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Abstract—Multimodal optimization aims at locating 
multiple optima in a run, which has two main advantages over 
traditional single objective global optimization. First, it would 
be useful to provide multiple solutions since some solutions 
may be hard to realize physically. Second, a multimodal 
algorithm is not so easy to get stuck in a local optimum. In 
recent years, multi-population evolutionary algorithms have 
been used for multimodal optimization. However, their ability 
to locate multiple peaks is limited by the number of 
populations used. It is difficult to find out all the peaks if the 
populations are fewer than the peaks. When algorithms 
increase the number of populations, they have to maintain 
huge population sizes and hence encounter lower search 
efficiency. This paper overcomes such deficiencies by 
proposing a pseudo multi-population differential evolution 
(p-MPDE). The p-MPDE employs a small exemplar population 
to conduct normal DE operation. Each other individual uses 
the differential of two randomly chosen members in the 
exemplar population to mutate themselves and evolve. Each 
such individual represents a pseudo population and promises 
to find a global or local optimum. In the experiment, p-MPDE 
was compared to other state-of-the-art multimodal algorithms 
and the result shows that p-MPDE outperforms R3PSO, LIPS 
and CDE on CEC2013 niching benchmark. 

Keywords- Evolution Algorithm; Multimodal Optimization; 
Differential Evolution. 

I. INTRODUCTION 
OCATING multiple global and local peaks of an 
objective function in a run is advantageous to tackle 

real-world optimization problems. Due to physical limits, it 
may be hard to realize the optimal solution in many 
applications. If more than one acceptable result can be 
found, there will be more choices for the implementation. In 
addition, searching for multiple peaks contributes to reduced 
possibility of getting stuck in local peaks and hence 
increases the chance of finding out the global optimum [1].  

Employing a conventional method is usually ineffective 
for such problems, since the algorithm needs to run 
repeatedly to detect a distinct optimal result each time and a 
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specific deterministic algorithm often inclines to locate 
some fixed peaks. Evolutionary algorithms (EAs) [2], which 
maintain a population of candidate solutions, show an 
inherent advantage over traditional optimization approaches 
if multiple favorable solutions can be maintained during the 
evolution. 

However, EAs tend to converge to a single optimal or 
suboptimal peak, which makes recognition and preservation 
of multiple good results difficult when applying traditional 
EAs to multimodal optimization. 

To tackle multimodal task, some methods maintaining 
multiple subpopulations were proposed [3]. Such methods 
need to reserve many subpopulations to locate as many as 
possible peaks. If the exploitation ability of each 
subpopulation needs to be guaranteed, the population size 
may be too large to tolerate, which limits the 
multi-population method considerably. In addition, a 
multi-population method may need to configure the 
subpopulation settings before generation. It is always 
difficult to preset subpopulation sizes and the number of 
subpopulation. 

This paper proposes a pseudo multi-population differential 
evolution (p-MPDE) which not only satisfies the criteria that 
multimodal algorithm should locate as many as possible 
global peaks but also avoids the above-mentioned limitation 
of traditional multi-population method. The algorithm uses a 
small exemplar population to conduct a normal differential 
evolution. Meanwhile, each individual outside this exemplar 
population pretends to be a population evolving itself, which 
is termed a pseudo population. These individuals use 
differential vectors generated from the exemplar population 
to mutate themselves. A pseudo population is never allowed 
to cover another while it updates. Thus it is highly unlikely 
that each pseudo population converges to a single peak. 
Moreover, instead of mutating randomly, a pseudo population 
learns the perturbation pattern of the exemplar population to 
mutate more wisely. In short, each pseudo population 
promises to locate a distinct peak separately. 

The advantage of p-MPDE is that the algorithm can 
achieve the effect of using multiple population without 
really using multi-population method. The number of 
pseudo populations is abundant because the pseudo 
population is actually an individual. Thus large number of 
pseudo population will not lead to huge population size. The 
p-MPDE not only avoids presetting multiple populations but 
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also avoids large population resulted from multiple 
populations. In this paper, the experiment displays that 
p-MPDE outperforms some existing multimodal algorithms 
on CEC2013 niching benchmark across five levels of 
accuracy. 

The rest of this paper is organized as follows. Section II 
introduces related work for solving multimodal task. Section 
III describes the derivation and details of the proposed 
p-MPDE. Section IV is the experimental setting and the 
experimental result. Section V gives some concluding 
comments. 

II. RELATED WORK 

A. Differential Evolution 
Differential Evolution (DE) [4][5] is a metaheuristic 

approach for minimizing nonlinear and non-differentiable 
continuous problems. 

DE maintains a population and each individual in the 
population is a vector representing a candidate solution. At 
the start of the algorithm, the population is initialized with 
NP random vectors where NP stands for the population size. 
Similar to genetic algorithms, DE evolves the population in 
each generation consisting of mutation, crossover and 
selection. 

In the mutation operation, for each individual ,i Gx , 
i=1,2,…,NP, a mutation vector is generated using 

 , 1 1, 2, 3.( )i G r G r G r Gv x F x x+ = + ⋅ −       (1.) 
with random and distinct indexes 1 2 3, , {1,2,..., }r r r NP∈ . F 
is the scalar factor that amplifies the differential variation. In 
the crossover stage, a trial vector , 1i Gu +  is generated using 
the following equation. 
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where CR is the crossover rate; D is the dimensionality of 
the solution; , 1ji Gu +  is the value of the individual , 1i Gu +  in 
jth dimension; ( )randb j  is a random number generator and 
generates a random number between 0 and 1 for each 
dimension; ( )rnbr i  is a randomly chosen index which is 
proposed to ensure that , 1i Gx + exchanges at least one 
parameter with , 1i Gv + .In the selection stage, if , 1i Gu +  is 
fitter than , 1i Gx + , , 1i Gx +  is replaced by , 1i Gu + . Table I is a 
pseudo code of DE. DE is a promising single objective 
global optimizer. However, some features of DE are not 
proper for maintaining the population diversity in some 
scenarios, which will be revealed in the following section. 
B. Multimodal Differential Evolution 

Crowding Differential Evolution: Crowding differential 
evolution (CDE) was first proposed by Thomsen [6]. In 
CDE, when an offspring is generated, it competes with the 
individual most similar to it (measured by Euclidean 
distance) in the current population. The offspring will 
replace this individual if it has a better fitness value. 
C. Other Algorithms for Multimodal Optimization 

Particle swarm optimization (PSO) [7]-[10], which was 
introduced by Kennedy and Eberhart [8] in 1995, is a 
powerful optimization approach. The population-based 
nature interests people to apply niching techniques to PSO 
for solving multimodal optimization problems. 

1) Ring Topology PSO: In 2010, a ring topology PSO [10] 
for multimodal optimization was proposed by Li to conquer 
the niching parameter specification problem as the ring 
topology PSO does not require any niching parameters. 
Each member only interacts with its immediate left (and/or) 
right neighbors in the ring topology, which is simple yet 
useful. 

2) Distance-Based Locally Informed Particle Swarm: To 
solve multimodal optimization tasks, recently B.Y.Qu et al 
[11] introduced an impressive distance-based locally 
informed particle swarm which exceeds nine other 
state-of-the-art multimodal optimizers over a test suite 
comprised of 15 basic and 15 composite multimodal 
benchmarks. The velocity update of LIPS uses the formula 
given below. 

( )( )d d d d
i i i iV V P Xω ϕ= × + −       (3.) 
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      (4.) 
φj is a uniformly distributed random number in the range of  
[0, 4.1/nsize], φ is equal to the summation of φj, nsize (the 
neighborhood size) is dynamically increased from 2 to 5 
over the function evaluations, nbestj is the jth nearest 
neighborhood to the ith particle’s pbest, while the position 
update equation keeps unchanged [12].  

III. PSEUDO MULTI-POPULATION DIFFERENTIAL 
EVOLUTION 

A. Large Population and Multi-Population 
Multimodal optimization aims at locating multiple peaks 

and maintains them throughout the algorithm. Firstly, 
multimodal algorithm needs to track not only a single 
solution. Secondly, multimodal algorithm runs without 
knowing how many global peaks the multimodal problem 
has. Apparently, it is very important to enhance the diversity 
of population in a multimodal algorithm. 

A simple method to enhance diversity of population is to 
increase the population size. However, enlarging the 
population may lead to a great waste of function evaluation 
times and lowers the efficiency of exploration because of the 
usually fixed maximum function evaluations. Many 
individuals could crowd around a not promising area and it 
is no use evaluating all of them. Moreover, individuals of 
population tend to converge to a single peak if algorithm has 
no mechanism to make some adjacent members repel each 
other. 

Another simple but useful measure is to separate the 
individuals into distinct subpopulations and each 
subpopulation is expected to locate a different optimum. 
However, normal multi-population algorithm is difficult to 
find out all of the peaks because the subpopulations may be 
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fewer than the peaks. Even though in some cases 
subpopulations are ample, locating all the optima is still 
hard since the algorithm has no appropriate mechanism to 
make subpopulations repel each other. The algorithm should 
maintain more subpopulations in multimodal optimization 
than in single objective global optimization. To keep the 
exploitation ability of each subpopulation at an acceptable 
level, multimodal algorithms require an immense population 
to track all peaks. Limited by the available computing 
resources, increased population size leads to decreased 
maximum of evolutionary generations, which worsen the 
performance of algorithm. 
B. Mutation Operator in Differential Evolution 

Differential Evolution is a simple and fast algorithm which 
performs well in single objective global optimization. When 
DE is applied to solve multimodal task, however, its 
standard mutation has a negative impact on the diversity of 
the population. The standard mutation in DE is depicted in 
equation (5.). Trial refers to a trial individual generated by 
mutation. Xr1, Xr2and Xr3 are three different randomly chosen 
vectors which are distinct from the current individual iX . In 
early search stage, trial vector could appear in an area near 

iX  or far from iX  because 1rX  is chosen randomly. Thus 
equation (5.) ensures sufficient global search. During the 
late search stage, the peak 1rX  exploits may be far away 
from the peak iX  exploits. The Trial vector derived from 

1rX  could be similar to 1rX . If Trial is fitter than iX ,  iX  
will be replaced by Trial. However, such replacement may 
be unreasonable because iX  and Trial could be discovering 
two distinct peaks which are far apart. It is not proper to 
replace an individual around a peak with an individual near 
another peak for the population diversity. 

1 2 3* ( )r r rTrial X F X X= + −       (5.) 
1 2* ( )i r rTrial X F X X= + −        (6.) 

This paper proposes equation (6.) as differential evolution 
mutation. Compared to equation (5.), equation (6.) replaces 

1rX  with iX . In exploration stage, trial vector can reach 
many places in the whole landscape because the differential 
of two randomly chosen vector 1rX  and 2rX  can be large or 
small. Thus algorithms using equation (6.) have an 
acceptable ability to search the landscape globally in early 
stage. During exploitation stage, in (6.), if 1rX  and 2rX  are 
from the same niche, their differential will be not so large. 
Thus trial vector could appear around iX  and it is likely that 
Trial and iX  discover the same peak. Even if iX  is replaced 
by Trial, it does not affect diversity of population. Such 
replacement could be regarded as evolving iX  around a 
peak. 
C. Pseudo Multi-Population Method 

As already mentioned, normal multi-population 
evolutionary algorithms require immense population size. 
To solve such problem, this paper proposes a pseudo 
multi-population differential evolution (p-MPDE) which 
adopts equation (6.) as its mutation operator. The p-MPDE 
consists of a small exemplar population and multiple pseudo 
populations. A pseudo population actually refers to one 
individual which is not a member of the exemplar 

population. Such a mechanism helps to avoid using large 
population size. Each pseudo subpopulation employs the 
differential between two members in the exemplar 
population to perform mutation using equation (6.). Note 
that 1rX  and 2rX  are two randomly chosen members of the 
exemplar population. After mutation, crossover and 
selection in p-MPDE remain the same as that of traditional 
DE. 

The following is an explanation of the reasonability and 
effectiveness of p-MPDE. Suppose that two populations 
with the same population size evolve independently in the 
same landscape. Both of populations take equation (6.) as 
their mutation operator. Namely, Population 1 uses equation 
(7.) and Population 2 uses equation (8.). 1iX  denotes the thi  
individual of Population 1. 1 1rX and 1 2rX  denote two 
randomly chosen members of Population 1. Similarly, 2iX  
is the thi  individual of Population 2. 2 1rX  and 2 2rX  are two 
randomly chosen individuals in Population 2.  

1 1 1 1 2* ( )i r rTrial X F X X= + −                   (7.) 
2 2 1 2 2* ( )i r rTrial X F X X= + −        (8.) 
2 1 1 1 2* ( )i r rTrial X F X X= + −      (9.) 

Take notice of the distinction between equation (8.) and 
(9). (8.) and (9) have the same base 2iX . Their differential 
part are generated from different populations. Equation (9) 
means that an individual from Population 2 uses the 
differential generated by two randomly chosen members 
from Population 1. Actually equation (9) depicts what the 
individual in a pseudo subpopulation do in its mutation step. 
If replacing equation (8.) with equation (9) is reasonable and 
acceptable, using the individual representing a pseudo 
subpopulation and the differential generated from the 
exemplar population to generate a trial vector is also 
reasonable and acceptable. 

At the very beginning, as individuals of Population 1 and 
Population 2 are all distributed randomly in the landscape so 
that the differentials generated from these two populations 
have no essential differences. In late search stage, 
Population 1 and Population 2 both almost converge to their 
respective peak. The magnitudes of 1 1 1 2r rX X− and 

2 1 2 2r rX X−  both are very small. Considering the direction 
of the differential vectors, as two member indices are 
selected in a complete random manner, the probability of 
each possible directions being selected is the same. Thus 

1 1 1 2r rX X−  and 2 1 2 2r rX X−  are similar to a certain degree. 
To some extent, it is reasonable that an individual denoting a 
pseudo subpopulation uses the differential vector generated 
from the exemplar population to mutate the individual itself. 
D. Pseudo Multi-Population Differential Evolution 

Algorithm I is a detailed procedure in p-MPDE. Firstly, 
initialize the population and evaluate members of the 
population. Secondly, determine the individuals to 
constitute an exemplar population. Thirdly, in every 
generation, renew each member in the population. In update 
step, take equation (10) as mutation operator. After 
mutation, crossover and selection in p-MPDE are as the 
same as in DE.  

1 2* ( )i er erTrial X F X X= + −           (10) 
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IV. EXPERIMENTAL STUDIES 

A. Experimental Setting 
All the algorithms are implemented using C and executed 

on the computer with an Intel(R) Core™ i5-2410M CPU and 
4 GB of memory. Four different multimodal algorithms are 
tested through the experiments. 

1) p-MPDE: the proposed pseudo multi-population 
differential evolution; 

2) CDE [6]: the original crowding DE; 
3) R3PSO [10]: an lbest PSO with a ring topology that 

each member interacts with its immediate member on its left 
and right; 

4) LIPS [11]: the locally informed distance-based PSO. 
The PSO parameters used in this paper are adopted from 

[12]. The DE parameters are F=0.9 and CR=0.1. 
B. Test Functions 

In the experiment, the following 20 multimodal test 
functions in CEC2013 niching benchmark [13] are used: 

1F : Five-Uneven-Peak Trap (1D) 
2F : Equal Maxima (1D) 
3F : Uneven Decreasing Maxima (1D) 
4F : Himmelblau (2D) 
5F : Six-Hump Camel Back (2D) 
6F : Shubert (2D, 3D) 
7F : Vincent (2D, 3D) 
8F : Modified Rastrigin – All Global Optima (2D) 
9F : Composition Function 1 (2D) 
10F : Composition Function 2 (2D) 
11F : Composition Function 3 (2D, 3D, 5D, 10D) 
12F : Composition Function 4 (3D, 5D, 10D, 20D) 

All test functions are formulated as maximization 
problems. F1, F2 and F3 are simple 1D multimodal 
functions. F4 and F5 are simple 2D multimodal functions. 
These functions are not scalable. F6 to F8 are scalable 
multimodal functions. The number of global optima for F6 
and F7 are determined by the dimension D. F9 to F12 are 
scalable multimodal functions constructed by several basic 
functions with different properties. [13] 
C. Population Size, Accuracy Level and Maximal Number of 
Evaluations 

In this experiment, five levels of accuracy indicate how 
close to the solutions the exact global peaks are. If the 
distance between a computed solution and a known global 
optimum is below the level of accuracy, then the peak is 
considered to have been found. The maximal numbers of 
function evaluations are listed in Table I. The population 
size and niching radius(R) are listed in Table II. Level of 
accuracy (ε ): {1.0E-01, 1.0E-02… 1.0E-05}. 
D. Performance Measure 

Peak ratio values are used as key criterion to rank 
algorithms. Peak ratio is the percentage of successfully 
located peaks. To compare the performance of multimodal 
algorithms, 50 runs of each algorithm are taken on each test 
function in each level of accuracy. 
E. Experimental Result 

The experiment results are presented on peak ratio across 
20 test functions and five levels of accuracy. Table III 
compares p-MPDE with R3PSO on peak ratio. For each test 
function and each level of accuracy, if p-MPDE outperforms 
R3PSO, the peak ratio value of p-MPDE uses bold. 
Otherwise the peak ratio value of R3PSO uses bold. Win 
Times represents the number of test functions on which an 
algorithm outperforms the other in the same level of 

TABLE I 
MAXFES USED FOR 3 RANGES OF TEST FUNCTIONS 
Range of functions MaxFEs

F1 to  F5(1D or 2D) 5.0E+04
F6 to F11 (2D) 2.0E+05

F6  to F12 (3D or higher) 4.0E+05

 
TABLE II 

PARAMETERS USED FOR PERFORMANCE MEASUREMENT 
Function R Peak height No.global 

optima 
Population      

size 

1F (1D) 0.01 200.0 2 50

2F (1D) 0.01 1.0 5 50

3F (1D) 0.01 1.0 1 50

4F (2D) 0.01 200.0 4 50

5F (2D) 0.5 1.03163 2 50

6F (2D) 0.5 186.731 18 100

7F (2D) 0.2 1.0 36 200

6F (3D) 0.5 2709.0935 81 400

7F (3D) 0.2 1.0 216 600

8F (2D) 0.01 -2.0 12 100

9F (2D) 0.01 0 6 100

10F (2D) 0.01 0 8 100

11F (2D) 0.01 0 6 100

11F (3D) 0.01 0 6 100

12F (3D) 0.01 0 8 100

11F (5D) 0.01 0 6 100

12F (5D) 0.01 0 8 100

11F (10D) 0.01 0 6 100

12F (10D) 0.01 0 8 100

12F (20D) 0.01 0 8 100

 

ALGORITHM I 
PSEUDO CODE OF P-MPDE 

Step Detail 

Step 1 Initialize a population randomly. 
Evaluate the population. 

Step 2 Determine an exemplar group of individuals. 
Step 3 For i:=1 to NP do 

    Choose 2 members ( 1erX , 2erX ) in the exemplar group 
randomly. 

    1 2*( )i er erTrial X F X X= + − ; 

    Trial = crossover(Trial, iX ); 
    If ( Trial is fitter than iX ) replace iX  with Trial; 

Step 4 Go to step 3 if termination condition is not satisfied. 
Otherwise stop. 
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accuracy. Table III showed that p-MPDE performs better 
than R3PSO in every level of accuracy. In low level of 
accuracy, the difference between p-MPDE and R3PSO is 
not so large. In higher level of accuracy, p-MPDE 
outperforms R3PSO in 16 or 17 functions while R3PSO 
performs better than p-MPDE in only one function. 

Table IV presents the result of comparing p-MPDE with 
LIPS, which is a recently proposed multimodal algorithm in 
[11]. As Table IV shows, in low level of accuracy, p-MPDE 
has obvious advantages over LIPS. With the level of 
accuracy increasing, the difference between p-MPDE and 
LIPS becomes smaller. In the highest level of accuracy, 
LIPS even surpasses p-MPDE. From a general view, both 
p-MPDE and LIPS are promising for multimodal 
optimization, and p-MPDE performs slightly better than 
LIPS. 

Table V is the result of comparing p-MPDE with CDE, 
which is a classical multimodal differential evolution. In all 
levels of accuracy, p-MPDE outperforms CDE. In lower 
level of accuracy, p-MPDE has a more obvious advantage 
over CDE. In higher level of accuracy, the difference 
between p-MPDE and CDE becomes smaller. In total, the 
performance of p-MPDE is better than that of R3PSO, LIPS 
and CDE. 

V. CONCLUSION 
In this paper, a novel multimodal extensions (p-MPDE) to 

the conventional differential evolution was proposed. The 
algorithm uses a small exemplar population to run basic DE. 
Then, each individual out of the exemplar represents one 
pseudo population. Each pseudo population learns the 
pattern of evolution of the exemplar population to evolve 

itself. The evolution of each pseudo population is 
independent so that each pseudo population is supposed to 
locate a different optimum. Thus p-MPDE performs well on 
multimodal optimization. 

The algorithm was tested on CEC2013 niching 
benchmark. As the experimental result shows, p-MPDE 
outperforms R3PSO, LIPS and CDE. Further work could be 
done to extend this paper. Pseudo multi-population method 
could be applied to other evolutional algorithms.  
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TABLE III 
PEAK RATIO: P-MPDE VS  R3PSO 

Level of 
accuracy 

1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05

function p-MPDE R3PSO p-MPDE R3PSO p-MPDE R3PSO p-MPDE R3PSO p-MPDE R3PSO

1F (1D) 1 0.62 1 0.19 1 0.11 1 0.11 1 0.16 
2F (1D) 1 0.996 1 1 1 0.988 1 0.976 1 0.96 
3F (1D) 1 1 1 1 1 1 1 1 1 1 
4F (2D) 1 1 1 0.98 1 0.89 1 0.885 1 0.795 
5F (2D) 1 1 1 1 1 1 1 1 1 1 
6F (2D) 0.958889 0.813333 0.962222 0.768889 0.914444 0.737778 0.855556 0.708889 0 0 
7F (2D) 0.638889 0.994444 0.635 0.286667 0.612778 0.275 0.592222 0.243889 0.588333 0.227222 
6F (3D) 0.005679 0.165926 0.000247 0.148148 0.000741 0.137037 0 0.121728 0 0.117284 
7F (3D) 0.50213 0.078611 0.400926 0.078704 0.312963 0.067315 0.182407 0.057407 0.082037 0.050926 
8F (2D) 0.998333 0.92 0.996667 0.836667 0.996667 0.783333 0.99 0.763333 0.995 0.716667 
9F (2D) 0.78 0.9 0.686667 0.646667 0.67 0.63 0.673333 0.61 0.676667 0.606667 
10F (2D) 0.89 0.4025 0.8 0.3525 0.7625 0.36 0.715 0.34 0.69 0.3275 
11F (2D) 0.7 0.573333 0.676667 0.47 0.666667 0.446667 0.666667 0.466667 0.666667 0.413333 
11F (3D) 0.836667 0.83 0.666667 0.553333 0.666667 0.513333 0.666667 0.493333 0.666667 0.51 
12F (3D) 0.8175 0.57 0.545 0.2025 0.535 0.155 0.445 0.1325 0.445 0.145 
11F (5D) 0.976667 0.45 0.663333 0.226667 0.653333 0.216667 0.653333 0.18 0.613333 0.166667 
12F (5D) 0.7075 0.0925 0.2875 0.08 0.27 0.0675 0.2225 0.05 0.1875 0.0775 

11F (10D) 0.593333 0.716667 0.243333 0.11 0.21 0.1 0.18 0.123333 0.166667 0.133333 
12F (10D) 0.0675 0 0.02 0 0.0075 0 0.01 0 0.005 0 
12F (20D) 0.0925 0 0.0525 0 0.0425 0 0.04 0 0.025 0 

Win Times 13 4 16 1 17 1 17 1 16 1
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TABLE V 
PEAK RATIO: P-MPDE VS  CDE 

Level of 
accuracy 

1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05

function p-MPDE CDE p-MPDE CDE p-MPDE CDE p-MPDE CDE p-MPDE CDE

1F (1D) 1 1 1 1 1 1 1 1 1 0.76
2F (1D) 1 1 1 1 1 1 1 1 1 1
3F (1D) 1 1 1 1 1 1 1 1 1 1

4F (2D) 1 1 1 1 1 1 1 1 1 1
5F (2D) 1 1 1 1 1 1 1 1 1 1

6F (2D) 0.958889 1 0.962222 1 0.914444 0.911111 0.855556 0.022222 0 0

7F (2D) 0.638889 0.845556 0.635 0.834444 0.612778 0.827778 0.592222 0.816111 0.588333 0.715556

6F (3D) 0.005679 0.002222 0.000247 0 0.000741 0 0 0 0 0

7F (3D) 0.50213 0.401759 0.400926 0.38963 0.312963 0.393148 0.182407 0.358889 0.082037 0.160093

8F (2D) 0.998333 1 0.996667 1 0.996667 1 0.99 1 0.995 1

9F (2D) 0.78 0.96 0.686667 0.693333 0.67 0.67 0.673333 0.666667 0.676667 0.666667

10F (2D) 0.89 0.37 0.8 0.09 0.7625 0.0125 0.715 0 0.69 0

11F (2D) 0.7 0.813333 0.676667 0.673333 0.666667 0.666667 0.666667 0.666667 0.666667 0.666667
11F (3D) 0.836667 0.696667 0.666667 0.666667 0.666667 0.666667 0.666667 0.666667 0.666667 0.666667
12F (3D) 0.8175 0.7225 0.545 0.6925 0.535 0.665 0.445 0.5525 0.445 0.3925
11F (5D) 0.976667 0.686667 0.663333 0.666667 0.653333 0.666667 0.653333 0.666667 0.613333 0.666667
12F (5D) 0.7075 0.555 0.2875 0.4425 0.27 0.27 0.2225 0.115 0.1875 0.0575

11F (10D) 0.593333 0.54 0.243333 0.24 0.21 0.186667 0.18 0.19 0.166667 0.173333
12F (10D) 0.0675 0 0.02 0 0.0075 0 0.01 0 0.005 0
12F (20D) 0.0925 0.3 0.0525 0.015 0.0425 0 0.04 0 0.025 0

Win Times 9 6 7 7 6 5 6 5 6 5
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TABLE IV 
PEAK RATIO: P-MPDE VS  LIPS 

Level of 
accuracy 

1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05 

function p-MPDE LIPS p-MPDE LIPS p-MPDE LIPS p-MPDE LIPS p-MPDE LIPS 
1F (1D) 1 1 1 1 1 1 1 1 1 1 
2F (1D) 1 0.996 1 0.996 1 0.996 1 1 1 1 
3F (1D) 1 1 1 1 1 1 1 1 1 1 
4F (2D) 1 1 1 1 1 1 1 1 1 1 
5F (2D) 1 1 1 1 1 1 1 1 1 1 
6F (2D) 0.958889 0.773333 0.962222 0.755556 0.914444 0.758889 0.855556 0.733333 0 0 
7F (2D) 0.638889 0.670556 0.635 0.671667 0.612778 0.665 0.592222 0.652222 0.588333 0.656667 
6F (3D) 0.005679 0.443457 0.000247 0.437778 0.000741 0.431358 0 0.42 0 0.395802 
7F (3D) 0.50213 0.375926 0.400926 0.375185 0.312963 0.36 0.182407 0.34 0.082037 0.323981 
8F (2D) 0.998333 0.995 0.996667 0.995 0.996667 0.993333 0.99 0.995 0.995 0.995 
9F (2D) 0.78 0.856667 0.686667 0.836667 0.67 0.853333 0.673333 0.853333 0.676667 0.853333 
10F (2D) 0.89 0.825 0.8 0.86 0.7625 0.7975 0.715 0.83 0.69 0.8275 
11F (2D) 0.7 0.7 0.676667 0.683333 0.666667 0.69 0.666667 0.69 0.666667 0.683333 
11F (3D) 0.836667 0.643333 0.666667 0.643333 0.666667 0.63 0.666667 0.61 0.666667 0.653333 
12F (3D) 0.8175 0.415 0.545 0.425 0.535 0.395 0.445 0.395 0.445 0.39 
11F (5D) 0.976667 0.176667 0.663333 0.17 0.653333 0.156667 0.653333 0.156667 0.613333 0.173333 
12F (5D) 0.7075 0.205 0.2875 0.2225 0.27 0.22 0.2225 0.2125 0.1875 0.195 

11F (10D) 0.593333 0.036667 0.243333 0.026667 0.21 0.05 0.18 0.026667 0.166667 0.043333 
12F (10D) 0.0675 0.0125 0.02 0.0125 0.0075 0.0075 0.01 0.01 0.005 0.0025 
12F (20D) 0.0925 0 0.0525 0 0.0425 0 0.04 0 0.025 0 

Win Times 12 3 11 5 9 6 7 7 6 7 
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