
860 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 6, DECEMBER 2014

Performance Analysis of Evolutionary Algorithms
for the Minimum Label Spanning Tree Problem

Xinsheng Lai, Yuren Zhou, Jun He, Member, IEEE, and Jun Zhang, Senior Member, IEEE

Abstract—A few experimental investigations have shown that
evolutionary algorithms (EAs) are efficient for the minimum label
spanning tree (MLST) problem. However, we know little about
that in theory. In this paper, we theoretically analyze the perfor-
mances of the (1+1) EA, a simple version of EA, and a simple mul-
tiobjective evolutionary algorithm called GSEMO on the MLST
problem. We reveal that for the MLSTb problem, the (1+1) EA
and GSEMO achieve a (b + 1)/2-approximation ratio in expected
polynomial runtime with respect to n, the number of nodes, and
k, the number of labels. We also find that GSEMO achieves a
(2 ln n+1)-approximation ratio for the MLST problem in expected
polynomial runtime with respect to n and k. At the same time,
we show that the (1+1) EA and GSEMO outperform local search
algorithms on three instances of the MLST problem. We also con-
struct an instance on which GSEMO outperforms the (1+1) EA.

Index Terms—Approximation ratio, evolutionary algorithm,
minimum label spanning tree, multiobjective, runtime complexity.

I. INTRODUCTION

THE MINIMUM label spanning tree (MLST) problem is
an issue arising from practice, which seeks a spanning

tree with the minimum number of labels in a connected undi-
rected graph with labeled edges. This problem has many appli-
cations in real-life. For example, in communication networks,
a communication node may communicate with other nodes via
different types of channels, such as optic fiber, coaxial cable,
microwave, and telephone line [1]. Given a set of commu-
nication nodes, we want to find a spanning tree (a connected
communication network) that uses the minimum possible num-
ber of types of channels, which can reduce the construction

Manuscript received April 12, 2013; revised August 22, 2013; accepted
October 31, 2013. Date of publication November 20, 2013; date of current
version November 26, 2014. This work was supported in part by the
National Natural Science Foundation of China under Grant 61170081, Grant
61165003, Grant 61300044, and Grant 61332002, in part by the EPSRC under
Grant EP/I009809/1, in part by the National High-Technology Research and
Development Program (863 Program) of China No. 2013AA01A212, and in
part by the NSFC for Distinguished Young Scholars under Grant 61125205.
(Corresponding author: Y. Zhou).

X. Lai and Y. Zhou are with the School of Computer Science and
Engineering, South China University of Technology, Guangzhou 510006,
China (e-mail: yrzhou@scut.edu.cn).

X. Lai is also with the School of Mathematics and Computer Science,
Shangrao Normal University, Shangrao 334001, China.

J. He is with the Department of Computer Science, Aberystwyth University,
Aberystwyth, Wales SY23 3DB, U.K.

J. Zhang is with the Department of Computer Science, Sun Yat-Sen
University, Guangzhou 510275, China, the Key Laboratory of Digital Life,
Ministry of Education, China, and also with the Key Laboratory of Software
Technology, Education Department of Guangdong Province, Guangdong,
China.

Digital Object Identifier 10.1109/TEVC.2013.2291790

cost and the complexity of the network [2]. Another example
is that the MLST problem has been used in data compression
to increase compression rates [3], [4]. The MLST problem,
proposed in [2], has been proved to be NP-hard.

For this problem, two heuristic algorithms were proposed
in [2]. One is the edge replacement algorithm (ERA) and the
other is the maximum vertex covering algorithm (MVCA).
Their experiments showed that ERA is not stable and MVCA
is very efficient.

The genetic algorithm, belonging to the larger class of EAs,
is a general purpose optimization algorithm [5]–[7] with a
strong globally searching capacity [8]. So, Xiong et al. [9]
proposed a one-parameter genetic algorithm for the MLST
problem. The experimental results on extensive instances
randomly generated showed that the genetic algorithm out-
performs MVCA. Nummela and Julstrom [10] also proposed
an efficient genetic algorithm for solving the MLST problem.

Besides, many methods have been recently proposed
for solving this NP-hard problem. Consoli and
Moreno-Pérezb [11] proposed a hybrid local search
combining variable neighborhood search and simulated
annealing. Chwatal and Raidl [12] presented exact methods
including branch-and-cut and branch-and-cut-and-price.
Cerulli et al. [13] utilized several metaheuristic methods
for this problem, such as simulated annealing, reactive tabu
search, the pilot method, and variable neighborhood search.
Consoli et al. [14] proposed a greedy randomized adaptive
search procedure and a variable neighborhood search for
solving the MLST problem.

Since both ERA and MVCA are two original heuristic
algorithms for the MLST problem, the worst performance
analysis of these two algorithms, especially MVCA, has
become a hot research topic in recent years. Krumke and
Wirth [15] proved that MVCA has a logarithmic performance
guarantee of 2 ln n + 1, where n is the number of nodes in
the input graph, and presented an instance to show that ERA
might perform as badly as possible. Wan et al. [16] further
proved that MVCA has a better performance guarantee of
ln(n − 1) + 1. Xiong et al. [17] proved another bound on
the worst performance of MVCA for MLSTb problems, i.e.,
Hb =

∑b
i=1

1
i , where the subscript b denotes that each label

appears at most b times, and is also called the maximum
frequency of the labels.

The performance of MVCA on the MLST problem has been
deeply investigated. However, there is still no theoretical work
that focuses on the performance analysis of EAs for the MLST

1089-778X c© 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Hanyang University. Downloaded on December 05,2023 at 00:13:45 UTC from IEEE Xplore. Restrictions apply.

LAI et al.: PERFORMANCE ANALYSIS OF EVOLUTIONARY ALGORITHMS FOR THE MINIMUM LABEL SPANNING TREE PROBLEM 861

problem, though a few experimental investigations have shown
that EAs are efficient for this problem.

Recently, the theoretical analysis of EAs’ performance
on combinatorial optimization problems has received much
attention. During the past few years, theoretical investiga-
tions about EAs focused on the runtime for finding globally
optimal solutions of combinatorial optimization problems or
their variants. These problems include plateaus of constant
fitness [18], linear function problems [19]–[21], minimum cut
problems [22], satisfiability problems [23], minimum spanning
tree problems [24], Eulerian cycle problems [25], Euclidean
traveling salesperson problems [26], the maximum matching
problem [27], and so on.

Nevertheless, many combinatorial optimization problems,
including the MLST problem, are NP-hard, and it is commonly
believed that there is no polynomial time algorithm for them.
Therefore, we usually only ask satisfying solutions to such
NP-hard problems in practice. Thus, we are interested in
whether an approximation solution with a given satisfying
quality can be efficiently obtained. In fact, the approximation
performance analysis of randomized heuristics, including EAs,
on NP-hard problems has been receiving more and more
attention.

Oliveto et al. [28] found that for minimum vertex
cover problems the (1+1) EA may find arbitrarily bad
approximation solutions on some instances, but can efficiently
find the minimum cover of them by using a restart strategy.
Friedrich et al. [29] proved that the (1+1) EA may find
almost arbitrarily bad approximation solutions for minimum
vertex cover problems and minimum set cover problems as
well. Witt [30] proved that in the worst case the (1+1) EA
and the randomized local search algorithm need an expected
runtime O(n2) to produce a 4

3 -approximation solution to the
partition problem.

On the approximation performance of multiobjective EAs,
Friedrich et al. [29] revealed that the multiobjective EA effi-
ciently finds an ln n-approximation solution to the minimum
set cover problem. Neumann and Reichel [31] found that
multiobjective EAs can find a k-approximation solution for the
minimum multicuts problem in expected polynomial runtime.
Recently, Yu et al. [32] studied the approximation performance
of SEIP, a simple evolutionary algorithm with isolated pop-
ulation, on set cover problems. They found that SEIP can
efficiently obtain an Hn-approximation solution for unbounded
set cover problems, and an (Hk− k−1

8k9)-approximation solution
for k-set cover problems as well.

Though the MLST problem is NP-hard, and the minimum
spanning tree problem is in the complexity class P, both
belong to the problems of finding spanning trees with some
measure to be optimized. The measure of the MLST problem
is the number of labels used in the tree, whereas the measure
of the minimum spanning tree problem is the total weights
of the edges in the tree. The performance of EAs on the
minimum spanning tree problem has been recently investi-
gated. Neumann and Wegener [24] showed that the (1+1)
EA solves the minimum spanning tree problem in expected
polynomial runtime. They also showed that the minimum
spanning tree problem can be solved more efficiently via

multiobjective optimization [33]. Another spanning tree related
problem is the multiobjective minimum spanning tree problem,
which is NP-hard. Recently, the performance of EAs on this
NP-hard problem has also been theoretically investigated [34],
[35]. However, there is no theoretical work focusing on EAs’
performance for the MLST problem.

In this paper, we concentrate on the performance analy-
sis of the (1+1) EA and GSEMO (a simple multiobjective
evolutionary algorithm with bit-wise mutation) for the MLST
problem. We analyze the approximation performances of the
(1+1) EA and GSEMO on the MLST problem. For the
MLSTb problem, we prove that the (1+1) EA and GSEMO are
(b + 1)/2-approximation algorithms. We also reveal that
GSEMO can efficiently achieve a (2 ln n + 1)-approximation
ratio for the MLST problem. Though the MLST problem is
NP-hard, we show that on three instances the (1+1) EA and
GSEMO efficiently find their global optima, while local search
algorithms may be trapped in local optima. Meanwhile, we
construct an additional instance where GSEMO outperforms
the (1+1) EA.

The rest of this paper is organized as follows. Section II
describes the MLST problem and the algorithms considered
in this paper. Section III analyzes the approximation per-
formances of the (1+1) EA and GSEMO on the MLST
problem, while Section IV investigates the performances of the
(1+1) EA and GSEMO on four instances. Finally, Section V
concludes this paper and gives possible directions for further
research.

II. MLST PROBLEM AND ALGORITHMS

First of all, we give the concepts of spanning subgraph, the
MLST and MLSTb problems.

Definition 1 (Spanning subgraph): Let G = (V, E) and H =
(V ′, E′) be two graphs, where V (V ′) is the set of nodes of G
(H), and E (E′) is the set of edges of G (H). If V ′ = V and
E′ ⊆ E, then H is a spanning subgraph of G.

Definition 2 (MLST problem): Let G = (V, E, L) be a
connected undirected graph, where V , E, and L = {1, 2, . . . , k}
are respectively the sets of n nodes, m edges, and k labels.
Each edge associates with a label by a surjective function
l : E → L. The MLST problem is to seek a spanning tree
with the minimum number of labels in the input graph G.

From the definition of the MLST problem, it is easy to see
that each edge e ∈ E has a unique label l(e) ∈ L, and each
label in L has at least one edge associating with it.

Definition 3 (MLSTb problem): For an MLST problem, if
each label appears at most b times, then it is an MLSTb

problem.
Clearly, the MLSTb problem is a special case of the MLST

problem.
Our goal in this paper is to seek a connected spanning

subgraph with the minimum number of labels rather than
a spanning tree with the minimum number of labels, since
any spanning tree contained in such a spanning subgraph is
an MLST. This is an alternative formulation of the MLST
problem that has been adopted in papers [9] and [10].

Since each edge has exactly one label, if a label is selected,
then all edges with such a label are selected. Therefore, we

Authorized licensed use limited to: Hanyang University. Downloaded on December 05,2023 at 00:13:45 UTC from IEEE Xplore. Restrictions apply.

862 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 6, DECEMBER 2014

Algorithm 1 The (1+1) EA for the MLST problem

01: Begin
02: Initialize a solution X ∈ {0, 1}k uniformly at random;
03: While termination criterion is not fulfilled
04: Obtain an offspring Y by flipping each bit in X with

probability 1
k ;

05: If fit(Y) < fit(X) then X := Y;
06: End while
07: End

aim to find a set of selected labels such that the edges with
these labels construct a spanning subgraph of the input graph
and the number of selected labels is minimized. Thus, a set
of selected labels is a solution.

Further, we encode a solution as a bit string X =
(x1, . . . , xk), which has been used in [9], where k = |L| and bit
xi ∈ {0, 1} corresponding to label i. If xi = 1(i = 1, 2, . . . , k),
then label i is selected, otherwise it is not. Thus, a bit string
X represents a label subset and |X| represents the number of
labels contained in X.

We consider the spanning subgraph H(X) of G, where H(X)
is a spanning subgraph restricted to edges with labels that the
corresponding bits in X are set to 1. We call a solution X
such that H(X) is a connected spanning subgraph a feasible
solution. A feasible solution with the minimum number of
labels is a globally optimal solution.

For solving the MLST problem, the (1+1) EA uses a fitness
function. The fitness function is defined as

fit(X) = (c(H(X))− 1) ∗ k2 + |X| (1)

where c(H(X)) is the number of connected components in
H(X), k is the total number of labels in L, and |X| = ∑k

i=1 xi,
i.e., the number of labels contained in X.

The fitness function should be minimized. The first target
is to make sure that H(X) is a connected spanning subgraph,
and the second target is to make sure that the number of labels
in the connected spanning subgraph is minimized.

Recall that a feasible solution X satisfies that H(X) is a
connected spanning subgraph, i.e., c(H(X)) = 1. Therefore,
the fitness value of a feasible solution equals to the number
of labels contained in it.

We also define the fitness vector for GSEMO as a vector
(c(H(X)), |X|), where c(H(X)) and |X| are simultaneously
minimized by GSEMO.

The following algorithms are those considered in this
paper.

The (1+1) EA as shown in Algorithm 1 starts with an
arbitrary solution and repeatedly uses mutation operator to
generate an offspring solution from the current one. If the
offspring solution is strictly better than the current one, then
the (1+1) EA uses it to replace the current solution.

Another algorithm for the MLST problem is the local search
algorithm with the 2-switch neighborhood (LS2N), which is
proposed by Brüggemanna et al. [36]. We now describe some
concepts about it.

Algorithm 2 GSEMO for the MLST problem

01: Begin
02: Initialize a solution X ∈ {0, 1}k uniformly at random;
03: P← {X};
04: While termination criterion is not fulfilled
05: Choose a solution X from P uniformly at random;
06: Obtain an offspring Y by flipping each bit in X with

probability 1
k ;

07: If Y is not dominated by ∀X ∈ P then
08: Q := {X|X ∈ P, and Y dominates X };
09: P← P ∪ {Y} \ Q;
10: End if
11: End while
12: End

We use X1−X2 to denote the set of labels that are contained
in X1 but not in X2, where X1 and X2 are two solutions. For
example, if X1 = {1, 2, 3, 4, 5} and X2 = {1, 2, 3, 6}, then we
have X1 − X2 = {4, 5} and X2 − X1 = {6}. Thus, we have
|X1 − X2| = 2 and |X2 − X1| = 1.

Definition 4 ([36]h-switch neighborhood): Let h ≥ 1 be an
integer, and let X1 and X2 be two feasible solutions for some
instance of the MLST problem. We say that X2 is in h-switch
neighborhood of X1, denoted by X2 ∈ h-SWITCH(X1), if and
only if

|X1 − X2| ≤ h and |X2 − X1| ≤ h. (2)

In other words, X2 ∈ h-SWITCH(X1) means that X2 can
be derived from X1 by first removing at most h labels from
X1 and then adding at most h labels to it.

LS2N: in Algorithm 1, if the initial solution X is an
arbitrary feasible solution, and the offspring Y is a feasible
solution selected from the 2-switch neighborhood of X, then
it is LS2N [36].

GSEMO has been investigated on covering problems [29],
minimum spanning tree problems [33]–[35], and also pseudo-
Boolean functions [37], [38]. GSEMO for the MLST problem
is described in Algorithm 2.

In Algorithm 2, P is a population used to preserve those
solutions that cannot be dominated by any other from the
population. The concept of dominance is defined as follows.

Suppose that the fitness vectors of solutions X and Y are
(c(H(X)), |X|) and (c(H(Y)), |Y|), respectively. We say that X
dominates Y , if one of the following two conditions is satisfied:
(1) c(H(X)) < c(H(Y)) and |X| ≤ |Y|;
(2) c(H(X)) ≤ c(H(Y)) and |X| < |Y|.

For the sake of completeness, we describe another two
algorithms in the following, which are greedy algorithms.

The first one is the modified MVCA. It starts with a solution
containing no labels and each time selects a label such that
when this label is chosen the decrease in the number of
connected components is the largest.

The second is called in this paper the modified MVCA with
contraction, which has been investigated in [15].

In Algorithm 3, if we contract each connected component
in H to a supernode after step 3, then we obtain the modified
MVCA with contraction.

Authorized licensed use limited to: Hanyang University. Downloaded on December 05,2023 at 00:13:45 UTC from IEEE Xplore. Restrictions apply.

LAI et al.: PERFORMANCE ANALYSIS OF EVOLUTIONARY ALGORITHMS FOR THE MINIMUM LABEL SPANNING TREE PROBLEM 863

Algorithm 3 The modified MVCA [17]

Input: A given connected undirected graph G = (V, E, L),
L = {1, . . . , k}.

01: Let C be the set of used labels, C := ∅;
02: Repeat
03: Let H be the spanning subgraph of G restricted to

edges with labels from C;
04: For all i ∈ L \ C do
05: Determine the number of connected components

when inserting all edges labeled by i in H;
06: End for
07: Choose label i with the smallest resulting number of

connected components: C := C ∪ {i};
08: Until H is connected.
Output: H

III. APPROXIMATION PERFORMANCES OF THE (1+1) EA
AND GSEMO ON THE MLST PROBLEM

The following is the concept of approximation ratio (solu-
tion). Given a minimization problem R and an algorithm A, if
for an instance I of R, the value of the best solution obtained
in polynomial runtime by A is A(I), and maxI∈R

A(I)
OPT(I) = r ,

where OPT(I) is the value of the optimal solution of I, then
we say that A achieves an r -approximation ratio (solution)
for R.

Although the MLST problem is NP-hard, we reveal that the
(1+1) EA and GSEMO guarantee achievement of an approx-
imation ratio for the MLSTb problem in expected polynomial
runtime with respect to n the number of nodes and k the
number of labels, and that GSEMO guarantees the obtaining
of an approximation ratio for the MLST problem in expected
polynomial runtime with respect to n and k.

A. Approximation Guarantees of the (1+1) EA and
GSEMO on the MLSTb Problem

In this subsection, let G = (V, E, L) be an arbitrary instance
of the MLSTb problem, where |V| = n, |L| = k, and b ≥ 2,
and let OPT(G) denote the number of labels used in the global
optimum of G.

We show that the (1+1) EA and GSEMO guarantee achieve-
ment of a (b + 1)/2-approximation ratio for G in expected
polynomial runtime with respect to n and k in two steps.
Since G is an arbitrary instance of the MLSTb problem, we
reveal that the (1+1) EA and GSEMO guarantee achievement
of a (b + 1)/2-approximation ratio for the MLSTb problem in
expected runtime polynomial in n and k. First, we prove that
the (1+1) EA and GSEMO starting with any initial solution
find a feasible solution for G in expected runtime polynomial
in n and k, then prove that starting with any feasible solution
the (1+1) EA and GSEMO find a (b + 1)/2-approximation
solution for G in expected polynomial runtime with respect
to k by simulating the result proved in [36].

We now prove that starting with any initial solution, the
(1+1) EA can efficiently find a feasible solution of G.

Lemma 1: The (1+1) EA starting with any initial solution
finds a feasible solution for G in expected runtime O(nk).

Proof: According to the fitness function (1), during the
optimization process of the (1+1) EA, the number of connected
components will never be increased.

Let X be the current solution of G. If X is not a feasible
solution, then the number of connected components of the
spanning subgraph H(X) is greater than one. Note that G is
connected. There must exist a label such that when it is added
to X the number of connected components will be decreased
by at least one. The probability of adding this label to X is
1
k (1− 1

k)k−1 ≥ 1
ek , which implies that in expected runtime O(k)

the number of connected components will be decreased by at
least one.

Since there are at most n connected components, a feasible
solution of G will be found by the (1+1) EA starting with any
initial solution in expected runtime O(nk).

Brüggemann et al. [36] have proved that LS2N is a
(b + 1)/2-approximation algorithm for the MLSTb problem,
so we have the following lemma.

Lemma 2: LS2N can find a feasible solution for G with at
most OPT(G) · (b + 1)/2 labels.

We partition all feasible solutions of G into two disjoint
sets. One is S1 = {X|X ∈ {0, 1}k , X is a feasible so-
lution of G, |X| ≤ OPT(G) · (b + 1)/2}, and the other
is S2 = {X|X ∈ {0, 1}k , X is a feasible solution of G,
|X| > OPT(G) · (b + 1)/2}.

From Lemma 2, we derive a property regarding the 2-switch
neighborhood.

Corollary 1: If X is a feasible solution of G, and X ∈ S2,
then there must exist a feasible solution X′ ∈ 2-SWITCH(X)
whose fitness value is one or two less than that of X.

Next, we will show that starting with an arbitrary feasi-
ble solution, the (1+1) EA can efficiently find a (b + 1)/2-
approximation solution of G.

Lemma 3: For G, the (1+1) EA starting with an arbitrary
feasible solution finds a (b + 1)/2-approximation solution in
expected runtime O(k4).

Proof: Let X be the current feasible solution of G. By
Corollary 1, if X ∈ S2, then there must exist a feasible solution
X′ ∈ 2-SWITCH(X) whose fitness value is 1 or 2 less than
that of X. So, replacing X with X′ decreases the fitness value
by at least 1. Since a feasible solution belonging to S2 has
at most k labels, then after at most k − OPT(G) · (b + 1)/2
such replacing steps a feasible solution belonging to S1 will
be found.

Now, we calculate the expected runtime for the (1+1) EA
to find X′. Since X′ ∈ 2-SWITCH(X) and |X′| < |X|, there
exist three cases. The first is that X′ is obtained by removing
one exact label from X. The second is that X′ is obtained
by removing two exact labels from X. The third is that X′
is obtained by removing two exact labels from X and adding
one exact label to it.

Obviously, the worst case is the third one, since in this case
three bits of X must be simultaneously flipped by the (1+1)
EA. In this case, the probability that the (1+1) EA finds X′
is 1

k3 (1− 1
k)k−3 ≥ 1

ek3 . So, the expected runtime for the (1+1)
EA to find a feasible solution X′ ∈ 2-SWITCH(X) is O(k3),
which means that the expected runtime for the (1+1) EA to
reduce the fitness value by at least one is O(k3).

Authorized licensed use limited to: Hanyang University. Downloaded on December 05,2023 at 00:13:45 UTC from IEEE Xplore. Restrictions apply.

864 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 6, DECEMBER 2014

Therefore, the expected runtime for the (1+1) EA
starting with an arbitrary feasible solution to find a
(b + 1)/2-approximation solution for G is O((k − OPT(G) ·
(b + 1)/2)k3) = O(k4), as OPT(G) · b+1

2 ≤ k.
Combining Lemmas 1 and 3, and noting that G is an

arbitrary instance of the MLSTb problem, we obtain the
following theorem.

Theorem 1: The (1+1) EA starting with any initial solu-
tion finds a (b + 1)/2-approximation solution for the MLSTb

problem in expected runtime O(nk + k4).
As we will see below, GSEMO can also efficiently obtain

such an approximation solution for the MLSTb problem.
Theorem 2: GSEMO starting with any initial solution finds

a (b + 1)/2-approximation solution for the MLSTb problem in
expected runtime O(nk2 + k5).

Proof: For GSEMO, the fitness vector of any solution X is
(c(H(X)), |X|). For a given value d of |X|, there is at most one
solution in the population whose fitness vector is (∗, d), so the
population size is O(k) as |X| takes value from {0, 1, . . . , k},
where k is the number of labels contained in the label set.

Consider the arbitrary instance G, and let X be the solution
among the population such that c(H(X)) is the minimum. If
c(H(X)) > 1, then there exists a label l such that when it is
added the number of connected components will be reduced
by at least one, as G is connected. The probability of selecting
X from the population is �(1

k), as the population size is O(k),
and the probability of flipping only the bit corresponding to
label l is 1

k (1 − 1
k)k−1 = �(1

k), so a solution X′ such that
c(H(X′)) is at least one less than c(H(X)) will be included in
the population in expected runtime O(k2).

Since there are at most n connected components in the
spanning subgraph induced by any solution, a feasible solution
will be included in the population in expected runtime O(nk2).

At least one feasible solution is now included in the popu-
lation. Let X be the feasible solution which has the minimum
labels among all feasible solutions in the population. If the
number of labels contained in X is greater than b+1

2 ·OPT(G),
then according to Corollary 1 there exists a feasible solution
X′ ∈ 2-SWITCH(X) such that |X′| is at least one less than
|X|. According to the proof of Lemma 3, the expected runtime
to generate such a solution X′ from X is O(k3). Since the
expected runtime to select solution X from the population is
O(k), such a solution X′ will be included in the population in
expected runtime O(k4).

Therefore, a (b + 1)/2-approximation solution of G will be
included in the population in expected runtime O((k − b+1

2 ·
OPT(G))k4) = O(k5) once a feasible solution is found.

Hence, GSEMO starting with any initial solution will find
a (b + 1)/2-approximation solution for G in expected runtime
O(nk2 + k5). Noting that G is an arbitrary instance of the
MLSTb problem, we obtain the theorem.

B. Approximation Guarantee of GSEMO on the MLST
Problem

In this subsection, let G′ = (V ′, E′, L′) be an arbitrary
instance of the MLST problem, where |V ′| = n and |L′| = k,
and let OPT(G′) be the number of labels used in the minimum
label spanning tree T∗ of G′.

Now we analyze the approximation guarantee of GSEMO
on the MLST problem by simulating the modified MVCA
with contraction. Similar to Lemma 2 in [15], we have the
following lemma.

Lemma 4: For G′, if n ≥ 2, then there exists a label such
that the number of connected components of the spanning
subgraph restricted to edges with this label is not more than
�n(1− 1

2OPT(G′))�.
Proof: Note that G′ is a connected undirected graph. Since

the minimum label spanning tree T∗ has exactly n − 1 edges,
there must exist a label, say j, such that the number of edges
in T∗ labeled by j is at least � n−1

OPT(G′)�. Hence, the number of
connected components of the spanning subgraph, restricted to
edges with label j, is not more than n − � n−1

OPT(G′)� = �n(1 −
1

OPT(G′)) + 1
OPT(G′)�. When n ≥ 2, we have �n(1 − 1

OPT(G′)) +
1

OPT(G′)� ≤ �n(1− 1
2OPT(G′))�.

Further, for a spanning subgraph H(X) of G′, we have the
following corollary.

Corollary 2: Let s be the number of connected components
of H(X). If s ≥ 2, then there is a label such that when it
is added to X the number of connected components will be
reduced to not more than �s(1− 1

2OPT(G′))�.
Proof: Contracting each connected component of H(X) to a

supernode, then G′ is converted to G′′ with s nodes. Suppose
that the number of labels used in the minimum label spanning
tree of G′′ is OPT(G′′). According to Lemma 4, there is a
label in G′′ such that the number of connected components
of the spanning subgraph, restricted to edges with this label,
is not more than �s(1 − 1

2OPT(G′′))�. Noting that the number
of labels used in the minimum label spanning tree of G′
is OPT(G′), it is clear that OPT(G′′) ≤ OPT(G′). Thus,
�s(1− 1

2OPT(G′′))� <�s(1− 1
2OPT(G′))�. In other words, there is a

label such that when it is added to X the number of connected
components of H(X) will be reduced to not more than
�s(1− 1

2OPT(G′))�.
Based on Corollary 2, we prove that GSEMO guarantees to

find a (2 ln n + 1)-approximate solution for the MLST problem
in expected polynomial runtime with respect to n and k.

Theorem 3: GSEMO starting with any initial solution finds
a (2 ln n +1)-approximation solution for the MLST problem in
expected runtime O(k2 ln k + k3 ln n).

Proof: Consider the arbitrary instance G′ of the MLST
problem.

We first reveal that GSEMO starting with any initial
solution will find the all-zeros bit string for G′ in ex-
pected runtime O(k2 ln k), then reveal that GSEMO finds a
(2 ln n + 1)-approximation solution for G′ in expected run-
time O(k3 ln n) after the all-zeros bit string being included
in the population. Combining them, and noting that G′ is
an arbitrary instance of the MLST problem, we obtain the
theorem.

We now investigate the expected runtime that GSEMO
starting with any initial solution finds the all-zeros bit string
with Pareto optimal fitness vector (n, 0). Once it is found,
it can never be removed from the population. If it is not
included in the population, then GSEMO can choose a solution
X from P which contains the minimum number of labels
among all solutions in the population with probability �(1

k),

Authorized licensed use limited to: Hanyang University. Downloaded on December 05,2023 at 00:13:45 UTC from IEEE Xplore. Restrictions apply.

LAI et al.: PERFORMANCE ANALYSIS OF EVOLUTIONARY ALGORITHMS FOR THE MINIMUM LABEL SPANNING TREE PROBLEM 865

Fig. 1. Instance G1.

as the population size is O(k). The event of flipping one of
|X| bits whose value is 1 will decrease the number of labels,
and the probability of this event is

(|X|
1

)
1
k (1− 1

k)k−1 ≥ |X|ek . So,
the expected runtime that GSEMO includes a solution which
contains |X| − 1 labels is O(k2

|X|). Following this way, the all-
zeros bit string will be included in the population in expected
runtime O(

∑1
i=|X|

k2

i) = O(k2 ln |X|) = O(k2 ln k).
Now, the all-zeros bit string with fitness vector (n, 0) is

included in the population. It is easy to see that n ≥ 2,
otherwise G′ is trivial. According to Corollary 2, there is a
label such that when it is added to the all-zeros bit string the
number of connected components will be reduced to not more
than n(1− 1

2OPT(G′)). The probability of choosing this label is
1
k (1 − 1

k)k−1 = �(1
k). Since the population size is O(k), the

probability that GSEMO selects the all-zeros bit string from
P is �(1

k). So a solution X1 with fitness vector (c1, 1), where
c1 ≤ �n(1 − 1

2OPT(G′))� ≤ n(1 − 1
2OPT(G′)) can be included in

the population in expected runtime O(k2).
If c1 ≥ 2, then there is still a label such that when it is added

to X1 the number of connected components will be reduced to
not more than n(1 − 1

2OPT(G′))
2. So a solution X2 with fitness

vector (c2, 2), where c2 ≤ n(1 − 1
2OPT(G′))

2 can be included
in the population in expected runtime O(k2) after X1 being
included in the population.

Similarly, suppose that solution Xh−1 with fitness vector
(ch−1, h − 1), where ch−1 ≤ n(1− 1

2OPT(G′))
h−1, has now been

included in the population. If ch−1 ≥ 2, then a solution Xh

with fitness vector (ch, h), where ch ≤ n(1 − 1
2OPT(G′))

h , will
be included in the population in expected runtime O(k2) after
Xh−1 being included in the population.

Note that when h = 2 · OPT(G′) · ln n, we have n(1 −
1

2OPT(G′))
h ≤ 1. So, a connected spanning subgraph with at

most �2 · OPT(G′) · ln n� ≤ (2 ln n + 1) · OPT(G′) labels
will be finally included in the population in expected runtime
O((2 ln n + 1) ·OPT(G′) · k2) = O(k3 ln n) after the all-zeros bit
string being included in the population.

Table I summarizes the approximation performances of the
(1+1) EA and GSEMO for the minimum label spanning tree
problem. For the MLSTb problem, the (1+1) EA and GSEMO
can efficiently achieve a (b + 1)/2-approximation ratio. How-
ever, the order of the upper bound on the expected runtime of
GSEMO is higher than that of the (1+1) EA. This is because
that GSEMO has to select a promising solution to mutate from

TABLE I

APPROXIMATION PERFORMANCES OF THE (1+1) EA AND GSEMO. ‘r ’

AND ‘−−’ REFER TO THE APPROXIMATION RATIO AND UNKNOWN,

RESPECTIVELY

a population of size O(k). For the MLST problem, GSEMO
efficiently achieves a (2 ln n + 1)-approximation ratio, but the
approximation performance of the (1+1) EA is unknown.

IV. PERFORMANCES OF THE (1+1) EA AND GSEMO ON

FOUR INSTANCES

In this section, we first present an instance where GSEMO
outperforms the (1+1) EA, then we show that the (1+1) EA and
GSEMO outperform local search algorithms on three instances
of the MLST problem.

A. Instance Where GSEMO Outperforms the (1+1) EA

In this subsection, we construct an instance G1 = (V1,

E1, L1) on which GSEMO is superior to the (1+1) EA, where
L1 = {1, . . . , k}.

Given μ(0 < μ < 1
2), we construct instance G1 as follows.

For simplicity, we assume that μk is an integer, thus (1−μ)k
is also an integer. First, we construct (1− μ)k subgraphs G′1,
. . . , G′(1−μ)k . G′i(1 ≤ i ≤ (1− μ)k) contains a (μk − 1)-sided
regular polygon whose edges are all labeled by the same label
μk + i and an inner node in the center of this regular polygon.
Since the number of sides of a regular polygon is at least
3, μk − 1 ≥ 3, i.e., μk ≥ 4. From the inner node of G′i,
(μk − 1) edges labeled by from 1 to μk − 1 connect to the
μk − 1 outer nodes vi1, vi2, . . . , vi,μk−1. Then three edges are
connected from G′i (1 ≤ i ≤ (1 − μ)k − 1) to G′i+1: the first
one labeled by μk + i is from the inner node of G′i to outer
node vi+1,1 of G′i+1, the second one labeled by μk + i is from
outer node vi1 of G′i to outer node vi+1,1 of G′i+1, and the third
one labeled by μk is from the inner node of G′i to the inner
node of G′i+1. Finally, v0 is connected to the inner node and
v(1−μ)k,1 of G′(1−μ)k with two edges labeled by k, and v0 is

Authorized licensed use limited to: Hanyang University. Downloaded on December 05,2023 at 00:13:45 UTC from IEEE Xplore. Restrictions apply.

866 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 6, DECEMBER 2014

also connected to the inner node of G′1 with an edge labeled
by μk. Fig. 1 shows the instance G1.

When 0 < μ < 1/2, X∗1 = (

μk
︷ ︸︸ ︷
1, . . . , 1,

(1−μ)k
︷ ︸︸ ︷
0, . . . , 0) is the global

optimum of G1. Xl
1 = (

μk
︷ ︸︸ ︷
0, . . . , 0,

(1−μ)k
︷ ︸︸ ︷
1, . . . , 1) is a local optimum

for LS2N. This is because that X∗1 is the only feasible solution
that contains fewer labels than Xl

1. However, |Xl
1 − X∗1 | =

(1 − μ)k and |X∗1 − Xl
1| = μk, which implies that X∗1 �∈ 2-

SWITCH(Xl
1) as μk ≥ 4 and (1− μ)k > μk.

For instance G1, the expected runtime for the (1+1) EA to
jump out of Xl

1 is exponential.
Theorem 4: For instance G1, starting with Xl

1, the expected
runtime for the (1+1) EA to find the global optimum is �(kμk).

Proof: For instance G1, when the current solution is Xl
1, the

(1+1) EA only accepts the event that adds all μk labels from
{1, . . . , μk} and simultaneously removes more than μk labels
from {μk + 1, . . . , k}. So, the probability of escaping from the
local optimum is
∑k−2μk

i=1

(k−μk
μk+i

)
(1

k)2μk+i(1− 1
k)k−2μk−i

= (1
k)μk

∑k−2μk
i=1

(k−μk
μk+i

)
(1

k)μk+i(1− 1
k)k−2μk−i

< (1
k)μk .

This is because
∑k−2μk

i=1

(k−μk
μk+i

)
(1

k)μk+i(1− 1
k)k−2μk−i

<
∑k−2μk

i=1

(k−μk
μk+i

)
(1

k)μk+i(1− 1
k)k−2μk−i

+
∑0

i=−μk

(k−μk
μk+i

)
(1

k)μk+i(1− 1
k)k−2μk−i

=
∑k−μk

i=0

(k−μk
i

)
(1

k)i(1− 1
k)k−μk−i = 1.

Thus, starting with Xl
1, the expected runtime for the (1+1)

EA to find the global optimum of G1 is �(kμk).
While the (1+1) EA needs an expected exponential runtime

to jump out of Xl
1, GSEMO can efficiently find the global

optimum for instance G1.
Theorem 5: For instance G1, GSEMO finds the global

optimum in expected runtime O(k2 ln k).
Proof: We first determine the expected runtime that GSEMO

starting with any initial solution finds the all-zeros solution.
Then we determine the expected runtime that starting with the
all-zeros solution GSEMO produces the whole Pareto front.

Adding a label from L′1 = {1, . . . , μk} to the all-zeros bit
string can reduce the number of connected components by
(1 − μ)k, while adding a label from L′′1 = {μk + 1, . . . , k}
can reduce the number of connected components by μk. Note
that when 0 < μ < 1/2, (1 − μ)k is larger than μk. Hence,
the Pareto front contains μk + 1 Pareto optimal solutions with
fitness vectors (n, 0), (n− (1−μ)k, 1), . . . , (n− (1−μ)jk, j),
. . . , (1, μk), respectively. It is clear that the population size is
O(k).

It has been proved in Theorem 3 that the expected runtime
for GSEMO starting with any initial solution to include the
all-zeros bit string in the population is O(k2 ln k).

Now we calculate the expected runtime to produce the
whole Pareto front after the all-zeros bit string being found.
The worst case is from the all-zeros bit string to produce
the whole Pareto front. Suppose that now in the population,

Fig. 2. Example of instance G2 with n = 5.

there is a Pareto optimal solution X with fitness vector
(n − (1 − μ)jk, j), which has the maximum number of
labels. Another Pareto optimal solution with fitness vector
(n − (1 − μ)(j + 1)k, j + 1) can be produced by adding a
label from L′1 which is not in X. The probability of adding
this label is

(
μk−j

1

)
1
k (1 − 1

k)k−1 ≥ μk−j
ek . This implies that the

expected runtime is O(k2

μk−j), as the expected runtime that
GSEMO selects X from P is O(k). So, considering the worst
case of starting with the all-zeros bit string, the expected
runtime for GSEMO to produce the whole Pareto front is
O(

∑μk−1
j=0

k2

μk−j)= O(k2lnk).

B. Instance Where the (1+1) EA and GSEMO Outperform
ERA

ERA is a local search algorithm. It takes an arbitrary
spanning tree as input, then considers each non-tree edge and
tests whether the number of used labels can be reduced by
adding this non-tree edge and deleting a tree edge on the
induced cycle.

In this subsection, we show that the (1+1) EA and GSEMO
outperform ERA on an instance proposed by Krumke and
Wirth [15], which is denoted by G2 in this paper.

This instance can be constructed in two steps. First, a star
shaped graph is constructed by selecting one node out of n
nodes and connecting it to the other n − 1 nodes with n − 1
edges, which are labeled by n − 1 distinct labels: 1, 2, . . . ,
n − 1. Second, a complete graph is constructed by adding
edges with the same label k to the star shaped graph. Thus,
we get a complete graph G2 = (V2, E2, L2), where |V2| = n,
|E2| = n(n − 1)/2, and L2 = {1, 2, . . . , k} is the set of labels.
It is clear that |L2| = k and k = n. Fig. 2 shows an example
with n = 5, where the dashed edges construct a spanning tree
with the minimum number of labels.

For instance G2, the global optimum X∗2 = (x∗21, . . . , x∗2k)
contains two labels: one comes from {1, . . . , k − 1} and the
other is label k, i.e., |X∗2 | = 2,

∑k−1
i=1 x∗2i = 1, and x∗2k = 1.

Krumke and Wirth [15] used instance G2 to demonstrate
that ERA might perform as badly as possible. In fact, Xl

2 =

(

k−1
︷ ︸︸ ︷
1, . . . , 1, 0) is a local optimum for ERA, since starting with

Authorized licensed use limited to: Hanyang University. Downloaded on December 05,2023 at 00:13:45 UTC from IEEE Xplore. Restrictions apply.

LAI et al.: PERFORMANCE ANALYSIS OF EVOLUTIONARY ALGORITHMS FOR THE MINIMUM LABEL SPANNING TREE PROBLEM 867

Xl
2 the number of labels used in H(Xl

2) cannot be reduced
by adding any non-tree edge and deleting a tree edge on the
induced cycle. The local optimum uses k−1 labels, while the
global optimum uses only 2 labels. However, the (1+1) EA
can efficiently solve instance G2.

Theorem 6: For instance G2, the (1+1) EA starting with
any initial solution finds a global optimum in expected runtime
O(k ln k).

Proof: For simplicity, let L′2 denote the label set {1, . . . , k−
1}.

Let A = {X|c(H(X)) = 1, xk = 1, 2 ≤ |X| ≤ k − 1}, i.e.,
a solution X ∈ A contains label k and at least one but at
most k − 2 labels from L′2. Obviously, any solution X ∈ A is
feasible.

To find a global optimum, a solution X ∈ A should be
found first. Once a solution X ∈ A has been found, the global
optimum can be found by removing all |X|−2 redundant labels
from L′2. Once such a label is removed from X, it cannot be
added anymore. According to the Coupon Collector’s theorem
[39], all redundant labels contained in X will be removed in
expected runtime O(k ln k).

In order to analyze the expected runtime to find a solution
X ∈ A, we further partition all solutions that do not belong to
A into five disjoint subsets B1, B2, B3, B4, B5

B1 = {X|c(H(X)) = 1, |X| = k, and xk = 1};
B2 = {X|c(H(X)) = 1, |X| = k − 1, and xk = 0};
B3 = {X|c(H(X)) > 1, 1 ≤ |X| ≤ k − 2, and xk = 0};
B4 = {X|c(H(X)) > 1, |X| = 1, and xk = 1};
B5 = {X|c(H(X)) > 1, |X| = 0}.

If X ∈ B1, then X will be transformed into A by removing
one label from L′2. The probability of this event is

(k−1
1

)
1
k (1−

1
k)k−1 = �(1), which implies that the expected runtime is O(1).

If X ∈ B2, then X will be transformed into A by adding
label k and simultaneously removing one label from L′2. The
probability of this event is

(k−1
1

)
(1

k)2(1− 1
k)k−2 = �(1

k), which
implies that the expected runtime is O(k).

If X ∈ B3(B4), then X will be transformed into A by adding
label k (one label from L′2). The probability of this event is
1
k (1− 1

k)k−1 = �(1
k)

((k−1
1

)
1
k (1− 1

k)k−1 = �(1)
)

, which implies
that the expected runtime is O(k).

If X ∈ B5, then X will be transformed into A by simultane-
ously adding label k and a label from L′2. The probability is(k−1

1

)
(1

k)2(1 − 1
k)k−2 = �(1

k), which implies that the expected
runtime is O(k).

So, any solution will be transformed into A in expected
runtime O(k).

Combining the expected runtime to remove all redundant
labels contained in a solution belonging to A, the expected
runtime for the (1+1) EA starting with any initial solution to
find a global optimum is O(k ln k).

As shown in the following theorem, GSEMO can also
efficiently solve instance G2.

Theorem 7: For instance G2, GSEMO starting with any
initial solution finds a global optimum in expected runtime
O(k2 ln k).

Proof: Let L′2 denote the label set {1, . . . , k − 1}. The
optimization process consists of two independent phases: the
first phase lasts until a solution with fitness vector (1, ∗), i.e., a
feasible solution, is included in the population, and the second
phase ends when a global optimum is found.

We now analyze the expected runtime of the first phase.
Let X be the solution with fitness vector (c(H(X)), |X|), where
c(H(X)) is the minimum among all solutions in the population.
If c(H(X)) > 1, then there are three cases. The first one is
that X contains no label, the second is that X contains label k
but no label from L′2, and the third is that X contains at least
one but at most k − 2 labels from L′2 and no label k.

For all three cases, a solution with fitness vector (1, ∗) will
be included in expected runtime O(k2), since the probability
of selecting X from P is �(1

k), and the probability of trans-
forming X into a solution with fitness vector (1, ∗) is �(1

k).
Once a solution with fitness vector (1, ∗) is included in

the population, we show that a global optimum will be found
in expected runtime O(k2 ln k). To this end, we partition the
second phase into two subphases: the first subphase lasts until
a solution belonging to A = {X|xk = 1, 2 ≤ |X| ≤ k − 1} is
found, i.e, such a solution contains label k and at least one
but at most k − 2 labels from L′2, the second subphase ends
when a global optimum is found.

If a solution X with fitness vector (1, ∗) and X �∈ A, then
there are two cases needed to be considered: the first is that X
contains label k and all labels from L′2, and the other is that
X contains all labels from L′2 excluding label k.

For the first case, removing any one of the labels from
L′2 will transform X into A. The probability of this event
is

(k−1
1

)
1
k (1 − 1

k)k−1 = �(1), which implies that the expected
runtime is O(1). For the second case, removing one label from
L′2 and simultaneously adding label k will transform X into
A. The probability of this event is

(k−1
1

)
(1

k)2(1− 1
k)k−2 = �(1

k),
which implies that the expected runtime is O(k). Noting that
the probability of selecting X from the population is �(1

k),
a solution belonging to A will be included in the population
in expected runtime O(k2) after a solution with fitness vector
(1, ∗) being included.

Now at least one solution belonging to A is included in
the population. Let X be the solution which has the mini-
mum number of labels among all solutions in the population
belonging to A. If X is not the global optimum of G2, then
the global optimum will be found by removing all |X| − 2
redundant labels from L′2. Once such a label is removed from
X, it cannot be added anymore. According to the Coupon
Collector’s theorem [39], all redundant labels will be removed
in expected runtime O(k ln k), and the probability of selecting
X from P is �(1

k), so a global optimum will be found in
expected runtime O(k2 ln k).

Altogether, GSEMO starting with any initial solution finds
a global optimum in expected runtime O(k2 ln k).

C. Instance Where the (1+1) EA and GSEMO
Outperform LS2N

Brüggemann et al. [36] proposed an instance, denoted by
G3 in this paper, to show that there exists a local optimum
with respect to LS2N.

Authorized licensed use limited to: Hanyang University. Downloaded on December 05,2023 at 00:13:45 UTC from IEEE Xplore. Restrictions apply.

868 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 6, DECEMBER 2014

Fig. 3. Instance G3.

Fig. 4. MLST of instance G3.

As shown in Fig. 3, this instance is a graph G3 = (V3,

E3, L3), where V3 = {v0, x0, x1, . . . , xk−4, y0, y1, . . . , yk−4},
L3 = {1, 2, . . . , k}, |V3| = 2k−5, |E3| = 4k−12, and |L3| = k.
Fig. 4 shows the minimum label spanning tree.

In this instance, the global optimum is

X∗3 = (

k−2
︷ ︸︸ ︷
0, . . . , 0, 1, 1).

LS2N might be trapped in the local optimum, which con-
tains labels 1, 2, . . . , k − 2. In fact, to jump out of this local
optimum, at least three labels from {1, 2, . . . , k−2} should be
removed and simultaneously two labels k − 1 and k should
be added, but the resulting solution is not in the 2-switch
neighborhood of the local optimum. Hence, L2SN may not
find the global optimum of G3. However, the (1+1) EA is
efficient for instance G3.

Theorem 8: For instance G3, the (1+1) EA starting with any
initial solution finds the global optimum in expected runtime
O(k2).

Proof: Let L′3 denote the label set {1, . . . , k − 2}, and let
C = {X|c(H(X)) = 1, xk−1 = 1, xk = 1, 2 ≤ |X| ≤ k − 1}, i.e, a
solution X ∈ C contains labels k − 1 and k and at most k − 3
labels from L′3.

Note that the global optimum contains only two labels
k − 1 and k. The optimization process consists of two in-
dependent phases: the first phase lasts until a solution X ∈ C
is constructed from an arbitrary solution, and the second
phase ends when all |X| − 2 redundant labels from L′3 are
removed.

For analyzing the expected runtime of finding a solution
X ∈ C, we partition all solutions that do not belong to C into

seven disjoint subsets D1, D2, D3, D4, D5, D6, D7

D1 = {X|c(H(X)) = 1, xk−1 = 0, xk = 0, |X| = k − 2};
D2 = {X|c(H(X)) = 1, xk−1 = 0, xk = 1, |X| = k − 2 or
|X| = k − 1};
D3 = {X|c(H(X)) = 1, xk−1 = 1, xk = 0, |X| = k − 2 or
|X| = k − 1};
D4 = {X|c(H(X)) = 1, xk−1 = 1, xk = 1, |X| = k};
D5 = {X|c(H(X)) > 1, xk−1 = 0, xk = 0};
D6 = {X|c(H(X)) > 1, xk−1 = 0, xk = 1};
D7 = {X|c(H(X)) > 1, xk−1 = 1, xk = 0}.

If X ∈ D1, then X will be transformed into C by adding
labels k−1, k, and simultaneously removing three labels from
L′3. The probability of this event is

(k−2
3

)
(1

k)5(1− 1
k)k−5= �(1

k2),
which implies that the expected runtime is O(k2).

If X ∈ D2(D3), then X will be transformed into C by
adding label k − 1 (k) and simultaneously removing two
labels from L′3. The probability of this event is

(k−3
2

)
(1

k)3(1−
1
k)k−3 = �(1

k), which implies that the expected runtime
is O(k).

If X ∈ D4, then X will be transformed into C by removing
a label from L′3. The probability of this event is

(k−2
1

)
1
k (1 −

1
k)k−1 = �(1), which implies that the expected runtime is O(1).

If X ∈ D5, then X will be transformed into C by simul-
taneously adding labels k − 1 and k. The probability of this
event is (1

k)2(1− 1
k)k−2= �(1

k2), which implies that the expected
runtime is O(k2).

If X ∈ D6(D7), then X will be transformed into C by adding
label k − 1 (k). The probability of this event is 1

k (1− 1
k)k−1=

�(1
k), which implies that the expected runtime is O(k).
So, a solution belonging to C will be found in expected

runtime O(k2).
In the second phase, removing each label contained in a

solution belonging to C, which is from L′3, will reduce the
fitness value, and once it is removed it cannot be added
anymore. According to the Coupon Collector’s theorem [39],
the second phase ends in expected runtime O(k ln k).

Altogether, the expected runtime for the (1+1) EA start-
ing with any initial solution to find the global optimum is
O(k2).

GSEMO is also efficient for instance G3.
Theorem 9: For instance G3, the expected runtime for

GSEMO starting with any initial solution to find the global
optimum is O(k2 ln k).

Proof: We first analyze the runtime that the all-zeros solu-
tion is found by GSEMO starting with an arbitrary solution,
then analyze the runtime that the global optimum is found
by GSEMO once the all-zeros solution is included in the
population.

It has been proved in Theorem 3 that the expected runtime
for GSEMO starting with any initial solution to find the all-
zeros bit string is O(k2 ln k).

Once the all-zeros bit string is included in the population,
the Pareto optimal solution X1 with fitness vector (k − 2, 1)
will be found by adding label k − 1 or k to the all-zeros bit
string. The probability that GSEMO selects the all-zeros bit
string from P is �(1

k), and the probability of only flipping a bit

Authorized licensed use limited to: Hanyang University. Downloaded on December 05,2023 at 00:13:45 UTC from IEEE Xplore. Restrictions apply.

LAI et al.: PERFORMANCE ANALYSIS OF EVOLUTIONARY ALGORITHMS FOR THE MINIMUM LABEL SPANNING TREE PROBLEM 869

corresponding to any one of such labels is 2
k (1− 1

k)k−1 = �(1
k).

So, X1 will be included in the population in expected runtime
O(k2) after the all-zeros bit string being included. Then the
global optimum X∗3 with fitness vector (1, 2) will be found by
adding the remaining label from {k−1, k} to solution X1, and
the expected runtime to produce solution X∗3 from solution X1

is also O(k2).
Therefore, the expected runtime for GSEMO starting

with any initial solution to find the global optimum is
O(k2 ln k).

D. Instance Where the (1+1) EA and GSEMO
Outperform the Modified MVCA

In this subsection, we show that the (1+1) EA and GSEMO
outperform the modified MVCA on an instance proposed by
Xiong et al. [17], which is denoted by G4 in this paper.

Given the bound of the labels’ frequency b(b ≥ 2), let n =
b · b! + 1. We construct G4 = (V4, E4, L4) as follows, where
V4 = {1, 2, . . . , n}, |V4| = n, and L4 = Ib ∪ Ib−1 ∪ · · · ∪ I2 ∪ I′.

We construct b! groups from V4, each containing b+1 nodes,
as follows:

V ′1 = {1, 2, . . . , b + 1};
V ′2 = {b + 1, b + 2, . . . , 2b + 1};

. . .

V ′j = {(j− 1)b + 1, (j− 1)b + 2, . . . , jb + 1};
. . .

V ′b! = {(b! − 1)b + 1, (b! − 1)b + 2, . . . , b!b + 1}.
In V ′j (j = 1, 2, . . . , b!), all pairs of consecutive nodes ((j−

1)b+1, (j−1)b+2), . . . , (jb, jb+1) are connected by b edges,
and all these b edges are labeled by one label. Thus, b! labels
are needed, which constitute the label set I′.

In each V ′j , node (j−1)b+1 is connected to nodes (j−1)b+3,
. . . , jb+1. The label subset Ih (h = b, b−1, . . . , 2) is obtained
as follows. We choose edge ((j− 1)b + 1, (j− 1)b + 1 + h) in
each V ′j , so there are b! such edges. We label the first h edges
with one label, and the next h edges with a second label, and
so on. So, b!

h labels are needed, and they construct Ih .
Hence, |Ih| = b!

h (h = b, b−1, . . . , 2), |I′| = b!, and the total
number of labels k =

∑b
j=2

b!
j + b!. The edges with b! labels

from I′ construct the minimum label spanning tree, so in this
instance the global optimum is

X∗4 = (

∑b
j=2

b!
j

︷ ︸︸ ︷
0, . . . , 0,

b!
︷ ︸︸ ︷
1, . . . , 1).

Fig. 5 shows an example with b = 4, where the dashed
edges construct the spanning tree with the minimum number
of labels.

Xiong et al. used this instance to show that the modified
MVCA may obtain a solution using all labels from Ib ∪
Ib−1∪ · · · ∪ I2∪ I′, which is Hb-approximation solution, where
Hb =

∑b
i=1

1
i . However, the (1+1) EA can efficiently find the

global optimum of instance G4.
Theorem 10: For instance G4, the (1+1) EA starting with

any initial solution finds the global optimum in expected
runtime O(nk), where n = b · b! + 1, k =

∑b
j=2

b!
j + b!, and

b is the maximum frequency of the labels.

Proof: The optimization process consists of two independent
phases. The first phase ends when the (1+1) EA finds a
feasible solution, and the second phase lasts until the (1+1)
EA removes all redundant labels from {1, 2, . . . ,

∑b
j=2

b!
j }.

Let X be the current solution. Note that a feasible solution
contains all labels from I′. If X is not a feasible solution,
then there must exist a bit xh from {xi|∑b

j=2
b!
j + 1 ≤ i ≤

∑b
j=2

b!
j + b!} whose value is 0. So, the (1+1) EA can decrease

the number of connected components by at least one with
probability 1

k (1 − 1
k)k−1 ≥ 1

ek . This is the probability of the
event that bit xh is flipped from 0 to 1 and the other bits
keep unchanged. Hence, the expected runtime to decrease the
number of connected components from n to 1 is O(nk), i.e.,
a feasible solution will be found by the (1+1) EA in expected
runtime O(nk).

Once a feasible solution X is found, each bit from
{xi|∑b

j=2
b!
j + 1 ≤ i ≤ ∑b

j=2
b!
j + b!} takes value 1, and the

flippings of them cannot be accepted by the (1+1) EA, as
such flippings will create a disconnected spanning subgraph.
For each bit xi(1 ≤ i ≤ ∑b

j=2
b!
j), if xi = 1, then it

can be flipped from 1 to 0, since this will decrease the
fitness value; otherwise, its flipping cannot be accepted by
the (1+1) EA, as this will increase the fitness value. So, when
all bits have been selected at least once to flip, the global
optimum will be found. According to the Coupon Collector’s
theorem [39], the expected runtime for this to happen is
O(k ln k).

Hence, the expected runtime for the (1+1) EA starting with
any initial solution to find the global optimum is O(nk +k ln k)
= O(nk). Note that n = b · b! + 1 > k = b!(1 + 1

2 + · · · + 1
b), and

k > ln k. So, n > ln k, and nk > k ln k.
GSEMO can solve instance G4 in expected runtime poly-

nomial in k.
Theorem 11: For instance G4, GSEMO starting with any

initial solution finds the global optimum in expected runtime
O(k3).

Proof: The optimization process consists of two phases. The
first phase lasts until GSEMO starting with any initial solution
finds a solution with fitness vector (1, ∗), and the second phase
ends when GSEMO finds the global optimum.

Note that a connected spanning subgraph contains all labels
from I′. If X is a solution such that c(H(X)) > 1, then at least
one label from I′ is not contained in it, and the number of con-
nected components can be decreased by adding such a label.

We now analyze the expected runtime that GSEMO starting
with any initial solution finds a solution with fitness vector
(1, ∗). If such a solution has not been included in the popu-
lation, then there is a solution X from P such that c(H(X))
is the minimal, and adding some label l from I′ to X will
reduce the number of connected components. The probability
that GSEMO chooses X from P is �(1

k), as the population
size is O(k), and the probability of flipping only the bit
corresponding to label l is 1

k (1− 1
k)k−1 = �(1

k), so a solution
with a smaller number of connected components will be found
in expected runtime O(k2). After all labels from I′ being
added, a connected spanning subgraph will be constructed.
Thus, a solution with fitness vector (1, ∗) will included in
expected runtime O(b!k2) = O(k3).

Authorized licensed use limited to: Hanyang University. Downloaded on December 05,2023 at 00:13:45 UTC from IEEE Xplore. Restrictions apply.

870 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 6, DECEMBER 2014

Fig. 5. Instance G4 with b=4.

TABLE II

BOUNDS ON THE (EXPECTED) RUNTIME OF THE (1+1) EA AND GSEMO,

ERA, LS2N, AND THE MODIFIED MVCA TO FIND THE GLOBAL OPTIMA

ON FOUR INSTANCES. ‘−−’ AND ‘INF’ MEAN UNKNOWN AND

INFINITE, RESPECTIVELY

Note: �(kμk) is the lower bound on the expected runtime that the (1+1) EA
starting with the given initial solution Xl

1 finds the global optimum of G1.

Now at least one solution with fitness vector (1, ∗) is
included in the population. Let X be the solution which has
the minimum number of labels among all solutions in the
population with fitness vector (1, ∗). If X is not the global
optimum of G4, then GSEMO can finish the second phase by
removing all redundant labels from Ib ∪ Ib−1 ∪ · · · ∪ I2. Since
the probability of selecting X form P is �(1

k), and removing
all redundant labels needs an expected runtime O(k ln k), the
global optimum will be found in expected runtime O(k2 ln k).

Combining the expected runtime in two phases, we finish
the proof.

Table II shows that GSEMO outperforms the (1+1) EA on
G1. This is mainly because that GSEMO behaves greedily.

It also shows that ERA (LS2N, the modified MVCA) may
be trapped in the local optimum of G2 (G3, G4), thus it cannot
efficiently solve G2 (G3, G4). However, the (1+1) EA and
GSEMO can efficiently solve them.

This theoretically shows that EAs outperform local search
algorithms on some instances. The reason is that EAs are
global search algorithms as they use global mutation, while a
local search algorithm searches the neighborhood of a current
solution, thus it may be trapped in a local optimum.

Nevertheless, local search algorithms are not always worse
than EAs.

For example, the modified MVCA can efficiently solve
instance G2. Recall that the modified MVCA begins with the
all-zeros bit string, then chooses at each step a label such
that when this label is chosen the decrease in the number of
connected components is the largest. Therefore, the modified
MVCA first tests all labels and chooses label k, as when it is
chosen the decrease in the number of connected components
is the largest. Next, the modified MVCA tests the remaining
k − 1 labels: 1, 2, . . . , k − 1, and randomly chooses one of
them as the decrease in the number of connected components
is the same when each of them is chosen. Hence, a global
optimum of G2 is found by the modified MVCA in runtime
2k−1, which is superior to that of the (1+1) EA and GSEMO.

V. CONCLUSION

In this paper, we investigate the performances of the
(1+1) EA and GSEMO for the minimum label span-
ning tree problem. We reveal that the (1+1) EA and
GSEMO can guarantee the achievement of some approx-
imation ratios for the MLST problem. This shows that
EAs can guarantee certain approximation ratios for difficult
NP-hard problems. We also theoretically show that the (1+1)
EA and GSEMO defeat local search algorithms in some
instances, and that GSEMO outperforms the (1+1) EA in one
instance.

On the MLSTb problem, the (1+1) EA and GSEMO
achieve the same approximation ratio of (b + 1)/2. To find a
(b + 1)/2-approximation solution for the MLSTb problem, the
upper bound on the expected runtime of GSEMO is larger
than that of the (1+1) EA. However, we still have no idea
how to obtain the lower bounds on their runtime for such an
approximation ratio.

As for the approximation ratio of the (1+1) EA on the
MLST problem, we still know nothing about it. Apart from
this, since the (1+1) EA and GSEMO are randomized algo-
rithms, it is natural to ask whether they can achieve better
approximate ratios than those guaranteed by some other algo-
rithms or not.

Authorized licensed use limited to: Hanyang University. Downloaded on December 05,2023 at 00:13:45 UTC from IEEE Xplore. Restrictions apply.

LAI et al.: PERFORMANCE ANALYSIS OF EVOLUTIONARY ALGORITHMS FOR THE MINIMUM LABEL SPANNING TREE PROBLEM 871

Usually, EAs in practice, use a population of individuals,
and in order to retain the diversity of individuals, an appropri-
ate population size is needed, which is different from the (1+1)
EA using only one individual. Thus, the performance analysis
of population-based EAs is an important research topic (see
[19], [40]–[42]).

How do population-based EAs such as (μ+λ) EAs perform
on the MLST problem? Are they better than the (1+1) EA?
Crossover is usually an important operator for population-
based EAs. Several theoretical investigations have recently
proven that crossover is essential or useful on some problems,
e.g., [43] and [44]. Therefore, it is interesting to investigate
the performance of the population-based EA using not only
mutation but also crossover on the MLST problem.

REFERENCES

[1] A. S. Tanenbaum, Computer Networks. Englewood Cliffs, NJ, USA:
Prentice Hall, 1989.

[2] R.-S. Chang and S.-J. Leu, “The minimum labeling spanning trees,”
Inform. Process. Lett., vol. 63, no. 5, pp. 277–282, 1997.

[3] A. Chwatal, G. Raidl, and O. Dietzel, “Compressing fingerprint tem-
plates by solving an extended minimum label spanning tree problem,”
in Proc. 7th MIC, 2007, pp. 105.1–105.3.

[4] A. Chwatal, G. Raidl, and K. Oberlechner, “Solving a k-node minimum
label spanning arborescence problem to compress fingerprint templates,”
J. Math. Mod. Algor., vol. 8, no. 3, pp. 293–334, 2009.

[5] J. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor,
MI, USA: Univ. Michigan Press, 1975.

[6] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. New York, NY, USA: Addison-Wesley, 1989.

[7] F. Herrera, M. Lozano and J. Verdegay, “Tackling real-coded genetic
algorithms: Operators and tools for behavioural analysis,” Artif. Intell.
Rev., vol. 12, no. 4, pp. 265–319, 1998.

[8] K. Gallagher and M. Sambridge, “Genetic algorithms: A powerful tool
for large-scale non-linear optimization problems,” Comput. Geosci.,
vol. 20, nos. 7–8, pp. 1229–1236, 1994.

[9] Y. Xiong, B. Golden, and E. Wasil, “A one-parameter genetic algo-
rithm for the minimum labeling spanning tree problem,” IEEE Trans.
Evol. Comput., vol. 9, no. 1, pp. 55–60, Feb. 2005.

[10] J. Nummela and B. Julstrom, “An effective genetic algorithm for
the minimum-label spanning tree problem,” in Proc. GECCO, 2006,
pp. 553–558.

[11] S. Consoli and J. Moreno-Pérez, “Solving the minimum labelling
spanning tree problem using hybrid local search,” in Proc. Euro. MEC,
vol. 39, 2012, pp. 75–82.

[12] A. Chwatal and G. Raidl, “Solving the minimum label spanning tree
problem by mathematical programming techniques,” Vienna Univ. Tech-
nol., Inst. Comput. Graph. Algorithms, Vienna, Autria, Tech. Rep. TR
186–1–10–03, Jun. 2010.

[13] R. Cerulli, A. Fink, M. Gentili, and S. Voß, “Metaheuristics comparison
for the minimum labelling spanning tree problem,” in The Next Wave
on Computing, Optimization, and Decision Technologies, B. L. Golden,
S. Raghavan, E. A. Wasil, eds. New York, NY, USA: Springer, 2005,
pp. 93–106.

[14] S. Consoli, K. Darby-Dowman, N. Mladenović, and J. Moreno-Pérez,
“Greedy randomized adaptive search and variable neighbourhood search
for the minimum labelling spanning tree problem,” Eur. J. Oper. Res.,
vol. 196, no. 2, pp. 440–449, Jul. 2009.

[15] S. O. Krumke and H. Wirth, “On the minimum label spanning tree
problem,” Inform. Process. Lett., vol. 66, no. 2, pp. 81–85, 1998.

[16] Y. Wan, G. Chen, and Y. Xu, “A note on the minimum label spanning
tree,” Inform. Process. Lett., vol. 84, no. 2, pp. 99–101, 2002.

[17] Y. Xiong, B. Golden, and E. Wasil, “Worst-case behavior of the MVCA
heuristic for the minimum labeling spanning tree problem,” Oper. Res.
Lett., vol. 33, no. 1, pp. 77–80, 2005.

[18] S. Jansen and I. Wegener, “Evolutionary algorithms: How to cope with
plateaus of constant fitness and when to reject strings of the same fit-
ness,” IEEE Trans. Evol. Comput., vol. 5, no. 6, pp. 589–599, Dec. 2001.

[19] J. He and X. Yao, “Drift analysis and average time complexity of
evolutionary algorithms,” Artif. Intell., vol. 127, no. 1, pp. 57–85, 2001.

[20] S. Droste, T. Jansen, and I. Wegener, “On the analysis of the (1+1)
evolutionary algorithm,” Theor. Comput. Sci., vol. 276, nos. 1–2,
pp. 51–81, 2002.

[21] J. He and X. Yao, “Towards an analytic framework for analysing the
computation time of evolutionary algorithms,” Artif. Intell., vol. 145,
nos. 1–2, pp. 59–97, 2003.

[22] F. Neumann, J. Reichel, and M. Skutella, “Computing minimum
cuts by randomized search heuristics,” Algorithmica, vol. 59, no. 3,
pp. 323–342, 2011.

[23] Y. Zhou, J. He, and Q. Nie, “A comparative runtime analysis of
heuristic algorithms for satisfiability problems,” Artif. Intell., vol. 173,
no. 2, pp. 240–257, 2009.

[24] F. Neumann and I. Wegener, “Randomized local search, evolutionary
algorithms, and the minimum spanning tree problem,” Theor. Comput.
Sci., vol. 378, no. 1, pp. 32–40, 2007.

[25] F. Neumann, “Expected runtimes of evolutionary algorithms for
the Eulerian cycle problem,” Comput. Oper. Res., vol. 35, no. 9,
pp. 2750–759, 2008.

[26] A. Sutton and F. Neumann, “A parameterized runtime analysis
of evolutionary algorithms for the Euclidean traveling salesperson
problem,” in Proc. 26th Conf. AAAI, 2012, pp. 1105–1111.

[27] O. Giel and I. Wegener, “Evolutionary algorithms and the maximum
matching problem,” in Proc. 20th Annu. STACS, 2003, vol. 2607,
pp. 415–426.

[28] P. Oliveto, J. He, and X. Yao, “Analysis of the (1+1)-EA for
finding approximate solutions to vertex cover problems,” IEEE Trans.
Evol. Comput., vol. 13, no. 5, pp. 1006–1029, Oct. 2009.

[29] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt, “Ap-
proximating covering problems by randomized search heuristics using
multiobjective models,” Evol. Comput., vol. 18, no. 4, pp. 617–633,
2010.

[30] C. Witt, “Worst-case and average-case approximations by simple
randomized search heuristics,” in Proc. 22nd Annu. STACS, 2005,
vol. 3404, pp. 44–56.

[31] F. Neumann and J. Reichel, “Approximating minimum multicuts by
evolutionary multiobjective algorithms,” in Proc. 10th Int. Conf. PPSN,
2008, pp. 72–81.

[32] Y. Yu, X. Yao, and Z. Zhou, “On the approximation ability of
evolutionary optimization with application to minimum set cover,”
Artif. Intell., vols. 180–181, pp. 20–33, Apr. 2012.

[33] F. Neumann and I. Wegener, “Minimum spanning trees made easier
via multiobjective optimization,” Natural Comput., vol. 5, no. 3,
pp. 305–319, 2006.

[34] F. Neumann, “Expected runtimes of a simple evolutionary algorithm
for the multiobjective minimum spanning tree problem,” Eur. J. Oper.
Res., vol. 181, no. 3, pp. 1620–1629, 2007.

[35] C. Qian, Y. Yu, and Z.-H. Zhou, “An analysis on recombination
in multiobjective evolutionary optimization,” Artif. Intell., vol. 204,
pp. 99–119, Nov. 2013.

[36] T. Brüggemann, J. Monnot, and G. Woeginger, “Local search for the
minimum label spanning tree problem with bounded color classes,”
Oper. Res. Lett., vol. 31, no. 3, pp. 195–201, 2003.

[37] O. Giel, “Expected runtimes of a simple multiobjective evolutionary
algorithm,” in Proc. IEEE Congr. Evol. Comput., 2003, pp. 1918–1925.

[38] M. Laumanns, L. Thiele, and E. Zitzler, “Running time analysis
of multiobjective evolutionary algorithms on pseudo-Boolean
functions,” IEEE Trans. Evol. Comput., vol. 8, no. 2, pp. 170–182,
Apr. 2004.

[39] M. Mitzenmacher and E. Upfal, Propability and Computing. Cambridge,
U.K.: Cambridge Univ. Press, 2005.

[40] T. Jansen, K. A. D. Jong, and I. Wegener, “On the choice of the
offspring population size in evolutionary algorithms,” Evol. Comput.,
vol. 13, no. 4, pp. 413–440, 2005.

[41] T. Chen, J. He, G. Sun, G. Chen, and X. Yao, “A new approach
to analyzing average time complexity of population-based
evolutionary algorithms on unimodal problems,” IEEE Trans.
Syst., Man, Cybern. B, Cybern., vol. 39, no. 5, pp. 1092–1106,
Oct. 2009.

[42] T. Chen, K. Tang, G. Chen, and X. Yao, “A large population size can
be unhelpful in evolutionary algorithms,” Theor. Comput. Sci., vol. 436,
no. 8, pp. 54–70, 2012.

[43] T. Jansen and I. Wegener, “Real royal road functions—Where crossover
provably is essential,” Discrete Appl. Math., vol. 149, pp. 111–125,
2005.

[44] B. Doerr, E. Happ, and C. Klein, “Crossover can provably be useful in
evolutionary computation,” Theor. Comput. Sci., vol. 425, pp. 17–33,
2012.

Authorized licensed use limited to: Hanyang University. Downloaded on December 05,2023 at 00:13:45 UTC from IEEE Xplore. Restrictions apply.

872 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 6, DECEMBER 2014

Xinsheng Lai received the M.Sc. degree in com-
puter applied technology from Guizhou University,
Guiyang, China, in 2004. He is currently working
toward the Ph.D. degree from South China Univer-
sity of Technology, Guangzhou, China.

His current research interests include evolution-
ary computation, neural computation, and their real
world applications.

Yuren Zhou received the B. Sc. degree in mathemat-
ics from Peking University, Beijing, China, in 1988,
the M.Sc. degree in the mathematics from Wuhan
University, Wuhan, China, in 1991, and the Ph.D.
degree in computer science from the same University
in 2003.

He is currently a Professor with the School of
Computer Science and Engineering, South China
University of Technology, Guangzhou, China. His
current research interests include design and analysis
of algorithms, evolutionary computation, and data
mining.

Jun He (M’06) received the B.S. and M.Sc. degrees
in mathematics, and the Ph.D. degree in computer
science from Wuhan University, Wuhan, China, in
1989, 1992, and 1995, respectively.

He is currently a Senior Lecturer at Aberystwyth
University, Wales, U.K. He has published over 80
papers in his research areas. His current research
interests include evolutionary computation, global
optimization, and network security.

Jun Zhang (M’02–SM’08) received the Ph.D.
degree in electrical engineering from the City Uni-
versity of Hong Kong, Kowloon, Hong Kong, in
2002.

Since 2004, he has been with Sun Yat-Sen Univer-
sity, Guangzhou, China, where he is currently a Che-
ung Kong Professor with the School of Advanced
Computing. He has authored 7 research books and
book chapters, and over 100 technical papers in
his research areas. His research interests include
computational intelligence, cloud computing, high

performance computing, data mining, wireless sensor networks, operations
research, and power electronic circuits.

Dr. Zhang was a recipient of the China National Funds for Distinguished
Young Scientists from the National Natural Science Foundation of China,
in 2011, and the First-Grade Award in Natural Science Research from the
Ministry of Education, China, in 2009. He is currently an Associate Editor
of the IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, the IEEE
TRANSACTIONS ON INDUSTRIAL ELECTRONICS, the IEEE TRANSACTIONS ON

CYBERNETICS, and the IEEE Computational Intelligence Magazine.

Authorized licensed use limited to: Hanyang University. Downloaded on December 05,2023 at 00:13:45 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

