

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 37–47, 2014.
© Springer International Publishing Switzerland 2014

Generating Software Test Data
by Particle Swarm Optimization

Ya-Hui Jia1,3,4, Wei-Neng Chen2,3,4,**, Jun Zhang1,2,3,4, and Jing-Jing Li5

1School of Information Science and Technology, Sun Yat-sen University, Guangzhou, China
2School of Advanced Computing, Sun Yat-sen University, Guangzhou, China

3Key Lab. Machine Intelligence and Advanced Computing, Ministry of Education, China
4Engineering Research Center of Supercomputing Engineering Software, MOE, China

5School of Computer Science, South China Normal University, Guangzhou, China
chenwn3@mail.sysu.edu.cn

Abstract. Search-based method using meta-heuristic algorithms is a hot topic in
automatic test data generation. In this paper, we develop an automatic test data
generating tool named particle swarm optimization data generation tool
(PSODGT). The PSODGT is characterized by the following two features. First,
the PSODGT adopts the condition-decision coverage (C/DC) as the criterion of
software testing, aiming to build an efficient test data set that covers all condi-
tions. Second, the PSODGT uses a particle swarm optimization (PSO) approach
to generate test data set. In addition, a new position initialization technique is
developed for PSO. Instead of initializing the test data randomly, the proposed
technique uses the previously-found test data that can reach the target condition
as the initial positions so that the search speed of PSODGT can be further acce-
lerated. The PSODGT is tested on four practical programs. Experimental results
show that the proposed PSO approach is promising.

Keywords: Particle swarm optimization, Automatic software test case generation,
Software testing,· Code coverage.

1 Introduction

With the rapid development of software industry, software is becoming bigger and
more subtle. In 2002, NIST estimated the loss caused by software failure which
reached 0.6 percent of GDP in America [1]. Hence, software testing, as a necessary
part during the circle of software development, is more difficult than before. Software
testing is also an expensive and labor-intensive work, which sometimes occupies
about half of the total workload [2] and brings lots of redundant expenditure both in
time and money. Hence, developing automatic test tool has important practical signi-
ficance.

The basic prerequisite for automatic software testing is generating test data auto-
matically. However, test data generation is a very challenging task, as a good data set
should not only fulfill all the requirements defined by test criterion well but also be as

* Corresponding author.

38 Y.-H. Jia et al.

smaller as possible. As a result, more and more research effort has been attracted in
software test data generation in recent years [7], [16]. In general, these studies can be
classified into three classes, random, symbolic and dynamic. Random method just
generates inputs at random until a useful input is found. In symbolic method,
variables are assigned with symbolic values so that test data generation can be turned
into a problem of solving algebraic expressions [13], [14]. In dynamic test generation,
the source code is instrumented to collect information about the program when it
executes. This information can help test generators to modify the program’s input to
satisfy the requirement heuristically. Then the problem of generating test data con-
verted to function minimization problem. As the dynamic method is efficient and
robust for different kinds of programing codes, it has been increasingly considered as
a promising software test data generation technique in recent years [17]. The dynamic
method is also known as search-based software testing thus several meta-heuristic
optimization algorithms have been proposed for this problem, e.g. hill climbing [15],
tabu search algorithm [3], genetic algorithm (GA) [5] and particle swarm optimization
(PSO) [8].

Meanwhile most existing researches focused on covering paths in a program as
many as possible [6]. This strategy is known as path coverage which is a coverage
criterion in the field of white-box testing requiring that every path in the target pro-
gram should be reached. But sometimes it is not enough just covering all paths in a
program. Path coverage may also cause some conditions in the target program cannot
be fully covered. In order to overcome this problem, there is also another coverage
criterion called condition-decision coverage (C/DC). C/DC requires that every condi-
tion and every decision should take all possible outcomes at least once. Michael et al.
[4] used C/DC as criterion in their test data generation tool GADGET but the ap-
proaches they proposed are based on GA. Though GA has strong ability in global
searching, the local search capability is not good enough. Hence the convergence
speed of GA often cannot satisfy the software testing requirement.

In this paper, we intend to introduce a PSO approach to search-based software test-
ing with the C/DC criterion and further develop a PSO Data Generation Tool
(PSODGT). The reason of using PSO is that PSO has a fast convergence speed [10],
[18]. In addition, the self-cognitive and social-influence learning strategies of PSO
make it more reliable in detecting conditions which are difficult to reach. Though
PSO has been used in test data generation with the path coverage criterion in a few
works like [6], [9], different from these existing approaches, our proposed PSO ap-
proach focuses on a different criterion, i.e., the C/DC criterion. In addition, we further
improve the performance of PSO for test data generation by introducing a new initia-
lization technique to PSO and adjust its parameter setting. During each optimization
procedure, particles should reach the target condition before optimizing the fitness
function. In the proposed initialization technique, particles are initialized according to
the test data that can reach the current target condition found in previously. This mod-
ification saves time for particles to reach the target condition so that particles can
early start to optimize fitness function. As for experiment, most researches just tested
their approaches by simple programs like triangle classification, bubble sort. These
programs are not complicated enough to simulate real situations because they are too
simple and the search space is small. In this paper, four programs with different com-
plexities of inputs and conditions are tested. Our PSO approach is compared with a

 Generating Software Test Data by Particle Swarm Optimization 39

GA approach [4] which is also proposed for C/DC. Experimental results are evaluated
in two aspects, conditions coverage rate and convergence rate. When observing the
convergence rate, the number of executions of the target program is used as mea-
surement instead of time consumption.

The rest of this paper is organized as follows. In section 2, we introduce the PSO
algorithm and the test adequacy criteria. Section 3 shows some pivotal details about
PSODGT. Then experimental results and analysis are shown in section 4. Finally in
section 5 the conclusions are drawn.

2 Particle Swarm Optimization and Test Adequacy Criteria

2.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) algorithm was proposed by Russell Eberhart and
James Kennedy in 1995 [10]. In PSO algorithm, each particle keeps track of a posi-
tion which is the best solution it has achieved so far as pbx and globally optimal solu-
tion is stored as gbest. The basic steps of PSO are as follow:

1. Initialize N particles with random positions pxi and velocities vi on D dimensions.
Evaluate every particle’s current fitness f(pxi). Initialize pbxi = pxi and

i 0 1 Ngbest = i, f(px)= min(f(pbx), f(pbx),..., f(pbx)) ;

2. Check whether the criterion is met. If the criterion is met, loop ends else continue;
3. Change velocities according to formula (1):

1 1 2 2() ()i i i i gbest iv v c r pbx px c r pbx pxω= + − + − ; (1)

4. Change positions according to formula (2):

i i ipx px v= + (2)

5. Evaluate every particle’s fitness f(pxi); if f(pxi) < f(pbxi) then pbxi = pxi;
6. Update gbest and loop to step 2.

Usually particle’s position cannot overstep the boundary of the search space and
velocity also cannot exceed one particular value which is often set as 20% of the
search space’s width. In formula (1), the particle velocity updating formula, ω
presents inertia factor, generally obtained by formula (3) [18]

()max min
max k

maxIt

ω ωω ω −
= − . (3)

maxIt means the maximum iteration number and k means the k-th iteration; c1, c2 are
accelerated factors which present cognition and social of the particle; r1, r2 are ran-
dom numbers between 0 and 1.

40 Y.-H. Jia et al.

2.2 Coverage Criteria

The goal of software test is to uncover as many faults as possible with a potent set of
tests. But predicting how many faults will be uncovered by a given test set is almost
impossible [11]. We need test adequacy criteria to help us judge whether a data set is
good enough to accomplish the test. Regardless of whether test adequacy criteria really
can represent the quality of a test suite, they do represent the thoroughness of testing.

There are several common coverage criteria in structural test like statement cover-
age, branch coverage, condition coverage, multiple condition coverage, condition-
decision coverage (C/DC) and path coverage [2]. A condition is a leaf-level Boolean
expression and cannot be broken down into a simpler Boolean expression. A decision
is a Boolean expression composed of conditions and Boolean operators. A decision
without any Boolean operators is a condition. In these criteria exists a hierarchy, the
top one is multiple condition coverage which requires every permutation of values for
the Boolean variables in every condition occurring at least once. On the contrary,
function coverage only requires the execution of every function.

In many automatic testing researches, path coverage was used as their criterion.
Though path coverage is applicable to a number of program’s testing, it is not perfect.
For example, assume there is a decision consisted by disjunction of two conditions
like (a || b) in the program. For the true path, according to the short circuit evaluation,
most programming language will check condition a first and if condition a is true then
ignore the condition b; for the false path, both condition a and b need to be false. Fi-
nally we find that condition b may never be true even both paths were already cov-
ered.

In PSODGT, we use condition-decision coverage as the coverage criterion. Condi-
tion-decision coverage requires that every decision in the program has taken all possi-
ble outcomes at least once, and every condition in a decision in the program has taken
all possible outcomes at least once. Although in the hierarchy, the level of C/DC is
lower than multiple condition coverage, C/DC already can make sure that every piece
of the program can be executed if the requirement of C/DC is fully fulfilled.

3 The PSO Data Generation Tool (PSODGT)

In this section, the PSO data generation tool is introduced. First of all, we give a brief
overview of the PSODGT. Then we discuss three issues of the PSODGT in detail,
including the main data structure, implementation of the fitness function and the im-
proved PSO algorithm for this tool.

3.1 Overview of PSODGT

PSODGT is designed to work on programs written in C or C++ programing language
and the architecture of PSODGT is shown in Fig. 1. There are two parts in PSODGT,
automatic instrumentation and test data generation. Original source code is automatically
instrumented and compiled in the automatic instrumentation part. After compiling, an
instrumented executable program is generated for data generation part to work on. The

 Generating Software Test Data by Particle Swarm Optimization 41

data generation part also consists of two classes. Class controller maintains a condition
table and a test data set, taking charge of choosing target condition and branch, storing
useful inputs found by class optimizer and updating the condition table all by using a key
function named runOnce. The optimizer class only focuses itself on reaching the target
branch chosen by controller.

Fig. 1. Architecture of the PSODGT

3.2 Condition Table

The condition table is a vitally important data structure for the PSODGT. It is derived
from the decision table proposed in [12] and modified in [4] by replacing decision
with condition. Different from the condition table in [4], each branch in PSODGT’s
condition table has three statuses not two. A sample condition table is shown in
Table 1.

Table 1. Condition table

 Branch
Condition TRUE FALSE

1 1 2
2 0 0
3 1 1
4 1 0

Status 0 means this branch is not covered yet, 1 means this branch has been cov-

ered and 2 means that the algorithm has failed in optimizing this branch of the condi-
tion. Status 2 is used to avoid endless loop. When a goal branch is needed, PSODGT
always chooses the condition the state of which is 1/0 or 0/1, i.e., this condition has
been reached but its branches are not fully covered yet. To satisfy C/DC requirement,
we take advantage of the short circuit evaluation. If every condition is fully covered

42 Y.-H. Jia et al.

(both TRUE and FALSE branches have been achieved), all decisions can be fully
covered. So we can only focus on covering conditions as many as possible.

3.3 Fitness Calculation

When a condition’s branch is chosen, things we need to do next is to get its fitness
under test data. If a strip of input data can reach the chosen condition, variables in the
chosen condition have relationship with the input data. Because different inputs
should cause different value for variables in condition so that conditions may take
different outcomes. For example, suppose that a hypothetical program contains the
condition

if(temp > 10){…} else {…}

on line 50 and the goal is to reach its FALSE branch. Denoting x as input, according
to the relationship between input data and variables in condition, temp can be
indicated as line50(x). Then the fitness function of this condition can be express as

10 150f(x)= line (x)− + . When f(x) <= 0, the goal branch will be achieved. Using the

value of f(x), the problem of generating test data turns into function minimization
problem. If the input data cannot reach the chosen condition, we set a very large value
as fitness to represent that this condition is not related to the input data.

Table 2. Computation of the fitness function

Condition Type Goal Branch Fitness Calculation

c > d
T d – c + minConst
F c – d

c < d
T c – d + minConst
F d – c

c >= d
T d – c
F c – d + minConst

c <= d
T c – d
F d – c + minConst

c == d
T |c – d|
F minConst – |c – d|

c
T 1000
F 1000

Table 2 shows how fitness is calculated for all condition types if the condition is

reached.We add a constant named minConst to some fitness so that all fitness calcula-
tions can be evaluated as a positive number no matter what the goal branch is. The
goal is to reduce the fitness down to zero or negative numbers. For integer problem,
minConst is set to 1; for float problem, minConst can be set to a very small float
number according to the precision needed in the real situation.

 Generating Software Test Data by Particle Swarm Optimization 43

3.4 Particle Swarm Optimization for PSODGT

According to the actual situation in test data generation, some improvements are ap-
plied to the PSO algorithm in initialization step and parameters setting. Initialization
step in PSO can be divided into position initialization and velocity initialization.

Plenty of existing researches use a strategy in initial population generating that add
the test data which can successfully reach the target condition to the population
firstly; if additional inputs are needed, generate some random inputs to fill the popula-
tion. However for PSO, these randomly generated inputs take a lot of time in reaching
the target condition. Considering this problem, this paper proposes a new method for
the initialization step of PSO using the idea of crossover operation in GA and strati-
fied sampling for reference. Suppose there are N particles needed in the swarm and
the number of the target program’s input is D. The position of the i-th particle is pre-
sented as an array Pi[1…D]. The positions initialization steps are as follow:

1. If the number of the test data which can successfully reach the condition is bigger
or equal to N, randomly add N of them into swarm and end the initialization
process; else add all of them into swarm and calculate how many additional
particles are needed.

2. Assume M particles are needed. If M<=N–M, use random M particles in the swarm
as seeds and each seed generates one additional particle, else use all the particles in
the swarm as seeds and each seed generates M/(N–M) particles.

3. For every generation of every seed, it begins with copying the position of i-th seed
to the new particle, NewP[1…D]=Pi[1…D].

4. After copy, generate a number d smaller than D randomly. Then construct an d-
length array changePos[1…d] filling up with different numbers which are
generated randomly and smaller than D.

5. Finally substitute the values in NewP with random numbers according to
changePos, NewP[changePos[1…d]]=randomNumber.

Research in [4] found that there are lots of serendipitous coverages during test data
generation. This means some test data do cover new condition branches but these
conditions are not the one the optimizer is currently working on. Serendipitous cover-
age requires degree of randomness in optimizer. However the directional character
makes PSO perform badly in gaining serendipitous coverage. Considering this prob-
lem, particles’ velocities are initialized within the same boundary as positions to ob-
tain more randomness in early stages of iteration. This setting causes a consequence
that convergence speed becomes slower than basic PSO. To make up the losses on
convergence rate, ω the inertia factor is set as 0.4 down to 0.3 with the iteration
growing. A lot of experiments have been done to verify this setting about inertia fac-
tor. When it is set much higher, convergence speed is too slow to meet the require-
ment. While, if it is smaller than 0.3, the algorithm usually fails.

44 Y.-H. Jia et al.

4 Experimental Studies

4.1 Experimental Settings

In the experiments, we test the proposed method on four programs: triangle classifica-
tion program, week calculation program, student grade judgment program and blood
glucose judgment program. (Denoted as P1, P2, P3, and P4) Different from the simple
programs tested in [4], these programs are practical and full of various conditions.
When we test these programs, two main aspects are taken into consideration. One is
the dimension (number of inputs) and size of search space; the other is the number of
conditions. Specific figure about the dimension of search space and the number of
conditions are shown in Table 3. And each program is tested with two different size
of search space measured by bit shown in Table 4.

Table 3. Number of conditions and inputs

Program Condition number Inputs Number (dimension)
P1 20 3
P2 76 3
P3 16 5
P4 33 12

Our proposed PSO approach is compared with two genetic algorithms with differ-

ent coding schemes which are gray code (GAG) and binary code (GAB). Also a PSO
method using the same initialization way with GA is tested to verify the necessity of
the proposed initialization technique, denoted as iPSO. We use 100 individuals, allow
30 generations to elapse before two GAs give up, the same as in [4], and the mutation
probability of every bit is 0.01. For PSO, 20 individuals and 100 generations are al-
lowed. Values of accelerated factors c1 and c2 are 2.

4.2 Experimental Results and Analysis

In this paper, experimental results are estimated in two aspects, efficiency
(convergence rate) and effectiveness (coverage rate). In the course of experiment, we
take five serial attempts as a group of tests. After six groups of tests for each method,
the best coverage rate in each group is selected and the best, worst, average coverage
rate of these six numbers are shown in Table 4, displayed in percentage.

Comparing the experimental data on different search space size for the same pro-
gram, we can find that when the number of input is relative small, increasing on the
search space size doesn’t affect the coverage rate greatly. However when the number
of input grows larger, the contrary is the case. Though both GA and PSO suffer the
increasing on search space size, the PSO approach is much more stable. And the poor
performance made by iPSO also demonstrates the importance of our proposed initiali-
zation tech in PSO method for software test data generation. In general, except the

 Generating Software Test Data by Particle Swarm Optimization 45

data of best coverage rate for P1 in 16-bit search space which is underlined in Table 4,
all the rest data show the advantage of our PSO approach in effectiveness.

Table 4. Experimental results on coverage rate

Prog. P1 P2 P3 P4
Bit 32 16 16 12 12 8 12 8

PSO mean 95 95 99.45 100 100 100 88.38 100

worst 95 95 98.68 100 100 100 65.15 100
best 95 95 100 100 100 100 100 100

GAG mean 88.75 93.33 96.49 96.49 82.29 100 45.20 100
worst 82.50 92.50 94.74 93.42 43.75 100 33.33 100
best 95 97.50 98.03 99.34 100 100 57.58 100

GAB mean 72.50 85.42 96.71 96.93 59.90 100 36.36 100

worst 50 72.50 95.39 96.05 43.75 100 28.79 100
best 85 92.50 98.03 98.68 90.63 100 40.91 100

iPSO mean 85.42 87.50 82.46 86.95 41.67 100 26.27 94.70
worst 80 87.50 79.61 85.53 40.63 100 24.24 71.21
best 87.50 87.50 84.21 87.50 43.75 100 30.30 100

Fig. 2. Converge rate of three methods on P3

As to the convergence rate, P3 with 8-bit search space is used in comparing the ef-
ficiency because all three approaches performed well on this program and iPSO is not
shown because it is too slow comparing with others. The relationship between runs

46 Y.-H. Jia et al.

and coverage rate is illustrated in Fig. 2. This plot shows that PSO begins to demon-
strate its advantages after reach 50% coverage and covers all conditions first. Clearly
the convergence rate of PSO is much faster than the two GA approaches. The same
fact also can be verified by the other programs.

All these experimental results show that the proposed PSO approach is effective
and efficient in automatic software test data generation.

5 Conclusion

In this paper, an improved PSO approach is proposed to apply to search-based test
data generation. The main contributions are in two aspects. First, the PSODGT is
developed by combining the PSO algorithm and C/DC. Second, a new position initia-
lization technique is developed for PSO to adapt accommodate software testing. Ex-
perimental results show that the proposed PSO approach is very promising.

In the future research, it will be interesting to find out which method is suitable to
which kind of condition so that more hybrid methods can be proposed to apply to
different conditions. And how to use much higher-level coverage criterion is also a
promising research topic.

Acknowledgement. This work was supported in part by the National High-
Technology Research and Development Program (863 Program) of China No.
2013AA01A212, in part by the NSFC for Distinguished Young Scholars 61125205,
in part by the NSFC Nos. 61379061, 61070004, in part by Natural Science Founda-
tion of Guangdong No. S2013040014949, and in part by Programs Foundation of
Ministry of Education of China No. 20130171120016.

References

1. National Institute of Standards and Technology, “Then Economic Impacts of Inadequate
Infrastructure for Software Testing,” Planning Report 02-3 (May 2002)

2. Myers, G.J., Sandler, C., Badgett, T.: The art of software testing. John Wiley & Sons
(2011)

3. Díaz, E., Tuya, J., Blanco, R.: Automated Software Testing Using a Metaheuristic
Technique Based on Tabu Search. In: Proc. 18th IEEE Int’l Conf. Automated Software
Eng., pp. 310–313 (2003)

4. Michael, C.C., McGraw, G., Schatz, M.A.: Generating software test data by evolution.
IEEE Trans. Software Eng. 27(12), 1085–1110 (2001)

5. Bottaci, L.: Instrumenting Programs with Flag Variables for Test Data Search by Genetic
Algorithm. In: Proc. Genetic and Evolutionary Computation Conf., pp. 1337–1342 (2002)

6. Li, A., Zhang, Y.-L.: Automatic Generating All-Path Test Data of a Program Based on
PSO. In: WRI World Congress on Software Eng., pp. 189-193 (2009)

7. Windisch, A., Wappler, S., Wegener, J.: Applying Particle Swarm Optimization to
Software Testing. In: Proc. 9th Ann. Genetic and Evolutionary Computation Conf.,
pp. 1121–1128 (2007)

 Generating Software Test Data by Particle Swarm Optimization 47

8. Cui, H.-H., Chen, L., Zhu, B., Kuang, H.-L.: An Efficient Automated Test Data Genera-
tion Method. In: Int’l Conf. Measuring Technology and Mechatronics Automation, vol. 1,
pp. 453–456 (2010)

9. Zhang, S., Zhang, Y., Zhou, H., He, Q.-Q.: Automatic Path Test Data Generation Based on
GA-PSO. In: Proc. IEEE Int’l Conf. Intelligent Computing and Intelligent Systems, pp.
142–146 (2010)

10. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE Int’l Conf. Neural
Networks, vol. 4, pp. 1942–1948 (1995)

11. Frankl, P., Hamlet, D., Littlewood, B., Strigini, L.: Choosing a Testing Method to Deliver
Reliability. In: Proc. Int’l Conf. Software Eng., pp. 68–78 (1997)

12. Chang, K.H., Cross II, J.H., Carlisle, W.H., Liao, S.-S.: A Performance Evaluation of Heu-
ristics-Based Test Case Generation Methods for Software Branch Coverage. Int’l J. Soft-
ware Eng. and Knowledge Eng. 6(4), 585–608 (1996)

13. Clarke, L.A.: A System to Generate Test Data Symbolically and Execute Programs. IEEE
Trans. Software Eng. 2(3), 215–222 (1976)

14. Offutt, A.J.: An Integrated Automatic Test Data Generation System. J. Systems Integra-
tion 1, 391–409 (1991)

15. Korel, B.: Automated Software Test Data Generation. IEEE Trans. Software Eng. 16(8),
870–879 (1990)

16. Sofokleous, A.A., Andreou, A.S.: Automatic, evolutionary test data generation for dynam-
ic software testing. J. Systems and Software 81(11), 1883–1898 (2008)

17. Harman, M., McMinn, P.: A theoretical and empirical study of search-based testing: Local,
global, and hybrid search. IEEE Trans. Software Eng. 36(2), 226–247 (2010)

18. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proc. IEEE Int’l Conf.
Evolutionary Computation, pp. 69–73 (1998)

	Generating Software Test Data by Particle Swarm Optimization
	1 Introduction
	2 Particle Swarm Optimization and Test Adequacy Criteria
	2.1 Particle Swarm Optimization
	2.2 Coverage Criteria

	3 The PSO Data Generation Tool (PSODGT)
	3.1 Overview of PSODGT
	3.2 Condition Table
	3.3 Fitness Calculation
	3.4 Particle Swarm Optimization for PSODGT

	4 Experimental Studies
	4.1 Experimental Settings
	4.2 Experimental Results and Analysis

	5 Conclusion
	References

