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Abstract. Search-based method using meta-heuristic algorithms is a hot topic in 
automatic test data generation. In this paper, we develop an automatic test data 
generating tool named particle swarm optimization data generation tool 
(PSODGT). The PSODGT is characterized by the following two features. First, 
the PSODGT adopts the condition-decision coverage (C/DC) as the criterion of 
software testing, aiming to build an efficient test data set that covers all condi-
tions. Second, the PSODGT uses a particle swarm optimization (PSO) approach 
to generate test data set. In addition, a new position initialization technique is 
developed for PSO. Instead of initializing the test data randomly, the proposed 
technique uses the previously-found test data that can reach the target condition 
as the initial positions so that the search speed of PSODGT can be further acce-
lerated. The PSODGT is tested on four practical programs. Experimental results 
show that the proposed PSO approach is promising. 

Keywords: Particle swarm optimization, Automatic software test case generation, 
Software testing,· Code coverage. 

1 Introduction 

With the rapid development of software industry, software is becoming bigger and 
more subtle. In 2002, NIST estimated the loss caused by software failure which 
reached 0.6 percent of GDP in America [1]. Hence, software testing, as a necessary 
part during the circle of software development, is more difficult than before. Software 
testing is also an expensive and labor-intensive work, which sometimes occupies 
about half of the total workload [2] and brings lots of redundant expenditure both in 
time and money. Hence, developing automatic test tool has important practical signi-
ficance. 

The basic prerequisite for automatic software testing is generating test data auto-
matically. However, test data generation is a very challenging task, as a good data set 
should not only fulfill all the requirements defined by test criterion well but also be as 
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smaller as possible. As a result, more and more research effort has been attracted in 
software test data generation in recent years [7], [16]. In general, these studies can be 
classified into three classes, random, symbolic and dynamic. Random method just 
generates inputs at random until a useful input is found. In symbolic method,  
variables are assigned with symbolic values so that test data generation can be turned 
into a problem of solving algebraic expressions [13], [14]. In dynamic test generation, 
the source code is instrumented to collect information about the program when it  
executes. This information can help test generators to modify the program’s input to 
satisfy the requirement heuristically. Then the problem of generating test data con-
verted to function minimization problem. As the dynamic method is efficient and 
robust for different kinds of programing codes, it has been increasingly considered as 
a promising software test data generation technique in recent years [17]. The dynamic 
method is also known as search-based software testing thus several meta-heuristic 
optimization algorithms have been proposed for this problem, e.g. hill climbing [15], 
tabu search algorithm [3], genetic algorithm (GA) [5] and particle swarm optimization 
(PSO) [8]. 

Meanwhile most existing researches focused on covering paths in a program as 
many as possible [6]. This strategy is known as path coverage which is a coverage 
criterion in the field of white-box testing requiring that every path in the target pro-
gram should be reached. But sometimes it is not enough just covering all paths in a 
program. Path coverage may also cause some conditions in the target program cannot 
be fully covered. In order to overcome this problem, there is also another coverage 
criterion called condition-decision coverage (C/DC). C/DC requires that every condi-
tion and every decision should take all possible outcomes at least once. Michael et al. 
[4] used C/DC as criterion in their test data generation tool GADGET but the ap-
proaches they proposed are based on GA. Though GA has strong ability in global 
searching, the local search capability is not good enough. Hence the convergence 
speed of GA often cannot satisfy the software testing requirement. 

In this paper, we intend to introduce a PSO approach to search-based software test-
ing with the C/DC criterion and further develop a PSO Data Generation Tool 
(PSODGT). The reason of using PSO is that PSO has a fast convergence speed [10], 
[18]. In addition, the self-cognitive and social-influence learning strategies of PSO 
make it more reliable in detecting conditions which are difficult to reach. Though 
PSO has been used in test data generation with the path coverage criterion in a few 
works like [6], [9], different from these existing approaches, our proposed PSO ap-
proach focuses on a different criterion, i.e., the C/DC criterion. In addition, we further 
improve the performance of PSO for test data generation by introducing a new initia-
lization technique to PSO and adjust its parameter setting. During each optimization 
procedure, particles should reach the target condition before optimizing the fitness 
function. In the proposed initialization technique, particles are initialized according to 
the test data that can reach the current target condition found in previously. This mod-
ification saves time for particles to reach the target condition so that particles can 
early start to optimize fitness function. As for experiment, most researches just tested 
their approaches by simple programs like triangle classification, bubble sort. These 
programs are not complicated enough to simulate real situations because they are too 
simple and the search space is small. In this paper, four programs with different com-
plexities of inputs and conditions are tested. Our PSO approach is compared with a 
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GA approach [4] which is also proposed for C/DC. Experimental results are evaluated 
in two aspects, conditions coverage rate and convergence rate. When observing the 
convergence rate, the number of executions of the target program is used as mea-
surement instead of time consumption. 

The rest of this paper is organized as follows. In section 2, we introduce the PSO 
algorithm and the test adequacy criteria. Section 3 shows some pivotal details about 
PSODGT. Then experimental results and analysis are shown in section 4. Finally in 
section 5 the conclusions are drawn. 

2 Particle Swarm Optimization and Test Adequacy Criteria 

2.1 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) algorithm was proposed by Russell Eberhart and 
James Kennedy in 1995 [10]. In PSO algorithm, each particle keeps track of a posi-
tion which is the best solution it has achieved so far as pbx and globally optimal solu-
tion is stored as gbest. The basic steps of PSO are as follow: 

1. Initialize N particles with random positions pxi and velocities vi on D dimensions. 
Evaluate every particle’s current fitness f(pxi). Initialize pbxi = pxi and 

i 0 1 Ngbest = i, f(px )= min(f(pbx ), f(pbx ),..., f(pbx )) ; 

2. Check whether the criterion is met. If the criterion is met, loop ends else continue; 
3. Change velocities according to formula (1): 

1 1 2 2( ) ( )i i i i gbest iv v c r pbx px c r pbx pxω= + − + − ;              (1) 

4. Change positions according to formula (2): 

i i ipx px v= +                              (2) 

5. Evaluate every particle’s fitness f(pxi); if f(pxi) < f(pbxi) then pbxi = pxi; 
6. Update gbest and loop to step 2. 

Usually particle’s position cannot overstep the boundary of the search space and 
velocity also cannot exceed one particular value which is often set as 20% of the 
search space’s width. In formula (1), the particle velocity updating formula, ω
presents inertia factor, generally obtained by formula (3) [18] 

( )max min
max k

maxIt

ω ωω ω −
= − .                       (3) 

maxIt means the maximum iteration number and k means the k-th iteration; c1, c2 are 
accelerated factors which present cognition and social of the particle; r1, r2 are ran-
dom numbers between 0 and 1. 
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2.2 Coverage Criteria 

The goal of software test is to uncover as many faults as possible with a potent set of 
tests. But predicting how many faults will be uncovered by a given test set is almost 
impossible [11]. We need test adequacy criteria to help us judge whether a data set is 
good enough to accomplish the test. Regardless of whether test adequacy criteria really 
can represent the quality of a test suite, they do represent the thoroughness of testing.  

There are several common coverage criteria in structural test like statement cover-
age, branch coverage, condition coverage, multiple condition coverage, condition-
decision coverage (C/DC) and path coverage [2]. A condition is a leaf-level Boolean 
expression and cannot be broken down into a simpler Boolean expression. A decision 
is a Boolean expression composed of conditions and Boolean operators. A decision 
without any Boolean operators is a condition. In these criteria exists a hierarchy, the 
top one is multiple condition coverage which requires every permutation of values for 
the Boolean variables in every condition occurring at least once. On the contrary, 
function coverage only requires the execution of every function. 

In many automatic testing researches, path coverage was used as their criterion. 
Though path coverage is applicable to a number of program’s testing, it is not perfect. 
For example, assume there is a decision consisted by disjunction of two conditions 
like (a || b) in the program. For the true path, according to the short circuit evaluation, 
most programming language will check condition a first and if condition a is true then 
ignore the condition b; for the false path, both condition a and b need to be false. Fi-
nally we find that condition b may never be true even both paths were already cov-
ered. 

In PSODGT, we use condition-decision coverage as the coverage criterion. Condi-
tion-decision coverage requires that every decision in the program has taken all possi-
ble outcomes at least once, and every condition in a decision in the program has taken 
all possible outcomes at least once. Although in the hierarchy, the level of C/DC is 
lower than multiple condition coverage, C/DC already can make sure that every piece 
of the program can be executed if the requirement of C/DC is fully fulfilled. 

3 The PSO Data Generation Tool (PSODGT) 

In this section, the PSO data generation tool is introduced. First of all, we give a brief 
overview of the PSODGT. Then we discuss three issues of the PSODGT in detail, 
including the main data structure, implementation of the fitness function and the im-
proved PSO algorithm for this tool. 

3.1 Overview of PSODGT 

PSODGT is designed to work on programs written in C or C++ programing language 
and the architecture of PSODGT is shown in Fig. 1. There are two parts in PSODGT, 
automatic instrumentation and test data generation. Original source code is automatically 
instrumented and compiled in the automatic instrumentation part. After compiling, an 
instrumented executable program is generated for data generation part to work on. The 
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data generation part also consists of two classes. Class controller maintains a condition 
table and a test data set, taking charge of choosing target condition and branch, storing 
useful inputs found by class optimizer and updating the condition table all by using a key 
function named runOnce. The optimizer class only focuses itself on reaching the target 
branch chosen by controller. 

 

Fig. 1. Architecture of the PSODGT 

3.2 Condition Table 

The condition table is a vitally important data structure for the PSODGT. It is derived 
from the decision table proposed in [12] and modified in [4] by replacing decision 
with condition. Different from the condition table in [4], each branch in PSODGT’s 
condition table has three statuses not two. A sample condition table is shown in  
Table 1. 

Table 1. Condition table 

 Branch 
Condition TRUE FALSE 

1 1 2 
2 0 0 
3 1 1 
4 1 0 

 
Status 0 means this branch is not covered yet, 1 means this branch has been cov-

ered and 2 means that the algorithm has failed in optimizing this branch of the condi-
tion. Status 2 is used to avoid endless loop. When a goal branch is needed, PSODGT 
always chooses the condition the state of which is 1/0 or 0/1, i.e., this condition has 
been reached but its branches are not fully covered yet. To satisfy C/DC requirement, 
we take advantage of the short circuit evaluation. If every condition is fully covered 
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(both TRUE and FALSE branches have been achieved), all decisions can be fully 
covered. So we can only focus on covering conditions as many as possible.  

3.3 Fitness Calculation 

When a condition’s branch is chosen, things we need to do next is to get its fitness 
under test data. If a strip of input data can reach the chosen condition, variables in the 
chosen condition have relationship with the input data. Because different inputs 
should cause different value for variables in condition so that conditions may take 
different outcomes. For example, suppose that a hypothetical program contains the 
condition 

if(temp > 10){…} else {…} 

on line 50 and the goal is to reach its FALSE branch. Denoting x as input, according 
to the relationship between input data and variables in condition, temp can be 
indicated as line50(x). Then the fitness function of this condition can be express as 

10 150f(x)= line (x)− + . When f(x) <= 0, the goal branch will be achieved. Using the 

value of f(x), the problem of generating test data turns into function minimization 
problem. If the input data cannot reach the chosen condition, we set a very large value 
as fitness to represent that this condition is not related to the input data.  

Table 2. Computation of the fitness function 

Condition Type Goal Branch Fitness Calculation 

c > d 
T d – c + minConst 
F c – d 

c < d 
T c – d + minConst 
F d – c 

c >= d 
T d – c 
F c – d + minConst 

c <= d 
T c – d 
F d – c + minConst 

c == d 
T |c – d| 
F minConst – |c – d| 

c 
T 1000 
F 1000 

 
Table 2 shows how fitness is calculated for all condition types if the condition is 

reached.We add a constant named minConst to some fitness so that all fitness calcula-
tions can be evaluated as a positive number no matter what the goal branch is. The 
goal is to reduce the fitness down to zero or negative numbers. For integer problem, 
minConst is set to 1; for float problem, minConst can be set to a very small float 
number according to the precision needed in the real situation. 
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3.4 Particle Swarm Optimization for PSODGT 

According to the actual situation in test data generation, some improvements are ap-
plied to the PSO algorithm in initialization step and parameters setting. Initialization 
step in PSO can be divided into position initialization and velocity initialization. 

Plenty of existing researches use a strategy in initial population generating that add 
the test data which can successfully reach the target condition to the population 
firstly; if additional inputs are needed, generate some random inputs to fill the popula-
tion. However for PSO, these randomly generated inputs take a lot of time in reaching 
the target condition. Considering this problem, this paper proposes a new method for 
the initialization step of PSO using the idea of crossover operation in GA and strati-
fied sampling for reference. Suppose there are N particles needed in the swarm and 
the number of the target program’s input is D. The position of the i-th particle is pre-
sented as an array Pi[1…D]. The positions initialization steps are as follow: 

1. If the number of the test data which can successfully reach the condition is bigger 
or equal to N, randomly add N of them into swarm and end the initialization 
process; else add all of them into swarm and calculate how many additional 
particles are needed. 

2. Assume M particles are needed. If M<=N–M, use random M particles in the swarm 
as seeds and each seed generates one additional particle, else use all the particles in 
the swarm as seeds and each seed generates M/(N–M) particles. 

3. For every generation of every seed, it begins with copying the position of i-th seed 
to the new particle, NewP[1…D]=Pi[1…D]. 

4. After copy, generate a number d smaller than D randomly. Then construct an d-
length array changePos[1…d] filling up with different numbers which are 
generated randomly and smaller than D. 

5. Finally substitute the values in NewP with random numbers according to 
changePos, NewP[ changePos[1…d] ]=randomNumber. 

Research in [4] found that there are lots of serendipitous coverages during test data 
generation. This means some test data do cover new condition branches but these 
conditions are not the one the optimizer is currently working on. Serendipitous cover-
age requires degree of randomness in optimizer. However the directional character 
makes PSO perform badly in gaining serendipitous coverage. Considering this prob-
lem, particles’ velocities are initialized within the same boundary as positions to ob-
tain more randomness in early stages of iteration. This setting causes a consequence 
that convergence speed becomes slower than basic PSO. To make up the losses on 
convergence rate, ω the inertia factor is set as 0.4 down to 0.3 with the iteration 
growing. A lot of experiments have been done to verify this setting about inertia fac-
tor. When it is set much higher, convergence speed is too slow to meet the require-
ment. While, if it is smaller than 0.3, the algorithm usually fails. 
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4 Experimental Studies 

4.1 Experimental Settings 

In the experiments, we test the proposed method on four programs: triangle classifica-
tion program, week calculation program, student grade judgment program and blood 
glucose judgment program. (Denoted as P1, P2, P3, and P4) Different from the simple 
programs tested in [4], these programs are practical and full of various conditions. 
When we test these programs, two main aspects are taken into consideration. One is 
the dimension (number of inputs) and size of search space; the other is the number of 
conditions. Specific figure about the dimension of search space and the number of 
conditions are shown in Table 3. And each program is tested with two different size 
of search space measured by bit shown in Table 4. 

Table 3. Number of conditions and inputs 

Program Condition number Inputs Number (dimension) 
P1 20 3 
P2 76 3 
P3 16 5 
P4 33 12 

 
Our proposed PSO approach is compared with two genetic algorithms with differ-

ent coding schemes which are gray code (GAG) and binary code (GAB). Also a PSO 
method using the same initialization way with GA is tested to verify the necessity of 
the proposed initialization technique, denoted as iPSO. We use 100 individuals, allow 
30 generations to elapse before two GAs give up, the same as in [4], and the mutation 
probability of every bit is 0.01. For PSO, 20 individuals and 100 generations are al-
lowed. Values of accelerated factors c1 and c2 are 2. 

4.2 Experimental Results and Analysis 

In this paper, experimental results are estimated in two aspects, efficiency 
(convergence rate) and effectiveness (coverage rate). In the course of experiment, we 
take five serial attempts as a group of tests. After six groups of tests for each method, 
the best coverage rate in each group is selected and the best, worst, average coverage 
rate of these six numbers are shown in Table 4, displayed in percentage. 

Comparing the experimental data on different search space size for the same pro-
gram, we can find that when the number of input is relative small, increasing on the 
search space size doesn’t affect the coverage rate greatly. However when the number 
of input grows larger, the contrary is the case. Though both GA and PSO suffer the 
increasing on search space size, the PSO approach is much more stable. And the poor 
performance made by iPSO also demonstrates the importance of our proposed initiali-
zation tech in PSO method for software test data generation. In general, except the 



 Generating Software Test Data by Particle Swarm Optimization 45 

 

data of best coverage rate for P1 in 16-bit search space which is underlined in Table 4, 
all the rest data show the advantage of our PSO approach in effectiveness. 

Table 4. Experimental results on coverage rate 

 
Prog. P1 P2 P3 P4 
Bit 32 16 16 12 12 8 12 8 

PSO mean 95 95 99.45 100 100 100 88.38 100 

worst 95 95 98.68 100 100 100 65.15 100 
best 95 95 100 100 100 100 100 100 

GAG mean 88.75 93.33 96.49 96.49 82.29 100 45.20 100 
worst 82.50 92.50 94.74 93.42 43.75 100 33.33 100 
best 95 97.50 98.03 99.34 100 100 57.58 100 

GAB mean 72.50 85.42 96.71 96.93 59.90 100 36.36 100 

worst 50 72.50 95.39 96.05 43.75 100 28.79 100 
best 85 92.50 98.03 98.68 90.63 100 40.91 100 

iPSO mean 85.42 87.50 82.46 86.95 41.67 100 26.27 94.70 
worst 80 87.50 79.61 85.53 40.63 100 24.24 71.21 
best 87.50 87.50 84.21 87.50 43.75  100 30.30 100 

 
Fig. 2. Converge rate of three methods on P3 

As to the convergence rate, P3 with 8-bit search space is used in comparing the ef-
ficiency because all three approaches performed well on this program and iPSO is not 
shown because it is too slow comparing with others. The relationship between runs 
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and coverage rate is illustrated in Fig. 2. This plot shows that PSO begins to demon-
strate its advantages after reach 50% coverage and covers all conditions first. Clearly 
the convergence rate of PSO is much faster than the two GA approaches. The same 
fact also can be verified by the other programs. 

All these experimental results show that the proposed PSO approach is effective 
and efficient in automatic software test data generation. 

5 Conclusion 

In this paper, an improved PSO approach is proposed to apply to search-based test 
data generation. The main contributions are in two aspects. First, the PSODGT is 
developed by combining the PSO algorithm and C/DC. Second, a new position initia-
lization technique is developed for PSO to adapt accommodate software testing. Ex-
perimental results show that the proposed PSO approach is very promising.  

In the future research, it will be interesting to find out which method is suitable to 
which kind of condition so that more hybrid methods can be proposed to apply to 
different conditions. And how to use much higher-level coverage criterion is also a 
promising research topic.  
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