
A Tribal Ecosystem Inspired Algorithm (TEA)
For Global Optimization

Ying Lin a, Jing-Jing Li b (Corresponding Author), Jun Zhang c and Meng Wan d
a Department of Psychology, Sun Yat-sen University

b School of Computer Science, South China Normal University
c School of Advanced Computing, Sun Yat-sen University

d Center for Science and Technology Development, Ministry of Education
jingjing.li1124@gmail.com

ABSTRACT
Evolution mechanisms of different biological and social systems
have inspired a variety of evolutionary computation (EC)
algorithms. However, most existing EC algorithms simulate the
evolution procedure at the individual-level. This paper proposes a
new EC mechanism inspired by the evolution procedure at the
tribe-level, namely tribal ecosystem inspired algorithm (TEA). In
TEA, the basic evolution unit is not an individual that represents a
solution point, but a tribe that covers a subarea in the search
space. More specifically, a tribe represents the solution set
locating in a particular subarea with a coding structure composed
of three elements: tribal chief, attribute diversity, and advancing
history. The tribal chief represents the locally best-so-far solution,
the attribute diversity measures the range of the subarea, and the
advancing history records the local search experience. This way,
the new evolution unit provides extra knowledge about
neighborhood profiles and search history. Using this knowledge,
TEA introduces four evolution operators, reforms, self-advance,
synergistic combination, and augmentation, to simulate the
evolution mechanisms in a tribal ecosystem, which evolves the
tribes from potentially promising subareas to the global optimum.
The proposed TEA is validated on benchmark functions.
Comparisons with three representative EC algorithms confirm its
promising performance.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search – heuristic methods.

General Terms
Algorithms, Experimentation

Keywords
Evolutionary computation (EC), global optimization, tribe

1. INTRODUCTION
Evolutionary computation (EC) is a kind of probabilistic
optimization algorithms inspired by the evolution mechanisms of
complex systems in nature. Given an optimization problem, an

EC algorithm is initialized with a population in which each
individual represents a candidate solution. The fitness of
individuals is evaluated in a way that the quality of represented
solutions can be reflected proportionally. Evolution operators are
designed to implement the principles of inheritance, variation, and
selection in natural evolution. The EC algorithm performs the
evolution operators for evolving the population towards the global
optimum in an iterative manner.

The above evolution steps allow EC algorithms to solve an
optimization problem without requiring any problem-specific
knowledge other than a quantitative criterion for evaluating the
quality of solutions. Such flexibility and simplicity encourage the
applications of EC algorithms in a wide range of fields. However,
despite the success of EC algorithms on solving many problems,
they still suffer from the weakness of lengthy computational time
and potentially premature convergence. Therefore, how to design
algorithms that can find the global optimum in short time remains
to be one of the most promising yet challenging research topics in
the field of EC.

In the literature, the most notable and promising methods for
addressing the above topic include adapting parameters to strike a
dynamic balance between global exploration and local
exploitation [1]-[3], designing novel evolution operators to
achieve better search efficiency [4][5], applying niching methods
to preserve the diversity of the population [6][7], hybridizing with
local search techniques [8][9], and using multi-population
strategies [10][11], etc. The underlying strategies of the above
methods for improving the optimization accuracy and efficiency
are based on introducing sophisticated operations or refinement in
the entire optimization process. However, their algorithms remain
solution-based. That is, the basic evolution unit in these EC
algorithms is solutions - discrete points in the search space.
Nevertheless, a solution can only provide the position and quality
information of itself, but cannot provide information about the
surrounding area (neighborhood). The lack of neighborhood
information is the essential cause of bind and repetitive search,
slowing down the search speed or even causing prematurity.

A tribe is a social group of people that unite under one chief and
share similarities in physical and cultural attributes. In a tribal
ecosystem comprising heterogeneous tribes, a tribe seeks
development from both inner- and inter-tribe cooperation [12].
Inspired by the evolution mechanisms in tribal ecosystems, this
paper proposes a new EC mechanism, namely tribal ecosystem
inspired algorithm (TEA). In TEA, each tribe is mapped to the
solution set in a particular subarea in the search space.
Specifically, the best solution found in the subarea is analogous to
the tribal chief and the range of the subarea is interpreted as the
diversity of the tribe in attributes. The search experience of

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

Copyright 2014 ACM 978-1-4503-2662-9/14/07…$15.00.
http://dx.doi.org/10.1145/2576768.2598253

33

GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2576768.2598253&domain=pdf&date_stamp=2014-07-12

exploiting the subarea is also attached to the tribe as a record of its
self-advancing history. By doing so, TEA is differentiated from
traditional solution-based EC algorithms as the basic evolution
unit has been changed from discrete solution points to solution
sets in different subareas in the search space.

Given an optimization problem, TEA initially partitions the search
space into a set of zones with uniform size and initializes the tribal
society by founding tribes on a subset of evenly distributed zones.
After initialization, TEA performs four novel operators iteratively
to simulate the evolution procedure of real tribes. In each
generation, a reforms operator is first performed to reorganize the
structure of the tribal society based on the similarities of existing
tribes. An existing tribe may split into new tribes, merge into
another tribe, or remain unchanged. Then a self-advance operator
is carried out to simulate the process that a tribe seeks
development through inner cooperation. As in tribal ecosystems,
TEA gives tribes with fitter chiefs and more successful self-
advancing history large opportunities to undergo self-advance.
The inner-tribe cooperation in the self-advancing process brings in
homogeneity, which is reflected by a decreasing diversity in the
attributes of tribes. Thirdly, a synergistic combination operator is
executed to emulate the inter-communication among tribes. New
tribes are formed by combining attributes of existing tribes.
Finally, TEA uses an augmentation operator to imitate the process
that the tribal society extends to less populated areas in seek of
more living resources. Such augmentation process results in the
formation of new tribes in less explored subareas of the search
space.

Using tribes as the basic evolution unit brings TEA a number of
benefits. Firstly, the reforms operator compels the resulting tribes
to represent solution sets in subareas different from each other.
As a result, TEA avoids converging in a particular subarea and
reduces the possibility of prematurity. Secondly, with the tribal
structure, not only solutions, but also information of their
surrounding neighborhoods, are inherited from generation to
generation. The impact of the neighborhood information is
twofold. First, it facilitates subsequent exploitation in their
neighborhoods. Second, it guides TEA to efficiently identify
promising subareas in the search space. The effectiveness and
efficiency of TEA is validated on a diverse set of benchmark
functions. Comparisons of TEA with a number of representative
EC algorithms confirm the advantage of the tribal structure.

The remaining sections of this paper are organized as follows.
Section 2 introduces details of the proposed TEA. Experimental
results and comparisons are displayed in Section 3. Section 4
draws a conclusion to the whole paper.

2. THE PROPOSED TEA
Without loss of generality, we introduce the proposed TEA in the
context of the following n-dimensional minimization problem:

min
l≤x≤u

f (x) , (1)

where x is a candidate solution in the search space [l, u] and f(⋅) is
the fitness function. In TEA, each variable in the optimization
problem is considered as a personal attribute and a society S of N
tribes is evolved. Each tribe Ti is characterized by a tribal chief ci,
an attribute diversity di, and a historical record hi, i.e.,

 Ti = <ci, di, hi>. (2)

The chief ci = (ci,1, ci,2, …, ci,n) is the one that achieves the best
fitness in Ti. ci,j denotes the j-th attribute of ci. The diversity di =
(di,1, di,2, …, di,n) measures the diversity of Ti on all the n
attributes. The smaller di,j is, the more homogeneity Ti has on the
j-th attribute. With ci as the centroid and di as the radius, the
coverage of Ti can be described as [ci − di, ci + di]. The historical
record hi records the self-advancing history of Ti. A larger hi
value implies a greater success of Ti in the previous self-
advancing process. Treating tribes coded by the above structure
as the basic evolution unit, the evolution procedure of TEA
comprises the following five steps.

2.1 Initialization
In the initialization phase, TEA chooses a parameter m and
divides each dimension of the search space into m even segments.
The search space is thus partitioned into (mn) zones with uniform
size. M zones are selected from the search space according to a
pre-generated orthogonal array [13], where M is the total of level
combinations in the array. The tribal society S is initialized with
the chief of each tribe randomly generated in a selected zone.
Suppose that ‘⊗’ denotes a inner multiplication operator between
two vectors with equal dimensionality. Then the initialization of ci
can be formulated as

 ci = l + (comi + ri −1)⊗ (u− l) /m , (3)

where ri ∈ (0,1)n is an n-dimensional normalized random vector
and comi ∈ [1,m]n is the i-th level combination in the orthogonal
array. The attribute diversity di and the historical record hi are
initialized as their initial values d0 and h0, respectively. For the
sake of simplicity in the implementation, d0 and h0 are calculated
here by

 d0 = (u− l) m , (4)

 h0 = exp(εmin) , (5)

where εmin ∈ (0, 1) is a predefined constant.

The orthogonal property of orthogonal arrays guarantees that the
M selected zones are uniformly distributed in the search space
[13]. The tribal society initialized by the above method is thus
able to scan the search space evenly, which helps TEA to gain a
general image of the overall fitness distribution.

2.2 Reforms
The tribes are reformed by clustering existing tribes on both scales
of fitness and attributes. A clustering technique termed polythetic
division is applied for doing so. This technique is used because it
can achieve satisfying clustering performance without the need of
setting extra parameters or using iterative optimization procedure.
Due to length limit, please refer to [14] for details of polythetic
division. Detailed steps of the reform process are introduced
afterwards.

Successful application of polythetic division requires a distance
metric and a criterion for judging whether a group can be further
divided. In the proposed TEA, the distance δi,k between two tribes
Ti and Tk (i, k = 1, 2, …, N, i ≠ k) is defined as follows:

 δ i,k =
f (ci) – f (ck) , on the scale of fitness

(ci − ck)T(ci − ck), on the scale of attributes

⎧
⎨
⎪

⎩⎪
. (6)

34

With respect to the dividable criterion, it is defined as the
maximum depth of the corresponding classification tree. With the
above definition, the reforming process of TEA is given below:

Step 1) Apply the polythetic division technique to cluster the N
tribes in S until the depth of the classification tree reaches
the predefined upper bound Df. Denote the resulting set of
groups as G' = {G1', G2', ..., GN''}, where N′ is the number
of groups in G′ and N ≤ 2Df .

Step 2) Apply the polythetic division technique to further cluster
the tribes in each group ′Gi ∈ ′G on the scale of attributes.
This clustering process continues until the depth of the
corresponding classification tree reaches the predefined
upper bound Da. Denote the set of obtained groups as G =
{G1, G2, …, GN}, where N is the number of groups in G
and N ≤ 2Df +Da .

Step 3) A new tribe ′Ti =< ′ci , ′di ,hi > is defined based on each

group Gi ∈ G. Suppose that Tbest
(i) =< cbest

(i) ,dbest
(i) ,hbest

(i) >∈Gi
is the tribe whose chief has the best fitness among all the
tribes in Gi. Then ′Ti is defined as

 ′ci = cbest
(i) , (7)

 ′di, j =
1
2
max
Tk∈Gi

(ck , j + dk , j)−minTk∈Gi
(ck , j − dk , j)⎡

⎣⎢
⎤
⎦⎥

, j = 1, 2, ..., n (8)

 ′hi = hbest
(i) . (9)

The N tribes derived from the groups in G compose a new
generation of S.

Figure 1 exemplifies the above reforming process on a one-
dimensional search space with S = {T1, T2, …, T10}, Df = 2, and
Da = 1. It can be observed that with Df = 2, the ten tribes in S are
divided into four groups on the scale of fitness, i.e., G1' = {T1, T3,
T7, T10}, G2' = {T4, T6, T8, T9}, G3' = {T2}, and G4' = {T5}. Then
the reforming process proceeds into the scale of attributes, as
indicated by the arc arrows in Figure 1. Tribes in the above four
groups are further clustered based on the attributes of their chiefs.
With Da=1, G1' and G2' are further divided into four groups as G1
= {T8, T9}, G2 = {T4, T6}, G3 = {T1, T3}, and G4 = {T7, T10}. G3'
and G4' are not further divided as they have only one tribe.
Consequently, with each of the six groups G1, G2, G3, G4, G3', and
G4' defining a tribe, the reforming process reorganizes a ten-tribe
society into a society of six tribes.

Figure 1. An example of the reforming process in TEA.

2.3 Self-advance
The probability for a tribe to self-advance depends on two factors:
the leading power of its chief and its self-advancing history. A
chief with better fitness is supposed to have the highest leading
power, while a larger value of the historical record suggests a
more successful self-advancing history. Suppose that in
comparison with Ti, the society S contains Fi tribes that have less
powerful chiefs and Hi tribes that have less successful self-
advancing history. The self-advancing probability of Ti is
calculated as follows:

 padv(i) =η − (η −1) N − IF ,H (i,k)
1≤k≤N

k≠i

∑⎡
⎣⎢

⎤
⎦⎥

, (10)

where η ≤ 1 is a coefficient and IF,H(i,k) is a function indicating
whether or not Ti surpasses Tk by satisfying one of the following
two criteria: (i) Fi + Hi > Fk + Hk or (ii) Fi + Hi = Fk + Hk and Fi >
Fk, i.e.,

 IF ,H (i,k) =
1, if (i) or (ii) satified
0, otherwise

⎧
⎨
⎪

⎩⎪
, (11)

From (10) and (11), it can be known that tribes with more
powerful chiefs and more successful self-advancing history are
given higher self-advancing probabilities, which is consistent with
the situations in tribal ecosystems.

To avoid the trouble of tuning η, the value of η is set as:

 η = exp E
Emax

⎛
⎝⎜

⎞
⎠⎟

 (12)

where E > 0 is the number of fitness evaluations (FEs) and Emax is
the predefined upper limit of E. By doing so, η increases from
one to e as the algorithm proceeds. The growing η, on the one
hand, facilitates TEA to explore the search space in the early
phase because a small η allows more tribes to do self-
advancement. On the other hand, as the η value increases, TEA
focuses more on exploiting several most promising tribes and thus
accelerates the convergence speed.

Based on the self-advancing probabilities calculated as above, a
subset of tribes is randomly selected from the society. The self-
advancing process of each selected tribe Ti iterates a direction
prediction phase and a directional advance phase. As shown in
Figure 2, detailed implementation of the above two phases are
described as follows:

1) Phase of Direction Prediction: In this phase, an advancing
direction advi = (advi,1, advi,2, …, advi,n) is predicted through the
cooperation of the tribal population in Ti. In detail, a set of M trial
points is sampled from the population according to a pre-
generated orthogonal array with n factors and three levels per
factor. The three levels correspond to three actions on a value,
which are increment, decrement, and unchanged, respectively.
Suppose that the k-th level combination in the orthogonal array is
denoted as comk = (comk,1, comk,2, …, comk,n), where comk,j ∈
[1,3] is the level of the j-th factor in comk, k = 1, 2, …, M, and
M = 3 log3 (3n−2)⎡⎢ ⎤⎥ . The k-th trial point vk is generated by ci + di ⊗
(comk – 2). Based on the fitness of the M trial points, the
advancing direction advi is predicted as

 advi, j = −2 + arg min
1≤lev≤3

f (vk)vk∈Vj ,lev
∑ , j = 1,2,…,n, (13)

Scale of Attributes

Sc
al

e
of

 F
itn

es
s

c1

c2

c3

c4

c5

c6

c7

c8 c9

c10

Fitness
Landscape

35

where Vj,lev = {vk | comk,j = lev, k = 1, 2, …, M, lev ∈ [1, 3]} is a
subset of the M trial points. To validate whether the above
prediction successfully predicts a beneficial direction, a trial point
z0 is generated as

 z0 = ci + di ⊗ advi . (14)

If f(z0) is better than f(ci), the prediction is successful. The self-
advancing process enters into the phase of directional advance for
seeking further improvement. Conversely, the prediction fails
when f(z0) is no better than f(ci). In this case, di is shrunk by
multiplying a parameter ρp. Suppose that α failures have occurred
consecutively for predicting a beneficial direction, α≥1. ρp is
calculated as max(0.1,0.9α) . The self-advancing process keeps
trying to predict a beneficial direction until the total ϕp of
unsuccessful prediction exceeds a predefined number Φp.

2) Phase of Directional Advance: The phase of directional
advance is performed only when a beneficial direction is
successfully predicted. In this phase, Ti continues to advance
along advi step by step. For each advancing step k (k≥1), a trail
point zk is generated as

 zk = zk−1 + di ⊗ advi . (15)

The step succeeds if f(zk) is better than f(zk–1). Otherwise, the step
fails and zk is replaced by zk–1. After each advancing step, di is
adjusted as

 di =
ρsdi , if f (zk−1) ≤ f (zk)
di ρs , otherwise

⎧
⎨
⎪

⎩⎪
, (16)

where ρs is calculated as max(0.1,0.9β) and β is the number of
consecutive successful (or unsuccessful) steps. The directional
advance continues until the total ϕs of unsuccessful steps exceeds
a predefined number Φs. Suppose that a total of λ steps have been
performed by then. ci is replaced by zλ and hi is updated as

 hi = exp f0 − f (ci)() f0⎡⎣ ⎤⎦ (17)

where f0 denotes the fitness of ci at the very beginning of the self-
advancing process.

The remaining problem of the above self-advancing process is
how to set Φp and Φs. Since the optimal settings of Φp and Φs
may vary in different problems or even different phases of the
algorithm, it is more desired that the parameters can be tuned
automatically after reasonable initial values are given. In this
paper, we design an adaption strategy that adjusts Φp and Φs based
on the improvement obtained. More specifically, the adjustment
of Φp is made according the relative improvement achieved in one
iteration of the self-advancing process, whereas the adjustment of
Φs is made based on the relative improvement obtained from one
step in the phase of directional advance. Detailed adaption rules
are listed as follows:

Rule 1) Φp (or Φs) is increased by one if the relative improvement
obtained in the current iteration (or step) exceeds the upper bound
ξmax, which is defined as

 ξmax = 10
1+ log10 (Δf)⎢⎣ ⎥⎦ , (18)

where Δf denotes the relative improvement obtained from the
previous iteration (or step).

Rule 2) Φp (or Φs) is reduced by one if the relative improvement
obtained in the current iteration (or step) drops below the lower
bound ξmin but remains non-zero. ξmin is defined as

 ξmin = min(εmin ,10
log10 (Δf)⎢⎣ ⎥⎦) . (19)

Rule 3) Φp (or Φs) is reduced by one if no improvement has been
achieved for two consecutive iterations (or steps).

Figure 2. Flowchart of the self-advancing process of a tribe Ti.

2.4 Synergistic Combination
Among the N tribes in the society S, the tribe whose chief has the
best fitness is termed the major tribe. Without loss of generality,
suppose that T1 is the major tribe. Then synergy between T1 and
each of the other (N−1) tribes occurs and generates (N−1) new
tribes. All the new tribes coexist with the original N tribes until
the reforms operator reorganizes S in the next generation. Denote
the new tribe generated by the synergy between T1 and Tk as Tk

syn.
The chief ck

syn of Tk
syn combines the attributes of c1 and ck as

 ck
syn =

ck , j , if rk , j ≤ (N − Rk) 2N
c1, j , otherwise

⎧
⎨
⎪

⎩⎪
, (20)

where rk,j ∈ (0, 1) is a normalized random number and Rk ∈ [1, N]
is the rank of Tk in order of ascending fitness values. The attribute
diversity and the historical record of Tk

syn are set as d0 and h0,
respectively.

From (20), it can be deduced that ck
syn is more likely to be c1,j

when Ri increases. Thus, the chief of a new tribe inclines to learn
from the chief of the major tribe if the other tribe in synergy has a
poor chief. The synergism process thus increases the chance for
the new chiefs to achieve good fitness.

2.5 Argumentation
TEA keeps a census U = [uj,k]nxm of the tribal society since the
beginning of the algorithm. Each element uj,k in the census U
records the number of tribal chiefs whose attribute on the j-th
dimension falls into the range of

Start

Initialize Φp

φp ← 0

Predict a promising
search direction advi and
generate a trial point z0

Yes

Ph
as

e
of

 D
ire

ct
io

n
Pr

ed
ic

tio
n

f(z0) < f(ci)

generate a trial
point zk

Initialize Φs

φs ← 0

k ← 1

φp ← φp+1

φp < Φp

φs < Φs

End

Yes

k ← k+1
Adjust Φp

No

No

Yes

No

Phase of D
irectional A

dvance

f(zk) < f(zk–1)

Shrink di Extend di

zk ←!zk–1

φs ←!φs+1

Adjust ΦsShrink di

YesNo

Update ci and hi

36

 seg(j,k) = l j +
(k −1)(u j − l j)

m
,l j +

k(u j − l j)
m

⎡
⎣⎢

⎤
⎦⎥

. (21)

The probability to augment into seg(j, k) is calculated based on the
reverse of uj,k as

 paug (j,k) =
1

1+ u j ,k

. (22)

By doing so, augmentation is biased towards areas with smaller
population.

Based on the probabilities in (22), the augmentation process
generates 2Df +Da new tribes, all of which will enter the society.
In detail, the chief ck

aug of the i-th new tribe Tk
aug is generated as

 ck , j
aug = l j + (K −1+ ri, j)(u j − l j) m , j = 1, 2, …,n, (23)

where ri,j ∈ (0, 1) is a normalized random number and K ∈ [1, m]
denotes the segment picked out by the roulette wheel selection
based on the probability distribution in (22). The attribute
diversity and the historical record of Tk

aug are set as d0 and h0,
respectively.

TEA completes an evolution cycle after performing the
augmentation operator. Since both the synergistic combination
and augmentation operators generate new tribes, the number of
tribes in the society rises, causing the N value to update after each
evolution cycle.

3. EXPERIMENTS AND DISCUSSIONS
In this section, TEA is applied to minimize a set of seventeen
benchmark functions with thirty dimensions (n = 30) [15][16].
Although the global minima of these functions are all zero, their
properties are significantly different. The first four functions f1 to
f4 are unimodal problems. Conducting experiments on these
unimodal functions helps us to analyze the local search ability of
TEA. The next eight functions f5 to f12 are multimodal functions,
each of which has a unique global optimum and multiple local
optima. Experiments on these multimodal functions provide a
systematic view into the ability of TEA in performing global
search and avoiding prematurity. The last five functions f13 to f17
are shifted & rotated multimodal functions proposed by
Suganthan et al. [16]. We test TEA on these functions for
evaluating its performance on complex problems. Detailed
definitions of the above test functions are given in Table 1. As
can be seen, each function is attached with an accuracy level,
which is the maximum error allowed for an acceptable solution.

Table 1 Benchmark Functions
Function Search Domain Accuracy Level

f1(x) = xi
2

i=1

n∑ [–100, 100]n 10-10

f2 (x) = xii=1

n∑ + xii=1

n∏
[–10, 10]n 10-10

f3(x) = x jj=1

i∑()2i=1

n∑ , y = x−o [–100, 100]n 10-10

f4 (x) = xi + 0.5⎢⎣ ⎥⎦
2

i=1

n∑ [–100, 100]n 10-10

f5 (x) = [100(xi+1 − xi)
2+(xi −1)

2]
i=1

n−1∑
[–30, 30]n 100

f6 (x) = − xi sin(xi)i=1

n∑ + 418.9829n

[–500, 500]n 10-10

f7 (x) = [xi
2 −10cos(2π xi)+10]i=1

D∑
[–5.12, 5.12]n 10-10

f8 (x) = −20exp −0.2 xi
2

i=1

n∑ n⎡
⎣⎢

⎤
⎦⎥
− exp cos(2π xi)i=1

n∑ n⎡
⎣

⎤
⎦ +1

[–32, 32]n 10-10

f9 (x) = xi
2

i=1

n∑ 4000 − cos(xi i)
i=1

n∏ +1

[–600, 600]n 10-10

f10 (x) =
π
30
{10sin2(π y1)+ (yi −1)

2[1+10sin2(π yi+1)]i=1

n−1∑ + (yn −1)
2}+ u(xi ,10,100,4)i=1

n∑ , where y=1+(x+1)/4 [–50, 50]n 10-10

f11(x) = 1 10{10sin
2(3π x1)+ (xi −1)[1+ sin

2(3π xi+1)]i=1

n∑ + (xn −1)
2[1+ sin2(2π xn)]}+ u(xi ,5,100,4)i=1

n∑
[–50, 50]n 10-10

f12 (x) = (ai, j sinα j + bi, j cosα j)j=1

n∑ − (ai, j sin x j + bi, j cos x j)j=1

n∑⎡
⎣

⎤
⎦
2

i=1

n∑

[–π, π]n 100

f13(x) = f8(z), z = (x − o)·M [–32, 32]n 21

f14(x) = f7(z), z = (x − o)·M [–5, 5]n 100

f15 (x) = 2−k cos 2π 3k (zi + 0.5)⎡⎣ ⎤⎦i=1

n∑{ }k=0

20∑ − n 2−k cos(3kπ)
k=0

20∑ , where z = (x − o)·M [–0.5, 0.5]n 20

f16 = f9 f5 (zi ,zi+1)()i=1

n−1∑ + f9 f5 (zn ,z1)() , where z = x − o + 1 [–5, 5]n 10

f17 (x) = F(zi ,zi+1)i=1

n−1∑ + F(zn ,z1) , where z = (x − o)·M [–100, 100]n 13

* In f10 and f11, the function u is defined as u(x,a,k,m) =
k(x − a)m , if x > a
k(−x − a)m , if x < −a
0, otherwise

⎧
⎨
⎪

⎩⎪
.

* In f12, ai,j and bi,j are random integers in the range of [–100, 100] and αj is a random number in the range of [–π, π], i=1,2,…,n, j=1,2,…,n.
* In f13 to f17 o denotes a random vector in the search domain and M denotes an n by n orthogonal matrix.

* In f17, the function F is defined as F(x, y) = 0.5 +
sin2(x2 + y2)− 0.5
1+ 0.001(x2 + y2)⎡⎣ ⎤⎦

2

37

To further validate the effectiveness and efficiency of TEA, its
results are compared with three representative EC algorithms:
evolutionary parallel local search (EPLS) [6], comprehensive
learning particle swarm optimization (CLPSO) [4], and an
adaptive differential evolution algorithm with an optional external
archive (JADE) [3]. For the sake of fairness in the comparisons,
all the four algorithms are programmed and complied with Visual
C++ 6.0 in Windows XP (Service Pack 2). EPLS, CLPSO, and
JADE use exactly the same parameter settings as their original
papers, while the parameters of TEA are set as m = 9, Df = 2, Da =
3, εmin = 10-3, and Φp = Φs = 2. Using 300,000 FEs as the
termination criterion (Emax = 300,000), the four algorithms report
their average results obtained from fifty independent trials for
comparison.

3.1 Unimodal Functions
Table 2 tabulates the results on the unimodal functions f1 to f4. As
can be observed, TEA achieves the best solution accuracy on f1
and f2, followed by JADE, CLPSO, and EPLS. JADE obtains the
best result on f3, but the Mann-Whitney test indicates that TEA is
still significantly better than EPLS and CLPSO. Each algorithm
except for EPLS is able to find the global minimum zero on the
non-continuous step function f4 with a 100% successful rate. In
general, TEA obtains the best solution accuracy on the four
unimodal functions.

Table 3 tabulates the average FEs number for the algorithms to
find the first acceptable solution. The successful rates, that is, the
percentage of successful trials in which acceptable solutions are
found, are also reported. From the table, it can be observed that
on f1, f2, and f4, TEA, JADE, and CLPSO all obtain 100%
successful rates on the accuracy level at 10-10. However, the
average FEs number needed by TEA is significantly less than
those of the other two algorithms. Take f1 as an example: the
average FEs number needed by TEA is 5596, which is less than
1/6 of the smallest average FEs number among the other three
algorithms (JADE: 35313). The large gap in the average FEs
number reveals the advantage of TEA in search speed. On f3,
TEA and JADE are the only two algorithms that find acceptable
solutions on the accuracy level at 10-10. JADE leads TEA in the
successful rate by 4% and the average FEs number needed by
JADE is smaller than that of TEA.

Table 2. Comparison of Solution Accuracy on Unimodal
Functions1

Func Alg Best Mean Std. Significance2

f1

EPLS 5.13×10-28 1.64×10-8 7.37×10-8 +1
CLPSO 5.15×10-24 2.36×10-23 1.32×10-23 +1
JADE 2.26×10-149 3.03×10-83 2.14×10-82 +1
TEA 0 0 0 -

f2

EPLS 8.01×10-14 6.59×10-4 3.58×10-3 +1
CLPSO 7.27×10-15 1.41×10-14 4.77×10-15 +1
JADE 2.15×10-76 1.16×10-30 8.19×10-30 +1
TEA 0 9.08×10-141 6.42×10-140 -

f3

EPLS 2.94×10-8 0.16596 0.51147 +1
CLPSO 68.817 170.75 48.718 +1
JADE 7.91×10-42 1.44×10-37 5.05×10-37 −1
TEA 5.03×10-41 6.43×10-10 3.18×10-9 -

f4

EPLS 0 0.92 1.9984 +1
CLPSO 0 0 0 0
JADE 0 0 0 0
TEA 0 0 0 -

1 The results marked in boldface are the best among the four algorithms.
2 ‘+1’, ‘−1’, and ‘0’ in the significance column indicate that compared to the result of TEA, the
annotated result is significantly worse, significantly better, or insignificantly different, respectively.

Table 3. Comparison of Search Speed & Convergence Reliability
on Unimodal Functions1

Func Average FEs Number Successful Rate (%)
EPLS CLPSO JADE TEA EPLS CLPSO JADE TEA

f1 183274 173335 35313 5596 76 100 100 100
f2 196110 235871 63435 54710 12 100 100 100
f3 - - 108117 208264 0 0 100 96
f4 138838 49624 9379 2211 64 100 100 100

1 The results marked in boldface are the best among the four algorithms.

Figure 3 depicts the convergence curves of the four algorithms by
plotting their median results obtained in the fifty trials along the
FEs number. As can be observed, on f1, f2, and f4, the
convergence curves of TEA are much steeper than those of the
other three algorithms. The advantage of TEA in search speed is
thus confirmed on these three functions. With respect to f3, the
convergence curve of JADE exhibits the fastest descending rate.
The convergence curve of TEA on f3 is close to that of JADE and
is much steeper than those of EPLS and CLPSO.

Figure 3. Convergence curves of EPLS, CLPSO, JADE, and
TEA on unimodal functions f1 to f4.
The above results prove that TEA is capable of finding high-
quality solutions to unimodal problems at fast speed. Compared
to the other three algorithms, TEA possesses general advantage in
both terms of solution accuracy and search speed. This is because
the adaptive self-advancing processes of tribes endow TEA with
powerful local search ability. Besides, since tribes with fitter
chiefs and better self-advancing history are given higher self-
advancing probabilities, TEA can bias exploitation towards
promising areas where better solutions are more likely to be
found. By doing so, TEA accelerates the convergence towards the
global optimum.

3.2 Multimodal Functions
According to the results reported in Table 4, among the eight
multimodal functions f5 to f12, the proposed TEA obtains the best
average results on f6, f7, f8, f9, f10, f11, and f12. Specifically, TEA
completely avoids premature convergence on f6 to f11. The other
algorithm that can do so is CLPSO. However, as shown by the
average results on f8 to f11, the solution accuracy of CLPSO is
significantly worse because CLPSO has to sacrifice the
convergence speed for performing global exploration [4].

Table 5 reports the average FEs numbers and the successful rates
for the four algorithms to find acceptable solutions on f5 to f12. As
can be observed from the table, TEA always achieves the highest
successful rate with the minimum or second minimum number of
FEs. Specifically, compared to the other algorithms that achieve

0.0 1.5x105 3.0x105
10-50
10-40
10-30
10-20
10-10
100
1010

0.0 1.5x105 3.0x105
10-50
10-40
10-30
10-20
10-10
100
1010
1020
1030

0.0 1.5x105 3.0x105
10-30
10-20
10-10
100
1010

0.0 5.0x104 1.0x105
100

102

104

106

 EPLS
 CLPSO
 JADE
 TEA

(a) f
1 (b) f

2

(c) f
3

(d) f
4

38

100% successful rates on f7 to f11, the FEs number needed by TEA
is much smaller.

Table 4. Comparison of Solution Accuracy on Multimodal
Functions1

Func Alg Best Mean Std. Significance2

f5

EPLS 0.3605 71.27 45.60 +1
CLPSO 0.09826 18.07 21.00 −1
JADE 0 0.07973 0.5638 −1
TEA 10.46 25.33 14.47 -

f6

EPLS 355.3 934.1 341.12 +1
CLPSO 3.82×10-4 3.82×10-4 3.60×10-13 0
JADE 3.82×10-4 11.84 35.892 +1
TEA 3.82×10-4 3.82×10-4 3.06×10-13 -

f7

EPLS 8.955 16.62 5.018 +1
CLPSO 0 0 0 0
JADE 0 0 0 0
TEA 0 0 0 -

f8

EPLS 5.46×10-11 1.975 0.7895 +1
CLPSO 7.55×10-15 8.12×10-15 2.42×10-15 +1
JADE 4.00×10-15 4.00×10-15 0 0
TEA 4.00×10-15 4.00×10-15 0 -

f9

EPLS 0 0.01632 0.02856 +1
CLPSO 0 8.05×10-15 2.99×10-14 +1
JADE 0 1.45×10-5 1.05×10-3 +1
TEA 0 0 0 -

f10

EPLS 2.25×10-27 0.02695 0.08587 +1
CLPSO 3.30×10-25 1.94×10-24 1.16×10-24 +1
JADE 1.57×10-32 1.57×10-32 8.29×10-48 0
TEA 1.57×10-32 1.57×10-32 8.29×10-48 -

f11

EPLS 1.26×10-20 0.3626 0.7067 +1
CLPSO 1.27×10-23 8.47×10-23 5.41×10-23 +1
JADE 1.35×10-31 1.35×10-31 1.77×10-46 0
TEA 1.35×10-31 1.35×10-31 1.77×10-46 -

f12

EPLS 565.6 10682 7665.6 +1
CLPSO 2867.3 7860.1 2666.4 +1
JADE 1.84×10-12 9655.5 5822.3 +1
TEA 0.1016 4749.1 4105.8 -

1 The results marked in boldface are the best among the four algorithms.
2 ‘+1’, ‘−1’, and ‘0’ in the significance column indicate that compared to the result of TEA, the
annotated result is significantly worse, significantly better, or insignificantly different, respectively.

Table 5. Comparison of Search Speed & Convergence Reliability
on Multimodal Functions1

Func Average FEs Number Successful Rate (%)
EPLS CLPSO JADE TEA EPLS CLPSO JADE TEA

f5 79265 89115 11088 42471 88 100 100 100
f6 - 149170 114205 163962 0 100 90 100
f7 - 210691 158198 112507 0 100 100 100
f8 239755 107912 56732 10293 2 100 100 100
f9 188330 225950 38760 12005 38 100 98 100
f10 174678 160845 33025 9343 68 100 100 100
f11 206296 177754 42602 23496 46 100 100 100
f12 - - 109457 116074 0 0 4 6

1 The results marked in boldface are the best among the four algorithms.

The above results demonstrate the effectiveness and efficiency of
TEA in solving multimodal problems. Figure 4 depicts the
convergence curves of the four algorithms on f5 to f12 to further
illustrate the search behavior of TEA on multimodal problems.
From the figure, it is noticed that the search speed of TEA can be
relatively slow in the early stage of the optimization procedure (as
shown in Figure 4 (b), (c), and (g)). This is because TEA is trying
to identify the basin of the global minimum from the set of areas
defined by the tribes. Once the basin is found, the self-advancing
process of the corresponding tribe will quickly bring the search
procedure to the precise location of the global optimum.

Figure 4. Convergence curves of EPLS, CLPSO, JADE, and
TEA on multimodal functions f5 to f12.

3.3 Shifted & Rotated Multimodal Functions
The shifted & rotated multimodal functions f13 to f17 are
particularly difficult to optimize because they comprise a huge
number of local optima and their dimensions are non-separable.
Table 6 shows that none of the four algorithms succeeds in
finding the global optima of these functions. Nevertheless, TEA
still obtains the best or the second best average results on four of
the five functions. Meanwhile, as reported by Table 7, TEA is the
only algorithm that finds acceptable solutions with over 80%
successful rates on all the five functions. All the above results
show that even in complex problems, TEA can maintain certain
advantages in terms of solution accuracy, search speed, and
reliability. These advantages can also be observed from the
convergence curves depicted in Figure 5.

Table 6. Comparison of Solution Accuracy on Shifted & Rotated
Functions1

Func Alg Best Mean Std. Significance2

f13

EPLS 20.04 20.25 0.09444 −1
CLPSO 20.85 20.95 0.04492 +1
JADE 20.77 20.93 0.04796 +1
TEA 20.14 20.29 0.06480 -

f14

EPLS 51.74 111.65 26.80 +1
CLPSO 73.78 122.02 18.53 +1
JADE 22.52 33.58 4.483 −1
TEA 26.86 59.76 13.70 -

f15

EPLS 22.51 29.85 3.689 +1
CLPSO 22.30 26.12 1.705 +1
JADE 26.85 32.91 3.622 +1
TEA 10.29 15.86 2.062 -

f16

EPLS 1.437 3.708 1.674 −1
CLPSO 0.5345 1.327 0.413 −1
JADE 1.312 1.572 0.124 −1
TEA 2.309 5.587 1.967 -

f17

EPLS 12.45 13.31 0.3259 +1
CLPSO 12.03 12.88 0.1998 +1
JADE 12.98 13.26 0.1385 +1
TEA 11.64 12.54 0.3404 -

1 The results marked in boldface are the best among the four algorithms.
2 ‘+1’, ‘−1’, and ‘0’ in the significance column indicate that compared to the result of
TEA, the annotated result is significantly worse, significantly better, or
insignificantly different, respectively.

0.0 1.5x105 3.0x105
10-5

100

105

1010

0.0 1.5x105 3.0x105
10-4

101

106

0.0 1.5x105 3.0x105
10-15

10-5

105

0.0 1.5x105 3.0x105
10-50
10-40
10-30
10-20
10-10
100
1010

0.0 1.5x105 3.0x105
10-15
10-10
10-5
100
105

0.0 1.5x105 3.0x105
10-30
10-20
10-10
100
1010

0.0 1.5x105 3.0x105
10-30
10-20
10-10
100
1010

0 150000 300000
103

105

107

109

(a) f
5 (b) f

6
(c) f

7

(e) f
9

(d) f
8

(f) f
10

 EPLS
 CLPSO
 JADE
 TEA

(g) f
11 (h) f

12

39

Table 7. Comparison of Search Speed & Convergence Reliability1

Func Average FEs Number Successful Rate (%)
EPLS CLPSO JADE TEA EPLS CLPSO JADE TEA

f13 14651 95355 183811 48703 100 86 82 100
f14 25355 242946 134641 32973 32 13 100 100
f15 - - - 27708 0 0 0 100
f16 13781 86337 34305 95808 98 100 100 98
f17 23489 168756 203415 49684 16 76 8 86

1 The results marked in boldface are the best among the four algorithms.

Figure 5. Evolution curves of EPLS, CLPSO, JADE, and TEA
on shifted & rotated multimodal functions f12 to f17.

4. CONCLUSION
A new EC mechanism called TEA has been developed from the
evolution mechanism of tribal ecosystems. An essential feature
that differentiates TEA from other EC algorithms is that it uses
the concept of tribes to extend the basic evolution unit from
discrete solution points to solution sets in different subareas of the
search space. Specifically, a tribe in TEA describes the solution
set in a particular subarea with the locally best-so-far solution
analogous to the tribal chief and the radius of the subarea
analogous to the tribal diversity. The search experience in the
subarea is also recorded as the self-advancing history of the tribe.
Simulating tribal ecosystems, four evolution operators are
designed for evolving tribes from roughly estimated promising
subareas to the precise location of the global optimum.

The promising results of TEA on a diverse set of benchmark
functions reveal the significance of our research in twofold. First,
in terms of algorithmic design, we show that extending the basic
evolution unit from solution points to solution sets in different
subareas in the search space is beneficial for improving the
performance of EC algorithms. This is because the extension
allows more useful information to be involved in the evolution
and thus facilitates the use of such information for helping the
search procedure. Encouraged by the promising performance of
TEA, it is worthwhile to investigate how the basic evolution unit
can be further extended for incorporating more useful information
efficiently. Second, in terms of performance, TEA provides an
effective way for finding high-quality solutions at fast speed.
Experimental results show that TEA has a general advantage
against a number of representative EC algorithms, especially in
terms of the search speed. It will be interesting to study the
performance of TEA in practical problems.

5. ACKNOWLEDGEMENTS
This work was supported in part by the National High-
Technology Research and Development Program (863 Program)
of China No.2013AA01A212, in part by the NSFC for
Distinguished Young Scholars 61125205, in part by the NSFC
No. 61332002, No. 61300044 and No. 61170220.

6. REFERENCES
[1] J. Zhang, H. S. –H. Chung, and W. –L. Lo, “Clustering-based

adaptive crossover and mutation probabilities for genetic
algorithms,” IEEE Trans. Evol. Comput, vol. 11, no. 3, pp. 326 –
335, June 2007.

[2] Z. –H. Zhan, J. Zhang, Y. Li, and H. S. –H. Chung, “Adaptive
particle swarm optimization,” IEEE Trans. Syst. Man. Cyber. – B,
vol. 39, no. 6, pp. 1362 – 1381, Dec. 2009.

[3] J. Zhang and A. C. Sanderson, “JADE: adaptive differential
evolution with optional external archive,” IEEE Trans. Evol.
Comput., vol. 13, no. 5, pp. 945 – 959, Oct. 2009.

[4] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar,
“Comprehensive learning particle swarm optimizer for global
optimization of multimodal functions,” IEEE Trans. Evolutionary
Computation, vol.10, no.3, pp.281-295, Jun. 2006.

[5] Y. Wang, Z. Cai, and Q. Zhang, “Differential evolution with
composite trial vector generation strategies and control parameters,”
IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 55 – 66, Feb. 2011.

[6] G. Guo and S. Yu, “Evolutionary Parallel Local Search for Function
Optimization,” IEEE Trans. Syst. Man. Cyber. – B, vol. 33, no. 6, pp.
864 – 876, Dec. 2003.

[7] X. Li, “Niching without niching parameters: particle swarm
optimization using a ring topology,” IEEE Trans. Evolutionary
Computation, vol. 14, no. 1, pp. 150-169, Feb. 2010.

[8] X. Chen, Y. –W. Ong, M. –H. Lim, and K. C. Tan, “A multi-facet
survey on memetic algorithms,” IEEE Trans. Evol. Comput., vol. 15,
no. 5, pp. 591 – 607, Oct. 2011.

[9] Y.-S. Ong, M.-H. Lim, N. Zhu, and K.-W. Wong, “Classification of
adaptive memetic algorithms: a comparative study,” IEEE Trans.
Syst. Man. Cyber. – B, vol. 36, no. 1, pp. 141 – 152, Feb. 2006.

[10] T. Park and K. R. Ryu, “A dual-population genetic algorithm for
diversity control,” IEEE Trans. Evol. Comput., vol. 14, no. 6, pp.
865 – 884, Dec. 2010.

[11] H. Kwasnicka and M. Przewozniczek, “Multi-population pattern
searching algorithm: A new evolutionary method based on the idea
of messy genetic algorithms,” IEEE Trans. Evol. Comput., vol. 15,
no. 5, pp. 715 – 732, Oct. 2011.

[12] M. H. Fried, The Notion of Tribe, California: Cummings Publishing
Company, 1975.

[13] fA. Hedayat, N. Sloane, and J. Stufken, Orthogonal Arrays, Theory
and Applications. New York: Springer-Verlag, 1999.

[14] B.S. Everitt, S. Landau,and M. Leese, Cluster Analysis (4th Edition),
Oxford University Press, 2001.

[15] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made
faster,” IEEE Trans. Evolutionary Computation, vol.3, no.2, pp.82-
102, Jul. 1999.

[16] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A.
Auger, S. Tiwarki, “Problem definitions and evaluation criteria for
the CEC 2005 special session on real-parameter optimization,”
Technical Report, Nanyang Technological University, Singapore,
and KanGAL Report Number 2005005, May 2005.

0 150000 300000
20.1

21.1

22.1

0 150000 300000
101

102

103

104

0 150000 300000
10

30

50
70
90

0 150000 300000
100

103

106

0 150000 300000

13

14

15
 EPLS
 CLPSO
 JADE
 TEA

(a) f
13

(b) f
14

(c) f
15

(d) f
16

(e) f
17

40

