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Fuzzy-Based Pareto Optimality for Many-Objective
Evolutionary Algorithms
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Abstract—Evolutionary algorithms have been effectively used
to solve multiobjective optimization problems with a small
number of objectives, two or three in general. However, when
problems with many objectives are encountered, nearly all
algorithms perform poorly due to loss of selection pressure
in fitness evaluation solely based upon the Pareto optimality
principle. In this paper, we introduce a new fitness evaluation
mechanism to continuously differentiate individuals into different
degrees of optimality beyond the classification of the original
Pareto dominance. The concept of fuzzy logic is adopted to define
a fuzzy Pareto domination relation. As a case study, the fuzzy
concept is incorporated into the designs of NSGA-II and SPEA2.
Experimental results show that the proposed methods exhibit
better performance in both convergence and diversity than the
original ones for solving many-objective optimization problems.

Index Terms—Fuzzy logic, multiobjective evolutionary algo-
rithm, NSGA-II, Pareto optimality, SPEA2.

I. Introduction

EVOLUTIONARY algorithms have been effectively used
to explore the Pareto-optimal fronts in multiobjective

optimization problems (MOPs). In literature, most of these
multiobjective evolutionary algorithms (MOEAs) and their
variants based on fundamentals in evolutionary strategies,
particle swarm optimization, differential evolution, or artificial
immune systems work well only in problems with a small
number of objectives, mainly in two or three objectives. How-
ever, many real-world MOPs involve more than five conflicting
objectives, which are commonly referred to as many-objective
optimization problems and the performance of most MOEAs
deteriorates severely in the face of problems with such a large
number of objectives [1]. The main reason that MOEAs lose
exploring capability in solving many-objective optimization
problems is largely due to the ineffective definition of Pareto
optimality. Consider the definition of the Pareto dominance
relation.

Pareto Dominance Relation: For a minimization problem,
a vector −→u = f (−→xu ) = (u1, . . . , uM) is said to dominate
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Fig. 1. Proportion of non-dominated individuals within a population.

−→v = f (−→xv ) = (v1, . . . , vM), denoted by �u < �v, if and only if
∀i ∈ {, . . . , M}, ui ≤ vi and ∃i ∈ {1, . . . , M}, ui < vi. When
any two given vectors �u and �v are compared, there are only
two possible conclusions according to the Pareto dominance
relation:

1) either �u dominates �v or �u is dominated by �v, or
2) �u and �v are non-dominated with respect to each other.

Therefore, two individuals can only be differentiated under
the first condition. However, from the definition, the greater the
number of objectives, the more difficult it becomes to satisfy
the first condition. For example, consider that �u dominates �v
in a 2-D MOP and a 5-D MOP. To arrive at the first condition,
for the 2-D problem, �u only needs to be better than �v in
one objective and no worse in the other objective. However,
for the 5-D problem, �u should be better than �v in at least
one objective and no worse than �v in all of the remaining
objectives. On the other hand, it is fairly easy to arrive at
“non-dominated with respect to each other” relation when
two individuals are compared based on the Pareto dominance
relation in a higher-dimensional problem. Fig. 1 shows the
proportion of non-dominated individuals in the initial pop-
ulations (i.e., set at 100, 200, and 500) who are randomly
generated for the benchmark function DTLZ2 [2], a scalable
benchmark problem, under various numbers of objectives from
two to 50 with a step size of one. Every data point was
averaged over 50 independent runs of the same initialization.
From this figure, the proportion of non-dominated individuals
rises quickly with the number of objectives increasing from
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two to five. When the number of objectives exceeds five,
the proportion of non-dominated individuals in a randomly
generated initial population is higher than 90%. This leads
to significantly diminishing selection pressure during the
evolutionary process no matter how the MOEA is designed,
if the Pareto dominance relation is used. Therefore, although
Pareto optimality is effective to facilitate the convergence of
the population in low-dimensional problems, it is not effective
in maintaining selection pressure during the evolution process
in many-objective optimization problems. In addition to the
deficiency in the definition of Pareto dominance stated above,
other complications such as visualization of high-dimensional
objective spaces [1], a large number of individuals needed
to obtain a good representation of the Pareto front [1], and
a very high computational cost [3], have contributed to the
challenges of solving many-objective optimization problems.
From the above discussions, the main difficulties of many-
objective optimization problems are caused by a large number
of objectives. Naturally, the efforts in addressing this issue
have led to strategies to reduce the number of objectives
without losing information. For instance, Brockhoff and Zitzler
[3] first identify conflict and non-conflict relationships between
each pair of objectives and then combine non-conflicting
objectives into one objective. Deb and Saxena [4] propose
a principle component analysis method to adaptively finding
the correct lower-dimensional interactions of each objective
by iteratively progressing from the interior of the search
space toward the Pareto-optimal region. Singh et al. [5]
identify whether or not each objective is redundant based
on an approximated non-dominated front which is roughly
generated beforehand. Although objective reduction works in
some special conditions, serious limitations remain. Of course,
for real-world environments, problems exist whose objectives
cannot be further reduced. For these problems, the methods
stated above can only rely upon a relative order of importance
of the objectives [4]. In some problems a very small number
of objectives can be eliminated, potentially making the dif-
ference. For example, for a 10-D problem, reducing only one
or two objectives does not help much to solve the problem
in an effective manner. Even if the number of objectives
is reduced sufficiently, it is not clear how the Pareto front
derived in a reduced low-dimensional space can portray the
true Pareto front in the original higher dimensional space.
Moreover, Said et al. [6] use the decision maker’s preferences
to set an error constant δ and incorporate these preferences into
the Pareto dominance definition to guide the search toward the
area of interest in the Pareto front. Because of the drawbacks
of objective reduction methods and the lack of preference
information in most of the real-world applications, the focus
of this paper is solely on designing a new fitness measure
through the definition of Pareto dominance to continuously
differentiate individuals into different degrees of optimality
beyond the classification of the original Pareto dominance.
Here, the notion of fuzzy logic [7] is adopted. Based on this
notion, a fuzzy Pareto dominance (FD) relation is defined and
incorporated into the designs of NSGA-II [8] and SPEA2 [9],
as a case study, instead of the original Pareto dominance prin-
ciple. The resulting fuzzy dominance NSGA-II and SPEA2 are

applied to search for a Pareto optimal set for many-objective
optimization problems by maintaining the selection pressure
toward the Pareto front throughout the entire evolutionary
process. Please note that the same fuzzy dominance concept
can be easily incorporated into other MOEA designs. The
remaining sections complete the presentation of this paper.
Section II outlines selected literature for fitness evaluations.
Section III elaborates on the proposed fuzzy Pareto dominance
relation in detail and how to incorporate the proposed fuzzy
Pareto dominance relation into the designs of NSGA-II and
SPEA2. Section IV details the experimental setting and find-
ings for nine selected scalable benchmark problems. Finally,
a conclusion is drawn in Section V along with pertinent
observations.

II. Literature Review

This section reviews some fitness evaluation approaches in
literature. The majority of existing multiobjective optimization
algorithms exclusively use the concept of Pareto domination.
These MOEAs compare two solutions on the basis of whether
or not one dominates the other.

Pareto Optimality: An individual �x ∈ � is said to be Pareto
optimal with respect to � if and only if there is no �x ∈ � for
which �v = f (�x) dominates �u = f (�x). f (�x) is then called the
Pareto optimal (objective) vector. Remarks: Any improvement
in a Pareto optimal individual in one objective must lead to
deterioration in at least one other objective.

Pareto Optimal Set: The set of all the Pareto optimal indi-
viduals in the decision space is called the Pareto optimal set
(PS), PS = {�x ∈ � | ∃�y ∈ �, f (�y) < f (�x)}.

Pareto Front: The image of the Pareto optimal set (PS) in
the objective space through multiobjective vector function f is
called the Pareto front (PF), PF = {f (�x) | �x ∈ PS}.

The definitions of Pareto dominance and Pareto optimality
play an important role in the development of effective MOEAs.
However, in MOP, Pareto domination does not define a com-
plete ordering among all individuals in the objective space. In
addition, it does not measure how much one solution is better
than another one.

A. Existing Approaches to Fitness Evaluation

In literature, three main types of approaches are proposed
as opposed to the Pareto dominance for fitness evaluation.
The first class of the approaches for fitness evaluation uses
scalar methods instead of Pareto dominance to assign each
individual a fitness value and compare individuals based on
these values. This class of designs can be further divided into
four different categories. The first category uses predefined
weighting coefficients such as weighted sum (WS) [10] and
weighted min–max (Wmin–max) [11]. The second category
focuses on the extreme values of individuals, for example,
maximum ranking (MR) [10], global detriment (GD) [10],
and profit (PF) [10]. The third directly compares individuals,
including favor relation (FR) [10], k-dominance (KD) [12],
and L-dominance (LD) [12]. The last category transforms
objectives into constraints, for instance, constraint [11] and
goal attainment (GAt) [11]. The second class of methods
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modifies the Pareto dominance concept to adapt it to higher
dimensional problems, such as Pareto α-Dominance [13],
Pareto ε-Dominance [13], and Pareto cone ε-Dominance [13].
Heuristically chosen parameters are incorporated into all of
these methods. Each modified Pareto dominance design is a
relaxing form of the Pareto dominance in that it makes one
individual dominate another more easily in higher dimensional
optimization problems. The third class is based on the idea
of performance metrics. IBEA [14] is probably the most
successful implementation of this class in that it has been
shown to be more effective than other MOEAs for higher
dimensional MOPs. There are other methods of this type:
volume dominance (VD) [12] is based on the volume of domi-
nated objective space by the individual; contraction/expansion
of dominated area (CE) [12] adjusts the selection process
by changing the size of individuals’ dominance area and
the distance to the best known solution. GB [10] ranks the
population by a reference point that is composed by the best
known objective value in each dimension. The fitness of a
solution will be assigned based on its distance to the reference
point. Given the above discussions, researchers mainly focus
on two different aspects in the fitness evaluation. First, the
Pareto dominance is replaced by another design, such as a
scalar method or performance metrics. Both approaches assign
each approximation front an exact score and use this score
for comparison. However, both only consider one specific
characteristic of the front and cannot quantify the approxi-
mation front comprehensively. Second, the Pareto dominance
is modified by some predefined parameters. The choice of
these parameters greatly affects the performance of the fitness
assignment process. However, there exists no standard way or
effective guideline to determine these parameters. In response
to these challenges encountered by the existing approaches,
a new fitness evaluation measure based on fuzzy logic is
proposed in this paper.

B. Previous Works Related to Fuzzy Dominance

There exist three known works following a similar research
line. Farina and Amato [15] designed the fuzzy-based def-
initions of optimality and domination for human decision
making in many-objective optimization problems. The fuzzy
definitions process preference information provided by the
decision maker and generate a parameter whose value ranges
from zero to one in order to compute different subsets of the
Pareto optimal set. When the value of the above parameter is
set to zero, the introduced definition is the same as the original
Pareto optimality. When this parameter value is changed, a
different subset of Pareto optimal solutions can be obtained
corresponding to different degrees of optimality. Nasir et al.
[16] suggested a fuzzy Pareto dominance concept to compare
two solutions and used the scalar decomposition method of
MOEA/D only when one of the solutions fails to dominate the
other in terms of a fuzzy dominance level. Köppen et al. [17]
studied the fuzzification of the Pareto dominance relation to
yield a practically usable numerical representation of the dom-
inance relation between two individuals. They used concepts
from fuzzy fusion theory to combine the mutual degrees of
dominance within a set of individuals and assigned a ranking

Fig. 2. Left Gaussian function.

value to each individual within this set. The ranking values
reflect dominance degrees of individuals among themselves.
Based on this, an extension of the standard genetic algorithm,
fuzzy-dominance-driven GA (FDD-GA), was proposed.

III. Proposed Method

A. Background Knowledge of Fuzzy Set

According to the Pareto domination principle, when two
individuals, �u and �v, are compared, either �u dominates �v, �u is
dominated by �v, or �u and �v are non-dominated with respect
to each other. When the number of objectives exceeds five,
the majority of the population becomes non-dominated with
respect to each other and presents little selection pressure to
facilitate evolution search in a many-objective optimization
problem. A fuzzy set is applied here to quantify the degrees of
domination, from dominate to being dominated and in between
with various degree of domination in each objective. The set
theoretic operator is then used to combine multiple fuzzy sets
to allow the comparison of two individuals in many-objective
problems. We define the fuzzy set based on the left Gaussian
function (FG) [18], as shown in Fig. 2, with c = −1 and σ = 0.5

FG(x) =

{
1 if x ≤ c

exp
(
− 1

2

(
x−c
σ

)2
) otherwise. (1)

The left Gaussian function is a monotonically decreasing
function. The range is between zero and one, representing the
domination degree that one individual is better than the other
in one objective. The domain, on the other hand, is between
minus one and plus one, corresponding to the normalized
difference between two individuals in one objective. This
difference is normalized by the absolute value of the maximum
difference among all pairs of individuals in that objective.
Because x is normalized, it does not depend on the range
of each objective function. The mapping from the normalized
difference between two individuals to the domination degree is
defined by the chosen parameters (i.e., c and σ). In this paper,
we choose c equal to the lower boundary of x (i.e., c = -1).
As shown in Fig. 2, if the objective value of an individual
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in one dimension is much less than the other such that the
normalized difference is closer to –1 (i.e., for a minimization
problem), the degree of this individual being better than the
other is close to one, which corresponds to the condition that
this individual Pareto dominates the other in that dimension.
On the other hand, if the objective value of one individual is
much larger than the other such that the normalized difference
is closer to 1, the degree of this individual being better than
the other is closer to zero, which corresponds to the condition
that this individual is Pareto dominated by the other in that
dimension. Therefore, the left Gaussian function allows the
proposed fuzzy Pareto dominance relation to be generalized
beyond the original definition of Pareto dominance. σ defines
the spread of the Gaussian function. Setting it too large will
lead to the inability to discriminate x ∈ [−1, 0]. On the
other hand, setting it too small will lead to the inability to
discriminate x ∈ [0, 1]. Setting σ at 0.5 appears to be a good
compromise to allow sufficient discrimination power for the
complete domain of x. There exist several definitions in set
theoretic operations that could be used to aggregate multiple
fuzzy sets [18]. In this design, the individual’s performance
in each objective is considered as a fuzzy set and all these
fuzzy sets from multiple objectives are combined through
a product operator as the intersection of these fuzzy sets.
For a two-objective MOP, assume fuzzy set A describes how
individual a is better than individual b in the first objective,
while fuzzy set B quantifies how individual a is better than
individual b in the second objective. A ∩ B is the intersection
of fuzzy sets A and B, implying how individual a is better
than individual b in a two-objective MOP. The truth degree of
A ∩ B, μA∩B = μA × μB, provides a measure of domination
degree as how individual a is better than individual b in a two-
objective MOP. This concept can be extended to M objectives
in a straightforward manner.

B. Fuzzy Pareto Dominance Relation

Without loss of generality, the definition of the fuzzy Pareto
dominance relation between a pair of individuals is given in
the following.

Fuzzy Pareto Dominance Relation: For an M-objective
minimization problem, given two individuals �u = f (−→xu ) =
(u1, . . . , uM) and �v = f (−→xv ) = (v1, . . . , vM), define ⇀

p(�u) =
�u−�v as the performance of �u with respect to �v and ⇀

p(�v) = �v−�u
as the performance of �v compared with �u, respectively. The
left Gaussian function transforms each dimension of ⇀

p(�u) and
⇀
p(�v) into a measure in [0, 1]. That is

⇀

ϕ(�u) = FG(⇀
p(�u)) =

(ϕu
1 , . . . , ϕu

M) and
⇀

ϕ(�v) = FG(⇀
p(�v)) = (ϕv

1, . . . , ϕv
M). Here,

in
⇀

ϕ(�u), each ϕu
i , i = 1, . . . , M, is considered a fuzzy set

and set theoretic operator is applied to the product of all
these fuzzy sets. Then we obtain a fuzzy product value of
�u, which is ϕu

PRODUCT = ϕu
1 × ϕu

2 × · · · . . . × ϕu
M . Simi-

larly, a fuzzy product value of �v is defined accordingly as
ϕv

PRODUCT = ϕv
1×ϕv

2×· · · . . .×ϕv
M . Finally, from the comparison

of ϕu
PRODUCT and ϕv

PRODUCT, a vector �u is said to fuzzy-
dominate �v (denoted by �u <F �v) if ϕu

PRODUCT > ϕv
PRODUCT.

From the definition of ϕPRODUCT, two individuals are unlikely
to have the same fuzzy product value for a many-objective
optimization problem. Therefore, the proposed fuzzy Pareto

dominance relation can differentiate a pair of individuals in
most cases to maintain the selection pressure. This char-
acteristic makes the fuzzy Pareto dominance relation more
effective than the original Pareto dominance relation in many-
objective optimization problems in which the Pareto domi-
nance principle cannot preserve the needed selection pressure
throughout the evolutionary process. Moreover, the proposed
fuzzy Pareto dominance relation can be formulated to continue
classifying high-dimensional individuals into different degrees
of optimality when incorporating the domination degree. The
domination degree between individuals �u and �v can be de-
rived from ϕu

PRODUCT and ϕv
PRODUCT. When ϕu

PRODUCT is much
larger than ϕv

PRODUCT, ϕu
PRODUCT/(ϕu

PRODUCT + ϕv
PRODUCT) ≈ 1.

This implies that the domination degree is closer to 1 in
which �u fuzzy Pareto dominates �v infers �u Pareto domi-
nates �v. When ϕu

PRODUCT is much smaller than ϕv
PRODUCT,

ϕu
PRODUCT/(ϕu

PRODUCT + ϕv
PRODUCT) ≈ 0. This implies that the

domination degree is closer to 0 in which �u fuzzy Pareto
dominates �v (or �u is fuzzy Pareto dominated by �v with the
domination degree of 1), which suggests �u is Pareto dominated
by �v. Under an extreme condition in a two-objective optimiza-
tion problem, if �u is much better than �v in one objective, but
much worse in the other objective, ϕu

PRODUCT ≈ ϕv
PRODUCT ≈ 0,

but ϕu
PRODUCT/(ϕu

PRODUCT + ϕv
PRODUCT) ≈ 0.5. This implies that

the domination degree equals 0.5 in which �u fuzzy Pareto
dominates �v means �u is non-dominated with respect to �v.
Therefore, from the above discussions, the Pareto dominance
can be regarded as a special case of the proposed fuzzy Pareto
dominance relation.

C. Fitness Assignment Based on Fuzzy Pareto Dominance

Assuming there are n individuals in the competition pool,
every individual is paired with every other n–1 individual
respectively, forming n–1 pairs of competitions. For indi-
vidual �u, in each of n–1 pairs, it is compared with the
other individual �v using the fuzzy Pareto dominance relation
and generates both fuzzy product values of ϕu

PRODUCT and
ϕv

PRODUCT. The fuzzy product value of �u is then normalized as
ϕu

PRODUCT/(ϕu
PRODUCT + ϕv

PRODUCT). This new normalized value
is considered the performance of �u compared with �v. After
calculating each pair, add all n–1 performance values of �u
together to obtain a sum value. This sum value is then divided
by (n–1) and is regarded as the fuzzy fitness measure (FFM)
of individual �u. Fig. 3 shows this fuzzy fitness assignment
process among a pool of individuals. The definition of Pareto
dominance only considered relations between two individuals.
Here, by incorporating the fuzzy fitness assignment process,
we extend this definition to all individuals in a competition
pool at the same time. The new definitions of fuzzy Pareto
optimality, fuzzy Pareto optimal set, and fuzzy Pareto front
are given below.

Fuzzy Pareto Optimality: An individual �x ∈ � is said to
be fuzzy Pareto optimal with respect to � if its fuzzy fitness
measure, FEM(�x), is greater than a predefined threshold, α.
f (�x) is called the fuzzy Pareto optimal (objective) vector.

Fuzzy Pareto Optimal Set: The set of all the fuzzy Pareto
optimal individuals in the decision space is called the fuzzy
Pareto optimal set (FPS),
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Fig. 3. Fuzzy fitness assignment process.

Fig. 4. Proportion of fuzzy Pareto optimal set in the population.

FPS = {�x ∈ �|FEM(�x) > α}.
Fuzzy Pareto Front: The image of the fuzzy Pareto optimal

set (FPS) in the objective space is called the fuzzy Pareto front
(FPF), FPS = {f (�x)|�x ∈ FPS}.

When the same experiment is rerun, as in Fig. 1 (i.e., initial
populations of 100, 200, and 500 for the scalable benchmark
function DTLZ2), Fig. 4 shows the proportion of fuzzy non-
dominated individuals in the population with respect to the
varying numbers of objectives from two to 50 with a step
size of one. Every data point in Fig. 4 was averaged over 50
independent runs of the same initialization. In this case, the
proposed fuzzy Pareto dominance relation with a heuristically
chosen predefined threshold (i.e., α) of 0.5 is applied as
opposed to the original Pareto dominance relation used to
generate Fig. 1. In Fig. 1, the proportion of non-dominated
individuals based on the original Pareto domination definition
grows at a fast rate as the number of objectives becomes larger.
On the other hand, the proportion of non-dominated individu-
als based on the fuzzy Pareto domination definition proposed
in this paper remains at the same level and is independent
of the number of objectives. Therefore, the proposed fuzzy
Pareto dominance relation effectively differentiates individuals
into different degrees of optimality beyond the classification of
the original Pareto dominance. Furthermore, the fuzzy Pareto
dominance relation can be made adaptable by adjusting the
threshold value α to control the size of the fuzzy Pareto
optimal set throughout the evolution process. This potential
will be exploited in our future research.

Fig. 5. Rank value assignment process.

D. Fuzzy Dominance NSGA-II

In the original NSGA-II [8], two individuals are compared
based on their rank values and crowding-distances. The Pareto
dominance relation determines the rank value of each indi-
vidual. In the proposed improved design, we will use the
fuzzy fitness assignment method instead, which is based on
the fuzzy Pareto dominance relation to assign each individual
a rank value. After the rank value is determined, the same
crowding-distance is used as the original design of NSGA-II.
Specifically, the rank value assignment process based on the
fuzzy dominance works as follows. For every individual, if its
FFM is greater than a predefined threshold, α, then place it in
the first non-dominated rank. After assigning rank one, remove
all individuals in the first rank and consider the remaining
individuals. Do a recalculation of the fuzzy fitness measure
for each of the remaining individuals. If the recalculated FFM
of an individual is greater than the same predefined threshold,
α, then place it in the second rank. Continue with the above
process until all individuals have rank values assigned. In
this process, all FFMs are generated by the fuzzy fitness
assignment process outlined in Fig. 3 and the predefined
threshold is not changed throughout the complete rank value
assignment process. This process ensures one individual is
fuzzy non-dominated with respect to others in the same rank.
After all individuals have rank values assigned, calculate the
crowding-distance for each individual. Fig. 5 explains how to
assign the rank value to each individual and perform the fuzzy
non-dominated sorting. The parameter, α, directly affects the
rank value assignment process in the proposed design. The
variation of α determines the number of ranks resulted and
the proportion of non-dominated individuals in the population.
The smaller the value of α, the more individuals will be placed
in the first non-dominated front, resulting in fewer ranks. The
larger the value of α, the more individuals will be classified
into the last front, which makes them non-discriminable. Take
the 5-D DTLZ2 as an example. Given an initial population of
200, the proposed fuzzy fitness assignment process will place
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TABLE I

Rank Value Assignment Results in DTLZ2

α Number of Ranks Proportion of Fuzzy Non-
dominated Individuals (%)

M = 5 M = 10 M = 20 M = 5 M = 10 M = 20
0.1 2 2 2 98 97 96
0.2 3 3 3 86 84 82
0.3 4 4 4 72 71 68
0.4 5 5 5 59 56 57
0.5 8 8 8 48 47 47
0.6 9 9 9 35 39 38
0.7 10 10 10 27 27 29
0.8 10 10 10 16 20 19
0.9 10 10 10 9 9 10

98% of the population into the first non-dominated front, if
α is chosen to be 0.1. This is clearly undesirable as these
non-dominated individuals will present little selection pressure
during the evolutionary process. On the other hand, if α is
chosen to be large, say 0.9, this will result in ten ranks and the
majority of the population, nearly 70% of the population in this
case, will be assigned into the last front (i.e., the 10th front).
This is clearly undesirable as they cannot be differentiated by
the proposed fuzzy Pareto domination principle. In Table I,
where all the results are averaged over 30 independent runs
and rounded to whole numbers, the resulting number of ranks
and the proportion of individuals placed in the non-dominated
front versus the choice of parameter α between 0 and 1 are
shown, given the population size of 200. M is referred to as
the number of objectives chosen in the scalable benchmark
function DTLZ2. As can be observed, the resulting number
of ranks and the proportion of individuals placed in the non-
dominated front are independent of the number of objectives,
M. Similar experiments made on other benchmark functions
(i.e., DTLZ1, DTLZ3, DTLZ6, DTLZ7, WFG1, and WFG2)
show consistent findings.

1) The smaller the value of α, the more individuals will
be assigned in the first non-dominated front, resulting
in fewer ranks. The larger the value of α, the more
individuals will be grouped into the last front.

2) The resulting number of ranks and the proportion of
individuals placed in the non-dominated front are inde-
pendent of the number of objectives.

As is commonly known, the original Pareto dominance
criterion is effective when the number of objectives is less than
three. Fig. 1 indicates that the proportion of non-dominated
individuals in the initial population is between 40% and
50% when the number of objectives is two. This proportion
(40–50%) heuristically chosen is believed to provide sufficient
selection pressure during the early stage of the evolutionary
process and corresponds to α at 0.5 (for Table I). When a
different problem is dealt with, a similar experiment on varying
α (from 0.1 to 0.9 in the increment of 0.1) will be made for
the given number of objective functions, M. A table similar to
Table I will be produced. The α, which corresponds to 40–50%
of fuzzy non-dominated individuals in the initial population,
will be chosen ad hoc to provide the best performances for a
given problem at hand. The NSGA-II is modified by adopting

Fig. 6. Fuzzy dominance FD-NSGA-II.

the fuzzy Pareto dominance relations and the corresponding
fuzzy fitness assignment process. In order to fairly compare the
performance by using the proposed fuzzy Pareto dominance
relation and the original Pareto dominance relation, we use the
same structure as the original NSGA-II. The only difference
is that in the original NSGA-II, the fitness assignment is
completed by the Pareto dominance, while in the modified
NSGA-II (named FD-NSGA-II), the fuzzy Pareto dominance
principle is applied. Fig. 6 explains each step of the modified
FD-NSGA-II in detail.

E. Fuzzy Dominance SPEA2

In the proposed design, the fuzzy Pareto dominance relation
is incorporated into the original SPEA2 [9]. Two main steps
of the original SPEA2, fitness assignment and environment se-
lection, are modified according to the fuzzy Pareto dominance.
After the fitness value is assigned and environment selection is
completed, the same mating selection and variation operators
are applied as the original design of SPEA2. In the original
SPEA2, the fitness value of individual �x is assigned as

f (�x) = R(�x) + D(�x) (2)

where R(�x) is the sum of strength values of individuals that
dominates�x and D(�x) is the density value of �x. The strength
value of one individual represents the number of individuals it
dominates and the density value is generated by an adaptation
of the kth nearest neighbor method, where the density at
any point is a decreasing function of the distance to the kth
nearest data point. If F (�x) < 1, �x is treated as non-dominated
individuals and is assigned rank one. In SPEA2 based on the
fuzzy Pareto dominance, the fitness value of individual �x is
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Fig. 7. Fuzzy dominance FD-SPEA2.

assigned as:

F (�x) = s(�x) − D(�x) (3)

where s(�x) is generated from the fuzzy fitness assignment
process detailed in Fig. 3 and D(�x) is the same as the original
SPEA2. We have known that the larger the value of s(�x), the
better the convergence of �x. Meanwhile, the smaller the value
of D(x), the smaller the density of �x. Therefore, the larger the
value of F (�x), the better the performance of �x. As far as the
environment selection is concerned, in the original approach
there are three different selection ways; each corresponds
to one of three situations: the number of non-dominated
individuals generated from the fitness assignment process is
smaller, equal, or larger than the archive size. However, in
many-objective optimization problems, this selection process
incurs a huge computational cost. In the proposed design,
individuals are directly sorted based on their fuzzy fitness
measures and the number of selected individuals is the same
as the archive size. This process has a lower computational
complexity than the original design. Fig. 7 explains each step
of the modified FD-SPEA2 in detail.

IV. Experimental Results

A. Selected MOEAs for Comparison

In the experiment, seven state-of-the-art MOEAs are chosen
for comparison. They are the original NSGA-II [8], NSGA-II
based on fuzzy Pareto dominance relation (FD-NSGA-II), the
original SPEA2 [9], SPEA2 based on fuzzy Pareto dominance
relation (FD-SPEA2), MOEA/D [19], NSGA-II with fuzzy-
optimality (NSGA-II-FO) [15], and fuzzy-dominance-driven
GA (FDD-GA) [17]. MOEA/D is chosen due to its superior
performance in many-objective optimization problems [20].

TABLE II

Problem Characteristics of the DTLZ Test Suite

MOP Multimodal Bias Disconnect Many-to-One Mapping
DTLZ1 Yes No No Yes
DTLZ2 No No No Yes
DTLZ3 Yes No No Yes
DTLZ4 No Yes No Yes
DTLZ5 No No Unknown Yes
DTLZ6 No Yes Unknown Yes
DTLZ7 Yes No Yes No

B. Selected Benchmark Functions

Nine widely used scalable many-objective benchmark prob-
lems, DTLZ1, DTLZ2, DTLZ3, DTLZ4, DTLZ5, DTLZ6,
and DTLZ7 [2], WFG1, and WFG2 [21], are chosen to
evaluate the performance of the MOEAs considered. In
this experiment, chosen MOEAs are tested in 5-, 10-, and
20-D objective space of these benchmark problems. The DTLZ
test suite contains a variety of problem characteristics that
present various degrees of complications for the underlying
MOEAs. These problem characteristics are summarized in
Table II [21]. Specifically, “multimodal” implies there are
many local fronts in the search space; “bias” means the
Pareto optimal solutions are non-uniformly distributed along
the global Pareto front; “disconnect” refers to the disconnected
global Pareto front; and “many-to-one mapping” shows that
several different variables in decision space are mapped to the
same solutions in objective space. According to [22], DTLZ1,
DTLZ3, and DTLZ6 introduce a large number of local Pareto
fronts and DTLZ2 presents a spherical Pareto front so as
to test MOEA’s ability to converge to the global Pareto
front. DTLZ4 generates a nonuniform distribution of points
along the Pareto front, and therefore it challenges MOEA’s
ability to maintain a good distribution of solutions. The
Pareto front of DTLZ5 is a degenerated hypersurface. DTLZ6
has disconnected Pareto-optimal regions and it will test an
algorithm’s ability to maintain subpopulations in disconnected
portions of the objective space. DTLZ7 is constructed with
the constraint surface approach. The Pareto front of DTLZ7
is the intersection of a straight line and a hyperplane. The
tested MOEA may find it difficult to converge to the Pareto
front and to maintain a good distribution of solutions along it.
The WFG test suite [21] shares similar problem characteristics
as the DTLZ test suite [2], but allows control via a series
of composable transformations. We consider two of the more
popular test functions (i.e., WFG1 and WFG2) often seen in
literature. From [21], the problem characteristics of these two
test functions, WFG1 and WFG2, are with high-dimensional
objective space and multiple global optima.

C. Selected Performance Metrics

In this experiment, two performance metrics are chosen
to quantify the performance. Inverted Generational Distance
(IGD) [23] considers both convergence and diversity at the
same time. Spacing [24] measures the distribution of indi-
viduals in the Pareto front. The fewer the IGD and Spacing
values, the better is the algorithm’s performance. For the IGD
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metric, we randomly generate a large number of reference
points, which is 100 000 samples in all benchmark problems,
as suggested in [25] and [26] to maintain a fair compar-
ison throughout the simulation study. In order to provide
statistical quantifications on both performance metrics (i.e.,
IGD and Spacing), we apply the Mann–Whitney–Wilcoxon
rank-sum test [27] to quantify whether one of two approx-
imation fronts by independent observations tends to have
better performance than the other in a statistical meaningful
sense, especially when the performance metric values of two
approximation fronts are very close to each other or even in
differentiable.

D. Parameter Setting in Experiment

The population size in all seven MOEAs is set to be 200
for all test instances. The stopping criterion is set at 200 gen-
erations. Initial populations are generated by uniform random
sampling from the search space in all MOEAs considered. The
simulated binary crossover (SBX) and polynomial mutation
are used. The crossover operator generates one offspring,
which is then modified by the mutation operator. Following
the practice in [8], the distribution indexes in SBX and the
polynomial mutation are set to be 20. The crossover rate is
1.00 (to be consistent with what were used in NSGA-II [8]
and MOEA/D [19]), while the mutation rate is 1/m and m
is the number of decision variables. As suggested in [2], for
DTLZ1, m is chosen to be 9 and 14 for 5- and 10-D problems,
respectively, while for DTLZ2-7, m is chosen to be 14 and 19
for 5- and 10-D problems, respectively. From [21], m is set to
be 24 for all WFG test functions in both 5- and 10-D problems.

E. Experimental Results

Detailed comparison results are presented in the following.
Here, let X1, X2, X3, X4, X5, X6, and X7 denote FD-
NSGA-II, FD-SPEA2, MOEA/D, NSGA-II, SPEA2, NSGA-
II-FO, and FDD-GA, respectively. Tables III–XI present the
performance results on metrics IGD and Spacing, given mean
values and standard deviations (in brackets) for comparing the
seven chosen MOEAs in all nine benchmark problems with
5-, 10-, and 20-D objectives. These results (mean and standard
deviation) are averaged over 30 independent trials with the
same experimental setup.

A non-parametric statistical hypothesis test, the Mann–
Whitney–Wilcoxon rank-sum test, is applied on all bench-
mark functions with 5-, 10-, and 20-objectives, comparing
FD-NSGA-II (X1) and FD-SPEA2 (X2) with respect to each
other chosen MOEAs (i.e., X3 for MOEA/D, X4 for NSGA-
II, X5 for SPEA2, X6 for NSGA-II-FO, and X7 for FDD-
GA) over 30 independent runs. The results are shown in
Tables XII–XX. From the performance metrics results by
all chosen MOEAs, we test the hypothesis that there is no
significant difference between IGD and Spacing values from
X1 to X3–X7 and from X2 to X3–X7. In each of these
tables, H0 represents the null hypothesis. The p-value is the
probability that the null hypothesis is true, which is computed
using an inferential statistical testing. If a p-value is lower than
the chosen significance level, it implies that the null hypothesis

TABLE III

Performance on IGD and Spacing Metrics for DTLZ1

MOP MOEA IGD Spacing
DTLZ1 (5-D) X1 3.3281(0.5153) 4.2104(1.3291)

X2 3.4285(0.4408) 3.9958(1.2560)
X3 3.6313(0.4017) 3.8880(1.7292)
X4 3.7522(1.0616) 5.3872(0.4314)
X5 3.7293(1.2132) 5.2032(0.2263)
X6 3.5596(0.4209) 5.4901(0.2195)
X7 3.6310(0.5982) 5.3991(1.5267)

DTLZ1 (10-D) X1 3.3307(0.3998) 14.4632(2.8026)
X2 3.2182(0.3017) 15.1500 (3.5709)
X3 3.5263(0.6461) 11.1856(10.1242)
X4 3.9157(0.9372) 16.3901(1.4234)
X5 3.8201(0.7451) 17.4592 (2.1953)
X6 3.3726(0.4902) 19.0912(6.4821)
X7 3.6506(0.7930) 18.7800(6.5913)

DTLZ1 (20-D) X1 3.3619(0.4690) 26.9580(4.9202)
X2 3.5183(0.5892) 27.1127(3.7805)
X3 3.5322(0.3044) 27.5756(4.4583)
X4 3.9200(1.1302) 28.2073(3.3891)
X5 3.8921(1.0920) 27.1173(2.7391)
X6 3.8724(0.9342) 29.1023(7.1026)
X7 4.1547(0.6129) 28.1903(8.4045)

TABLE IV

Performance on IGD and Spacing Metrics for DTLZ2

MOP MOEA IGD Spacing
DTLZ2 (5-D) X1 0.0041(0.0019) 0.2148(0.0198)

X2 0.0066(0.0003) 0.2283(0.0412)
X3 0.0088(0.0012) 0.2164(0.1040)
X4 0.0072(0.0033) 0.4642(0.0453)
X5 0.0097(0.0073) 0.3129(0.0003)
X6 0.0150(0.0081) 0.2388(0.0763)
X7 0.0124(0.0033) 0.3269(0.1301)

DTLZ2 (10-D) X1 0.0068(0.0017) 0.2295(0.0727)
X2 0.0074(0.0025) 0.2371(0.0507)
X3 0.0091(0.0056) 0.2399(0.0863)
X4 0.0109(0.0029) 0.4274(0.1892)
X5 0.0128(0.0016) 0.3321(0.0027)
X6 0.0141(0.0053) 0.3991(0.0792)
X7 0.0140(0.0019) 0.5294(0.1095)

DTLZ2 (20-D) X1 0.0066(0.0016) 0.1552(0.0214)
X2 0.0098(0.0068) 0.1719(0.0098)
X3 0.0104(0.0027) 0.1713(0.0504)
X4 0.0142(0.0038) 0.4235(0.2001)
X5 0.0129(0.0040) 0.3015(0.0009)
X6 0.0119(0.0029) 0.3201(0.0438)
X7 0.0157(0.0066) 0.2294(0.1102)

can be rejected in favor of an alternative test H1 [28]. This
significance level is user-defined and we choose it at 5% in
this study. For DTLZ1, which possesses a linear Pareto front
and a large number of local Pareto fronts, both FD-NSGA-
II and FD-SPEA2 obtain better IGD scores than the other
five competing MOEAs according to Table III. Although the
Spacing score of MOEA/D is slightly better than those of
FD-NSGA-II and FD-SPEA2 for the 5- and 10-D problems,
the Mann–Whitney–Wilcoxon rank-sum test results given in
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TABLE V

Performance on IGD and Spacing Metrics for DTLZ3

MOP MOEA IGD Spacing
DTLZ3 (5-D) X1 0.7233(0.0512) 26.9898(5.2886)

X2 0.7513(0.1521) 21.5531(4.3912)
X3 0.7730(0.1973) 23.9980(9.4332)
X4 0.7594(0.1290) 29.5120(5.0396)
X5 0.7948(0.0002) 31.1043(1.1342)
X6 0.9619(0.3907) 32.0944(6.7126)
X7 0.7962(0.0018) 29.0435(5.1042)

DTLZ3 (10-D) X1 0.7346(0.0547) 27.1094(3.1735)
X2 0.7728(0.1944) 25.0926(4.1569)
X3 0.7990(0.1496) 24.0926(7.2763)
X4 0.9180(0.1764) 28.7201(3.2093)
X5 0.7951(0.0003) 30.0832(1.0932)
X6 1.0141(0.4780) 27.1450(5.9823)
X7 0.7987(0.0009) 28.0139(4.1703)

DTLZ3 (20-D) X1 0.6834(0.0571) 15.2105(3.4821)
X2 0.7235(0.1425) 15.1472(2.4052)
X3 0.7262(0.0449) 14.3092(5.1035)
X4 0.9257(0.1536) 16.4092(3.0213)
X5 0.7953(0.0000) 18.1094(2.0003)
X6 0.7957(0.0007) 16.8617(3.0256)
X7 0.7969(0.0021) 18.9802(3.0129)

TABLE VI

Performance on IGD and Spacing Metrics for DTLZ4

MOP MOEA IGD Spacing
DTLZ4 (5-D) X1 0.0073(0.0018) 0.0463(0.0032)

X2 0.0068(0.0020) 0.0377(0.0194)
X3 0.0105(0.0019) 0.0484(0.0089)
X4 0.0124(0.0000) 0.0764(0.0129)
X5 0.0123(0.0004) 0.1092(0.0023)
X6 0.0129(0.0015) 0.1618(0.1011)
X7 0.0153(0.0039) 0.0414(0.0193)

DTLZ4 (10-D) X1 0.0037(0.0004) 0.0226(0.0014)
X2 0.0046(0.0086) 0.0164(0.0101)
X3 0.0050(0.0004) 0.0196(0.0117)
X4 0.0054(0.0005) 0.0429(0.0079)
X5 0.0056(0.0006) 0.0228(0.0037)
X6 0.0083(0.0054) 0.0616(0.0191)
X7 0.0067(0.0022) 0.0162(0.0177)

DTLZ4 (20-D) X1 0.0377(0.0109) 0.3901(0.1027)
X2 0.0377(0.0093) 0.4070(0.1022)
X3 0.0478(0.0029) 0.5064(0.1429)
X4 0.6767(1.3038) 0.5654(0.2011)
X5 0.0583(0.0032) 0.4174(0.1217)
X6 0.0599(0.0050) 0.4144(0.0935)
X7 0.0682(0.0247) 0.3860(0.1937)

Table XII show that there is no appreciable difference among
the Spacing values of these three MOEAs for the 5- and
20-D DTLZ1, while both FD-NSGA-II and FD-SPEA2 are
better than MOEA/D in the 10-D DTLZ1. This implies that
MOEA/D cannot be guaranteed to generate a better distributed
approximated front than FD-NSGA-II and FD-SPEA2 in the
statistical sense according to the quality measures used. Also,
results in Table XII confirm the findings in Table III that
FD-NSGA-II and FD-SPEA2 attain better performance on

TABLE VII

Performance on IGD and Spacing Metrics for DTLZ5

MOP MOEA IGD Spacing
DTLZ5 (5-D) X1 0.0018(0.0009) 0.0875(0.0102)

X2 0.0063(0.0011) 0.0964(0.0310)
X3 0.0099(0.0011) 0.0912(0.0412)
X4 0.0072(0.0019) 0.1098(0.0219)
X5 0.0168(0.0004) 0.1429(0.0125)
X6 0.0148(0.0033) 0.1172(0.0304)
X7 0.0146(0.0035) 0.1134(0.0125)

DTLZ5 (10-D) X1 0.0035(0.0025) 0.0822(0.0055)
X2 0.0077(0.0010) 0.0725(0.0103)
X3 0.0109(0.0021) 0.0859(0.0205)
X4 0.0107(0.0024) 0.1299(0.0174)
X5 0.0183(0.0000) 0.1584(0.0183)
X6 0.0175(0.0015) 0.0963(0.0391)
X7 0.0162(0.0036) 0.1703(0.0298)

DTLZ5 (20-D) X1 0.0058(0.0020) 0.1029(0.0381)
X2 0.0087(0.0013) 0.1124(0.0127)
X3 0.0109(0.0025) 0.1227(0.0424)
X4 0.0124(0.0009) 0.1278(0.0482)
X5 0.0186(0.0000) 0.1279(0.0373)
X6 0.0095(0.0021) 0.1662(0.0501)
X7 0.0121(0.0061) 0.1384(0.0624)

TABLE VIII

Performance on IGD and Spacing Metrics for DTLZ6

MOP MOEA IGD Spacing
DTLZ6 (5-D) X1 0.0164(0.0052) 2.0684(0.2443)

X2 0.0100(0.0027) 2.1610(0.3662)
X3 0.0188(0.0136) 2.1603(0.9433)
X4 0.0228(0.0051) 2.6906(0.6276)
X5 0.0377(0.0031) 3.0923(0.9871)
X6 0.0375(0.0029) 2.2404(2.9707)
X7 0.0290(0.0140) 2.1241(0.8573)

DTLZ6 (10-D) X1 0.0132(0.0046) 1.9552(0.5742)
X2 0.0096(0.0028) 2.2845(0.6278)
X3 0.0379(0.0013) 2.4365(0.0664)
X4 0.0353(0.0044) 3.1348(0.9717)
X5 0.0421(0.0000) 3.2300(0.0000)
X6 0.0382(0.0087) 2.5782(2.2036)
X7 0.0337(0.0145) 2.7950(1.3051)

DTLZ6 (20-D) X1 0.0085(0.0024) 2.2857(0.4717)
X2 0.0071(0.0014) 2.3579(0.3730)
X3 0.0369(0.0007) 2.3920(0.0304)
X4 0.0367(0.0004) 3.2753(0.5845)
X5 0.0420(0.0010) 3.4359(0.0213)
X6 0.0398(0.0035) 3.5489(2.5810)
X7 0.0402(0.0042) 2.4510(0.6652)

IGD scores than the other five algorithms except for the 20-
D DTLZ1, in which the performances of FD-SPEA2 and
MOEA/D are indifferent.

For DTLZ2, which has a spherical Pareto-optimal front, FD-
NSGA-II and FD-SPEA2 show better performance than the
other five algorithms on both IGD and Spacing metrics in most
conditions as shown in Table IV, except FD-SPEA2 performs
slightly worse than MOEA/D on Spacing in the 5- and 20-D
problems. However, the Mann–Whitney–Wilcoxon rank-sum
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TABLE IX

Performance on IGD and Spacing Metrics for DTLZ7

MOP MOEA IGD Spacing
DTLZ7 (5-D) X1 0.0887(0.0063) 0.0188(0.0080)

X2 0.1035(0.0209) 0.0751(0.0306)
X3 0.1044(0.0172) 1.9310(0.0271)
X4 0.1061(0.0318) 0.3779(0.0327)
X5 0.1208(0.0148) 0.2021(0.0123)
X6 0.1234(0.0531) 1.9142(1.7280)
X7 0.1254(0.0531) 1.2918(1.4145)

DTLZ7 (10-D) X1 0.2161(0.0175) 0.0470(0.0277)
X2 0.2178(0.0233) 0.2680(0.0850)
X3 0.2236(0.1025) 2.2467(2.1536)
X4 0.2882(0.0187) 0.9042(0.0821)
X5 0.2615(0.0203) 1.0014(0.0035)
X6 0.2852(0.1069) 2.8118(2.8106)
X7 0.2817(0.1124) 2.9495(1.0605)

DTLZ7 (20-D) X1 0.1079(0.0011) 0.0320(0.0167)
X2 0.1064(0.0012) 0.2322(0.0413)
X3 0.1101(0.0051) 0.7805(0.6089)
X4 0.1143(0.0004) 0.7791(0.1168)
X5 0.1160(0.0005) 0.4025(0.0195)
X6 0.1136(0.0039) 0.8441(0.4113)
X7 0.1162(0.0005) 0.5001(0.1596)

TABLE X

Performance on IGD and Spacing Metrics for WFG1

MOP MOEA IGD Spacing
WFG1 (5-D) X1 0.0033(0.0001) 0.0186(0.0067)

X2 0.0064(0.0128) 0.1109(0.1721)
X3 0.0102(0.0086) 0.1182(0.1679)
X4 0.0074(0.0001) 0.3423(0.2546)
X5 0.0081(0.0001) 0.2901(0.0010)
X6 0.0079(0.0003) 0.1459(0.0751)
X7 0.0083(0.0005) 0.1205(0.1789)

WFG1 (10-D) X1 0.0154(0.0021) 0.1434(0.0076)
X2 0.0153(0.0084) 0.2911(0.0789)
X3 0.0173(0.0002) 0.0514(0.0179)
X4 0.0155(0.0023) 0.4849(0.0852)
X5 0.0166(0.0005) 0.2021(0.0130)
X6 0.0162(0.0007) 0.3765(0.3465)
X7 0.0170(0.0004) 1.2852(1.7167)

WFG1 (20-D) X1 0.0076(0.0005) 1.1567(1.4540)
X2 0.0304(0.0003) 1.0686(1.4233)
X3 0.0301(0.0006) 1.2166(0.1917)
X4 0.0331(0.0011) 2.2047(0.2174)
X5 0.0360(0.0006) 1.3509(0.0021)
X6 0.0342(0.0045) 1.2029(0.4092)
X7 0.0477(0.0022) 1.7845(0.3024)

test results in Table XIII show that both have no noticeable
difference on Spacing scores for the 20-D DTLZ2 and FD-
SPEA2 is better than MOEA/D in the 5-D DTLZ2.

Meanwhile, Table XIII shows that there is no significant
difference in IGD value between FD-SPEA2 and MOEA/D
in the statistical sense. Also, for IGD, FD-SPEA2 performs
equally well as NSGA-II and SPEA2 for the 5-D DTLZ2,
while FD-NSGA-II performs equally well in IGD as MOEA/D
for the 10-D DTLZ2. Therefore, combining findings in

TABLE XI

Performance on IGD and Spacing Metrics for WFG2

MOP MOEA IGD Spacing
WFG2 (5-D) X1 0.0014(0.0001) 0.4368(0.0569)

X2 0.0126(0.0096) 0.1661(0.1962)
X3 0.0030(0.0007) 0.4370(0.0711)
X4 0.0031(0.0007) 0.4430(0.0664)
X5 0.0030(0.0006) 0.4846(0.0700)
X6 0.0035(0.0010) 0.5346(0.0893)
X7 0.0062(0.0053) 0.8673(0.6500)

WFG2 (10-D) X1 0.0033(0.0012) 1.2007(0.1450)
X2 0.0080(0.0016) 0.9931(0.1798)
X3 0.0086(0.0024) 1.5202(0.1098)
X4 0.0099(0.0024) 1.0346(0.0947)
X5 0.0095(0.0027) 1.3074(0.1408)
X6 0.0078(0.0055) 1.1975(0.1674)
X7 0.0162(0.0143) 1.4234(0.9366)

WFG2 (20-D) X1 0.0052(0.0035) 1.7351(0.3006)
X2 0.0125(0.0054) 1.2833(0.2092)
X3 0.0133(0.0011) 1.6847(0.5317)
X4 0.0189(0.0049) 2.3179(0.6803)
X5 0.0170(0.0087) 1.8932(0.4769)
X6 0.0192(0.0069) 1.9258(0.7025)
X7 0.0201(0.0072) 2.0015(0.4501)

Tables IV and XIII, we can draw the conclusion that both
FD-NSGA-II and FD-SPEA2 perform competitively with re-
spect to MOEA/D for the 10- and 20-D DTLZ2, while they
perform better than others (i.e., NSGA-II, SPEA2, NSGA-
II-FO, and FDD-GA) in nearly all dimensions. For DTLZ3,
which introduces many local Pareto-optimal fronts, FD-
NSGA-II and FD-SPEA2 have better IGD scores in Table V
but hypothesis test results in Table XIV indicate that there is
no significant difference between FD-NSGA-II and MOEA/D
for the 5- and 20-D problems. On the other hand, although
FD-NSGA-II and FD-SPEA2 achieve worse Spacing scores
than MOEA/D from Table V, hypothesis test results in Ta-
ble XIV assure they perform equally well. Therefore, we
can say that FD-SPEA2 performs no worse than the five
chosen state-of-the-art MOEAs and FD-NSGA-II performs
as well as MOEA/D and a little bit better than the remain-
ing four chosen MOEAs with respect to both performance
metrics.

For DTLZ4, which generates a nonuniform distribution of
individuals along the Pareto front, both FD-NSGA-II and
FD-SPEA2 according to Table VI offer a better IGD and
Spacing scores in most cases except for the 10-D problem,
in which FD-NSGA-II’s Spacing value is slightly worse than
MOEA/D. However, statistical results in Table XV show
there is no considerable difference among FD-NSGA-II, FD-
SPEA2, MOEA/D, SPEA2, and FDD-GA on the Spacing
metric. Also, for the 10-D DTLZ4, FD-SPEA2 has the same
performance as others on IGD. Therefore, for DTLZ4, both
FD-NSGA-II and FD-SPEA2 present significantly better IGD
scores than others, while they are no worse than others for
the Spacing metric. For DTLZ5, whose Pareto front is a
degenerated hypersurface, both FD-NSGA-II and FD-SPEA2
perform much better than all the other chosen MOEAs in the
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TABLE XII

Results of Mann−Whitney−Wilcoxon Rank-sum Test in DTLZ1

5 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
MOEA IGD Spacing

H p-Value Winner H p-Value Winner
5 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}

X3 1 0.0003 X1 0 0.9012 None
X4 1 3.0129E–04 X1 1 2.4721E–04 X1
X5 1 3.0091E–04 X1 1 1.9012E–04 X1
X6 1 6.0712E–04 X1 1 1.3279E–04 X1
X7 1 0.0011 X1 1 5.0925E–04 X1

5 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 7.0129E–04 X2 0 0.3981 None
X4 1 0.0039 X2 1 1.8267E–04 X2
X5 1 4.7098E–04 X2 1 2.3671E–04 X2
X6 1 2.3569E–04 X2 1 1.0092E–04 X2
X7 1 0.0001 X2 1 0.5708 X2

10 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 7.2901E–04 X1 1 0.0015 X1
X4 1 8.0134E–04 X1 1 1.5982E–04 X1
X5 1 3.1584E–04 X1 1 2.0186E–04 X1
X6 1 0.0299 X1 1 0.0233 X1
X7 1 1.9901E–04 X1 1 1.0923E–04 X1

10 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 9.2091E–04 X2 1 3.1078E–04 X2
X4 1 5.6231E–04 X2 1 0.0155 X2
X5 1 4.8513E–04 X2 1 2.1091E–04 X2
X6 1 1.4309E–04 X2 1 1.0012E–04 X2
X7 1 8.3800E–04 X2 1 5.9807E–04 X2

20 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 1.0012E–04 X1 0 0.7825 None
X4 1 1.9904E–04 X1 1 2.6712E–04 X1
X5 1 3.6701E–04 X1 0 0.4041 None
X6 1 9.0127E–04 X1 1 3.0921E–04 X1
X7 1 0.0004 X1 1 4.1267E–04 X1

20 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 0 0.3566 None 0 0.9001 None
X4 1 0.0096 X2 1 1.8267E–04 X2
X5 1 0.0211 X2 0 0.4595 None
X6 1 3.6709E–04 X2 1 4.3902E–04 X2
X7 1 0.0102 X2 1 5.3087E–04 X2

TABLE XIII

Results of Mann−Whitney−Wilcoxon Rank-Sum Test in DTLZ2

5 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
MOEA IGD Spacing

H p-Value Winner H p-Value Winner
5 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}

X3 1 2.6501E–04 X1 1 0.0033 X1
X4 1 7.3098E–04 X1 1 3.9417E–04 X1
X5 1 5.4781E–04 X1 1 1.1309E–04 X1
X6 1 3.4201E–04 X1 1 3.0912E–04 X1
X7 1 1.8267E–04 X1 1 2.0913E–04 X1

5 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 0 0.5024 None 1 4.3277E–04 X2
X4 0 0.8102 None 1 1.8267E–04 X2
X5 0 0.4098 None 1 1.8267E–04 X2
X6 1 0.0012 X2 1 1.4501E–04 X2
X7 1 0.0257 X2 1 0.0091 X2

10 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 0 0.5817 None 0 0.2902 None
X4 1 5.0982E–04 X1 1 4.3091E–04 X1
X5 1 7.8493E–04 X1 1 1.7399E–04 X1
X6 1 4.0912E–04 X1 1 1.0017E–04 X1
X7 1 0.0016 X1 1 0.0199 X1

10 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 0 0.4552 None 0 0.3092 None
X4 1 0.0031 X2 1 1.8267E–04 X2
X5 1 0.0036 X2 1 2.1237E–04 X2
X6 1 4.1435E–04 X2 1 3.0911E–04 X2
X7 1 2.3571E–04 X2 1 0.0019 X2

20 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 0.0026 X1 1 0.0391 X1
X4 1 4.1604E–04 X1 1 2.9260E–04 X1
X5 1 3.6891E–04 X1 1 0.0014 X1
X6 1 5.0124E–04 X1 1 3.0785E–04 X1
X7 1 1.6211E–04 X1 1 7.2019E–04 X1

20 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 0 0.4317 None 0 0.9012 None
X4 1 9.5601E–04 X2 1 3.2907E–04 X2
X5 1 0.0079 X2 1 4.3091E–04 X2
X6 1 8.1367E–04 X2 1 0.0004 X2
X7 1 2.8182E–04 X2 1 1.9101E–04 X2
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TABLE XIV

Results of Mann−Whitney−Wilcoxon Rank-Sum Test in DTLZ3

5 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
MOEA IGD Spacing

H p-Value Winner H p-Value Winner
5 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}

X3 0 0.4026 None 0 0.9698 None
X4 1 6.1431E–04 X1 1 1.8267E–04 X1
X5 1 5.4391E–04 X1 1 1.4973E–04 X1
X6 1 4.3722E–04 X1 1 5.2091E–04 X1
X7 1 1.6211E–04 X1 1 3.7649E–04 X1

5 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 0 0.6702 None 1 6.3092E–04 X2
X4 0 0.5054 None 1 3.2871E–04 X2
X5 0 0.4902 None 1 4.3091E–04 X2
X6 0 0.9802 None 1 0.0093 X2
X7 0 0.7935 None 1 0.0332 X2

10 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 0.0443 X1 0 0.4727 None
X4 1 8.3800E–04 X1 1 1.8267E–04 X1
X5 1 5.1456E–04 X1 1 1.9012E–04 X1
X6 1 3.1584E–04 X1 0 1 None
X7 1 1.8267E–04 X1 1 4.3964E–04 X1

10 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 0 0.3012 None 0 0.4727 None
X4 0 0.7906 None 1 1.8267E–04 X2
X5 1 0.0036 X2 1 1.8267E–04 X2
X6 0 0.4435 None 0 1 None
X7 1 0.0257 X2 0 0.5708 None

20 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 0 0.4026 None 0 0.9698 None
X4 1 4.1604E–04 X1 1 1.8267E–04 X1
X5 1 6.3403E–04 X1 1 1.8267E–04 X1
X6 1 1.2777E–04 X1 0 0.1405 None
X7 1 1.6211E–04 X1 1 3.2984E–04 X1

20 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 0 0.1634 None 0 0.5205 None
X4 0 0.2395 None 1 1.8267E–04 X2
X5 0 0.7096 None 1 1.8267E–04 X2
X6 0 0.8145 None 0 0.1405 None
X7 0 0.8182 None 1 0.0091 X2

TABLE XV

Results of Mann−Whitney−Wilcoxon Rank-Sum Test in DTLZ4

5 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
MOEA IGD Spacing

H p-Value Winner H p-Value Winner
5 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}

X3 1 0.0017 X1 0 0.3298 None
X4 1 3.0127E–04 X1 1 0.9801E–04 X1
X5 1 1.9802E–04 X1 1 1.9012E–04 X1
X6 1 2.6704E–04 X1 1 3.4309E–04 X1
X7 1 1.8205E–04 X1 0 0.4209 None

5 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 0.0022 X2 1 1.8267E–04 X2
X4 1 1.8267E–04 X2 1 3.2984E–04 X2
X5 1 1.8267E–04 X2 1 2.4613E–04 X2
X6 1 1.7265E–04 X2 1 2.4613E–04 X2
X7 1 1.8165E–04 X2 0 0.1620 None

10 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 0.0173 X1 0 0.8267 None
X4 1 1.7265E–04 X1 1 1.8267E–04 X1
X5 1 1.8165E–04 X1 0 0.0539 None
X6 1 1.7265E–04 X1 1 0.0211 X1
X7 1 1.7861E–04 X1 0 0.1620 None

10 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 0 0.1829 None 1 0.0034 X2
X4 0 0.5044 None 1 2.4789E–04 X2
X5 0 0.3010 None 0 0.7913 None
X6 0 0.4710 None 1 0.0257 X2
X7 0 0.5702 None 0 0.1405 None

20 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 0.0039 X1 1 1.8267E–04 X1
X4 1 1.6305E–04 X1 1 1.8267E–04 X1
X5 1 1.8267E–04 X1 0 0.1859 None
X6 1 1.8063E–04 X1 1 0.0376 X1
X7 1 3.2984E–04 X1 0 0.9097 None

20 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 0.0036 X2 1 1.8267E–04 X2
X4 1 1.6305E–04 X2 1 1.8267E–04 X2
X5 1 1.8267E–04 X2 0 0.7913 None
X6 1 1.8063E–04 X2 0 0.2413 None
X7 1 2.4613E–04 X2 0 0.3075 None
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TABLE XVI

Results of Mann−Whitney−Wilcoxon Rank-Sum Test in DTLZ5

5 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
MOEA IGD Spacing

H p-Value Winner H p-Value Winner
5 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}

X3 1 0.0021 X1 1 3.2901E–04 X1
X4 1 7.8012E–04 X1 1 2.4041E–04 X1
X5 1 4.3091E–04 X1 1 1.9012E–04 X1
X6 1 2.6704E–04 X1 1 5.8723E–04 X1
X7 1 1.3901E–04 X1 1 0.0028 X1

5 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 0.0013 X2 0 0.4791 None
X4 0 0.7891 None 0 0.1859 None
X5 1 1.3173E–04 X2 1 1.8267E–04 X2
X6 1 2.2064E–04 X2 0 0.1405 None
X7 1 2.9692E–04 X2 0 0.8791 None

10 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 3.2984E–04 X1 0 0.5205 None
X4 1 4.3964E–04 X1 1 1.3276E–04 X1
X5 1 6.3864E–05 X1 1 1.2093E–04 X1
X6 1 1.3173E–04 X1 0 0.1405 None
X7 1 1.3173E–04 X1 1 1.4102E–04 X1

10 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 0.0036 X2 0 0.2903 None
X4 1 0.0058 X2 1 1.4309E–04 X2
X5 1 6.3864E–05 X2 1 0.0013 X2
X6 1 1.7970E–04 X2 0 0.4257 None
X7 1 1.3173E–04 X2 1 2.0912E–04 X2

20 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 0.0017 X1 1 7.5713E–04 X1
X4 1 2.4613E–04 X1 1 1.8267E–04 X1
X5 1 6.3864E–04 X1 1 1.8267E–04 X1
X6 1 0.0017 X1 1 2.4613E–04 X1
X7 1 0.0013 X1 1 2.1620E–04 X1

20 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 0.0075 X2 0 0.2413 None
X4 1 3.2984E–04 X2 1 1.8267E–04 X2
X5 1 6.3864E–04 X2 1 1.8267E–04 X2
X6 1 4.0442E–04 X2 1 1.9762E–04 X2
X7 1 2.1976E–04 X2 1 3.6319E–04 X2

TABLE XVII

Results of Mann−Whitney−Wilcoxon Rank-Sum Test in DTLZ6

5 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
MOEA IGD Spacing

H p-Value Winner H p-Value Winner
5 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}

X3 0 0.4274 None 0 0.1212 None
X4 1 0.0211 X1 1 0.0452 X1
X5 1 1.8267E–04 X1 1 2.0912E–04 X1
X6 1 2.8123E–04 X1 1 1.4305E–04 X1
X7 1 0.0041 X1 1 1.9023E–04 X1

5 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 0 0.1705 None 0 0.4044 None
X4 1 2.4613E–04 X2 1 0.0313 X2
X5 1 1.8267E–04 X2 1 1.8267E–04 X2
X6 1 2.4981E–04 X2 1 2.3901E–04 X2
X7 1 0.0113 X2 1 1.3092E–04 X2

10 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 1.2783E–04 X1 0 0.5205 None
X4 1 1.1067E–04 X1 1 1.7462E–04 X1
X5 1 2.3901E–04 X1 1 1.9801E–04 X1
X6 1 2.5703E–04 X1 1 0.0092 X1
X7 1 0.0034 X1 1 2.3091E–04 X1

10 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 3.6123E–04 X2 1 0.0122 X2
X4 1 4.0921E–04 X2 1 1.5019E–04 X2
X5 1 1.6723E–05 X2 1 1.3298E–04 X2
X6 1 2.0915E–04 X2 1 4.2098E–04 X2
X7 1 3.0027E–04 X2 1 1.1101E–04 X2

20 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 1.8267E–04 X1 0 0.6381 None
X4 1 2.7014E–04 X1 1 0.0122 X1
X5 1 8.7450E–04 X1 1 4.3723E–04 X1
X6 1 1.4939E–04 X1 1 0.0211 X1
X7 1 1.3173E–04 X1 0 0.1405 None

20 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 3.1902E–04 X2 0 0.6019 None
X4 1 4.0126E–04 X2 1 1.0921E–04 X2
X5 1 1.8267E–04 X2 1 1.4703E–04 X2
X6 1 1.0932E–04 X2 1 1.9052E–04 X2
X7 1 2.1620E–04 X2 0 0.1709 None
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TABLE XVIII

Results of Mann−Whitney−Wilcoxon Rank-Sum Test in DTLZ7

5 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
MOEA IGD Spacing

H p-Value Winner H p-Value Winner
5 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}

X3 1 2.4724E–04 X1 1 1.9230E–04 X1
X4 1 0.0033 X1 1 2.4530E–04 X1
X5 1 0.0067 X1 1 1.3872E–04 X1
X6 1 1.2783E–04 X1 1 3.5289E–04 X1
X7 1 4.1093E–04 X1 1 0.0024 X1

5 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 0 0.4032 None 1 0.0023 X2
X4 0 0.5614 None 1 4.3092E–04 X2
X5 1 2.3094E–04 X2 1 1.8267E–04 X2
X6 1 1.3683E–04 X2 1 1.7982E–04 X2
X7 1 1.3498e–04 X2 1 4.9826E–04 X2

10 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 0 0.3884 None 1 4.5302E–04 X1
X4 1 0.0035 X1 1 2.1876E–04 X1
X5 1 1.2985E–04 X1 1 3.2085E–04 X1
X6 1 4.3026E–04 X1 1 2.9302E–04 X1
X7 1 1.0354E–04 X1 1 1.0034E–04 X1

10 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 0 0.6590 None 1 1.2235E–04 X2
X4 1 2.3704E–04 X2 1 0.0119 X2
X5 1 3.6209E–05 X2 1 2.0984E–04 X2
X6 1 1.0413E–04 X2 1 0.0093 X2
X7 1 3.8099E–04 X2 1 5.2904E–04 X2

20 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 2.4367E–04 X1 1 3.6894E–04 X1
X4 1 1.0937E–04 X1 1 7.0921E–04 X1
X5 1 0.0056 X1 1 2.3904E–04 X1
X6 1 3.5713E–04 X1 1 2.1136E–04 X1
X7 1 4.9083E–04 X1 1 4.3091E–04 X1

20 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 2.7094E–04 X2 1 4.6071E–04 X2
X4 1 0.0104 X2 1 1.7324E–04 X2
X5 1 2.3509E–04 X2 1 2.9063E–04 X2
X6 1 1.4327E–04 X2 1 0.0045 X2
X7 1 2.5603E–04 X2 1 2.3079E–04 X2

TABLE XIX

Results of Mann−Whitney−Wilcoxon Rank-Sum Test in WFG1

5 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
MOEA IGD Spacing

H p-Value Winner H p-Value Winner
5 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}

X3 1 0.0015 X1 1 1.2109E–04 X1
X4 1 2.1896E–04 X1 1 4.5204E–04 X1
X5 1 1.7861E–04 X1 1 6.0791E–04 X1
X6 1 2.4095E–04 X1 1 2.6093E–04 X1
X7 1 0.0093 X1 1 0.0023 X1

5 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 0 0.4952 None 0 0.5957 None
X4 0 0.3075 None 1 0.0073 X2
X5 0 0.1399 None 1 1.3173E–04 X2
X6 0 0.4274 None 0 0.0620 None
X7 0 0.1405 None 0 0.0866 None

10 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 0.0023 X1 1 1.0092E–04 X3
X4 1 3.2901E–04 X1 1 2.6903E–04 X1
X5 1 4.0925E–05 X1 1 1.1723E–04 X1
X6 1 2.9018E–04 X1 1 4.1072E–04 X1
X7 1 3.6905E–04 X1 1 2.0981E–04 X1

10 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 0 0.4037 None 1 2.3691E–04 X3
X4 0 0.2119 None 1 0.0035 X2
X5 0 0.8120 None 1 3.1376E–04 X2
X6 0 0.3902 None 1 4.1092E–04 X2
X7 1 1.0021E–04 X2 1 5.0824E–04 X2

20 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 1.7733E–04 X1 1 7.5713E–04 X1
X4 1 4.0032E–04 X1 1 5.0147E–04 X1
X5 1 0.0064 X1 1 1.8267E–04 X1
X6 1 2.5031E–04 X1 1 6.0012E–04 X1
X7 1 1.3099E–04 X1 1 0.0026 X1

20 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 0 0.3075 None 1 2.4313E–04 X2
X4 1 1.5270E–04 X2 1 3.2975E–04 X2
X5 1 2.1091E–04 X2 1 3.0125E–04 X2
X6 1 3.2209E–04 X2 1 1.8572E–04 X2
X7 1 2.4525E–04 X2 1 3.2515E–04 X2
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TABLE XX

Results of Mann−Whitney−Wilcoxon Rank-Sum Test in WFG2

5 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
MOEA IGD Spacing

H p-Value Winner H p-Value Winner
5 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}

X3 1 1.8267E–04 X1 1 0.0113 X1
X4 1 2.4613E–04 X1 0 0.7913 None
X5 1 3.2984E–04 X1 0 0.1620 None
X6 1 4.1762E–04 X1 1 0.0173 X1
X7 1 1.0419E–04 X1 1 1.2023E–04 X1

5 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 0 0.5823 None 1 0.0140 X2
X4 0 0.6776 None 0 1 None
X5 0 0.8501 None 1 1.6212E–04 X2
X6 0 0.4274 None 1 0.0139 X2
X7 0 0.2005 None 1 0.0192 X2

10 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 0.0122 X1 1 5.0321E–04 X1
X4 1 1.0092E–04 X1 0 0.4064 None
X5 1 0.0065 X1 1 2.3094E–04 X1
X6 1 0.0134 X1 0 0.5209 None
X7 1 5.2091E–04 X1 1 1.2098E–04 X1

10 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 3.6702E–04 X2 1 0.0137 X2
X4 1 2.5809E–04 X2 1 3.2091E–04 X2
X5 1 0.0029 X2 1 1.3223E–04 X2
X6 1 4.3598E–04 X2 1 0.0189 X2
X7 1 1.4307E–04 X2 1 4.3982E–04 X2

20 − D : X1 : H0 : μX1 = μXi VSH1 : μX1 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 1 1.3793E–04 X1 1 4.1092E–04 X1
X4 1 2.5099E–04 X1 1 2.1374E–04 X1
X5 1 2.0933E–04 X1 1 1.0095E–04 X1
X6 1 0.0045 X1 0 0.5012 None
X7 1 4.1309E–04 X1 0 0.4822 None

20 − D : X2 : H0 : μX2 = μXi VSH1 : μX2 
= μXi Xi ∈ {X3, X4, X5, X6, X7}
X3 0 0.6351 None 1 1.4592E–04 X2
X4 1 4.2981E–04 X2 1 2.0398E–04 X2
X5 1 5.8705E–04 X2 1 1.8902E–04 X2
X6 1 1.9840E–04 X2 1 1.4703E–04 X2
X7 1 3.7703E–04 X2 1 2.1099E–04 X2

IGD and Spacing metrics as shown in Table VII, except
MOEA/D performs slightly better than FD-SPEA2 for the 5-D
problem. Hypothesis test results in Table XVI show MOEA/D
and FD-SPEA2 have no appreciable difference and FD-SPEA2
performs equally well with respect to nearly all others with
respect to Spacing metric.

For DTLZ6, which involves disconnected Pareto-optimal
regions and has a large number of local Pareto fronts,
both FD-NSGA-II and FD-SPEA2 have a better performance
than all other MOEAs in IGD and Spacing as given in
Table VIII, except MOEA/D performs a little bit better than
FD-SPEA2 for the 5-D problem. The FDD-GA was the
second best for the Spacing measure. However, statistical
results in Table XVII indicate that both FD-NSGA-II and
FD-SPEA2 perform equally well as MOEA/D on Spacing
in all dimensions and on IGD for the 5-D DTLZ6 prob-
lem.

For DTLZ7, where the Pareto front is the intersection of a
straight line and a hyperplane, both FD-NSGA-II and FD-
SPEA2 show better performance than all chosen MOEAs
on IGD and Spacing metrics, as displayed in Table IX. In
Table XVIII, although the IGD score of MOEA/D is as good as
that of FD-SPEA2 for both 5- and 10-D problems, its Spacing
score is much worse. This implies that MOEA/D cannot
guarantee to generate a well distributed approximation front
although this front may converge well to the true Pareto front.

The hypothesis test results clearly validate the conclusion
drawn in this regard.

For WFG1, the global Pareto front is biased and the shape
of the global Pareto front is mixed with concave and convex
regions. MOEA/D performs better than FD-NSGA-II and FD-
SPEA2 on the Spacing metric for the 10-D problem and a
little bit better than FD-SPEA2 on the IGD metric for the
20-D problem. The Mann–Whitney–Wilcoxon rank-sum test
results given in Table XIX indicate that FD-SPEA2 shares
the same performance as others on IGD for the 5- and 10-D
problems but is better for the 20-D problem. FD-NSGA-II
performs better than others, except that it performs as well as
MOEA/D for the 20-D problem. For the Spacing metric, FD-
NSGA-II and FD-SPEA2 perform worse than MOEA/D for
the 10-D problem. This is by far the only poor performance
of the proposed designs (FD-NSGA-II and FD-SPEA2) when
compared to the well-regarded MOEA/D. It is worthy of
further investigation. For WFG2, the Pareto optimal front
consists of several non-contiguous convex parts. Table XI
shows that FD-SPEA2 performs worse than all others on IGD
for the 5-D problem, but is much better than other MOEAs
on Spacing in the same dimension. However, statistical results
displayed in Table XX indicate that there is no appreciable
difference between FD-SPEA2 and others on IGD for the 5-D
problem. From Table XI, FD-NSGA-II is worse than MOEA/D
on Spacing for the 20-D problem. However, hypothesis
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test results in Table XX cannot support such a distinction.
From the above analysis, FD-NSGA-II and FD-SPEA2 ensure
a better or at least competitive performance compared to
five state-of-the-art MOEAs in all nine benchmark problems
with respect to both performance metrics from a statistical
perspective.

V. Conclusion

Evolutionary algorithms perform poorly to solve MOPs
with many objectives, due to loss of selection pressure in
the fitness evaluation solely based upon the original Pareto
optimality principle. In this paper, we introduced a new fitness
evaluation mechanism to continuously differentiate individuals
into different degrees of optimality beyond the classification
of the original Pareto dominance. The concept of fuzzy logic
was adopted to define a fuzzy Pareto domination relation. A
fuzzy set based on the left Gaussian function was applied here
to quantify the degrees of domination, from dominate to being
dominated and in between with various degree of domination
in each objective. The set theoretic operator was then used
to combine multiple fuzzy sets to allow the comparison of
two individuals in many-objective optimization problems. As
a case study, the fuzzy concept was incorporated into the
designs of NSGA-II and SPEA2. From the experimental
results, given a large number of benchmark problems with
various problem characteristics and the performance metrics
IGD and Spacing, both NSGA-II and SPEA2 based on the
fuzzy Pareto dominance relation ensured better performance in
both convergence and diversity. The performance improvement
gained from adopting the fuzzy Pareto dominance relation is
clearly appreciable. Continuing research will be extended to
other state-of-the-art MOEAs and to MOEAs designed specif-
ically to handle constrained MaOPs [29], [30] and dynamic
MaOPs [31], [32].
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