
1080 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 7, JULY 2014

Differential Evolution With Two-Level
Parameter Adaptation

Wei-Jie Yu, Student Member, IEEE, Meie Shen, Wei-Neng Chen, Member, IEEE, Zhi-Hui Zhan, Member, IEEE,
Yue-Jiao Gong, Student Member, IEEE, Ying Lin, Member, IEEE, Ou Liu, and Jun Zhang, Senior Member, IEEE

Abstract—The performance of differential evolution (DE)
largely depends on its mutation strategy and control parameters.
In this paper, we propose an adaptive DE (ADE) algorithm with
a new mutation strategy DE/lbest/1 and a two-level adaptive
parameter control scheme. The DE/lbest/1 strategy is a variant of
the greedy DE/best/1 strategy. However, the population is mutated
under the guide of multiple locally best individuals in DE/lbest/1
instead of one globally best individual in DE/best/1. This strat-
egy is beneficial to the balance between fast convergence and
population diversity. The two-level adaptive parameter control
scheme is implemented mainly in two steps. In the first step, the
population-level parameters Fp and CRp for the whole population
are adaptively controlled according to the optimization states,
namely, the exploration state and the exploitation state in each
generation. These optimization states are estimated by measuring
the population distribution. Then, the individual-level parameters
Fi and CRi for each individual are generated by adjusting
the population-level parameters. The adjustment is based on
considering the individual’s fitness value and its distance from
the globally best individual. This way, the parameters can be
adapted to not only the overall state of the population but also
the characteristics of different individuals. The performance of
the proposed ADE is evaluated on a suite of benchmark functions.
Experimental results show that ADE generally outperforms four
state-of-the-art DE variants on different kinds of optimization
problems. The effects of ADE components, parameter properties
of ADE, search behavior of ADE, and parameter sensitivity of
ADE are also studied. Finally, we investigate the capability of
ADE for solving three real-world optimization problems.

Index Terms—Adaptive parameter control, differential
evolution (DE), global optimization.

Manuscript received October 6, 2012; revised February 22, 2013, June 7,
2013; accepted August 6, 2013. Date of publication September 5, 2013; date of
current version June 12, 2014. This work was supported in part by the National
High-Technology Research and Development Program (863 Program) of
China No. 2013AA01A212, in part by the NSFC for Distinguished Young
Scholars 61125205, in part by the NSFC No. 61332002, No. 61300044, and
No. 61070004. This paper was recommended by Associate Editor K.-C. Tan.

W.-J. Yu, W.-N. Chen, Z.-H. Zhan, Y.-J. Gong, and J. Zhang are with
Sun Yat-Sen University, Guangzhou 510275, China, with the Key Laboratory
of Machine Intelligence and Advanced Computing, Ministry of Education,
China, with the Engineering Research Center of Supercomputing Engineering
Software, Ministry of Education, China, and also with the Key Laboratory of
Software Technology, Education Department of Guangdong Province, China
(e-mail: junzhang@ieee.org).

M. Shen is with the School of Computer Science, Beijing Information
Science and Technology University, Beijing, China.

Y. Lin is with the Department of Psychology, Sun Yat-Sen University,
Guangzhou 510275, China.

O. Liu is with Hong Kong Polytechnic University, Hung Hom, Hong Kong.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCYB.2013.2279211

I. Introduction

D IFFERENTIAL evolution (DE), first proposed by Storn
and Price [1], [2], is a simple and efficient evolutionary

algorithm for global optimization. It has been successfully
applied to a variety of numerical optimization problems
[3]–[9] and real-world applications such as signal process-
ing [10], robotic system control [11], and wireless sensor
networks [12]. Theoretical studies on DE such as convergence
analysis [13] and population-dynamics analysis [14] have also
been conducted by some recent work.

A classic DE algorithm involves three general evolutionary
operators, i.e., mutation, crossover, and selection, which are
associated with certain control parameters. The values of
the parameters greatly influence the convergence speed and
population diversity. Therefore, how to choose an appropriate
parameter setting to improve the performance of the algo-
rithm has become a significant and promising research topic
in DE.

A large amount of research work has been conducted to
analyze the effects of these control parameters and suggest
suitable parameter settings [2], [15], [16]. However, optimal
parameter settings ad hoc to a specific problem are often based
on a priori or empirical knowledge, and there exists no single
value being good for all types of problems. For example,
a small crossover probability CR is suitable for separable
functions while a large one is effective for nonseparable
functions [17]. Thus, many studies have been undertaken on
parameter control for improved DE, where parameters are
automatically adjusted at runtime.

In the literature, the works on parameter control can be
mainly classified into two kinds of strategies. The first one
is population-level parameter control and the second one is
individual-level parameter control.

In the earlier works of parameter control for DE, the control
parameters are usually applied at a population level. All
individuals in the population are associated with the same
parameter values. Two kinds of information can be used to
adjust the parameter values for the whole population. The
first kind is some deterministic factors such as generation
number or fitness evaluations number [18]. Parameter control
based on such factors is easy to implement, but may not be
effective enough since it does not utilize any search feedback
information from the evolution. The second kind is some form
of feedback derived from the search process that can be in

2168-2267 c© 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

YU et al.: DIFFERENTIAL EVOLUTION WITH TWO-LEVEL PARAMETER ADAPTATION 1081

one of different evolutionary states. Examples of this feedback
information are the relative fitness values over individuals [19],
[20] and population diversity [21], [22].

In recent years, more researchers apply the adaptive control
parameters at an individual level [23]–[30]. Each individual
maintains its own set of parameters that are adapted during
the optimization process. Most of these adaptive approaches
are based on the idea that the parameters that can lead to
good individuals should be propagated throughout the popu-
lation. There are various methods for adaptively updating the
parameter values for each individual among these approaches.
The related works will be reviewed in Section II-B.

It can be seen that most existing methods for parameter
adaptation only take the population-level strategy or
individual-level strategy into consideration. By themselves,
however, the population-level and the individual-level
parameter adaptations can make use of only one aspect of the
evolutionary process information, that is, the state of the whole
population or the characteristics of single individual. For
the use of only population-level strategy, some deterministic
factors or feedback information from the population are
utilized to control parameter values. Nevertheless, since all
the individuals share the same population-level parameters
without diversity, the diversity of population search behavior
may also be insufficient. For the use of only individual-level
strategy, each individual is associated with its own parameters
that are controlled based on individual characteristics instead
of the overall population information. Therefore, this kind
of strategy cannot quickly adjust the parameters to adapt to
different optimization states.

How to utilize both of the two kinds of evolutionary process
information to design a more efficient parameter adaptation
strategy is still a challenging and significant task. So far as we
know, in the literature, there is no reported work on combining
both population-level and individual-level parameter control.
In this paper, we propose a novel two-level adaptive parameter
control scheme, which is an extension of our previous work
[31], utilizing both population and individual information to
provide a more comprehensive description of the evolutionary
process. Thus, the proposed scheme can tackle the limitations
of using only population-level or individual-level strategy.
In this scheme, the parameters of the algorithm are adap-
tively controlled at two levels. At the population level, the
population-level parameters shared by the whole population
are first controlled. In each generation, the population-level
parameters are updated according to different optimization
states that are estimated by measuring the population distribu-
tion. In order to fit the characteristics of different individuals,
the individual-level parameter control is then performed. The
individual-level parameters assigned to each individual are
generated by further adjusting the population-level parameters.
The adjustment is based on considering the individual’s fitness
value and its distance from the best individual. Consequently,
the two-level parameter adaptation scheme can provide adap-
tive parameters more effectively. Through population-level
control, the proposed scheme is able to quickly adjust pa-
rameters to match the overall population state. Moreover, the
resulting parameters can be further fine-turned to adapt to the

characteristics of different individuals through individual-level
control.

This two-level adaptive parameter control scheme is applied
to DE with a new mutation strategy called DE/lbest/1, which is
a variant of the classic DE/best/1. In traditional DE, DE/best/1
utilizes the globally best solution to guide the mutation, and
can thus converge very fast on simple unimodal problems.
However, such a greedy strategy may suffer from premature
convergence when it deals with complex multimodal problems.
By contrast, in the DE/lbest/1 mutation strategy, the popu-
lation is attracted by multiple locally best solutions instead
of a single globally best solution. Therefore, our proposed
mutation strategy is helpful for balancing the exploration and
exploitation abilities of the algorithm. Although there exist DE
mutation strategies such as DE/current-to-pbest/1 in JADE [26]
utilizing multiple good solutions, our DE/lbest/1 differs from
those strategies in the following major aspects.

1) The population of DE/lbest/1 is divided into a predefined
number of nonoverlapping groups, whose number and
members are kept unchanged at runtime.

2) In DE/lbest/1, multiple locally best solutions are selected
from different groups of solutions, each of which is
mutated under the guide of its respective locally best
solution.

Since DE/lbest/1 utilizes the locally best solution which only
directly attracts the individuals in the same group with it, the
entire population is in fact attracted by multiple good solutions
chosen from different groups. Therefore, it is less likely for
DE/lbest/1 that the entire population is attracted to a specific
region in the search space, and the problem of premature
convergence can be better alleviated for DE/lbest/1.

Combining the DE/lbest/1 strategy with two-level adaptive
parameter control, we develop a novel adaptive DE algorithm
(ADE), the robustness and efficiency of which are further
enhanced. The proposed ADE is tested on different types
of benchmark functions and three real-world optimization
problems. The performance of ADE compares favorably with
four state-of-the-art DE variants.

The remainder of this paper is organized as follows.
Section II reviews the DE algorithm and the related works on
parameter control methods and variants of mutation strategies
for DE. Section III describes the proposed ADE algorithm
in detail, including the DE/lbest/1 mutation strategy, the two-
level parameter control scheme, and the runtime complexity of
ADE. In Section IV, the ADE algorithm is compared with four
state-of-the-art DE variants on a suite of benchmark functions
and three real-world optimization problems. The experimental
results are also discussed. In addition, the effects of ADE
components, parameter properties of ADE, search behavior
of ADE, and parameter sensitivity of ADE are studied in this
section. Finally, Section V draws the conclusions.

II. DE Algorithm and Related Works

A. Differential Evolution (DE) Algorithm

DE is a population-based stochastic algorithm designed
for global numerical optimization. Similar to other EAs, DE

1082 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 7, JULY 2014

searches for a global optimum in the search space with a pop-
ulation of vectors {xg

i = [xg
i,1, x

g
i,2, ..., x

g
i,D], i = 1, 2, ..., NP},

where g denotes the current generation, D is the dimension of
the search space, and NP is the population size. In generation
g = 0, the jth component of the ith vector can be initialized as

x0
i,j = xmin,j + rand(0, 1) · (xmax,j − xmin,j) (1)

where rand(0,1) is a uniform random number on the interval
[0,1], and xmin,j , xmax,j are the prescribed minimum and
maximum bounds of the jth dimension, respectively. After ini-
tialization, DE enters an evolutionary process which includes
mutation, crossover, and selection operations.

1) Mutation: In each generation g, the mutation operation
is applied to each individual xg

i (also called the target vector) to
create its corresponding mutant vector vg

i . The five frequently
used mutation strategies are listed as follows:

DE/rand/1

vg
i = xg

r1 + F · (xg
r2 − xg

r3). (2)

DE/current-to-best/1

vg
i = xg

i + F · (xg

best − xg
i) + F · (xg

r1 − xg
r2). (3)

DE/best/1

vg
i = xg

best + F · (xg
r1 − xg

r2). (4)

DE/best/2

vg
i = xg

best + F · (xg
r1 − xg

r2) + F · (xg
r3 − xg

r4). (5)

DE/rand/2

vg
i = xg

r1 + F · (xg
r2 − xg

r3) + F · (xg
r4 − xg

r5). (6)

It can be seen that the mutant vector vg
i is generated by

combing a base vector with one or two scaled difference
vectors. In the above equations, the indices r1, r2, r3, r4, and
r5 are distinct integers randomly selected from [1,2, . . . ,NP],
and are all different from the index i. xg

best is the vector with
the best fitness value in the current generation. The factor F
is a positive control parameter for weighting the difference
vectors.

2) Crossover: In order to enhance population diversity, a
crossover operation exchanges some components of the mutant
vector vg

i with the target vector xg
i to generate a trial vector

ug
i . The process can be expressed as

u
g
i,j =

{
v

g
i,j, if rand(0, 1)≤CR or j = jrand

x
g
i,j, otherwise

(7)

where rand(0,1) is a uniformly distributed random number as
before. jrand is an integer randomly generated from the range
[1,D], which is used to ensure that the trial vector has at least
one component different from the target vector. The crossover
probability CR is another control parameter, which determines
the fraction of vector components inherited from the mutant
vector.

3) Selection: To decide whether the target or the trial vec-
tor can survive to the next generation, the selection operation is
finally performed. For a minimization problem, the vector with
the lower objective function value enters the next generation,
which can be expressed as follows:

xg+1
i =

{
ug

i , iff (ug
i)≤f (xg

i)
xg

i , otherwise
(8)

where f (x) is the objective function for the minimization
problem.

B. Parameter Control Methods for DE

Control parameters in DE have significant effects on the
performance of the algorithm [9], [16]. However, there is no
fixed parameter setting that can achieve the best performance
for all types of problems. Therefore, various parameter control
methods have been proposed for DE to dynamically adjust the
parameter values. These methods are capable of enhancing the
robustness and efficiency of DE algorithm. In this paper, we
classify the parameter control methods into two categories as
follows.

1) Population-Level Parameter Control: All individuals
in the population share the same parameter values that are
controlled based on some deterministic rules or feedback infor-
mation from the DE search process. Deterministic rules change
the parameter values without exploiting any information from
the evolution. Das et al. [18] proposed two schemes to control
the scale factor F for DE. The first one decreases the value
of F based on a linear rule, and the second one generates the
value of F in a random way. Since the linear rule in the first
scheme is based on both the current number and the predefined
maximum number of generations, it is actually determined
before running the algorithm.

By using some form of feedback from the DE search
process, parameter control strategies dynamically adjust the
parameter values that can adapt to different evolutionary states.
In [19], the value of the parameter F is adaptively adjusted
based on the minimum and maximum fitness values over the
individuals in each generation. In [20], a fuzzy logic control
approach was proposed to adapt the DE parameters F and CR.
The fuzzy controllers incorporate the relative fitness values
and individuals of the successive generations as their inputs,
and the outputs are the values of F and CR. Zaharie [21]
proposed a method of adapting the parameters of DE guided
by the population diversity evolution. Based on the same idea,
Zaharie and Petcu [22] further developed an adaptive Pareto
DE for multiobjective optimization problems.

2) Individual-Level Parameter Control: In this form of
adaptation, each individual in the population maintains its
own set of parameter values, which are optimized through
the evolutionary process. Brest et al. [24] introduced a self-
adaptive approach for the control parameters F and CR. In
each generation, new Fi and CRi for each individual are ran-
domly generated in their respective ranges with probabilities τ1

and τ2, respectively. Qin et al. [25] proposed a self-adaptive
DE (SaDE) algorithm, in which the trial vector generation
strategies and the control parameters F and CR are self-
adapted by learning from the previous experiences. Zhang and

YU et al.: DIFFERENTIAL EVOLUTION WITH TWO-LEVEL PARAMETER ADAPTATION 1083

Sanderson [26] introduced a new adaptive DE algorithm called
JADE. The control parameters for each individual in JADE
are updated based on their historical record of success. In
[27], JADE is further combined with a strategy adaptation
mechanism. Wang et al. [28] proposed a composite DE
(CoDE), which uses three trial vector generation strategies
and three control parameter settings of F and CR. In each
generation, each individual randomly combines these strategies
and parameters to generate trial vectors. More recently, Zhong
and Zhang [29] self-adapted the values of F and CR of DE
for the subpixel mapping problem.

C. Variants of DE Mutation Strategies

Besides the five most frequently used mutation strategies
mentioned in Section II-A, many other variants have been
proposed to further improve the performance of DE. To
make the performance of DE rotationally invariant, Price [32]
proposed a new mutation strategy, called DE/current-to-rand/1.
Price et al. [3] proposed the DE/rand/1/either-or algorithm,
where the trial vectors that are either pure mutants or pure
recombinants occur with probabilities pF and 1 − pF , re-
spectively. Fan and Lampinen [33] proposed a trigonometric
mutation to increase the convergence speed of DE. Kaelo
and Ali [34] proposed a hybrid mutation operator that uses
the attraction-repulsion technique of an electromagnetism-
like algorithm. More recently, Wang et al. [35] proposed
a parameter-free Gaussian mutation strategy that uses the
Gaussian sampling method to generate mutated individuals.
This Gaussian mutation strategy was further hybridized with
the classic DE/best/1 to balance the global search ability and
convergence rate.

In order to balance the exploration and exploitation capabili-
ties of DE, many researchers designed variants of some greedy
mutation strategies [26], [36], [37]. These variants utilize the
information of multiple good solutions instead of the best
solution in the entire population. For example, DE/current-
to-pbest/1 in JADE [26] chooses any of the top p% solutions
from the entire population to play the role of the single global
best solution. Das et al. [36] proposed a local mutation model
for DE/current-to-best/1, in which the best solution so far
is chosen from a small neighborhood. The local mutation
model is further combined with the global mutation model
by a weight factor. Islam et al. [37] also proposed a variant
of DE/current-to-best/1 that utilizes the best solution of a
dynamic group of randomly selected solutions from the current
population.

Besides developing new DE mutation strategies, some re-
searchers investigated DE mutation frameworks that can be
applied to different DE variants. For example, Epitropakis
et al. [38] proposed a mutation framework in which the
probability of selecting an individual to become a parent
is inversely proportional to its distance from the individual
undergoing mutation. Gong and Cai [39] proposed a kind of
ranking-based mutation framework, where some of the parents
in the mutation operator are proportionally selected according
to their rankings in the current population. Cai and Wang
[40] proposed a DE mutation framework that exploits the
neighborhood and direction information of the population.

Fig. 1. Flowchart of the proposed ADE algorithm.

Fig. 2. Flowchart of the adaptive parameter control process.

III. Adaptive DE Algorithm

In this section, we propose a new ADE. The ADE is charac-
terized by a new mutation strategy called DE/lbest/1 and a two-
level adaptive parameter control scheme. The DE/lbest/1 muta-
tion strategy helps balance the fast convergence and population
diversity of the proposed algorithm. In the adaptive parameter
control process, the optimization state is first estimated, and
then the population-level parameter values Fp and CRp are
adjusted for the whole population. Finally, the individual-level
parameter values Fi and CRi for each individual are generated
based on the values of Fp and CRp. Fig. 1 illustrates the
flowchart of the proposed ADE algorithm, and Fig. 2 shows the
process of the two-level adaptive parameter control scheme.

1084 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 7, JULY 2014

A. DE/lbest/1 Mutation Strategy

For global numerical optimization, the experimental studies
in [41] indicate that the DE/best/1 with binomial crossover
is the most competitive approach among eight DE variants.
DE/best/1 generates a mutant vector by combining the best
vector with a scaled difference vector. Here, the best indicates
the vector with the best fitness value in the entire population. In
this way, all the vectors are guided by the same best solution
information during the evolutionary search process. Such a
greedy strategy is helpful for improving exploitation, which
means the ability of a search algorithm to quickly converge to
a near optimum. Nevertheless, due to the exploitative tendency,
the population may lose its diversity too early and reduce
its exploration ability to search new regions of the search
space. Thus, individuals of the population are more likely
to be trapped in some local optima, especially when solving
complex multimodal problems. In order to cope with the
problem of early loss of diversity and promote the exploration
ability, we propose a new mutation strategy called DE/lbest/1.

In the proposed strategy, the entire population is divided into
a predefined number of nonoverlapping groups simply based
on the vector indices. Each group contains the same number
of vectors. Since the vector indices are sorted randomly during
initialization, the population is, in fact, randomly divided
into equal-size groups. Note that the number of groups and
group members are kept unchanged during the algorithm’s
execution. As mentioned earlier, a mutant vector in DE/best/1
is generated by combining a globally best vector with a scaled
difference vector. In DE/lbest/1, the best vector is selected
from the group to which the target vector belongs instead of
the entire population. Therefore, the individuals of each group
are attracted by the best vector of their own group, and the
entire population is indeed guided by several locally best vec-
tors instead of a single globally best vector. Such an approach
thus benefits from a balance between fast convergence and
population diversity. On the other hand, the difference vector
involved in the mutation strategy can be generated not only
by two vectors from the same group, but also by two vectors
from different groups (i.e., the entire population). According
to the above description, the DE/lbest/1 mutation strategy can
be expressed as follows:

vg
i = xg

lbesti + F · (xg
r1 − xg

r2) (9)

where the subscript lbesti denotes the best vector in the
group with respect to target vector i, and r1, r2 are the
difference vector indices that are indistinct integers randomly
selected from [1, 2, . . . , NP] and are also different from i.
In the neighborhood-based local and global mutation models
proposed for DE (DEGL) [36], also the local mutation model
considers the vector index based on multiple groups of solu-
tions to improve the exploration ability of DE. Our DE/lbest/1
differs from DEGL in the following major aspects.

1) DEGL employs both local and global mutation models,
while our DE/lbest/1 utilizes only local mutation model
(locally best solutions).

2) The local mutation model of DEGL considers the vector
index based overlapping groups of solutions, while our

DE/lbest/1 considers the vector index based nonoverlap-
ping groups of solutions.

3) For DEGL, the locally best solution and two other
solutions involved in the local mutation model are
chosen from the same group of solutions. Differently,
for DE/lbest/1, only the locally best solution is chosen
from its respective group, while two other solutions are
chosen from the entire population (may be from different
groups).

B. Optimization State Estimation

In order to formulate an approach to optimization state
estimation for DE, the population distribution characteristics
are first described. At the early stage of evolution, the popula-
tion distribution is relatively dispersive, since individuals are
scattered in the searching space to explore different promising
regions. As the optimization progresses, the population will
gradually converge, and finally cluster around a global or
local optimum at the later stage. Due to the variation, the
information of population distribution can be used to estimate
the optimization state in the DE algorithm. In the following
paragraphs, we describe how to measure the population distri-
bution and how to use the distribution information to estimate
the optimization state.

In the procedure of optimization state estimation, all indi-
viduals are first sorted according to both their fitness values
and their distances from the best individual. Furthermore, the
relationship between these two sorting orders can be used to
measure the population distribution. The detailed steps are as
follows.

Step 1: In the beginning of each generation, the fitness
values of all the individuals are sorted in a descending order
(from the best to the worst). Suppose that the ranking of
the fitness value of individual i is denoted as f i, where
i = 1,2, . . . ,NP.

Step 2: Compute the Euclidean distances from the best
individual to the other individuals. Then, these distances are
sorted in an ascending order (from the nearest to the farthest).
Suppose that the ranking of the distance of individual i is
denoted as di, where i = 1,2, . . . ,NP.

Step 3: After obtaining the two rankings f i and di for each
individual i, compute the indicator of the optimization state
(IOS) so as to estimate the current optimization state

IOS =
NP∑
i=1

|fi − di| . (10)

If the two rankings for each individual are exactly the same
(i.e., f i = di for each i), then the better individuals are also
closer to the best individual, and IOS has its minimum value

IOSmin =
NP∑
r=1

|r − r| = 0. (11)

On the contrary, if the two rankings for each individual are just
the opposite (i.e., f i + di = NP + 1 for each i), then the better

YU et al.: DIFFERENTIAL EVOLUTION WITH TWO-LEVEL PARAMETER ADAPTATION 1085

individuals are also farther from the best individual, and IOS
has its maximum value

IOSmax =

⎧⎪⎨
⎪⎩

NP · NP

2
, ifNP is even

(NP + 1) · (NP − 1)

2
, ifNP is odd.

(12)

Step 4: The value of IOS is normalized by the difference
between the values of IOSmax and IOSmin as

IOS =
IOS − IOSmin

IOSmax − IOSmin
(13)

where IOS is the normalized value of IOS, ranging from
0 to 1.

Step 5: Perform the estimation of the optimization state.
According to the value of IOS, we formally define the
exploration and exploitation states based on

� =

{
S1, if rand(0, 1)<IOS

S2, otherwise
(14)

where � is the estimated optimization state, S1 and S2 repre-
sent the exploration state and exploitation state, respectively,
and rand(0,1) is a uniform random number within [0, 1].

Exploration State: If rand(0,1) is smaller than the value of
IOS, the optimization state is estimated to be the exploration
state. That is, the optimization process has a probability of
IOS to be classified into the exploration state.

Exploitation State: If rand(0,1) is not smaller than the
value of IOS, the optimization state is estimated to be the
exploration state. That is, the optimization process has a
probability of (1 − IOS) to be classified into the exploitation
state.

The definitions of exploration and exploitation states are
based on the following considerations. Note that the definitions
are based on considering the population set of the current
generation. When the value of IOS is large, the differences
between the two rankings f i and di are obvious. A large IOS

can be caused by two cases. For one case, there exist many
good individuals far away from the best individual, which
means that the population is exploring different promising
regions. For another case, there exist many bad individuals
close to the best, which indicates that the region around
the best may be not the most promising one in the search
space, because only a few good individuals have located there.
Even if these bad individuals are close to the global optimum
locating in a very narrow steep niche, there exist other better
individuals that are farther from the optimum. These better
individuals should be exploring other regions in the search
space, or they would be closer to the optimum. In other
words, only some but not most individuals have converged
to the region around the global optimum. For both cases, the
optimization process is more likely to be in the exploration
state, since the population is indeed exploring different regions
in this particular generation. This is also true if the population
of previous generation favors more exploration (larger value
of IOS). Since the current and previous sets of populations
are both exploring different regions in the search space, it
is reasonable to individually estimate each as an exploration

state (although to different degrees). On the contrary, when
the value of IOS is small, most of the good individuals have
converged around the best individual, and thus the optimiza-
tion process has a large probability to be in the exploitation
state.

C. Two-Level Adaptive Parameter Control Scheme

Our proposed adaptive parameter control scheme is a two-
level adaptation strategy that includes two steps to adjust the
parameters. In the first step, the population-level parameter
values Fp and CRp for the whole population are adaptively
controlled. The control method is based on the optimization
states that can be estimated by the approach described above.
Based on the population-level parameter values Fp and CRp,
the individual-level parameter values Fi and CRi for each
individual are further computed in the second step. Since
both the population and individual information are utilized
in the control, the parameter values can be adapted to the
characteristics of both population and individual.

Before describing the detail of the control scheme, we
first briefly discuss the effects of the parameters F and CR.
According to (9), the control parameter F is used to scale the
difference vector. Using a large value of F generates a mutant
vector largely different from the base vector chosen from the
population, and thus helps maintain the population diversity.
In contrast, a small value of F is more likely to facilitate
convergence. According to (7), CR is the probability that a
vector component will be inherited from the mutant vector. In
our proposed mutation strategy, a mutant vector is generated
by the guide of a locally best vector. Therefore, a large value
of CR causes the newly generated vectors to converge around
the locally best vectors, whereas a small value of CR makes
the whole population more diverse.

Based on the above considerations, the strategies for ad-
justing the population-level parameter values Fp and CRp in
different optimization states are defined as follows.

1) Exploration State—Increasing Fp and Decreasing CRp:
In the exploration state, in order to explore more promising
regions, it is better to increase the value of Fp. Conversely, the
value of CRp should be decreased so that the newly generated
vectors will not crowd around some locally best vectors.

2) Exploitation State—Decreasing Fp and Increasing CRp:
In the exploitation state, an appropriate way to accelerate
convergence is to decrease the value of Fp. Meanwhile,
increasing the value of CRp can help exploitation around some
promising vectors.

Based on the above strategies, the values of Fp and CRp

can be adjusted adaptively according to the current estimated
optimization state �. The adjustment is based on the values
of Fp and CRp of the previous generation, as shown in (15)
and (16)

Fg
p =

{
Fg−1

p + cF · �Fp, if� = S1

Fg−1
p − cF · �Fp, if� = S2

(15)

CRg
p =

{
CRg−1

p − cCR · �CRp, if� = S1

CRg−1
p + cCR · �CRp, if� = S2

(16)

1086 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 7, JULY 2014

where

�Fp, �CRp =

⎧⎪⎨
⎪⎩

IOS − IOSmin

IOSmax − IOSmin
, if� = S1

IOSmax − IOS

IOSmax − IOSmin
, if� = S2.

(17)

Obviously, the values of �Fp and �CRp are clamped in
the range of [0,1]. The coefficients cF and cCR are used
to control the adjustment steps cF · �Fp and cCR · �CRp,
respectively. In order to shrink the adjustment steps smaller
than 10% of the value ranges of F and CR (i.e., 0.1), we
set cF and cCR as 0.1 and 0.05 empirically. According to
(17), the adjustment step is also related to the value of IOS.
The values of Fp and CRp are both clamped in the range of
[0,1].

After obtaining the population-level parameter values Fp

and CRp for the whole population, the individual-level pa-
rameter values Fi and CRi are generated for each individual i
according to their rankings of fitness values and the distances
from the best individual. It is implemented by adjusting the
values of Fp and CRp of the current generation

F
g
i =

⎧⎨
⎩

Fg
p + �Fi, if(fi>

NP
2) ∧ (di>

NP
2)

Fg
p − �Fi, if(fi<

NP
2) ∧ (di<

NP
2)

Fg
p, otherwise

(18)

CR
g
i =

⎧⎨
⎩

CRg
p − �CRi, if(fi>

NP
2) ∧ (di>

NP
2)

CRg
p + �CRi, if(fi<

NP
2) ∧ (di<

NP
2)

CRg
p, otherwise

(19)

where

�Fi, �CRi =

{ (fi+di)−NP

2NP
, if(fi>

NP
2) ∧ (di>

NP
2)

NP−(fi+di)
2NP

, if(fi<
NP
2) ∧ (di<

NP
2).

(20)

In these adaptive strategies for the individual-level parameters,
we can see that if individual i has a low fitness value and is far
from the best individual, a large Fi and a small CRi can help it
to explore new promising regions of the search space. In this
case, Fi and CRi should be generated by increasing Fp and
decreasing CRp, respectively. In contrast, if individual i has a
high fitness value and is near the best individual, a small Fi

and a large CRi would allow it to do more exploitation around
its current position. Thus, Fi and CRi should be generated by
decreasing Fp and increasing CRp, respectively. Based on the
above considerations, only the individuals with both rankings
either high or low will adjust the parameter values accordingly,
while the rest of individuals utilize only the population-level
parameters. In this implementation, the rankings above or
below half of the population size are considered high or low,
respectively. The values of Fi and CRi are also clamped in the
range of [0,1].

D. Runtime Complexity of ADE

The runtime complexity of a classic DE algorithm is
O(NP · D · Gmax) [36], where Gmax is the maximum number
of generations. ADE differs from the classic DE mainly in
the DE/lbest/1 mutation strategy and the two-level parameter
adaptation.

For the DE/lbest/1, the runtime complexity of finding the
locally best vector in each group depends on comparing the
fitness value with that of the locally best vector. Note that the
locally best fitness value should be upgraded for each target
vector in the respective group if it is replaced by the newly
generated trial vector. In the worst possible case, when the trial
vector always replaces the target vector, the overall runtime
complexity is O(NP · D · Gmax).

For the population-level adaptation, we need to sort all the
vectors based on their fitness values and their distances to the
best vector, respectively, in the beginning of each generation.
The runtime complexity of computing the distances for all the
vectors is O(NP · D) since we use Euclidean distance. By
utilizing the heap sort algorithm, the sorting procedure can be
completed in O(NP · log2 NP) time. For the individual-level
adaptation, each vector needs to compare their rankings against
NP
2 [see (18) and (19)], and the number of additional compar-

isons is O(NP). Hence, over Gmax generations, the overall
runtime complexity of the two-level parameter adaptation is
O(max(NP · D · Gmax, NP · log2 NP · Gmax)).

Considering both DE/lbest/1 and two-level parameter adap-
tation, the runtime complexity of ADE is O(max(NP · D ·
Gmax, NP · log2 NP · Gmax)). If D≥ log2 NP , the asymptotic
order of complexity for ADE remains O(NP · D · Gmax). This
condition is usually satisfied when D is relatively high. In this
case, ADE does not impose any serious burden on the runtime
complexity.

IV. Experimental Results

A. Benchmark Functions and Experimental Setup

In this section, experiments are carried out to evaluate the
performance of the proposed ADE. We use 33 benchmark
functions chosen from [42] and [43]. Functions f 1–f 22 are
summarized in Table I [42]. A detailed description of functions
f 23–f 33 can be found in [43]. These functions can be classified
into four groups. The first six functions f 1–f 6 are unimodal
functions. These functions can be used to test the convergence
speed of the algorithms. The next six functions f 7–f 12 are mul-
timodal functions where the number of local optima increases
exponentially with the problem dimension. The next ten func-
tions f 13–f 22 are low-dimensional multimodal functions with
a few local optima. The algorithms’ global search ability to
escape from local optima can be verified by these multimodal
functions. The last 11 functions f 23–f 33 are hybrid composi-
tion functions taken from the CEC 2005 Competition (F15–
F25) [43], each of which is composed of ten subfunctions.
Obviously, the functions in the fourth group are much more
complex and make our test suite more comprehensive and
convincing.

The population size NP of ADE is set to 50 and 200
for problems with D≤30 and D = 100, respectively. The
population of ADE is divided into ten groups. The initial
values of Fp and CRp of ADE are both set as 0.5. Each
experiment is run 25 times independently and the results are
averaged. In addition, we make use of the Wilcoxon’s rank
sum test [44] at α = 0.05 to evaluate the statistical significance
of the results.

YU et al.: DIFFERENTIAL EVOLUTION WITH TWO-LEVEL PARAMETER ADAPTATION 1087

TABLE I

Benchmark Functions [42], [43]

1088 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 7, JULY 2014

TABLE II

Comparison Between ADE and Four State-of-the-Art DE Variants on Unimodal Functions

TABLE III

Success Rate and Search Speed Comparisons on Unimodal Functions

B. Comparison With Existing State-of-the-Art DE Variants

We compare ADE with four state-of-the-art DE variants,
i.e., CoDE [28], JADE [26], jDE [24], and SaDE [25] on all
test functions with 30 dimensions (except the low-dimensional
functions f 13–f 22). All these algorithms use some strategies
to adaptively control the parameters F and CR. The other
parameters of the four algorithms are set according to their
original papers.

1) Unimodal Functions: The mean and standard deviation
of the results for 25 independent runs on f 1–f 6 are presented
in Table II. Each algorithm is run for the number of fitness
evaluations indicated in the FEs column of the table [42].
For clarity, the results of the best algorithms are marked in
boldface. According to the results, it can be seen that ADE,
JADE, and SaDE perform better than CoDE and jDE on
these functions in general. This is because the former three
algorithms use greedy mutation strategies to some degree. The
relatively low accuracy results of CoDE and jDE should be
due to their more diverse mutation strategies. It is interesting
to note that CoDE achieves the best results on f 4, which is
a unimodal function for D≤3, but may become multimodal
when the dimension is high [45].

In order to compare the reliability and search speed of
different algorithms, Table III summarizes the success rates
at which acceptable solutions are found over 25 runs and

the number of FEs required to find the acceptable solutions.
A solution is considered acceptable if it is obtained with
sufficient accuracy: 1E-10. The ranks in the table are evaluated
based on the descending order of the success rates and ties
are broken by the ascending order of FEs. From Table III, we
find that all the algorithms perform with a high reliability on
most of the unimodal functions. In particular, the proposed
ADE algorithm is able to find acceptable solutions with 100%
success rate on all the functions. On the other hand, only
CoDE and ADE always obtain the near-global optimum for
f 4, while JADE, jDE, and SaDE sometimes fail to locate
the acceptable solutions. However, CoDE fully fails to reach
acceptable solutions for f 3. From the aspect of search speed,
JADE, SaDE, and ADE use a smaller number of FEs than
CoDE and jDE do to reach acceptable results on average.
Overall, ADE performs the best on most functions in this
group.

2) Multimodal Functions With Many Local Optima:
Table IV compares the five DE variants on the multimodal
functions with many local optima. It can be seen that ADE,
CoDE, and jDE are capable of reaching near-global optima
on all the six functions. These three algorithms obtain the
same best results on f 7, f 8, and f 10, but CoDE and jDE get
higher accuracy than ADE on f 9, while ADE outperforms
CoDE and jDE on f 11 and f 12. On the other hand, JADE

YU et al.: DIFFERENTIAL EVOLUTION WITH TWO-LEVEL PARAMETER ADAPTATION 1089

TABLE IV

Comparison Between ADE and Four State-of-the-Art DE Variants on Multimodal Functions With Many Local Optima

TABLE V

Success Rate and Search Speed Comparisons on Multimodal Functions With Many Local Optima

and SaDE perform the best on f 9, f 11, and f 12, but they are
sometimes trapped in local optima on f 10 and f 8, respectively.
These results indicate that ADE manages to avoid premature
convergence and also finds solutions with high accuracy on
multimodal functions with a lot of local optima.

The reliability and search speed of different DE variants
are further compared and reported in Table V. The acceptable
accuracy is set as −10 000 for f 7 and 1E-10 for all others.
The results show that all six functions are optimized by
ADE, CoDE, and jDE with 100% success rates. Moreover,
the proposed ADE reaches the acceptable solutions with a
smaller number of FEs than CoDE and jDE. Although JADE
and SaDE converge faster than ADE on some functions, their
reliability is relatively low, as reflected by their success rates
on f 10 and f 8, respectively. Overall, the ADE also exhibits very
competitive performance on multimodal functions with a lot
of local optima. Not only does it benefit from fast convergence
but also high algorithm reliability that may stem from the two-
level adaptive parameter control scheme.

3) Multimodal Functions With Few Local Optima: For
multimodal functions with a few local optima, we run the
algorithms for a small number of FEs to find out whether
they can locate the global optimum quickly. The experimental
results are tabulated in Table VI. We find that ADE and SaDE

are the best among the five DE variants for this group of
functions. They are able to find the global optimum within
the predefined maximum number of FEs for all the functions.
CoDE, JADE, and jDE perform worse than ADE and SaDE
on one or more functions, e.g., f 14, f 19, and f 20. Overall,
the performance of different algorithms is similar on most
of functions in this group, and we skip the comparison of
success rate and number of FEs. ADE remains the best one
among these algorithms.

4) Hybrid Composition Functions: All of the functions in
this group are nonseparable, rotated, and multimodal functions
with a huge number of local optima. Such functions appear to
be the most difficult class of problems for most optimization
algorithms. The experimental results are shown in Tables VII
and VIII. It can be noted that no DE variant is able to
obtain a near-global optimum on any function. Overall, ADE
achieves better results on more functions. It performs better
than CoDE, JADE, jDE, and SaDE on five, seven, eight,
and eight functions, respectively. Conversely, CoDE, JADE,
and jDE surpass ADE on three, one, and two functions,
respectively. SaDE cannot outperform ADE on any functions
in this group.

In terms of reliability, ADE achieves 100% success rates
on all these functions except f 23, while the other algorithms

1090 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 7, JULY 2014

TABLE VI

Comparison Between ADE and Four State-of-the-Art DE Variants on Multimodal Functions With a Few Local Optima

TABLE VII

Comparison Between ADE and Four State-of-the-Art DE Variants on Hybrid Composition Functions

yield relatively low success rates on three or four functions.
In terms of search speed, JADE converges fastest on most
functions and ADE is the second fastest. ADE still obtains
the smallest value of average rank on this group of functions.
Although the average rank of JADE is very close to that of
ADE, the former performs the worst in terms of reliability on
three functions.

The convergence curves of CoDE, JADE, jDE, SaDE, and
ADE are plotted in Fig. 3 for some selected benchmark
functions.

C. Scalability of ADE

In order to demonstrate the scalability of ADE, we further
compare the performance of the five DE variants on f 1–f 12

with D = 100. Table IX reports the mean and standard deviation
of the results. For most unimodal functions, the performance
of ADE, JADE, and SaDE remains significantly superior to
that of CoDE and jDE. One may note that the performance
of CoDE deteriorates with the increase of dimension for f 4,
where CoDE achieves the best results for D = 30. For the
multimodal functions, we can observe that the algorithms
obtain similar rankings as on 30D functions. Overall, ADE,
CoDE, and jDE present better global search ability than JADE
and SaDE. ADE outperforms all other algorithms on f 7, f 8,
and f 12.

Reliability and search speed comparisons are shown in
Table X. ADE and JADE yield 100% success rates on all test
functions, while CoDE, jDE, and SaDE achieve relatively low

success rates on two, two, and three functions, respectively.
From the aspect of search speed, SaDE converges fastest on
most functions, followed by ADE. CoDE and JADE exhibit
similar convergence performance while jDE converges slowest
in general. These results demonstrate that ADE remains good
at striking a balance between reliability and search speed when
the dimension increases to 100.

D. Effects of ADE Components

Two main components of ADE are the DE/lbest/1 mutation
strategy and the two-level parameter adaptation. First, we com-
pare DE using DE/best/1 and DE using DE/lbest/1 to reveal the
effectiveness of the DE/lbest/1 mutation strategy. They use the
same parameter setting of NP = 50, F = 0.5, and CR = 0.5. The
population of DE/lbest/1 is divided into ten groups. The results
on f 1–f 12 with D = 30 are shown in Table XI. We can observe
that DE/best/1 can find very high accuracy solutions on simple
unimodal functions f 1–f 3, but it fails to locate the near-
global optima on most multimodal functions. The proposed
DE/lbest/1 is helpful for balancing the performance between
unimodal and multimodal functions. It can find the near-global
optimum on most multimodal functions while still being able
to converge quickly on unimodal functions. The strengths of
the DE/lbest/1 are further demonstrated by comparing with
DE/current-to-pbest/1 in JADE (F = 0.5, CR = 0.5), which also
utilizes multiple good solutions. The results of DE/current-to-
pbest/1 on f 1–f 12 can be found in the last column of Table XI.
We can observe that the overall performance of DE/lbest/1 is

YU et al.: DIFFERENTIAL EVOLUTION WITH TWO-LEVEL PARAMETER ADAPTATION 1091

TABLE VIII

Success Rate and Search Speed Comparisons on Hybrid Composition Functions

TABLE IX

Comparison Between ADE and Four State-of-the-Art DE Variants on 100 D Functions

better than that of DE/current-to-pbest/1. In fact, DE/lbest/1
performs better than or at least the same as DE/current-
to-pbest/1 on nine out of the twelve test functions, while
DE/current-to-pbest/1 beats DE/lbest/1 on three test functions.

In order to investigate the effect of the population-level
parameter control, we consider ADE without parameter control
(i.e., DE/lbest/1) and ADE with population-level control only
(denoted as ADE-ponly). Three DE/lbest/1 algorithms with

different parameter settings are compared with ADE-ponly
on f 1–f 12. All of them set F to 0.5 as suggested in most
of the literature [2], [16], and set CR to 0.1, 0.5, and 0.9,
respectively. The experimental results averaged over 25 runs
are listed in the last four columns of Table XII. Although
DE/lbest/1 performs better than DE/best/1, the performance
of DE/lbest/1 is still sensitive to the parameter settings. The
DE/lbest/1 (CR = 0.1) is able to find the near-global optimum

1092 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 7, JULY 2014

Fig. 3. Comparison of convergence performance between ADE and four state-of-the-art DE variants on eight benchmark functions. (a) f 1. (b) f 4. (c) f 8.
(d) f 10. (e) f 12. (f) f 20. (g) f 26. (h) f 32.

Fig. 4. Counts of different CR values during the evolutionary process of ADE on six benchmark functions. (a) f 1. (b) f 2. (c) f 3. (d) f 7. (e) f 8. (f) f 10.

on most of the multimodal functions, but it performs the worst
on the unimodal functions. In contrast, DE/lbest/1 (CR = 0.9)
obtains the most accurate results on the unimodal functions
f 1–f 3, but it suffers from frequent premature convergence on
all the multimodal functions. The performance of ADE-ponly
is less dependent on the optimization problems. Not only
can it get relatively high accuracy solutions on the unimodal
functions, but also it is able to preserve premature convergence
on most multimodal functions. These results demonstrate that
the population-level parameter control strategy is helpful for
improving robustness of the algorithm.

The effect of individual-level parameter control can be
verified by a comparison between ADE and ADE-ponly. The

results can be found in the first two columns of Table XII.
One can observe that the ADE achieves solutions with slightly
higher accuracy than ADE-ponly on the unimodal functions.
Moreover, ADE also has a better global search ability to escape
from local optima on the multimodal functions f 8 and f 9. The
better performance of ADE should be due to the diversified
parameter values brought by the individual-level parameter
control.

E. Properties of F and CR of ADE

From the experimental results in Table XII, we observe
that DE/lbest/1 performs better on f 1–f 3 when it is assigned
a smaller value of CR, while a larger value of CR is more

YU et al.: DIFFERENTIAL EVOLUTION WITH TWO-LEVEL PARAMETER ADAPTATION 1093

Fig. 5. Counts of different F values during the evolutionary process of ADE on six benchmark functions. (a) f 1. (b) f 2. (c) f 3. (d) f 7. (e) f 8. (f) f 10.

Fig. 6. Cumulative counts of exploration and exploitation states derived from DE/lbest/1 versus the number of generations on six benchmark functions.
(a) f 1. (b) f 2. (c) f 3. (d) f 7. (e) f 8. (f) f 9.

1094 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 7, JULY 2014

Fig. 7. Cumulative counts of exploration and exploitation states derived from ADE versus the number of generations on six benchmark functions. (a) f 1.
(b) f 2. (c) f 3. (d) f 7. (e) f 8. (f) f 9.

beneficial to f 7, f 8, and f 10. Therefore, we can further analyze
the property of CR value in ADE on these six functions to
further check the effectiveness of parameter adaptation. We
divide the range of population-level parameter CRp [0,1] into
ten intervals with equal lengths. In each generation, the value
of CRp is recorded. After a run of the ADE algorithm on
a certain function, we compute the count of the CRp value
within each interval. Fig. 4 shows these counts on each test
function. For the unimodal functions f 1–f 3, we find that the
counts of CRp keep increasing as the value of CRp increases.
On the contrary, for the multimodal functions f 7, f 8, and f 10,
the counts of CRp decrease in general with the value of CRp,
as expected.

In addition, we show the corresponding results of Fp in
Fig. 5. It can be seen that Fp exhibits an opposite property
of CRp. Relatively small values of Fp are beneficial to
finding solutions with high accuracy for unimodal functions.
Conversely, relatively large values of Fp can help alleviating
premature convergence for multimodal functions. Based on
the above observation, it can be concluded that ADE can
adapt the parameter effectively to meet the needs of different
optimization problems.

F. Search Behavior of ADE

The search behavior of ADE is compared with that of
DE/lbest/1 (F = 0.5, CR = 0.9) on three unimodal functions
f 1–f 3 and three multimodal functions f 7–f 9. Figs. 6 and 7
illustrate the results of DE/lbest/1 and ADE, respectively,
based on the data of a typical run. In the figures, the x-axis
represents the number of generations and the y-axis represents
the cumulative counts of optimization states (i.e., exploration
and exploitation states) the algorithm has been in. The search

behavior of algorithm can be analyzed by comparing these
two cumulative counts during the evolution. According to
Fig. 6, the cumulative count of the exploitation states is larger
than that of the exploration states throughout the evolutionary
process on both unimodal and multimodal functions. This
is because DE/lbest/1 utilizes a greedy mutation strategy to
some degree without parameter adaptation. The population is
attracted by some locally best individuals, and thus the ex-
ploitation state always dominates the exploration state. Such a
search behavior is good for unimodal functions, but it may lead
to premature convergence for complex multimodal functions.
According to Fig. 7, the search behavior of ADE on unimodal
functions is similar to that of DE/lbest/1. The curve of the
exploitation state is always beyond that of the exploration state.
Furthermore, the gap between these two curves is larger than
that of Fig. 6, which is beneficial to obtaining solutions with
higher accuracy for unimodal functions. However, the search
behavior of ADE is quite different from that of DE/lbest/1
on the three multimodal functions. The cumulative count
of exploitation states is not always larger than that of the
exploration states, but they dominate each other alternately
during the evolutionary process. We take f 9 for example. The
cumulative count of exploitation states increases faster than
that of exploration states from the beginning to around 1500
generation. After that, this trend changes to the opposite, i.e.,
the exploration states begin to dominate the exploitation states.
Finally, the cumulative count of exploration states overtakes
that of exploitation states in around 3000 generation. For
multimodal functions, it is important for the algorithm to keep
exploring new regions of the search space and hence being
trapped in local optima can be avoided. The ADE performs
such a search behavior as we expected due to the parameter

YU et al.: DIFFERENTIAL EVOLUTION WITH TWO-LEVEL PARAMETER ADAPTATION 1095

TABLE X

Success Rate and Search Speed Comparisons on 100 D Functions

TABLE XI

Effect of DE/lebst/1 Mutation Strategy

1096 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 7, JULY 2014

TABLE XII

Effect of Two-Level Parameter Adaptation

adaptation, which adjusts the parameters to suitable values that
allow the algorithm to perform more explorative behavior.

G. Sensitivities to Population Parameters

As mentioned in Section III-A, the mutation strategy of
ADE is designed to achieve a better balance between explo-
ration and exploitation. The best vector involved in mutation
is selected from its respective group of vectors. Thus, the per-
formance of ADE may be sensitive to the selected population
size and the number of groups the population divided into.
If the population size is large and the number of groups is
small, which means the best vector is selected from a large
group of individuals, the mutation strategy would be relatively
greedy. On the contrary, if the best vector is selected from a
small group of individuals and the number of groups is large,
then the mutation strategy becomes relatively diverse. In order
to investigate the sensitivity of ADE to the combination of
the population size and the number of groups, we compare
ADE with different values of these two parameters. The
ADE algorithm with a population size of 50 and ten groups,
for example, is denoted as ADE-p50g10. Table XIII reports
the experimental results on f 1–f 12 with D = 30. In general,
for the simple unimodal functions such as f 1–f 3, using a
smaller population size and a smaller number of groups is
more helpful to get solutions with high accuracy. However,
such a setting suffers from frequent premature convergence
on multimodal functions. On the contrary, for multimodal
functions, using a larger population size and a larger number
of groups is better for maintaining diversity and preventing
premature convergence. In addition, it can be observed that
when the number of groups is set to 10, the performance
of ADE is not so sensitive to the population size. Overall,
a population size of 50 and dividing the population into ten
groups is a suitable combination to balance the performance
on both unimodal and multimodal functions.

H. Results on Real-World Optimization Problems

The performance of the ADE is further tested on three
real-world optimization problems from the IEEE CEC 2011
competition [46]. The three test problems are parame-
ter estimation for frequency-modulated sound waves (P1),
Lennard–Jones potential problem (P2), and bifunctional cata-
lyst blend optimal control problem (P3). More details of these
problems can be found in [46].

Table XIV compares the mean and standard deviation of
the final results over 25 runs of the five DE variants. The
algorithms are executed for 50 000, 100 000, and 150 000 FEs,
respectively, on all the problems. From Table XIV, it can be
noted that ADE remains a competitive approach among the
five DE variants. In the case of problem P1, ADE significantly
outperforms the other four DE variants. JADE performs the
best on problem P2 and ADE is the second best. For problem
P3, all the five DE variants present similar results without
significant difference. These observations demonstrate that
the proposed ADE has some potential for solving real-world
optimization problems.

I. Discussions

To improve the efficiency and robustness of DE, we pro-
pose a greedy mutation strategy DE/lbest/1 and a two-level
parameter adaptation scheme for DE. Experiments are exten-
sively conducted on 33 benchmark functions and three real-
world optimization problems. From the experimental results,
the strengths and weaknesses of the proposed ADE can be
summarized as follows.

1) In the case of unimodal functions, the overall perfor-
mance of ADE is similar to that of JADE and SaDE,
but better than CoDE and jDE. However, ADE is beaten
by the classic DE/best/1 on three simple unimodal
functions due to the high greediness degree of the latter.
Importantly, only ADE can achieve 100% success rates
on all these functions.

2) In the cases of multimodal functions and hybrid compo-
sition functions, ADE, JADE, and SaDE converge faster
than CoDE and jDE in general. CoDE and jDE are more
robust than JADE and SaDE in some cases since the
formers utilize more diverse mutation strategies. Note
that ADE still shows the most reliable performance in all
cases in spite of its greedy DE/lbest/1 mutation strategy.
Also, ADE achieves the best final accuracy results on
most of these functions.

3) The ranks of ADE in the success rates and search
speed comparison tables may be close to that of its
competitor in some instances. For example, the average
ranks of ADE and JADE are 2 and 2.1, respectively, in
Table VIII. It is found that the small average rank of
JADE largely stems from its fast search speed on most

YU et al.: DIFFERENTIAL EVOLUTION WITH TWO-LEVEL PARAMETER ADAPTATION 1097

TABLE XIII

ADE With Different Population Parameters

TABLE XIV

Comparison Between ADE and Four State-of-the-Art DE Variants on Three Real-World Optimization Problems

functions in this group. On the other hand, in the case
of ADE both algorithm reliability (indicated by success
rate) and search speed contribute to the small average
rank. A close inspection of Table VIII indicates that
JADE converges fastest for the optimization of functions
f 26–f 33. ADE is beaten by JADE on these functions, but
still converges second fastest. However, JADE shows
the worst performance in terms of reliability on the
other three functions f 23–f 25. On the contrary, ADE
achieves the highest success rates on all test functions.
Moreover, when the problem dimension increases to
100, the difference between the average rank of ADE
and that of JADE becomes more obvious. The advantage
of ADE is that it benefits from fast convergence without
sacrificing its robustness.

4) Regarding the results of real-world problems, a close
inspection of Table XIV reveals that ADE is the only one
that may provide consistent good performance on all test
problems. Although ADE is beaten by JADE on problem
P2, it is still the second best among the five DE variants.
Conversely, CoDE, jDE, and SaDE show relatively poor
or fair performance on both problems P1 and P2. Even
for JADE that is the best on problem P2, it performs the
second worst on problem P1 in terms of final accuracy.
Since the problem characteristics are usually not known
a priori when solving real-world problems, it should be
a good choice to use an algorithm such as ADE that is
expected to perform favorably on problems with various
characteristics.

5) Overall, by combining the DE/lbest/1 mutation strategy
with the two-level parameter adaptation scheme, ADE is
efficient in terms of solution quality and search speed,
while maintaining the algorithm reliability at a high
level.

V. Conclusion

In this paper, a new DE variant called ADE has been
proposed. The ADE algorithm is characterized by a novel
mutation strategy DE/lbest/1 and an adaptive parameter control
strategy. The DE/lbest/1 strategy utilizes the information of
several locally best solutions instead of the single globally best
solution used in the classic DE/best/1. Such a mutation strategy
is helpful for balancing the fast convergence and population
diversity of the algorithm. Two levels of parameters, i.e.,
population-level and individual-level parameters, have been
introduced into the parameter adaptation scheme of ADE.
The population-level parameters are first controlled based on
an optimization state estimation. Then, the individual-level
parameters for each individual are generated by adjusting the
population-level parameters according to the individual fitness
rank and its distance rank from the best individual.

We have tested ADE on a suite of benchmark functions
and three real-world optimization problems. The results show
that ADE exhibits appropriate search behavior for both uni-
modal and multimodal problems. The performance of ADE is
compared with four state-of-the-art DE variants, i.e., CoDE,
JADE, jDE, and SaDE. It can be concluded that ADE performs
better than, or at least comparably to, the other DE variants

1098 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 7, JULY 2014

in terms of solution quality, convergence speed, and algorithm
reliability. However, ADE cannot perform the best for all kinds
of optimization problems. For example, the DE/best/1 obtains
solutions with higher accuracy than ADE on three simple uni-
modal problems due to the greediness of DE/best/1, which can
be observed from Table XI. ADE only can achieve a balanced
performance for different kinds of optimization problems. In
addition, the effects of ADE components, parameter properties
of ADE, and parameter sensitivity of ADE have been studied.

For future work, we will extend the ADE algorithm to
solving other complex optimization problems such as mul-
tiobjective and dynamic optimization problems. In addition,
we can regard the proposed two-level parameter adaptation
strategy as a general two-level parameter control framework
and apply it to other EAs.

Acknowledgment

The authors would like to thank the Associate Editor, the
anonymous reviewers, and Prof. Y.-H. Shi for their valuable
comments and suggestions on this paper.

References

[1] R. M. Storn and K. V. Price. (1995). “Differential evolu-
tion: A simple and efficient adaptive scheme for global opti-
mization over continuous spaces,” TR-95-012 [Online]. Available:
http://icsi.berkeley.edu/storn/litera.html

[2] R. M. Storn and K. V. Price, “Differential evolution: A simple and
efficient heuristic for global optimization over continuous spaces,”
J. Global Optim., vol. 11, no. 4, pp. 341–359, Dec. 1997.

[3] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A
Practical Approach to Global Optimization. Berlin, Germany: Springer-
Verlag, 2005.

[4] S. Das and P. N. Suganthan, “Differential evolution: A survey of the
state-of-the-art,” IEEE Trans Evol. Comput., vol. 15, no. 1, pp. 4–31,
Feb. 2011.

[5] S.-Z. Zhao, P. N. Suganthan, and S. Das, “Self-adaptive differential
evolution with multi-trajectory search for large-scale optimization,” Soft
Comput., vol. 15, no. 11, pp. 2175–2185, 2011.

[6] U. Halder, S. Das, and D. Maity, “A cluster-based differential evolution
algorithm with external archive for optimization in dynamic environ-
ments,” IEEE Trans. Cybern., vol. 43, no. 3, pp. 881–897, Jun. 2013.

[7] Y. Wang and Z. X. Cai, “Combining multiobjective optimization with
differential evolution to solve constrained optimization problems,” IEEE
Trans. Evol. Comput., vol. 16, no. 1, pp. 117–134, Feb. 2012.

[8] B. Y. Qu, P. N. Suganthan, and J. J. Liang, “Differential evolution with
neighborhood mutation for multimodal optimization,” IEEE Trans. Evol.
Comput., vol. 16, no. 5, pp. 601–614, Oct. 2012.

[9] A. Basak, S. Das, and K. C. Tan, “A bi-objective differential evolution
algorithm enhanced with mean distance based selection for multimodal
optimization,” IEEE Trans. Evol. Comput., to be published.

[10] R. Storn, “Differential evolution design of an IIR-filter with requirements
for magnitude and group delay,” in Proc. IEEE Int. Conf. Evol. Comput.,
1996, pp. 268–273.

[11] R. Joshi and A. C. Sanderson, “Minimal representation multi-sensor
fusion using differential evolution,” IEEE Trans. Syst., Man, Cybern. A,
Syst., Humans, vol. 29, no. 1, pp. 63–76, Jan. 1999.

[12] S. Sengupta, S. Das, M. Nasir, A. V. Vasilakos, and W. Pedrycz, “An
evolutionary multi-objective sleep scheduling scheme for differentiated
coverage in wireless sensor networks,” IEEE Trans. Syst., Man, Cybern.
C, Appl. Rev., vol. 42, no. 6, pp. 1093–1102, Nov. 2012.

[13] S. Ghosh, S. Das, A. V. Vasilakos, and K. Suresh, “On convergence of
differential evolution over a class of continuous functions with unique
global optimum,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42,
no. 1, pp. 107–124, Feb. 2012.

[14] S. Dasgupta, S. Das, A. Biswas, and A. Abraham, “On stability and
convergence of the population-dynamics in differential evolution,” AI
Commun., vol. 22, no. 1, pp. 1–20, Jan. 2009.

[15] R. Gämperle, S. D. Müller, and P. Koumoutsakos, “A parameter study
for differential evolution,” in Advances in Intelligent Systems, Fuzzy
Systems, Evolutionary Computation, A. Grmela and N. E. Mastorakis,
Eds. Interlaken, Switzerland: WSEAS Press, 2002, pp. 293–298.

[16] J. Rönkkönen, S. Kukkonen, and K. V. Price, “Real-parameter optimiza-
tion with differential evolution,” in Proc. IEEE Congr. Evol. Comput.,
2005, pp. 506–513.

[17] A. M. Sutton, M. Lunacek, and L. D. Whitley, “Differential evolution
and nonseparability: Using selective pressure to focus search,” in Proc.
Genet. Evol. Comput. Conf ., Jul. 2007, pp. 1428–1435.

[18] S. Das, A. Konar, and U. K. Chakraborty, “Two improved differential
evolution schemes for faster global search,” in Proc. Genet. Evol.
Comput. Conf ., 2005, pp. 991–998.

[19] M. M. Ali and A. Törn, “Population set based global optimization
algorithms: Some modifications and numerical studies,” Comput. Oper.
Res., vol. 31, no. 10, pp. 1703–1725, 2004.

[20] J. Liu and J. Lampinen, “A fuzzy adaptive differential evolution algo-
rithm,” Soft Comput. A Fusion Found. Methodol. Appl., vol. 9, no. 6,
pp. 448–462, Apr. 2005.

[21] D. Zaharie, “Control of population diversity and adaptation in differen-
tial evolution algorithms,” in Proc. 9th Int. Conf. MENDEL, Jun. 2003,
pp. 41–46.

[22] D. Zaharie and D. Petcu, “Adaptive Pareto differential evolution and its
parallelization,” in Proc. 5th Int. Conf. Parallel Process. Appl. Math.,
Sep. 2003, pp. 261–268.

[23] J. Teo, “Exploring dynamic self-adaptive populations in differential
evolution,” Soft Comput., vol. 10, no. 8, pp. 637–686, 2006.

[24] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-
adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” IEEE Trans. Evol. Comput.,
vol. 10, no. 6, pp. 646–657, Dec. 2006.

[25] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimization,”
IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 398–417, Apr. 2009.

[26] J. Q. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution
with optional external archive,” IEEE Trans. Evol. Comput., vol. 13,
no. 5, pp. 945–958, Oct. 2009.

[27] W. Gong, Z. Cai, C. X. Ling, and H. Li, “Enhanced differential evolution
with adaptive strategies for numerical optimization,” IEEE Trans. Syst.,
Man, Cybern. B, Cybern., vol. 41, no. 2, pp. 397–413, Apr. 2011.

[28] Y. Wang, Z. X. Cai, and Q. F. Zhang, “Differential evolution with
composite trial vector generation strategies and control parameters,”
IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 55–66, Feb. 2011.

[29] Y. Zhong and L. Zhang, “Remote sensing image subpixel mapping based
on adaptive differential evolution,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 42, no. 5, pp. 1306–1329, Oct. 2012.

[30] A. Ghosh, S. Das, A. Chowdhury, and R. Giri, “An improved differ-
ential evolution algorithm with fitness-based adaptation of the control
parameters,” Inf. Sci., vol. 181, no. 18, pp. 3749–3765, 2011.

[31] W.-J. Yu and J. Zhang, “Adaptive differential evolution with optimization
state estimation,” in Proc. Genet. Evol. Comput. Conf ., Jul. 2012,
pp. 1285–1292.

[32] K. V. Price, “An introduction to differential evolution,” in New Ideas in
Optimization. London, U.K.: McGraw-Hill, 1999, pp. 79–108.

[33] H. Y. Fan and J. Lampinen, “A trigonometric mutation operator to differ-
ential evolution,” J. Global Optim., vol. 27, no. 1, pp. 105–129, 2003.

[34] P. Kaelo and M. M. Ali, “Differential evolution algorithms using hybrid
mutation,” Comput. Optimization Appl., vol. 37, pp. 231–246, Jun. 2007.

[35] H. Wang, S. Rahnamayan, H. Sun, and M. G. H. Omran, “Gaussian
bare-bones differential evolution,” IEEE Trans. Cybern., vol. 43, no. 2,
pp. 634–647, Apr. 2013.

[36] S. Das, A. Abraham, U. K. Chakraborty, and A. Konar, “Differential
evolution using a neighborhood-based mutation operator,” IEEE Trans.
Evol. Comput., vol. 13, no. 3, pp. 526–553, Jun. 2009.

[37] S. M. Islam, S. Das, S. Ghosh, S. Roy, and P. N. Suganthan, “An
adaptive differential evolution algorithm with novel mutation and
crossover strategies for global numerical optimization,” IEEE Trans.
Syst., Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 397–413, Apr. 2012.

[38] M. G. Epitropakis, D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos, and
M. N. Vrahatis, “Enhancing differential evolution utilizing proximity-
based mutation operators,” IEEE Trans Evol. Comput., vol. 15, no. 1,
pp. 99–119, Feb. 2011.

[39] W. Gong and Z. Cai, “Differential evolution with ranking-based
mutation operators,” IEEE Trans. Cybern., to be published.

[40] Y. Cai and J. Wang, “Differential evolution with neighborhood and
direction information for numerical optimization,” IEEE Trans. Cybern.,
to be published.

YU et al.: DIFFERENTIAL EVOLUTION WITH TWO-LEVEL PARAMETER ADAPTATION 1099

[41] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello Coello,
“A comparative study of differential evolution variants for global
optimization,” in Proc. Genet. Evol. Comput. Conf ., 2006, pp. 485–492.

[42] X. Yao, Y. Liu, and G. M. Lin, “Evolutionary programming made
faster,” IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 82–102, Jul. 1999.

[43] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger,
and S. Tiwari, “Problem definition and evaluation criteria for the
CEC 2005 special session on real-parameter optimization,” Nanyang
Technol. Univ., Singapore, IIT Kanpur, Kanpur, India, Tech. Rep.
KanGAL#2005005, May 2005.

[44] J. Derrac, S. Garcı́a, D. Molina, and F. Herrera, “A practical tutorial
on the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms,” Swarm
Evol. Comput., vol. 1, no. 1, pp. 3–18, Mar. 2011.

[45] Y.-W. Shang and Y.-H. Qiu, “A note on the extended Rosenbrock
function,” Evol. Comput., vol. 14, no. 1, pp. 119–126, 2006.

[46] S. Das and P. N. Suganthan, “Problem definitions and evaluation criteria
for CEC 2011 competition on testing evolutionary algorithms on real
world optimization problems,” Dept. Electron. Telecommun. Engg.,
Jadavpur Univ., Kolkata, India, Nanyang Technol. Univ., Singapore,
Tech. Rep., 2010.

Wei-Jie Yu (S’10) received the bachelor’s degree in
network engineering from Sun Yat-Sen University,
Guangzhou, China, in 2009, where he is currently
pursuing the Ph.D. degree.

His current research interests include differential
evolution, artificial bee colony optimization, ant
colony optimization, particle swarm optimization,
and their applications to real-world problems.

Meie Shen received the B.S. degree in industrial au-
tomation from the Huazhong University of Science
and Technology, Wuhan, China, in 1986, and the
M.S. degree in automatic control from the Shenyang
Institute of Automation, Chinese Academy of Sci-
ences, Shenyang, China, in 1989.

She is currently an Associate Professor with the
School of Computer Science, Beijing Information
Science and Technology University, Beijing, China.
Her current research interests include intelligent al-
gorithms, automatic control theory, and applications.

Wei-Neng Chen (SM’07–M’12) received the bach-
elor’s degree in network engineering and the Ph.D.
degree in computer application technology from Sun
Yat-Sen University, Guangzhou, China, in 2006 and
2012, respectively.

He is currently a Lecturer with the Department
of Computer Science, Sun Yat-Sen University. His
current research interests include swarm intelligence
algorithms and their applications to cloud comput-
ing, financial optimization, operations research and
software engineering.

Dr. Chen’s doctoral dissertation was awarded the China Computer Federa-
tion Outstanding Dissertation in 2012.

Zhi-Hui Zhan (M’13) received the bachelor’s and
Ph.D. degrees from the Department of Computer
Science, Sun Yat-Sen University, Guangzhou, China,
in 2007 and 2013, respectively.

His current research interests include parti-
cle swarm optimization, differential evolution, ant
colony optimization, genetic algorithms, brain storm
optimization, and their applications to real-world
problems.

Yue-Jiao Gong (S’10) received the B.S. degree
in computer science from Sun Yat-Sen University,
Guangzhou, China, in 2010, where she is currently
pursuing the Ph.D. degree.

Her current research interests include artificial
intelligence, evolutionary computation, swarm in-
telligence, and their applications to design and
optimization of intelligent transportation systems,
hospital management systems, and RFID systems.

Ying Lin (M’12) received the Ph.D. degree in
computer applied technology from Sun Yat-Sen Uni-
versity, Guangzhou, China, in 2012,

She is currently a Lecturer with the Department
of Psychology, Sun Yat-Sen University. Her current
research interests include computational intelligence
and its applications to scheduling, sentiment track-
ing, and cognitive diagnostic modeling.

Ou Liu received the Ph.D. degree in information
systems from the City University of Hong Kong,
Kowloon, Hong Kong, in 2006.

Since 2006, he has been with Hong Kong Poly-
technic University, Hung Hom, Hong Kong, where
he is currently an Assistant Professor with the
School of Accounting and Finance. His current
research interests include business intelligence, deci-
sion support systems, ontology engineering, genetic
algorithms, ant colony system, fuzzy logic, and
neural networks.

Jun Zhang (M’02–SM’08) received the Ph.D. de-
gree in electrical engineering from the City Uni-
versity of Hong Kong, Kowloon, Hong Kong, in
2002.

From 2003 to 2004, he was a Brain Korean
21 Post-Doctoral Fellow with the Department of
Electrical Engineering and Computer Science, Ko-
rea Advanced Institute of Science and Technology,
Daejeon, Korea. Since 2004, he has been with Sun
Yat-Sen University, Guangzhou, China, where he
is currently a Cheung Kong Professor with the

Department of Computer Science. He has authored seven research books and
book chapters, and over 100 technical papers in his research areas. His current
research interests include computational intelligence, cloud computing, high-
performance computing, data mining, wireless sensor networks, operations
research, and power electronic circuits.

Dr. Zhang was a recipient of the China National Funds for Distinguished
Young Scientists from the National Natural Science Foundation of China
in 2011 and the First-Grade Award in Natural Science Research from the
Ministry of Education, China, in 2009. He is currently an Associate Editor
of the IEEE Transactions on Evolutionary Computation, the IEEE

Transactions on Industrial Electronics, the IEEE Transactions on

Cybernetics, and the IEEE Computational Intelligence Magazine. He is the
Founding and Current Chair of the IEEE Guangzhou Subsection and IEEE
Beijing (Guangzhou) Section Computational Intelligence Society Chapters.

