragmentation.

CCS CONCEPTS

• Security and privacy → Information accountability and

usage control; • Theory of computation → Random search

heuristics; • Mathematics of computing → Combinatorial op-

timization;
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1 INTRODUCTION

Outsourcing data storage provided by commercial cloud service

has shown its advantages in high convenience and low cost. How-

ever, confidentiality of sensitive information in outsourcing data

storage is still a big concern [14, 19, 21, 22]. To be specific, data

security and privacy protection issues are primary inhibitors in the

adoption of cloud service [2]. The challenge of protecting the confi-

dentiality of private data has attracted attention from both academic

research and industrial community [17, 23]. For this purpose, many

approaches have been proposed [8–10]. Traditional approaches

for private data protection involve encryption [11]. Querying over

encrypted data requires specific indexing techniques or decryp-

tion approaches [18], which directly affect the efficiency of data

utilizing.

Fragmentation is on the other side of data encryption [16, 20]. By

splitting attributes of data in different vertical fragments, sensitive

associations among data can be protected [7, 12]. A significant

advantage of data fragmentation over data encryption is its high

convenience regarding data access and querying. The utility is

also considerable concern in outsourcing data storage [1]. Having

attributes of high affinity in the same fragments can improve the

efficiency of data querying and evaluation. Fragmentation aims to

balance the trade-off between privacy conservation and data utility.

An ideal fragmentation over database can protect the confidentiality

of data as well as satisfy utility requirements.

In the previous literature, several algorithms have been proposed

for fragmentation optimization. In [4], the problem of optimizing

fragmentation regarding constraints and affinity between attributes

is defined. Also, two heuristic algorithms which can optimize the

number of fragments and the sum of affinity values are proposed.

Moreover, the authors prove that the identified problems are NP-

hard. Publication of data in term of multiple loose associations

between different pairs of fragments is studied in [5]. Given a spe-

cific level of protection for sensitive associations, the proposed
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heuristic algorithm can provide satisfying fragmentation. Query-

ing utility is also considered in different fragments. The genetic

algorithm has shown its effectiveness in various fields due to high

performance [6, 13]. In the problem of database fragmentation, the

genetic algorithm has also been adopted. In [15], genetic algorithm

is utilized to generate fragmentation which can satisfy the given

constraints. However, there are only two fragments involved in

this algorithm, and the utility of fragmentation is ignored. Also, the

performance of the proposed genetic algorithm is not enhanced by

specifically designed operators.

In this paper, to achieve a better balance between constraints and

utility requirements in database fragmentation, a benefit-driven

genetic algorithm is proposed. To integrate useful fragmentation

information in different solutions, a matching-based recombination

operator is proposed. Besides, to maintain population diversity as

well as introduce useful fragmentation information, two mutation

operators named random mutation and benefit-driven mutation

are proposed. Furthermore, a benefit-driven improvement strategy

is designed to merge fragments in generated individuals to improve

the competitiveness of the solution.

The main contributions of this paper are listed as follows:

(1) An individual matching strategy is designed for recombina-

tion to maximize the effectiveness of recombination.

(2) Motivated by benefit degree of constructing fragments and

rearranging elements, a benefit-driven mutation operator is

proposed.

(3) A benefit-driven improvement strategy is utilized to improve

to the competitiveness of generated solution.

The remainder of this paper is organized as follows. In Sec-

tion 2, the problem of database fragmentation is defined. Section 3

describes the proposed benefit-driven algorithm in detail, which

includes a novel matching strategy and benefit-driven operators.

Extensive experiments with discussion are provided in Section 4.

Finally, Section 5 concludes.

2 PROBLEM DEFINITION

The objective of database fragmentation problem is to find a frag-

mentation that can satisfy the given constraints as well as optimize

utility. Let R be a relation schema, a set of well-defined constraints

C over R and a weighted list of utility requirements U, find a

fragmentation F of R such that all the following conditions hold.

(1) ∀F ∈ F ,∀c ∈ C : c � F ;
(2) ∀Fi , Fj ∈ F , i � j : Fi ∩ Fj = �;

(3) ∀F ′ satisfying the first two conditions such thatutility(F ′) ≤

utility(F )

Suppose fragmentation F is the optimal solution. It means frag-

mentation F satisfied all the predefined constraints and no other

fragmentation can provide higher utility as well as meet the given

constraints.

3 BENEFIT-DRIVEN GENETIC ALGORITHM

3.1 Representation and Initialization

The first step in designing a genetic algorithm is to devise a suitable

representation scheme. In this problem, a solution containing n

1 3 2 2 23

E1 E2 E3 E4 E5 E6

E1

E3 E4 E6

E2 E5

F1

F2

F3

C1

U1

E3 E4

E5 E6E2

Figure 1: Illustration of representation.

elements can be coded as a vector whose length is n. In this repre-

sentation, a bit in the vector is associated with the corresponding

element. Solution[i] = j indicates ith element is located in fragment

j.
Each individual in the initial population is generated according

to the above representation. To increase the diversity of the initial

population, each initial individual is created by random. This way,

the initialized individuals are not only of high diversity but also

feasible to the problem.

As shown in Figure 1, an individual containing six elements is

initialized by random. Suppose there are three fragments, for each

element, its initial fragment index is initialized between 1 and 3.

Through initialization, the first fragment (F1) contains one element

(E1); the second fragment (F2) includes three elements (E3, E4, and

E6); the third fragment (F3) contains two elements (E2 and E5).

As an example, in Figure 1, constraint fitness of given solution is

the sum of constraint fitness achieved by three fragments which is

1. With the same way, utility fitness of sample solution is the sum

of utility fitness produced by three fragments which is 0.
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Figure 2: Illustration of recombination process.
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3.2 Matching-Based Recombination (MBR)

Although it is improbable that the current population contains the

optimal solution, it is possible that those solutions include several

correctly arranged elements. According to the definition of con-

straint fitness and utility fitness, these solutions should show low

constraint fitness and high utility fitness. One major goal of re-

combination is to extract the correctly arranged elements in parent

individuals and integrate them into the generated child individual.

To achieve a better effect of recombination, amatching strategy is

designed. Once the first parent individual in recombination operator

is identified, it can be helpful if the other parent individual matches

the chosen one. Based on this idea, the satisfaction condition of

utility requirements achieved by individuals is considered. The goal

of the matching strategy is to find the other parent individual who

can help achieve more utility requirements.

Parametermatching index (MI ) is designed to describe thematch-

ing degree between each pair of individuals.MI
j

i
between individual

i and individual j is calculated by counting the number of utility

requirements which can be satisfied by individual j but not included
in individual i . This way, once one of the parent individuals is iden-
tified in the recombination operator, the other parent individual

who can supply helpful fragmentation information can be found.

For individual i , its matching individual is the one who owns the

highest value ofMI .
As shown in Figure 2, individual 1 is the first chosen parent

individual. Then, the matching index between individual 1 and

other individuals is calculated. Individual 4 fulfills the second utility

requirement (U2) and the fourth utility requirement (U4), which are

not satisfied by individual 1. Thematching index between individual

1 and individual 4MI41 is 2.

Once two parent individuals are determined, recombination of

these two individuals is executed. To combine fragmentation in-

formation in parent individuals adequately, uniform crossover is

adopted. As an example in Figure 2, in the child individual, frag-

ment indexes of three elements are from one parent individual and

the other three indexes are from the other parent individual.

3.3 Mutation

Mutation helps maintain population diversity as well as introduce

additional information to prevent the algorithm from converging

too fast and prematurely. In this problem, for each offspring gen-

erated by recombination operator, its fragmentation information

is from parent individuals. An ideal offspring can integrate useful

fragmentation information from parents. However, recombination

operator is difficult to construct new fragmentation utility satis-

faction. This way, in the generated population, the distribution of

utility satisfaction is very likely to lose balance, which means some

of the utility requirements are satisfied by most of the individuals

while other utility requirements are not included in any individual.

To overcome the satisfaction biases appearing in population,

in this algorithm, two mutation operators are proposed, namely,

random mutation (RM) and benefit-driven mutation (BDM). With a

completely random manner, RM can help introduce random frag-

mentation information to maintain population diversity. Further-

more, to adaptively introduce fragmentation information for spe-

cific utility requirement as well as decrease satisfaction biases, BDM
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Figure 3: Illustration of adaptive mutation process.

is designed accordingly. When executing, two mutation operators

are randomly selected. RM is selected with a predefined possibility

Pm .

RandomMutation (RM). For each element in the given individual,

it has a predefined possibility Prm to be chosen. The chosen element

is randomly assigned to a new fragment.

Benefit-Driven Mutation (BDM). To counter the utility satisfac-

tion biases, the satisfaction degree of each utility is necessary to

acquire. This degree can be indicated by the number of individu-

als who can satisfy it. For each utility requirement, its satisfaction

degree should be of higher value if more utility requirements are

satisfied. Furthermore, considering the weight of each utility re-

quirement is different. The weight of utility requirement is also

necessary to be utilized.

After calculating the benefit degree of each utility requirement,

the utility requirement of highest benefit degree is chosen. For

each individual mutated through BDM operator, if the selected

utility requirement is not satisfied, elements in the corresponding

utility requirement are adjusted to locate in the same fragment. This

way, the utility requirement of the highest benefit is constructed,

which may have never included in the population during the entire

evolution process.

As shown in Figure 3, benefit index of each fragment is calculated

based on satisfaction distribution of each utility requirement and

its weight. From the given result, U3 is of the highest benefit index.

Thus, elements E2, E5, and E6 are rearranged to fulfill U3.
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Algorithm 1 Pseudo-code of benefit-driven genetic algorithm

1: Set G = 0 (G is current generation of population)

2: Initialize population P
3: Evaluate constraint and utility fitness values for each initial

individual

4: while stopping criterion is not met do

5: G = G + 1
6: Update benefit value for each utility requirement

7: Update benefit value for each element

8: for each two individuals in population do

9: Select the individual of higher fitness as the first parent

individual

10: Match the second parent individual

11: Perform recombination operator on parent individuals

12: if rand(0, 1) < Pm then

13: Execute RM operator on offspring

14: else

15: Execute BDM operator on offpsring

16: end if

17: Perform BDIS on offspring

18: Evaluate constraint and utility fitness values of off-

spring

19: Use the generated offpsring to replace the individual of

lower fitness

20: end for

21: end while

22: Output convergence data

23: Output the best solution

3.4 Benefit-Driven Improvement Strategy
(BDIS)

In the proposed recombination and mutation operators, individu-

als are enhanced through integrating and constructing accurately

aligned fragments. Additionally, a benefit-driven improvement

strategy is proposed, which is based on migrating elements that

are likely to locate at wrong positions.

The proposed improvement strategy includes two basic proce-

dures: one is to calculate the migration benefit of each element,

and the other is element migration. With the help of the utility

evaluation result, the benefit of migrating each component can be

directly calculated.

Migration benefit of ith element BMi is calculated as:

BMi =

NU∑
j=1

DW
j

i
(1)

DW
j

i
=

⎧⎪⎪⎨
⎪⎪⎩

0, ifU j does not contain Ei
−Wj , ifU j containts Ei and is satisfied

Wj , otherwise

(2)

where NU is the number of utility requirements, DW i
j
is directed

weight of Ei onU j andWj is the weight ofU j.
The calculation result can help indicate the benefit degree of

migrating elements. Thus, the element of highest migration benefit

is chosen and randomly rearranged in another fragment.

3.5 Overall Process

The entire process of the proposed algorithm is shown in Algorithm

1. Firstly, the population is initialized, and each individual in the

initial population is evaluated. Then, during each generation in

the evolution process, benefit values for utility requirements and

elements are updated. For every two individual in the population,

the fitter individual is chosen as the first parent individual in re-

combination. Then the other individual is selected according to the

proposed matching strategy. After recombination, the offspring is

mutated and improved by BDIS operator. The generated offspring

is used to replace the other individual that is of lower fitness in

the two chosen individuals. Once the stopping criterion is met, the

convergence data during the evolution process and the best solution

are output.

Table 1: Properties of test cases

Test cases NE NC SC NU SU

T1 10 20 [2,6] 40 [4,8]

T2 15 30 [2,8] 60 [4,10]

T3 20 40 [2,11] 80 [4,13]

T4 25 50 [2,13] 100 [4,15]

T5 30 60 [2,16] 120 [4,18]

T6 35 70 [2,18] 140 [4,20]

T7 40 80 [2,21] 160 [4,23]

T8 45 90 [2,23] 180 [4,25]

T9 10 20 [4,8] 40 [4,8]

T10 15 30 [4,10] 60 [4,10]

T11 20 40 [4,13] 80 [4,13]

T12 25 50 [4,15] 100 [4,15]

T13 30 60 [4,18] 120 [4,18]

T14 35 70 [4,20] 140 [4,20]

T15 40 80 [4,23] 160 [4,23]

T16 45 90 [4,25] 180 [4,25]

4 EXPERIMENTAL STUDIES

4.1 Experimental Setup

In the experiments, 16 test cases of different complexity are gen-

erated by random and carried out to evaluate the performance of

the proposed GA-BD. Properties of test cases including the number

of elements NE, number of constraints NC and corresponding size

SC , number of utility requirements NU and corresponding size SU
are listed in Table 1.

The parameter setting of the proposed algorithm is listed as

follows. Population size NP is set as 30; the maximum number of

fitness evaluationsMaxFEs is set as NE × 103; mutation rate Pm is

set as 0.9 and random mutation rate Prm is set as 0.2.

Additionally, to improve the objectivity of experiments, all the

GA based algorithms run 25 times independently. The proposed

and all the compared algorithms are implemented by C++ and

performed on an Intel Core i5-4278U CPU with 8GB RAM.
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(a) T5 (b) T6 (c) T8

(d) T12 (e) T14 (f) T16

Figure 4: Comparisons of convergence performance between GA-BD and existing approaches on six typical test cases.

4.2 Comparisons with Existing Approaches

In this subsection, we compare the proposed GA-BD with two

existing approaches to further reveal its advantage. These three

algorithms are listed as follows:

(1) GA-BD: GA-BD is the complete version of the proposed

algorithm, including MBR, BDM, and BDIS.

(2) GA [3]: Same as the previous subsection, GA is utilized for

comparison.

(3) HA [4]: This heuristic algorithm is the state-of-the-art ap-

proach in handling constraint and utility in database frag-

mentation.

Table 2 shows the comparisons of experimental results where

the best results are highlighted in boldface. From the result, it can

be found that the proposed GA-BD algorithm can achieve the best

results in 15 out of 16 test cases, which is higher than 4 and 0 of

GA and HA, respectively. Our proposed GA-BD algorithm com-

prehensively outperforms the other algorithms regarding solution

accuracy. Results of the significant test are also labeled in Table 2.

GA-BD is significantly better than GA and HA on 12 and 16 test

cases, while significantly worse than GA and HA on only 1 and 0

test cases, respectively.

Besides, Figure 4 shows the convergence curves of three ap-

proaches on six typical test cases. Each point on the plot is calcu-

lated by taking the average of 25 independent runs. These six test

cases, namely, T5, T6, T8, T12, T14 and T16 are of different numbers

of elements as well as different complexity.

Convergence curves of these six typical test cases indicate that

GA-BD has the highest convergence rate among the three ap-

proaches. For these test cases, GA-BD shows both better explo-

ration and exploitation abilities than the other two. To summarize,

by utilizing benefit-driven strategies, the proposed GA-BD is a very

promising algorithm for database fragmentation problem.

5 CONCLUSIONS

Overall, a benefit-driven genetic algorithm has been proposed in

this paper to achieve the balance between privacy and utility in data-

base fragmentation. An individual matching strategy is proposed

and embedded in recombination operator to integrate useful frag-

mentation information in different individuals. Random mutation

and benefit-driven mutation are designed to maintain population

diversity as well as introduce valuable fragments. Moreover, to

rearrange elements in fragments, a benefit-driven improvement

strategy is proposed. Extensive experiments have been conducted,

and the effectiveness of the proposed operators has been verified.

Compared with existing approaches, our proposed GA-BD algo-

rithm has shown its high competitiveness.

REFERENCES
[1] Piotr Berman and Sofya Raskhodnikova. 2014. Approximation Algorithms for

Min-Max Generalization Problems. ACM Transactions on Algorithms 11, 11 (2014),
5.

[2] Deyan Chen and Hong Zhao. 2012. Data security and privacy protection issues
in cloud computing. In 2012 International Conference on Computer Science and
Electronics Engineering, Vol. 1. IEEE, 647–651.

[3] PC Chu and John E Beasley. 1998. Constraint handling in genetic algorithms: the
set partitioning problem. Journal of Heuristics 4, 4 (1998), 323–357.

[4] Valentina Ciriani, Sabrina De Capitani Di Vimercati, Sara Foresti, Sushil Jajodia,
Stefano Paraboschi, and Pierangela Samarati. 2010. Combining fragmentation and

775



GECCO ’19, July 13–17, 2019, Prague, Czech Republic Yong-Feng Ge et al.

Table 2: Comparisons between GA-BD and existing approaches

Approaches GA-BD GA HA

Mean Std Mean Std Result

T1 7.50E+02 0.00E+00 7.50E+02 0.00E+00 ≈ 5.45E+02 −

T2 7.71E+02 1.51E+01 7.75E+02 0.00E+00 + 3.70E+02 −

T3 7.54E+02 5.73E+01 6.96E+02 3.68E+01 − 4.70E+02 −

T4 9.02E+02 4.66E+01 7.69E+02 5.77E+01 − 5.85E+02 −

T5 1.53E+03 2.16E+01 9.26E+02 4.02E+01 − 9.35E+02 −

T6 1.26E+03 1.24E+02 9.02E+02 7.26E+01 − 1.05E+03 −

T7 1.29E+03 1.33E+02 7.16E+02 3.60E+01 − 1.07E+03 −

T8 1.80E+03 1.75E+02 7.64E+02 6.97E+01 − 9.40E+02 −

T9 5.15E+02 0.00E+00 5.15E+02 0.00E+00 ≈ 3.05E+02 −

T10 7.75E+02 0.00E+00 7.75E+02 0.00E+00 ≈ 1.50E+02 −

T11 8.82E+02 3.82E+01 6.85E+02 9.83E+01 − 6.05E+02 −

T12 7.20E+02 6.78E+01 6.38E+02 5.57E+01 − 3.50E+02 −

T13 9.35E+02 6.22E+01 4.58E+02 8.83E+01 − 4.10E+02 −

T14 1.11E+03 1.29E+02 2.78E+02 5.17E+01 − 5.05E+02 −

T15 1.06E+03 1.26E+02 2.40E+02 4.17E+01 − 4.60E+02 −

T16 1.34E+03 1.53E+02 2.62E+02 4.32E+01 − 6.70E+02 −

−/≈ /+ 12/3/1 16/0/0

encryption to protect privacy in data storage. ACM Transactions on Information
and System Security 13, 3 (2010), 22.

[5] Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Giovanni Livraga,
Stefano Paraboschi, and Pierangela Samarati. 2015. Loose associations to increase
utility in data publishing. Journal of Computer Security 23, 1 (2015), 59–88.

[6] Dunwei Gong, Jing Sun, and ZhuangMiao. 2018. A set-based genetic algorithm for
interval many-objective optimization problems. IEEE Transactions on Evolutionary
Computation 22, 1 (2018), 47–60.

[7] Sandhya Harikumar and Raji Ramachandran. 2015. Hybridized fragmentation of
very large databases using clustering. In 2015 IEEE International Conference on
Signal Processing, Informatics, Communication and Energy Systems. 1–5.

[8] Jiajia Huang, Min Peng, Hua Wang, Jinli Cao, Wang Gao, and Xiuzhen Zhang.
2017. A probabilistic method for emerging topic tracking in microblog stream.
World Wide Web 20, 2 (2017), 325–350.

[9] Ravi Jhawar, Vincenzo Piuri, and Pierangela Samarati. 2012. Supporting security
requirements for resource management in cloud computing. In 2012 IEEE Inter-
national Conference on Computational Science and Engineering. IEEE, 170–177.

[10] Alhassan Khedr, Glenn Gulak, and Vinod Vaikuntanathan. 2016. SHIELD: scalable
homomorphic implementation of encrypted data-classifiers. IEEE Trans. Comput.
65, 9 (2016), 2848–2858.

[11] Jens Köhler, Konrad Jünemann, and Hannes Hartenstein. 2015. Confidential
database-as-a-service approaches: taxonomy and survey. Journal of Cloud Com-
puting 4, 1 (2015), 1.

[12] Lichun Li, Rongxing Lu, Kim-Kwang Raymond Choo, Anwitaman Datta, and Jun
Shao. 2016. Privacy-preserving-outsourced association rule mining on vertically
partitioned databases. IEEE Transactions on Information Forensics and Security 11,
8 (2016), 1847–1861.

[13] Meikang Qiu, Zhong Ming, Jiayin Li, Keke Gai, and Ziliang Zong. 2015. Phase-
change memory optimization for green cloud with genetic algorithm. IEEE Trans.
Comput. 64, 12 (2015), 3528–3540.

[14] Jiangang Shu, Xiaohua Jia, Kan Yang, and Hua Wang. 2018. Privacy-preserving
task recommendation services for crowdsourcing. IEEE Transactions on Services
Computing (2018).

[15] Suk-Kyu Song and Narasimhaiah Gorla. 2000. A genetic algorithm for vertical
fragmentation and access path selection. Comput. J. 43, 1 (2000), 81–93.

[16] R Srinivas, KA Sireesha, and Shaik Vahida. 2017. Preserving Privacy in Vertically
Partitioned Distributed Data Using Hierarchical and Ring Models. In Artificial
Intelligence and Evolutionary Computations in Engineering Systems. Springer,
585–596.

[17] Xiaoxun Sun, HuaWang, Jiuyong Li, and Yanchun Zhang. 2012. Satisfying privacy
requirements before data anonymization. Comput. J. 55, 4 (2012), 422–437.

[18] Noorul Hussain UbaidurRahman, Chithralekha Balamurugan, and Rajapandian
Mariappan. 2015. A novel DNA computing based encryption and decryption
algorithm. Procedia Computer Science 46 (2015), 463–475.

[19] Hua Wang, Zonghua Zhang, and Tarek Taleb. 2018. Special issue on security and
privacy of IoT. World Wide Web 21, 1 (2018), 1–6.

[20] Xiaofeng Xu, Li Xiong, and Jinfei Liu. 2015. Database fragmentation with confi-
dentiality constraints: A graph search approach. In 2015 ACM Conference on Data
and Application Security and Privacy. 263–270.

[21] Jiangshan Yu, Guilin Wang, Yi Mu, and Wei Gao. 2014. An efficient generic
framework for three-factor authentication with provably secure instantiation.
IEEE transactions on information forensics and security 9, 12 (2014), 2302–2313.

[22] Yong Yu, Man Ho Au, Giuseppe Ateniese, Xinyi Huang, Willy Susilo, Yuanshun
Dai, and Geyong Min. 2017. Identity-based remote data integrity checking
with perfect data privacy preserving for cloud storage. IEEE Transactions on
Information Forensics and Security 12, 4 (2017), 767–778.

[23] Ji Zhang, Xiaohui Tao, and Hua Wang. 2014. Outlier detection from large dis-
tributed databases. World Wide Web 17, 4 (2014), 539–568.

776


