
A Tribal Ecosystem Inspired Algorithm (TEA)  
For Global Optimization 

Ying Lin a, Jing-Jing Li b (Corresponding Author), Jun Zhang c and Meng Wan d 
a Department of Psychology, Sun Yat-sen University  

b School of Computer Science, South China Normal University 
c School of Advanced Computing, Sun Yat-sen University 

d Center for Science and Technology Development, Ministry of Education 
jingjing.li1124@gmail.com 

 
ABSTRACT 
Evolution mechanisms of different biological and social systems 
have inspired a variety of evolutionary computation (EC) 
algorithms.  However, most existing EC algorithms simulate the 
evolution procedure at the individual-level.  This paper proposes a 
new EC mechanism inspired by the evolution procedure at the 
tribe-level, namely tribal ecosystem inspired algorithm (TEA).  In 
TEA, the basic evolution unit is not an individual that represents a 
solution point, but a tribe that covers a subarea in the search 
space.  More specifically, a tribe represents the solution set 
locating in a particular subarea with a coding structure composed 
of three elements: tribal chief, attribute diversity, and advancing 
history. The tribal chief represents the locally best-so-far solution, 
the attribute diversity measures the range of the subarea, and the 
advancing history records the local search experience. This way, 
the new evolution unit provides extra knowledge about 
neighborhood profiles and search history.  Using this knowledge, 
TEA introduces four evolution operators, reforms, self-advance, 
synergistic combination, and augmentation, to simulate the 
evolution mechanisms in a tribal ecosystem, which evolves the 
tribes from potentially promising subareas to the global optimum.  
The proposed TEA is validated on benchmark functions. 
Comparisons with three representative EC algorithms confirm its 
promising performance. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – heuristic methods. 

General Terms 
Algorithms, Experimentation 

Keywords 
Evolutionary computation (EC), global optimization, tribe 

1. INTRODUCTION 
Evolutionary computation (EC) is a kind of probabilistic 
optimization algorithms inspired by the evolution mechanisms of 
complex systems in nature.  Given an optimization problem, an 

EC algorithm is initialized with a population in which each 
individual represents a candidate solution.  The fitness of 
individuals is evaluated in a way that the quality of represented 
solutions can be reflected proportionally.  Evolution operators are 
designed to implement the principles of inheritance, variation, and 
selection in natural evolution.  The EC algorithm performs the 
evolution operators for evolving the population towards the global 
optimum in an iterative manner. 

The above evolution steps allow EC algorithms to solve an 
optimization problem without requiring any problem-specific 
knowledge other than a quantitative criterion for evaluating the 
quality of solutions.  Such flexibility and simplicity encourage the 
applications of EC algorithms in a wide range of fields.  However, 
despite the success of EC algorithms on solving many problems, 
they still suffer from the weakness of lengthy computational time 
and potentially premature convergence.  Therefore, how to design 
algorithms that can find the global optimum in short time remains 
to be one of the most promising yet challenging research topics in 
the field of EC. 

In the literature, the most notable and promising methods for 
addressing the above topic include adapting parameters to strike a 
dynamic balance between global exploration and local 
exploitation [1]-[3], designing novel evolution operators to 
achieve better search efficiency [4][5], applying niching methods 
to preserve the diversity of the population [6][7], hybridizing with 
local search techniques [8][9], and using multi-population 
strategies [10][11], etc.  The underlying strategies of the above 
methods for improving the optimization accuracy and efficiency 
are based on introducing sophisticated operations or refinement in 
the entire optimization process.  However, their algorithms remain 
solution-based.  That is, the basic evolution unit in these EC 
algorithms is solutions - discrete points in the search space.  
Nevertheless, a solution can only provide the position and quality 
information of itself, but cannot provide information about the 
surrounding area (neighborhood).  The lack of neighborhood 
information is the essential cause of bind and repetitive search, 
slowing down the search speed or even causing prematurity. 

A tribe is a social group of people that unite under one chief and 
share similarities in physical and cultural attributes.  In a tribal 
ecosystem comprising heterogeneous tribes, a tribe seeks 
development from both inner- and inter-tribe cooperation [12].  
Inspired by the evolution mechanisms in tribal ecosystems, this 
paper proposes a new EC mechanism, namely tribal ecosystem 
inspired algorithm (TEA).  In TEA, each tribe is mapped to the 
solution set in a particular subarea in the search space.  
Specifically, the best solution found in the subarea is analogous to 
the tribal chief and the range of the subarea is interpreted as the 
diversity of the tribe in attributes.  The search experience of 
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exploiting the subarea is also attached to the tribe as a record of its 
self-advancing history.  By doing so, TEA is differentiated from 
traditional solution-based EC algorithms as the basic evolution 
unit has been changed from discrete solution points to solution 
sets in different subareas in the search space. 

Given an optimization problem, TEA initially partitions the search 
space into a set of zones with uniform size and initializes the tribal 
society by founding tribes on a subset of evenly distributed zones.  
After initialization, TEA performs four novel operators iteratively 
to simulate the evolution procedure of real tribes.  In each 
generation, a reforms operator is first performed to reorganize the 
structure of the tribal society based on the similarities of existing 
tribes.  An existing tribe may split into new tribes, merge into 
another tribe, or remain unchanged.  Then a self-advance operator 
is carried out to simulate the process that a tribe seeks 
development through inner cooperation.  As in tribal ecosystems, 
TEA gives tribes with fitter chiefs and more successful self-
advancing history large opportunities to undergo self-advance.  
The inner-tribe cooperation in the self-advancing process brings in 
homogeneity, which is reflected by a decreasing diversity in the 
attributes of tribes.  Thirdly, a synergistic combination operator is 
executed to emulate the inter-communication among tribes.  New 
tribes are formed by combining attributes of existing tribes.  
Finally, TEA uses an augmentation operator to imitate the process 
that the tribal society extends to less populated areas in seek of 
more living resources.  Such augmentation process results in the 
formation of new tribes in less explored subareas of the search 
space. 

Using tribes as the basic evolution unit brings TEA a number of 
benefits.  Firstly, the reforms operator compels the resulting tribes 
to represent solution sets in subareas different from each other.  
As a result, TEA avoids converging in a particular subarea and 
reduces the possibility of prematurity.  Secondly, with the tribal 
structure, not only solutions, but also information of their 
surrounding neighborhoods, are inherited from generation to 
generation.  The impact of the neighborhood information is 
twofold.  First, it facilitates subsequent exploitation in their 
neighborhoods.  Second, it guides TEA to efficiently identify 
promising subareas in the search space.  The effectiveness and 
efficiency of TEA is validated on a diverse set of benchmark 
functions.  Comparisons of TEA with a number of representative 
EC algorithms confirm the advantage of the tribal structure. 

The remaining sections of this paper are organized as follows.  
Section 2 introduces details of the proposed TEA.  Experimental 
results and comparisons are displayed in Section 3.  Section 4 
draws a conclusion to the whole paper. 

2. THE PROPOSED TEA 
Without loss of generality, we introduce the proposed TEA in the 
context of the following n-dimensional minimization problem:

  

 
min
l≤x≤u

f (x) , (1) 

where x is a candidate solution in the search space [l, u] and f(⋅) is 
the fitness function.  In TEA, each variable in the optimization 
problem is considered as a personal attribute and a society S of N 
tribes is evolved.  Each tribe Ti is characterized by a tribal chief ci, 
an attribute diversity di, and a historical record hi, i.e., 

  Ti = <ci, di, hi>. (2)  

The chief ci = (ci,1, ci,2, …, ci,n) is the one that achieves the best 
fitness in Ti.  ci,j denotes the j-th attribute of ci.  The diversity di = 
(di,1, di,2, …, di,n) measures the diversity of Ti on all the n 
attributes.  The smaller di,j is, the more homogeneity Ti has on the 
j-th attribute.  With ci as the centroid and di as the radius, the 
coverage of Ti can be described as [ci − di, ci + di].  The historical 
record hi records the self-advancing history of Ti.  A larger hi 
value implies a greater success of Ti in the previous self-
advancing process.  Treating tribes coded by the above structure 
as the basic evolution unit, the evolution procedure of TEA 
comprises the following five steps. 

2.1 Initialization 
In the initialization phase, TEA chooses a parameter m and 
divides each dimension of the search space into m even segments.  
The search space is thus partitioned into (mn) zones with uniform 
size.  M zones are selected from the search space according to a 
pre-generated orthogonal array [13], where M is the total of level 
combinations in the array.  The tribal society S is initialized with 
the chief of each tribe randomly generated in a selected zone.  
Suppose that ‘⊗’ denotes a inner multiplication operator between 
two vectors with equal dimensionality. Then the initialization of ci 
can be formulated as 

 ci = l + (comi + ri −1)⊗ (u− l) /m , (3)
 

where ri ∈ (0,1)n is an n-dimensional normalized random vector 
and comi ∈ [1,m]n is the i-th level combination in the orthogonal 
array.  The attribute diversity di and the historical record hi are 
initialized as their initial values d0 and h0, respectively.  For the 
sake of simplicity in the implementation, d0 and h0 are calculated 
here by 

 d0 = (u− l) m , (4) 

 h0 = exp(εmin ) , (5) 

where εmin ∈ (0, 1) is a predefined constant. 

The orthogonal property of orthogonal arrays guarantees that the 
M selected zones are uniformly distributed in the search space 
[13].  The tribal society initialized by the above method is thus 
able to scan the search space evenly, which helps TEA to gain a 
general image of the overall fitness distribution. 

2.2 Reforms 
The tribes are reformed by clustering existing tribes on both scales 
of fitness and attributes.  A clustering technique termed polythetic 
division is applied for doing so.  This technique is used because it 
can achieve satisfying clustering performance without the need of 
setting extra parameters or using iterative optimization procedure.  
Due to length limit, please refer to [14] for details of polythetic 
division. Detailed steps of the reform process are introduced 
afterwards. 

Successful application of polythetic division requires a distance 
metric and a criterion for judging whether a group can be further 
divided.  In the proposed TEA, the distance δi,k between two tribes 
Ti and Tk (i, k = 1, 2, …, N, i ≠ k) is defined as follows:  

 δ i,k =
f (ci ) – f (ck ) , on the scale of fitness

(ci − ck )T(ci − ck ), on the scale of attributes

⎧
⎨
⎪

⎩⎪
. (6) 
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With respect to the dividable criterion, it is defined as the 
maximum depth of the corresponding classification tree.  With the 
above definition, the reforming process of TEA is given below: 

Step 1)  Apply the polythetic division technique to cluster the N 
tribes in S until the depth of the classification tree reaches 
the predefined upper bound Df.  Denote the resulting set of 
groups as G' = {G1', G2', ..., GN''}, where N′ is the number 
of groups in G′ and N ≤ 2Df . 

Step 2) Apply the polythetic division technique to further cluster 
the tribes in each group ′Gi ∈ ′G on the scale of attributes.  
This clustering process continues until the depth of the 
corresponding classification tree reaches the predefined 
upper bound Da.  Denote the set of obtained groups as G = 
{G1, G2, …, GN}, where N is the number of groups in G 
and N ≤ 2Df +Da . 

Step 3) A new tribe ′Ti =< ′ci , ′di ,hi >  is defined based on each 

group Gi ∈ G.  Suppose that Tbest
(i ) =< cbest

(i ) ,dbest
(i ) ,hbest

(i ) >∈Gi  
is the tribe whose chief has the best fitness among all the 
tribes in Gi.  Then ′Ti  is defined as 

 ′ci = cbest
(i ) , (7) 

 ′di, j =
1
2
max
Tk∈Gi

(ck , j + dk , j )−minTk∈Gi
(ck , j − dk , j )⎡

⎣⎢
⎤
⎦⎥

, j = 1, 2, ..., n (8) 

 ′hi = hbest
(i ) . (9) 

The N tribes derived from the groups in G compose a new 
generation of S. 

Figure 1 exemplifies the above reforming process on a one-
dimensional search space with S = {T1, T2, …, T10}, Df = 2, and 
Da = 1.  It can be observed that with Df = 2, the ten tribes in S are 
divided into four groups on the scale of fitness, i.e., G1' = {T1, T3, 
T7, T10}, G2' = {T4, T6, T8, T9}, G3' = {T2}, and G4' = {T5}.  Then 
the reforming process proceeds into the scale of attributes, as 
indicated by the arc arrows in Figure 1.  Tribes in the above four 
groups are further clustered based on the attributes of their chiefs.  
With Da=1, G1' and G2' are further divided into four groups as G1 
= {T8, T9}, G2 = {T4, T6}, G3 = {T1, T3}, and G4 = {T7, T10}.  G3' 
and G4' are not further divided as they have only one tribe.  
Consequently, with each of the six groups G1, G2, G3, G4, G3', and 
G4' defining a tribe, the reforming process reorganizes a ten-tribe 
society into a society of six tribes. 

 
Figure 1. An example of the reforming process in TEA. 

2.3  Self-advance 
The probability for a tribe to self-advance depends on two factors: 
the leading power of its chief and its self-advancing history.  A 
chief with better fitness is supposed to have the highest leading 
power, while a larger value of the historical record suggests a 
more successful self-advancing history.  Suppose that in 
comparison with Ti, the society S contains Fi tribes that have less 
powerful chiefs and Hi tribes that have less successful self-
advancing history.  The self-advancing probability of Ti is 
calculated as follows: 

 padv(i) =η − (η −1) N − IF ,H (i,k)
1≤k≤N

k≠i

∑⎡
⎣⎢

⎤
⎦⎥

, (10) 

where η ≤ 1 is a coefficient and IF,H(i,k) is a function indicating 
whether or not Ti surpasses Tk by satisfying one of the following 
two criteria: (i) Fi + Hi > Fk + Hk or (ii) Fi + Hi = Fk + Hk and Fi > 
Fk, i.e.,  

 IF ,H (i,k) =
1, if (i) or (ii) satified
0, otherwise

⎧
⎨
⎪

⎩⎪
, (11) 

From (10) and (11), it can be known that tribes with more 
powerful chiefs and more successful self-advancing history are 
given higher self-advancing probabilities, which is consistent with 
the situations in tribal ecosystems. 

To avoid the trouble of tuning η, the value of η is set as: 

 η = exp E
Emax

⎛
⎝⎜

⎞
⎠⎟

 (12) 

where E > 0 is the number of fitness evaluations (FEs) and Emax is 
the predefined upper limit of E.  By doing so, η increases from 
one to e as the algorithm proceeds.  The growing η, on the one 
hand, facilitates TEA to explore the search space in the early 
phase because a small η allows more tribes to do self-
advancement.  On the other hand, as the η value increases, TEA 
focuses more on exploiting several most promising tribes and thus 
accelerates the convergence speed. 

Based on the self-advancing probabilities calculated as above, a 
subset of tribes is randomly selected from the society.  The self-
advancing process of each selected tribe Ti iterates a direction 
prediction phase and a directional advance phase.  As shown in 
Figure 2, detailed implementation of the above two phases are 
described as follows: 

1) Phase of Direction Prediction: In this phase, an advancing 
direction advi = (advi,1, advi,2, …, advi,n) is predicted through the 
cooperation of the tribal population in Ti.  In detail, a set of M trial 
points is sampled from the population according to a pre-
generated orthogonal array with n factors and three levels per 
factor.  The three levels correspond to three actions on a value, 
which are increment, decrement, and unchanged, respectively. 
Suppose that the k-th level combination in the orthogonal array is 
denoted as comk = (comk,1, comk,2, …, comk,n), where comk,j ∈ 
[1,3] is the level of the j-th factor in comk, k = 1, 2, …, M, and 
M = 3 log3 (3n−2)⎡⎢ ⎤⎥ .  The k-th trial point vk is generated by ci + di ⊗ 
(comk – 2).  Based on the fitness of the M trial points, the 
advancing direction advi is predicted as 

 advi, j = −2 + arg min
1≤lev≤3

f (vk )vk∈Vj ,lev
∑ , j = 1,2,…,n, (13) 
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where Vj,lev = {vk | comk,j = lev, k = 1, 2, …, M, lev ∈ [1, 3]} is a 
subset of the M trial points.  To validate whether the above 
prediction successfully predicts a beneficial direction, a trial point 
z0 is generated as 

 z0 = ci + di ⊗ advi . (14) 

If f(z0) is better than f(ci), the prediction is successful.  The self-
advancing process enters into the phase of directional advance for 
seeking further improvement.  Conversely, the prediction fails 
when f(z0) is no better than f(ci).  In this case, di is shrunk by 
multiplying a parameter ρp.  Suppose that α failures have occurred 
consecutively for predicting a beneficial direction, α≥1.  ρp is 
calculated as max(0.1,0.9α ) .  The self-advancing process keeps 
trying to predict a beneficial direction until the total ϕp of 
unsuccessful prediction exceeds a predefined number Φp. 

2) Phase of Directional Advance: The phase of directional 
advance is performed only when a beneficial direction is 
successfully predicted.  In this phase, Ti continues to advance 
along advi step by step.  For each advancing step k (k≥1), a trail 
point zk is generated as 

 zk = zk−1 + di ⊗ advi . (15) 

The step succeeds if f(zk) is better than f(zk–1).  Otherwise, the step 
fails and zk is replaced by zk–1.  After each advancing step, di is 
adjusted as 

 di =
ρsdi , if f (zk−1) ≤ f (zk )
di ρs , otherwise

⎧
⎨
⎪

⎩⎪
, (16) 

where ρs is calculated as max(0.1,0.9β )  and β is the number of 
consecutive successful (or unsuccessful) steps.  The directional 
advance continues until the total ϕs of unsuccessful steps exceeds 
a predefined number Φs.  Suppose that a total of λ steps have been 
performed by then.  ci is replaced by zλ and hi is updated as 

 hi = exp f0 − f (ci )( ) f0⎡⎣ ⎤⎦  (17) 

where f0 denotes the fitness of ci at the very beginning of the self-
advancing process. 

The remaining problem of the above self-advancing process is 
how to set Φp and Φs.  Since the optimal settings of Φp and Φs 
may vary in different problems or even different phases of the 
algorithm, it is more desired that the parameters can be tuned 
automatically after reasonable initial values are given.  In this 
paper, we design an adaption strategy that adjusts Φp and Φs based 
on the improvement obtained.  More specifically, the adjustment 
of Φp is made according the relative improvement achieved in one 
iteration of the self-advancing process, whereas the adjustment of 
Φs is made based on the relative improvement obtained from one 
step in the phase of directional advance.  Detailed adaption rules 
are listed as follows: 

Rule 1) Φp (or Φs) is increased by one if the relative improvement 
obtained in the current iteration (or step) exceeds the upper bound 
ξmax, which is defined as 

 ξmax = 10
1+ log10 (Δf )⎢⎣ ⎥⎦ , (18) 

where Δf denotes the relative improvement obtained from the 
previous iteration (or step). 

Rule 2) Φp (or Φs) is reduced by one if the relative improvement 
obtained in the current iteration (or step) drops below the lower 
bound ξmin but remains non-zero.  ξmin is defined as 

 ξmin = min(εmin ,10
log10 (Δf )⎢⎣ ⎥⎦ ) . (19) 

Rule 3) Φp (or Φs) is reduced by one if no improvement has been 
achieved for two consecutive iterations (or steps). 

 
Figure 2. Flowchart of the self-advancing process of a tribe Ti. 

2.4 Synergistic Combination 
Among the N tribes in the society S, the tribe whose chief has the 
best fitness is termed the major tribe.  Without loss of generality, 
suppose that T1 is the major tribe.  Then synergy between T1 and 
each of the other (N−1) tribes occurs and generates (N−1) new 
tribes.  All the new tribes coexist with the original N tribes until 
the reforms operator reorganizes S in the next generation.  Denote 
the new tribe generated by the synergy between T1 and Tk as Tk

syn.  
The chief ck

syn of Tk
syn combines the attributes of c1 and ck as 

 ck
syn =

ck , j , if rk , j ≤ (N − Rk ) 2N
c1, j , otherwise

⎧
⎨
⎪

⎩⎪
, (20) 

where rk,j ∈ (0, 1) is a normalized random number and Rk ∈ [1, N] 
is the rank of Tk in order of ascending fitness values.  The attribute 
diversity and the historical record of Tk

syn are set as d0 and h0, 
respectively. 

From (20), it can be deduced that ck
syn is more likely to be c1,j 

when Ri increases.  Thus, the chief of a new tribe inclines to learn 
from the chief of the major tribe if the other tribe in synergy has a 
poor chief.  The synergism process thus increases the chance for 
the new chiefs to achieve good fitness. 

2.5 Argumentation 
TEA keeps a census U = [uj,k]nxm of the tribal society since the 
beginning of the algorithm.  Each element uj,k in the census U 
records the number of tribal chiefs whose attribute on the j-th 
dimension falls into the range of  
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 seg( j,k) = l j +
(k −1)(u j − l j )

m
,l j +

k(u j − l j )
m

⎡
⎣⎢

⎤
⎦⎥

.  (21) 

The probability to augment into seg(j, k) is calculated based on the 
reverse of uj,k as  

 paug ( j,k) =
1

1+ u j ,k

. (22) 

By doing so, augmentation is biased towards areas with smaller 
population. 

Based on the probabilities in (22), the augmentation process 
generates 2Df +Da  new tribes, all of which will enter the society.  
In detail, the chief ck

aug  of the i-th new tribe Tk
aug  is generated as 

 ck , j
aug = l j + (K −1+ ri, j )(u j − l j ) m , j = 1, 2, …,n, (23) 

where ri,j ∈ (0, 1) is a normalized random number and K ∈ [1, m] 
denotes the segment picked out by the roulette wheel selection 
based on the probability distribution in (22).  The attribute 
diversity and the historical record of Tk

aug are set as d0 and h0, 
respectively.  

 

TEA completes an evolution cycle after performing the 
augmentation operator.  Since both the synergistic combination 
and augmentation operators generate new tribes, the number of 
tribes in the society rises, causing the N value to update after each 
evolution cycle. 

3. EXPERIMENTS AND DISCUSSIONS 
In this section, TEA is applied to minimize a set of seventeen 
benchmark functions with thirty dimensions (n = 30) [15][16].  
Although the global minima of these functions are all zero, their 
properties are significantly different.  The first four functions f1 to 
f4 are unimodal problems.  Conducting experiments on these 
unimodal functions helps us to analyze the local search ability of 
TEA.  The next eight functions f5 to f12 are multimodal functions, 
each of which has a unique global optimum and multiple local 
optima.  Experiments on these multimodal functions provide a 
systematic view into the ability of TEA in performing global 
search and avoiding prematurity.  The last five functions f13 to f17 
are shifted & rotated multimodal functions proposed by 
Suganthan et al. [16].  We test TEA on these functions for 
evaluating its performance on complex problems.  Detailed 
definitions of the above test functions are given in Table 1.  As 
can be seen, each function is attached with an accuracy level, 
which is the maximum error allowed for an acceptable solution. 

Table 1 Benchmark Functions 
Function Search Domain Accuracy Level 

f1(x) = xi
2

i=1

n∑   [–100, 100]n 10-10 

f2 (x) = xii=1

n∑ + xii=1

n∏  
[–10, 10]n 10-10 

f3(x) = x jj=1

i∑( )2i=1

n∑ , y = x−o [–100, 100]n 10-10 

f4 (x) = xi + 0.5⎢⎣ ⎥⎦
2

i=1

n∑  [–100, 100]n 10-10 

f5 (x) = [100(xi+1 − xi )
2+(xi −1)

2 ]
i=1

n−1∑  
[–30, 30]n 100 

f6 (x) = − xi sin( xi )i=1

n∑ + 418.9829n
 

[–500, 500]n 10-10 

f7 (x) = [xi
2 −10cos(2π xi )+10]i=1

D∑  
[–5.12, 5.12]n 10-10 

f8 (x) = −20exp −0.2 xi
2

i=1

n∑ n⎡
⎣⎢

⎤
⎦⎥
− exp cos(2π xi )i=1

n∑ n⎡
⎣

⎤
⎦ +1  

[–32, 32]n 10-10 

f9 (x) = xi
2

i=1

n∑ 4000 − cos(xi i )
i=1

n∏ +1
 

[–600, 600]n 10-10 

f10 (x) =
π
30
{10sin2(π y1)+ (yi −1)

2[1+10sin2(π yi+1)]i=1

n−1∑ + (yn −1)
2}+ u(xi ,10,100,4)i=1

n∑ , where y=1+(x+1)/4 [–50, 50]n 10-10 

f11(x) = 1 10{10sin
2(3π x1)+ (xi −1)[1+ sin

2(3π xi+1)]i=1

n∑ + (xn −1)
2[1+ sin2(2π xn )]}+ u(xi ,5,100,4)i=1

n∑  
[–50, 50]n 10-10 

f12 (x) = (ai, j sinα j + bi, j cosα j )j=1

n∑ − (ai, j sin x j + bi, j cos x j )j=1

n∑⎡
⎣

⎤
⎦
2

i=1

n∑
 

[–π, π]n 100 

f13(x) = f8(z), z = (x − o)·M [–32, 32]n  21 

f14(x) = f7(z), z = (x − o)·M [–5, 5]n 100 

f15 (x) = 2−k cos 2π 3k (zi + 0.5)⎡⎣ ⎤⎦i=1

n∑{ }k=0

20∑ − n 2−k cos(3kπ )
k=0

20∑ , where z = (x − o)·M [–0.5, 0.5]n 20 

f16 = f9 f5 (zi ,zi+1)( )i=1

n−1∑ + f9 f5 (zn ,z1)( ) , where z = x − o + 1 [–5, 5]n 10 

f17 (x) = F(zi ,zi+1)i=1

n−1∑ + F(zn ,z1) , where z = (x − o)·M [–100, 100]n 13 

* In f10 and f11, the function u is defined as u(x,a,k,m) =
k(x − a)m , if x > a
k(−x − a)m , if x < −a
0, otherwise

⎧
⎨
⎪

⎩⎪
. 

* In f12, ai,j and bi,j are random integers in the range of [–100, 100] and αj is a random number in the range of [–π, π], i=1,2,…,n, j=1,2,…,n. 
* In f13 to f17 o denotes a random vector in the search domain and M denotes an n by n orthogonal matrix.  

* In f17, the function F is defined as F(x, y) = 0.5 +
sin2( x2 + y2 )− 0.5
1+ 0.001(x2 + y2 )⎡⎣ ⎤⎦

2  
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To further validate the effectiveness and efficiency of TEA, its 
results are compared with three representative EC algorithms: 
evolutionary parallel local search (EPLS) [6], comprehensive 
learning particle swarm optimization (CLPSO) [4], and an 
adaptive differential evolution algorithm with an optional external 
archive (JADE) [3].  For the sake of fairness in the comparisons, 
all the four algorithms are programmed and complied with Visual 
C++ 6.0 in Windows XP (Service Pack 2).  EPLS, CLPSO, and 
JADE use exactly the same parameter settings as their original 
papers, while the parameters of TEA are set as m = 9, Df = 2, Da = 
3, εmin = 10-3, and Φp = Φs = 2.  Using 300,000 FEs as the 
termination criterion (Emax = 300,000), the four algorithms report 
their average results obtained from fifty independent trials for 
comparison. 

3.1 Unimodal Functions 
Table 2 tabulates the results on the unimodal functions f1 to f4.  As 
can be observed, TEA achieves the best solution accuracy on f1 
and f2, followed by JADE, CLPSO, and EPLS.  JADE obtains the 
best result on f3, but the Mann-Whitney test indicates that TEA is 
still significantly better than EPLS and CLPSO.  Each algorithm 
except for EPLS is able to find the global minimum zero on the 
non-continuous step function f4 with a 100% successful rate.  In 
general, TEA obtains the best solution accuracy on the four 
unimodal functions. 

Table 3 tabulates the average FEs number for the algorithms to 
find the first acceptable solution.  The successful rates, that is, the 
percentage of successful trials in which acceptable solutions are 
found, are also reported.  From the table, it can be observed that 
on f1, f2, and f4, TEA, JADE, and CLPSO all obtain 100% 
successful rates on the accuracy level at 10-10.  However, the 
average FEs number needed by TEA is significantly less than 
those of the other two algorithms.  Take f1 as an example: the 
average FEs number needed by TEA is 5596, which is less than 
1/6 of the smallest average FEs number among the other three 
algorithms (JADE: 35313).  The large gap in the average FEs 
number reveals the advantage of TEA in search speed.  On f3, 
TEA and JADE are the only two algorithms that find acceptable 
solutions on the accuracy level at 10-10.  JADE leads TEA in the 
successful rate by 4% and the average FEs number needed by 
JADE is smaller than that of TEA. 

Table 2. Comparison of Solution Accuracy on Unimodal 
Functions1 

Func Alg Best Mean Std. Significance2 

f1 

EPLS 5.13×10-28 1.64×10-8 7.37×10-8 +1 
CLPSO 5.15×10-24 2.36×10-23 1.32×10-23 +1 
JADE 2.26×10-149 3.03×10-83 2.14×10-82 +1 
TEA 0 0 0 - 

f2 

EPLS 8.01×10-14 6.59×10-4 3.58×10-3 +1 
CLPSO 7.27×10-15 1.41×10-14 4.77×10-15 +1 
JADE 2.15×10-76 1.16×10-30 8.19×10-30 +1 
TEA 0 9.08×10-141 6.42×10-140 - 

f3 

EPLS 2.94×10-8 0.16596 0.51147 +1 
CLPSO 68.817 170.75 48.718 +1 
JADE 7.91×10-42 1.44×10-37 5.05×10-37 −1 
TEA 5.03×10-41 6.43×10-10 3.18×10-9 - 

f4 

EPLS 0 0.92 1.9984 +1 
CLPSO 0 0 0 0 
JADE 0 0 0 0 
TEA 0 0 0 - 

1 The results marked in boldface are the best among the four algorithms. 
2 ‘+1’, ‘−1’, and ‘0’ in the significance column indicate that compared to the result of TEA, the 
annotated result is significantly worse, significantly better, or insignificantly different, respectively. 
 
 

Table 3. Comparison of Search Speed & Convergence Reliability 
on Unimodal Functions1 

Func Average FEs Number Successful Rate (%) 
EPLS CLPSO JADE TEA EPLS CLPSO JADE TEA 

f1 183274 173335 35313 5596 76 100 100 100 
f2 196110 235871 63435 54710 12 100 100 100 
f3 - - 108117 208264 0 0 100 96 
f4 138838 49624 9379 2211 64 100 100 100 

1 The results marked in boldface are the best among the four algorithms. 

Figure 3 depicts the convergence curves of the four algorithms by 
plotting their median results obtained in the fifty trials along the 
FEs number.  As can be observed, on f1, f2, and f4, the 
convergence curves of TEA are much steeper than those of the 
other three algorithms.  The advantage of TEA in search speed is 
thus confirmed on these three functions.  With respect to f3, the 
convergence curve of JADE exhibits the fastest descending rate.  
The convergence curve of TEA on f3 is close to that of JADE and 
is much steeper than those of EPLS and CLPSO. 

 

Figure 3. Convergence curves of EPLS, CLPSO, JADE, and 
TEA on unimodal functions f1 to f4. 
The above results prove that TEA is capable of finding high-
quality solutions to unimodal problems at fast speed.  Compared 
to the other three algorithms, TEA possesses general advantage in 
both terms of solution accuracy and search speed.  This is because 
the adaptive self-advancing processes of tribes endow TEA with 
powerful local search ability.  Besides, since tribes with fitter 
chiefs and better self-advancing history are given higher self-
advancing probabilities, TEA can bias exploitation towards 
promising areas where better solutions are more likely to be 
found.  By doing so, TEA accelerates the convergence towards the 
global optimum. 

3.2 Multimodal Functions 
According to the results reported in Table 4, among the eight 
multimodal functions f5 to f12, the proposed TEA obtains the best 
average results on f6, f7, f8, f9, f10, f11, and f12.  Specifically, TEA 
completely avoids premature convergence on f6 to f11.  The other 
algorithm that can do so is CLPSO.  However, as shown by the 
average results on f8 to f11, the solution accuracy of CLPSO is 
significantly worse because CLPSO has to sacrifice the 
convergence speed for performing global exploration [4]. 

Table 5 reports the average FEs numbers and the successful rates 
for the four algorithms to find acceptable solutions on f5 to f12.  As 
can be observed from the table, TEA always achieves the highest 
successful rate with the minimum or second minimum number of 
FEs.  Specifically, compared to the other algorithms that achieve 
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100% successful rates on f7 to f11, the FEs number needed by TEA 
is much smaller.   

Table 4. Comparison of Solution Accuracy on Multimodal 
Functions1 

Func Alg Best Mean Std. Significance2 

f5 

EPLS 0.3605 71.27 45.60 +1 
CLPSO 0.09826 18.07 21.00 −1 
JADE 0 0.07973 0.5638 −1 
TEA 10.46 25.33 14.47 - 

f6 

EPLS 355.3 934.1 341.12 +1 
CLPSO 3.82×10-4 3.82×10-4 3.60×10-13 0 
JADE 3.82×10-4 11.84 35.892 +1 
TEA 3.82×10-4 3.82×10-4 3.06×10-13 - 

f7 

EPLS 8.955 16.62 5.018 +1 
CLPSO 0 0 0 0 
JADE 0 0 0 0 
TEA 0 0 0 - 

f8 

EPLS 5.46×10-11 1.975 0.7895 +1 
CLPSO 7.55×10-15 8.12×10-15 2.42×10-15 +1 
JADE 4.00×10-15 4.00×10-15 0 0 
TEA 4.00×10-15 4.00×10-15 0 - 

f9 

EPLS 0 0.01632 0.02856 +1 
CLPSO 0 8.05×10-15 2.99×10-14 +1 
JADE 0 1.45×10-5 1.05×10-3 +1 
TEA 0 0 0 - 

f10 

EPLS 2.25×10-27 0.02695 0.08587 +1 
CLPSO 3.30×10-25 1.94×10-24 1.16×10-24 +1 
JADE 1.57×10-32 1.57×10-32 8.29×10-48 0 
TEA 1.57×10-32 1.57×10-32 8.29×10-48 - 

f11 

EPLS 1.26×10-20 0.3626 0.7067 +1 
CLPSO 1.27×10-23 8.47×10-23 5.41×10-23 +1 
JADE 1.35×10-31 1.35×10-31 1.77×10-46 0 
TEA 1.35×10-31 1.35×10-31 1.77×10-46 - 

f12 

EPLS 565.6 10682 7665.6 +1 
CLPSO 2867.3 7860.1 2666.4 +1 
JADE 1.84×10-12 9655.5 5822.3 +1 
TEA 0.1016 4749.1 4105.8 - 

1 The results marked in boldface are the best among the four algorithms. 
2 ‘+1’, ‘−1’, and ‘0’ in the significance column indicate that compared to the result of TEA, the 
annotated result is significantly worse, significantly better, or insignificantly different, respectively. 

Table 5. Comparison of Search Speed & Convergence Reliability 
on Multimodal Functions1 

Func Average FEs Number Successful Rate (%) 
EPLS CLPSO JADE TEA EPLS CLPSO JADE TEA 

f5 79265 89115 11088 42471 88 100 100 100 
f6 - 149170 114205 163962 0 100 90 100 
f7 - 210691 158198 112507 0 100 100 100 
f8 239755 107912 56732 10293 2 100 100 100 
f9 188330 225950 38760 12005 38 100 98 100 
f10 174678 160845 33025 9343 68 100 100 100 
f11 206296 177754 42602 23496 46 100 100 100 
f12 - - 109457 116074 0 0 4 6 

1 The results marked in boldface are the best among the four algorithms. 

The above results demonstrate the effectiveness and efficiency of 
TEA in solving multimodal problems.  Figure 4 depicts the 
convergence curves of the four algorithms on f5 to f12 to further 
illustrate the search behavior of TEA on multimodal problems.  
From the figure, it is noticed that the search speed of TEA can be 
relatively slow in the early stage of the optimization procedure (as 
shown in Figure 4 (b), (c), and (g)).  This is because TEA is trying 
to identify the basin of the global minimum from the set of areas 
defined by the tribes.  Once the basin is found, the self-advancing 
process of the corresponding tribe will quickly bring the search 
procedure to the precise location of the global optimum. 
 

 
Figure 4. Convergence curves of EPLS, CLPSO, JADE, and 
TEA on multimodal functions f5 to f12. 

3.3 Shifted & Rotated Multimodal Functions 
The shifted & rotated multimodal functions f13 to f17 are 
particularly difficult to optimize because they comprise a huge 
number of local optima and their dimensions are non-separable.  
Table 6 shows that none of the four algorithms succeeds in 
finding the global optima of these functions.  Nevertheless, TEA 
still obtains the best or the second best average results on four of 
the five functions.  Meanwhile, as reported by Table 7, TEA is the 
only algorithm that finds acceptable solutions with over 80% 
successful rates on all the five functions.  All the above results 
show that even in complex problems, TEA can maintain certain 
advantages in terms of solution accuracy, search speed, and 
reliability.  These advantages can also be observed from the 
convergence curves depicted in Figure 5. 

Table 6. Comparison of Solution Accuracy on Shifted & Rotated 
Functions1 

Func Alg Best Mean Std. Significance2 

f13 

EPLS 20.04 20.25 0.09444 −1 
CLPSO 20.85 20.95 0.04492 +1 
JADE 20.77 20.93 0.04796 +1 
TEA 20.14 20.29 0.06480 - 

f14 

EPLS 51.74 111.65 26.80 +1 
CLPSO 73.78 122.02 18.53 +1 
JADE 22.52 33.58 4.483 −1 
TEA 26.86 59.76 13.70 - 

f15 

EPLS 22.51 29.85 3.689 +1 
CLPSO 22.30 26.12 1.705 +1 
JADE 26.85 32.91 3.622 +1 
TEA 10.29 15.86 2.062 - 

f16 

EPLS 1.437 3.708 1.674 −1 
CLPSO 0.5345 1.327 0.413 −1 
JADE 1.312 1.572 0.124 −1 
TEA 2.309 5.587 1.967 - 

f17 

EPLS 12.45 13.31 0.3259 +1 
CLPSO 12.03 12.88 0.1998 +1 
JADE 12.98 13.26 0.1385 +1 
TEA 11.64 12.54 0.3404 - 

1 The results marked in boldface are the best among the four algorithms. 
2 ‘+1’, ‘−1’, and ‘0’ in the significance column indicate that compared to the result of 
TEA, the annotated result is significantly worse, significantly better, or 
insignificantly different, respectively. 
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Table 7. Comparison of Search Speed & Convergence Reliability1 

Func Average FEs Number Successful Rate (%) 
EPLS CLPSO JADE TEA EPLS CLPSO JADE TEA 

f13 14651 95355 183811 48703 100 86 82 100 
f14 25355 242946 134641 32973 32 13 100 100 
f15 - - - 27708 0 0 0 100 
f16 13781 86337 34305 95808 98 100 100 98 
f17 23489 168756 203415 49684 16 76 8 86 

1 The results marked in boldface are the best among the four algorithms. 

 
Figure 5. Evolution curves of EPLS, CLPSO, JADE, and TEA 
on shifted & rotated multimodal functions f12 to f17. 

4. CONCLUSION 
A new EC mechanism called TEA has been developed from the 
evolution mechanism of tribal ecosystems.  An essential feature 
that differentiates TEA from other EC algorithms is that it uses 
the concept of tribes to extend the basic evolution unit from 
discrete solution points to solution sets in different subareas of the 
search space.  Specifically, a tribe in TEA describes the solution 
set in a particular subarea with the locally best-so-far solution 
analogous to the tribal chief and the radius of the subarea 
analogous to the tribal diversity.  The search experience in the 
subarea is also recorded as the self-advancing history of the tribe.  
Simulating tribal ecosystems, four evolution operators are 
designed for evolving tribes from roughly estimated promising 
subareas to the precise location of the global optimum. 

The promising results of TEA on a diverse set of benchmark 
functions reveal the significance of our research in twofold.  First, 
in terms of algorithmic design, we show that extending the basic 
evolution unit from solution points to solution sets in different 
subareas in the search space is beneficial for improving the 
performance of EC algorithms.  This is because the extension 
allows more useful information to be involved in the evolution 
and thus facilitates the use of such information for helping the 
search procedure.  Encouraged by the promising performance of 
TEA, it is worthwhile to investigate how the basic evolution unit 
can be further extended for incorporating more useful information 
efficiently.  Second, in terms of performance, TEA provides an 
effective way for finding high-quality solutions at fast speed.  
Experimental results show that TEA has a general advantage 
against a number of representative EC algorithms, especially in 
terms of the search speed.  It will be interesting to study the 
performance of TEA in practical problems. 
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