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Vaccination is one of the effective ways for protecting susceptible individuals from infectious diseases. Different age groups of
population have different vulnerability to the disease and different contact frequencies. In order to achieve themaximum effects, the
distribution of vaccine doses to the groups of individuals needs to be optimized. In this paper, a differential evolution (DE) algorithm
is proposed to address the problem. The performance of the proposed algorithm has been tested by a classical infectious disease
transmission model and a series of simulations have been made. The results show that the proposed algorithm can always obtain
the best vaccine distribution strategy which can minimize the number of infectious individuals during the epidemic outbreak.
Furthermore, the effects of vaccination on different days and the vaccine coverage percentages have also been discussed.

1. Introduction

Infectious diseases are harmful to public health and have
made millions of economic loses each year [1]. The most
commonways for preventing the spread of infectious diseases
are isolation and vaccination. Isolation makes a physical
block between infectious individuals and healthy individu-
als by reducing their direct contacts. However, pathogenic
viruses may still spread through the air. Vaccination is a
more effective method by developing adaptive immunity of
a person to a pathogen [2, 3]. The period of immunity may
cover the whole epidemic of the disease or even a whole life.
However, the production of vaccines needs time and money.
In order to make the best meet between the cost and effect,
an optimal vaccine distribution scheme is highly demanded.

The general way for distributing vaccines is to protect the
individuals who are most likely exposed to the virus (e.g.,
doctors and nurses) and those who are the most vulnerable
(e.g., children and the elderly) [4, 5]. The transmission of an

epidemic disease follows a rule. First, susceptible individuals
will be exposed to a disease. Some of them will be infected
by direct or indirect contacts. The infected individuals may
recover themselves or be treated in hospital. The propagation
scope and development of the disease can be recorded and
analyzed. If we can estimate the infectious feature of the
disease and the activities of the individuals, a better vaccine
distribution scheme can be designed. Mossong et al. [6]
pointed out that social contacts between different groups are
relevant to the spread of infectious disease. Individuals in
different age groups have different vulnerability to a disease
[7]. Therefore, a vaccine distribution strategy is proposed in
this paper for different age groups of individuals.

The objective of the optimization problem is to minimize
the total infectious population since the outbreak of the
disease until the epidemic seizes. In the literature, vaccine
distribution mainly focuses on the transmissibility and infec-
tion risk of the disease and the vulnerability of individuals [8–
10]. Longini Jr. and Halloran [11] proposed a strategy for the

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 702973, 7 pages
http://dx.doi.org/10.1155/2014/702973



2 Mathematical Problems in Engineering

Susceptible (S)

Vaccinated (V)

Exposed (E) Infectious (I) Recovered (R)

Figure 1: Schematic illustration of the transmission of an influenza
pandemic.

distribution of influenza vaccines to high-risk groups. Patel
et al. [12] proposed a genetic algorithm to find the optimal
vaccine distributions to minimize the number of illnesses or
deaths in the population. Tuite and his partners [13] used a
transmission model to explain spatial spread of disease and
identify optimal control interventions.

For solving the vaccine distribution optimization prob-
lem, we propose the use the differential evolution (DE)
algorithm [14, 15] to enhance the effectiveness of vaccine
protection. DE is a type of evolutionary algorithms [16–23]
which are inspired by the natural evolution of the survival
of the fittest. It is very suitable for solving continuous opti-
mization problems and has achieved promising performance
in searching nonlinear and multimodal space [24]. In this
paper, a DE algorithm for optimizing the vaccine distribution
strategy is proposed and a series of simulations are made for
analyzing the results and the performance of the algorithm.

The rest of the paper is constructed as follows. Section 2
introduces the infectious disease transmission and control
models in the literature. Section 3 describes the implementa-
tion of the proposed algorithm. Simulations and analysis are
conducted in Section 4. Conclusions are made in Section 5.

2. Infectious Disease Transmission and
Control

The risk of an infectious disease is reflected by a series of
measures, such as the number of deaths, infections, and
economic costs. Researchers have made different models and
simulations to reflect the transmission and development of
an epidemic disease. The most notable models are the SIR,
SIS, and SIRS and their variations SEIS, SEIR, MSIR, MSEIR,
and MSEIRS models (S: susceptible, I: infected, R: removed,
E: exposed in the latent period, andM: passive immune) [25].
As an example, the transmission of an epidemic disease by
vaccination treatments can be illustrated in Figure 1 by an
influenza pandemic. The example is an SEIR model with the
vaccination control method.

In Figure 1, suppose that a fixed number of individuals in
a population are initially susceptible to the disease (the com-
partment S). Later, some of the susceptible individuals will
be vaccinated and supposed to be immune to the disease (the
compartment V) immediately. The others will be exposed to
the disease in the latent period (the compartment E). The
exposed individuals may be infected (the compartment I).
The infected individuals may recover (the compartment R)
and, in this model, they are supposed to be immune to the
disease during the single wave of the disease.

The transmission and control of the above example can
also be described by the following nonlinear differential
equations according to [26]:
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where 𝑛 is the number of the predefined groups.
Vaccination is a way which can reduce the number

of susceptible individuals under the risk of the disease by
stimulating an individual’s immune system to protect them.
Therefore, the infection of the disease can be suppressed to
a smaller group of susceptible individuals by vaccination.
Because the production of vaccines is usually expensive
and needs time, in order to achieve the best results, the
distribution of vaccines to the susceptible individuals needs
to be optimized. In this paper, the vaccines are supposed to
be applied to the candidate individuals on a predefined day
𝑡vacc during the course of the epidemic wave. Suppose that the
duration of a single epidemic wave is𝑇. So we have 0 < 𝑡vacc <
𝑇. Therefore, the objective function can be represented by

Minimize 𝑓 (𝑉 (𝑡vacc)) = ∫
𝑇

𝑡=𝑡vacc

𝑛

∑

𝑖=1

𝐼

𝑖 (
𝑡) 𝑑𝑡, (3)

where𝑉(𝑡vacc) = (V1(𝑡vacc), V2(𝑡vacc), . . . , V𝑛(𝑡vacc)) represents a
vaccine distribution scheme at time 𝑡vacc for each group. The
objective for controlling infectious diseases by vaccination is
to find the optimal vaccine distribution scheme which can
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minimize the total number of infectious individuals during
the course of the epidemic wave if the vaccination is applied
on the day 𝑡vacc.

In the considered problem, the number of individuals
in the corresponding compartment is updated each day.
Therefore, the above integral is actually calculated as

𝑓 (𝑉 (𝑡vacc)) =
𝑇

∑

𝑡=𝑡vacc

𝑛

∑

𝑖=1

𝐼

𝑖 (
𝑡) . (4)

In this paper, the DE algorithm is used to address the
problem.

3. Implementation of the Proposed Algorithm

In this section, the implementation of the DE algorithm for
the vaccine distribution will be presented. The optimization
process of the DE algorithm includes initialization, mutation,
crossover, and selection operations.

3.1. Initialization. The search process of the DE algorithm
is based on the evolution of a group of individuals, which
are the indirect representation of the candidate solutions of
the problem and are encoded according to the optimization
objective. Note that the term individual in the DE algorithm
represents its basic optimization unit and it is different from
the individual in the SEIR model. In the vaccine distribution
problem, the vaccine distribution must satisfy

𝑛

∑

𝑖=1

V
𝑖
(𝑡vacc) ≤ 𝑉max (𝑡vacc) , (5)

where 𝑉max(𝑡vacc) is the total number of vaccine doses which
can be applied at time 𝑡vacc. It is known that themore vaccines
are applied, the better they are for controlling the epidemic,
so the total amount of vaccines at time 𝑡vacc is considered in
this paper.

Each individual 𝑘 in the DE algorithm for the 𝐺th
generation is encoded as 𝑋(𝐺)

𝑘
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, 𝑥
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𝑘,𝑛−1
},

representing the percentage of the remaining vaccine doses
which will be used for the 𝑖th group of individuals, 𝑘 =

1, 2, . . . , 𝑚, and 𝑚 is the number of individuals used in the
algorithm. Note that we have 𝑥(𝐺)

𝑘,𝑖
∈ [0, 1], 𝑖 = 1, 2, . . . , 𝑛 − 1.

Therefore, the vaccine distribution strategy for the 𝑛 groups
of individuals based on the encoded individual 𝑘 is
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V
𝑗
.

(6)

In the above equations, the variable 𝑡vacc is omitted for better
clarification.The𝑚 individuals in the initial population of the
algorithm are randomly generated.

3.2. Mutation and Crossover. After initialization, the muta-
tion operation will be used to produce amutant vector𝑉(𝐺)

𝑘
=

(V(𝐺)
𝑘,1
, V(𝐺)
𝑘,2
, . . . , V(𝐺)

𝑘,𝑛−1
) with respect to each individual 𝑋(𝐺)

𝑘
in

the current population in the𝐺th generation, 𝑘 = 1, 2, . . . , 𝑚.
𝑉

(𝐺)

𝑘
is generated via a mutation strategy. In this paper, 𝑉(𝐺)

𝑘

is computed by

𝑉

(𝐺)

𝑘
= 𝑋

(𝐺)

best + 𝐹 ⋅ (𝑋
(𝐺)

𝑟
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− 𝑋

(𝐺)

𝑟
2

) . (7)

The indices 𝑟
1
and 𝑟
2
are different uniform random integer

numbers generated in the range [1, 𝑚] and 𝑋(𝐺)best is the
recorded best individual that is found by the algorithm. The
scaling factor 𝐹 is a positive predefined parameter for scaling
the different vector.

After the mutation operation, each pair of the vector𝑋(𝐺)
𝑘

and its corresponding mutant vector 𝑉(𝐺)
𝑘

will be used to
generate a trial vector 𝑈(𝐺)

𝑘
= (𝑢

(𝐺)
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, 𝑢

(𝐺)
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, . . . , 𝑢

(𝐺)
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), and the

process is called crossover.The crossover operation is defined
as

𝑢

(𝐺)

𝑘,𝑖
= {

V(𝐺)
𝑘,𝑖
, if rand (0, 1) ≤ 𝐶𝑅 or 𝑖 = 𝑖rand,

𝑥

(𝐺)

𝑘,𝑖
, otherwise,

(8)

where rand (0,1) is a uniform random value in the range (0,1)
and 𝑖rand is a random integer number chosen from 1 to 𝑛 − 1
for each individual 𝑘, 𝑘 = 1, 2, . . . , 𝑚, 𝑖 = 1, 2, . . . , 𝑛 − 1. The
crossover rate𝐶𝑅 is a predefined parameter in the range [0,1).

3.3. Selection. After mutation and crossover, the newly
generated individuals 𝑈(𝐺)

1
, 𝑈

(𝐺)

2
, . . . , 𝑈

(𝐺)

𝑚
will be evaluated

and the selection operation is performed. The selection
operation is defined by

𝑋

(𝐺+1)

𝑘
= {

𝑈

(𝐺)

𝑘
, if 𝑓(𝑉

𝑈
(𝐺)

𝑘

) ≤ 𝑓 (𝑉

𝑋
(𝐺)

𝑘

)

𝑋

(𝐺)

𝑘
, otherwise.

(9)

DE compares the objective function value of the vaccine
distribution strategy by each trial vector 𝑈(𝐺)

𝑘
and its corre-

sponding vector 𝑋(𝐺)
𝑘

in the current population. Since the
objective of the problem is to minimize the total number of
the infectious population, if the objective function value of
the trial vector 𝑈(𝐺)

𝑘
satisfies 𝑓(𝑉

𝑈
(𝐺)

𝑘

) ≤ 𝑓(𝑉

𝑋
(𝐺)

𝑘

), the vector
𝑋

(𝐺)

𝑘
will be replaced by the trial vector and will join in the

population of the next generation. Otherwise, the vector𝑋(𝐺)
𝑘

will be reserved in the next generation.
The flowchart of the DE algorithm is illustrated in

Figure 2. Through a series of generations of the mutation,
crossover, evaluation, and selection operations, the best
individual is updated and the algorithm stops when the
termination condition is satisfied (e.g., the algorithm reaches
the predefined maximum generation number).

4. Simulations and Analysis

In the experimental section, the performance of the pro-
posed DE algorithm will be compared with some vaccine
deployment strategies in the literature. First, the settings of
the simulations are described.
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Figure 2: Flowchart of the DE algorithm.
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Figure 3: Illustration of the contact rates between age groups.

4.1. Settings of the Simulations. The epidemic model in [26]
will be used in the simulation. The 𝑛 = 5 age groups of
population considered in the experiment are𝐴

1
(5–14 years),

𝐴

2
(15–24 years),𝐴

3
(25–44 years),𝐴

4
(45–64 years), and𝐴

5

(65 or above years). In the pandemic transmission model,
the vulnerability values of the population are 𝛽

1
= 0.434,

𝛽

2
= 0.158, 𝛽

3
= 0.118, 𝛽

4
= 0.046, and 𝛽

5
= 0.046. The

probabilities of the exposed individuals to be infected by the
disease and the recovery rates are 𝜏

𝑖
= 0.25, 𝛾

𝑖
= 0.334,

𝑖 = 1, 2, . . . , 5, the same for the five age groups.
The numbers of contacts between different age groups are

illustrated in Figure 3. It can be observed that the individuals
in the same group contact more frequently than those in
the other groups. Youngsters in group 𝐴

1
have the highest

contact frequency and the individuals in 𝐴
3
are the next.

The initial points of the infection of the disease affect
the epidemic spreading. The vaccine coverage and releasing

time also influence the total number of infectious population.
For the purpose of evaluation, in the simulation, initially
30 individuals in 𝐴

2
are set exposed to the disease. The

composition of the population in each age group is 𝐴
1
=

0.94×10

6,𝐴
2
= 0.91×10

6,𝐴
3
= 2.30×10

6,𝐴
4
= 1.86×10

6,
and 𝐴

5
= 0.85 × 10

6. Various vaccine coverage and the
releasing time will be simulated in the experiment and the
time range 𝑇 = 300. The parameters in the DE algorithm are
set as the population size is 𝑚 = 20, 𝐹 = 0.5, and 𝐶𝑅 = 0.4.
Themaximum number of generations before the termination
of the algorithm is 1000.

4.2. Traditional Deployment Methods for Comparisons. In
the literature, the vaccine deployment strategy is generally
made according to the transmissibility of the disease, the
vulnerability of the population, or the infection risk of the
disease. In this paper, three common strategies (S1 to S3) are
introduced.

Strategy 1 (S1): Based on Transmissibility. More vaccine doses
will be given to the individuals with a higher contact fre-
quency. The vaccination proportion 𝑝

𝑖
for each age group 𝐴

𝑖

at time 𝑡vacc is

𝑝

𝑖 (
𝑡) =

∑

𝑛

𝑘=1
𝑐

𝑖𝑘

∑

𝑛

𝑗=1
∑

𝑛

𝑘=1
𝑐

𝑗𝑘

, 𝑖 = 1, 2, . . . , 𝑛. (10)

Strategy 2 (S2): Based on Vulnerability. This strategy focuses
on the infectious vulnerability 𝛽

𝑖
. The number of vaccine

doses for each population group is proportional to their
infectious vulnerabilities. The vaccination proportion 𝑝

𝑖
for

each age group 𝐴
𝑖
at time 𝑡vacc is

𝑝

𝑖 (
𝑡) =

𝛽

𝑖

∑

𝑛

𝑗=1
𝛽

𝑗

, 𝑖 = 1, 2, . . . , 𝑛. (11)

Strategy 3 (S3): Based on Infection Risk. The vaccination
proportion 𝑝

𝑖
for each age group 𝐴

𝑖
at time 𝑡vacc is based on

the value of the time-dependent infection risk 𝜆
𝑖
(𝑡); thus

𝑝

𝑖 (
𝑡) =

𝜆

𝑖 (
𝑡)

∑

𝑛

𝑗=1
𝜆

𝑖 (
𝑡)

, 𝑖 = 1, 2, . . . , 𝑛. (12)

4.3. Comparisons with Different Deployment Methods. In
the simulation, the vaccines are supposed to be released
and applied to the individuals only once during one wave
of the epidemic at time 𝑡vacc and the vaccines take effect
immediately.Therefore, we first check the effectiveness of the
vaccine deployment at different days 𝑡vacc = 1, 50, 75, and 100.
The vaccine coverage percentage, which is the total number
of available vaccine doses, is set to be equal to 5% of the total
population.

Figure 4 illustrates the curves of infectious population
during the course of the epidemic. It can be observed that,
without vaccination (no Vacc.), the infection dynamic curve
of the epidemic is like a bell shape. If the vaccine deployment
is applied, the peak of the infection dynamic curve will
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Figure 4: Infection dynamic curves for different methods with different vaccination days: (a) 𝑡vacc = 1, (b) 𝑡vacc = 50, (c) 𝑡vacc = 75, and (d) 𝑡vacc
= 100.

be reduced and delayed. Compared with the other three
methods, the vaccine distribution strategy of DE is the best
and its curve is the lowest. If the vaccines are applied on
day 𝑡vacc = 1, the best vaccine distribution by DE can mostly
suppress the outbreak of the epidemic. If the vaccines are
taken on day 𝑡vacc = 50, the outbreak of the epidemic can be
reduced to a small number of population. If the vaccines are
applied later than the outbreak of the epidemic (e.g., day 𝑡vacc
= 100), the effectiveness of vaccination will be unsatisfying to
all methods.

Table 1 tabulates the summation of the number of infec-
tious individuals each day after the vaccination is applied,
that is, the objective function value for the different methods.
It is shown that DE achieves the best result compared with
the other three methods. By taking the vaccines as earlier,
the total number of the infectious population is smaller.
For example, if the vaccines are taken on day 𝑡vacc = 1, the

Table 1: Comparisons of the summation of infectious individuals
each day after the vaccination.

Methods 𝑡vacc = 1 𝑡vacc = 50 𝑡vacc = 75 𝑡vacc = 100
DE 5.14 × 105 1.51 × 106 2.13 × 106 9.22 × 105

S1 2.82 × 106 3.61 × 106 3.03 × 106 1.00 × 106

S2 3.64 × 106 2.82 × 106 2.54 × 106 9.42 × 105

S3 3.33 × 106 2.19 × 106 2.35 × 106 9.40 × 105

summation value is 5.14 × 105, almost one third of the value
for the case with 𝑡vacc = 50.

4.4. Further Discussions. In the above experiment, the DE
algorithm can always achieve the best vaccine distribution
strategies. In the further experiment, the features of the
vaccine distribution will be discussed.
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Figure 6: Objective function values for different vaccine coverage
percentages and vaccination days.

The vaccine distribution by the DE algorithm for the five
age groups is shown in Figure 5 for the cases with the vaccines
taken on day 𝑡vacc = 1 to 150 and 5% vaccine coverage. It can
be observed that more than 99.9% of the vaccines should be
distributed to group 𝐴

1
if the vaccine doses can be available

before the day 𝑡vacc = 80. After that, the individuals in group
𝐴

2
will be the second focus of vaccination and, after day 𝑡vacc

= 127, the percentage of vaccine doses to 𝐴
2
surpasses that

to 𝐴
1
. After day 𝑡vacc = 104, the doses for 𝐴

3
also increase

obviously. The number of doses to 𝐴
4
and 𝐴

5
is too small to

be seen in the figure.
Figure 6 shows the influence of different vaccine coverage

percentages and vaccination days on the total number of
infectious individuals on each day, which is the objective
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Figure 7: Infection dynamic curves for the vaccine coverage
percentages 1% to 10% when vaccinated on day 𝑡vacc = 50.

function value of (3). It can be observed that the larger
the vaccine coverage percentage, the smaller the number of
infectious individuals with the same vaccination day. When
the vaccine coverage percentage is from 1% to 10%, the
objective function value varies greatly. So we choose 𝑡vacc =
50 and compare the infection dynamic curves for the vaccine
coverage percentages from 1% to 10% in Figure 7. It is shown
that if the vaccine coverage can increase to 7%, the epidemic
control by the vaccination strategy will be much better than
the smaller coverage percentages. By considering the cost and
effect, the 7% vaccine coverage percentage is preferred.

5. Conclusion

In this paper, a differential evolution (DE) algorithm is
proposed to optimize the problem of vaccine distribution, the
objective of which is to find the optimal distribution strategy
to determine the number of vaccine doses to different age
groups of population andminimize the infectious population
during the pandemic. A series of simulations on an SEIR
model have been used to test the performance of the DE algo-
rithm. Although there are several strategies in the literature
to guide the distribution of vaccine doses, the proposed DE
algorithm can obtain the best results.
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