
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 61, NO. 12, DECEMBER 2014 7141

Bi-Velocity Discrete Particle Swarm Optimization
and Its Application to Multicast Routing Problem

in Communication Networks
Meie Shen, Zhi-Hui Zhan, Member, IEEE, Wei-Neng Chen, Member, IEEE, Yue-Jiao Gong, Student Member, IEEE,

Jun Zhang, Senior Member, IEEE, and Yun Li, Member, IEEE

Abstract—This paper proposes a novel bi-velocity discrete par-
ticle swarm optimization (BVDPSO) approach and extends its
application to the nondeterministic polynomial (NP) complete
multicast routing problem (MRP). The main contribution is the
extension of particle swarm optimization (PSO) from the con-
tinuous domain to the binary or discrete domain. First, a novel
bi-velocity strategy is developed to represent the possibilities of
each dimension being 1 and 0. This strategy is suitable to describe
the binary characteristic of the MRP, where 1 stands for a node
being selected to construct the multicast tree, whereas 0 stands
for being otherwise. Second, BVDPSO updates the velocity and
position according to the learning mechanism of the original PSO
in the continuous domain. This maintains the fast convergence
speed and global search ability of the original PSO. Experiments
are comprehensively conducted on all of the 58 instances with
small, medium, and large scales in the Operation Research Li-
brary (OR-library). The results confirm that BVDPSO can obtain
optimal or near-optimal solutions rapidly since it only needs to
generate a few multicast trees. BVDPSO outperforms not only
several state-of-the-art and recent heuristic algorithms for the
MRP problems, but also algorithms based on genetic algorithms,
ant colony optimization, and PSO.

Index Terms—Communication networks, multicast routing
problem (MRP), particle swarm optimization (PSO), Steiner tree
problem (STP).

I. INTRODUCTION

THE MULTICAST routing problem (MRP) has drawn
much attention worldwide for a number of decades, owing

Manuscript received August 22, 2013; revised December 3, 2013 and
January 28, 2014; accepted February 2, 2014. Date of publication March 27,
2014; date of current version September 12, 2014. This work was supported
in part by the National High-Technology Research and Development Program
(“863” Program) of China under Grant 2013AA01A212, in part by the Key Pro-
gram of National Natural Science Foundation of China under Grant 61332002,
and in part by the National Science Fund for Distinguished Young Scholars
under Grant 61125205. (Corresponding author: Z.-H. Zhan.)

M. Shen is with the School of Computer Science, Beijing Information
Science and Technology University, Beijing 100101, China.

Z.-H. Zhan, W.-N. Chen, Y.-J. Gong, and J. Zhang are with the Key Labo-
ratory of Machine Intelligence and Advanced Computing and the Engineering
Research Center of Supercomputing Engineering Software, Sun Yat-Sen Uni-
versity, Ministry of Education, Guangzhou 510275, China, and also with the
Key Laboratory of Software Technology, Education Department of Guangdong
Province, Guangzhou 510275, China (e-mail: zhanzhh@mail.sysu.edu.cn).

Y. Li is with the Department of Electronics and Electrical Engineering,
University of Glasgow, Glasgow, G12 8LT, U.K.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIE.2014.2314075

to its significance in communication and networking systems
[1]. An MRP is a problem that, given a communication network
with a source node, a set of destination nodes, a set of interme-
diate nodes, and a set of edges that make the network connected,
finds a tree to connect the source node and all the destination
nodes, so that the data can be sent to all destination nodes
by multicasting. Work during recent years on research and
applications has witnessed the significance of MRP in various
communication networks, providing services such as Internet
protocol television, distributed data process, Internet telephone,
interactive multimedia conference, and video broadcast [2].

An MRP can be treated as an optimization problem. For
example, its objective can be to minimize delays from the
source to destinations, which is crucial to latency-sensitive
multicasting. In this sense, we can consider the delay of each
edge as the cost of the edge and optimize the multicast tree
with a minimal cost. We can also take other network properties
as the cost of each edge, such as the reserved bandwidth and
the utility price [3]. Without loss of generality, this paper does
not consider the physical significance of the cost. Therefore,
optimizing the cost of MRP is also referred to the Steiner tree
problem (STP) in graph theory.

The challenge in solving the MRP or STP lies in the fact that
the STP is known to be a nondeterministic polynomial (NP)
complete problem [4]. Therefore, deterministic algorithms are
inapplicable, whereas approximation or nondeterministic algo-
rithms are promising and of practical value to solve the MRP
[4]. In early years, researchers proposed some state-of-the-art
greedy heuristic algorithms for the STP, such as shortest path
heuristic (SPH), distance network heuristic (DNH), and average
distance heuristic (ADH) [5]. In recent years, modern heuris-
tics, such as directed convergence heuristic (DCH) [6] and
greedy randomized adaptive search procedure (GRASP) [7],
have been also developed. However, these heuristic algorithms
appear not promising in constructing an optimal multicast tree
when the network scale becomes large with many nodes and
edges. This is because that the greedy heuristic algorithms are
based on local information and are hence easily trapped in local
optima in a complex environment.

With the development of evolutionary computation (EC),
many studies have shown that EC algorithms, such as genetic
algorithm (GA) [8], [9], ant colony optimization (ACO) [10],
particle swarm optimization (PSO) [11]–[13], and others [14],
[15], are promising to solve various complex optimization

0278-0046 © 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

7142 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 61, NO. 12, DECEMBER 2014

problems. These also motivate researchers to apply EC algo-
rithms for communication and networking optimization. For
example, GAs have been reported successful in solving MRP
for decades [5]. ACO was also reported to solve some kinds
of MRP [16]. However, the GA- and ACO-based methods
may encounter their inherent low convergence speed, which
is criticized in the communication community on inefficiency
in meeting high demands of real-time communication services
[17]. As an efficient EC variant, PSO is featured by its simpler
implementation and faster convergence speed when compared
with other EC algorithms, yet offering strong global search abil-
ity [18]. Therefore, we focus on applying PSO to solve the STP,
which is an MRP without QoS constraints. Wang et al. [19]
used a tree-based scheme to code the solution (particle). How-
ever, the method needs to code all multicast trees in potential
solution, making the algorithm complex for implementation.
Qu et al. [20] have recently proposed to use jumping PSO
(JPSO) to solve the STP. Although they used a discrete PSO
(DPSO), the velocity of the original PSO was not considered,
being inefficient to maintain the advantages of the original PSO
in the continuous domain.

In order to keep the simple implementation and efficiency of
the original PSO in the continuous domain and also to maintain
the fast convergence speed and global search advantages of
PSO, this paper extends the original PSO to the binary do-
main and optimizes the MRP by solving the STP as a binary
optimization problem. The solution (particle) is coded as a
0/1 string (whose length is equal to the number of nodes in
the network), where 1 means a node is selected to construct
the multicast tree and 0 means the node is not selected. Based
on this coding scheme, a novel bi-velocity DPSO (BVDPSO) is
proposed for both maintaining the search advantages of PSO
and matching the binary characteristics of MRP. Therefore,
BVDPSO is different from other existing discrete or binary
PSO algorithms that use random jumping strategy [20], sigmoid
function strategy [21], or set-based strategy [22], because it
uses a very simple and straightforward bi-velocity strategy
that utilizes two vectors to represent the possibilities of being
0 and 1, respectively, for each node. Moreover, BVDPSO
modifies the velocity and position update equations to keep
the learning mechanism of the original PSO in the continuous
domain. BVDPSO is also different from our previous DPSO for
MRP optimization [23], [24], because DPSO does not keep the
original PSO framework but adds a mutation operator to PSO.
BVDPSO does not change the PSO algorithm structure but
takes the advantages of the ring topological structure to avoid
local optimal, being still as simple as the original PSO. In this
paper, BVDPSO is comprehensively studied in local networks
and rigorously tested for not only small- or medium-scale
networks but also large-scale networks with a large number of
nodes, edges, and destination nodes.

Therefore, the main contributions of this paper are twofold:
one is in the algorithm design aspect, and the other is in the
practical application aspect.

First, the novelty of BVDPSO is that it uses a general bi-
velocity scheme to make PSO suitable for solving a class
of binary optimization problem in the discrete domain. More
importantly, such a bi-velocity scheme makes BVDPSO still as

simple as the original PSO in the continuous domain and also
maintains the fast global search behaviors of the PSO.

Second, BVDPSO can overcome the local optimum issue of
many heuristic algorithms and has much faster speed to find
the optimal or near-optimal multicast solution than other EC
algorithms. This can provide researchers and engineers a new
and practical approach to multicast design in communication
networks. Moreover, to the best of our knowledge, BVDPSO is
the first EC-based algorithm that is tested on all the 58 problems
(with small, medium, and large scales) in the Operation Re-
search Library (OR-library) [25]. The experimental results can
provide a baseline for future research on these MRP problems.

The remainder of the paper is organized as follows: Section II
formulates the MRP and describes the framework of PSO.
Section III proposes BVDPSO for optimizing the MRP.
Section IV presents the experimental results and comparisons.
Conclusions and future work are drawn in Section V.

II. BACKGROUND OF MRP AND PSO

A. Formulation of MRP

To define an MRP, suppose that Netw = {A,E} is an
undirected, connected, and weighted network, where A is the
node set and E is the edge set. A positive function c(e) is used
to denote the cost of each edge e in E. The source node s
and all multiple destination nodes in the network make up the
set R = {s} ∪D, where D stands for the destination node set.
S = A/R stands for the rest nodes (which are also named as
the intermediate nodes or the Steiner nodes). The functionality
of the MRP is to send the data from the source node (s) to
all the destination nodes in the set D. Therefore, the objective
of the MRP is to find a minimal cost tree T that connects the
source node to all the destination nodes through some of the
intermediate nodes.

For T = {A∗, E∗}, where A∗ ⊆ A, E∗ ⊆ E, and R ⊆ A∗,
the objective of the MRP is formulated as

f=Min T =min
∑
e∈E∗

c(e) where A∗⊆A, E∗⊆E, R⊆A∗.

(1)

B. PSO in the Continuous Domain

PSO is an EC algorithm paradigm that emulates the swarm
behaviors of birds flocking [17]. Optimizing an N -dimensional
continuous optimization problem, each particle i has a velocity
vector V i = [vi1, vi2, . . . , viN] and a position vector Xi =
[xi1, xi2, . . . , xiN] to indicate the current status. Moreover,
the particle i keeps its personal historical best position vector
P i = [pi1, pi2, . . . , piN]. The best position of all P i in the
ring topology is regarded as the neighborhood local best po-
sition Li = [li1, li2, . . . , liN]. The V i and Xi are initialized
randomly and are updated in every generation by the guidance
of P i and Li as follows:

vij=ω×vij+c1×r1j×(pij−xij)+c2×r2j×(lij−xij) (2)
xij=xij+ vvij (3)

where ω is the inertia weight linearly decreasing from 0.9 to
0.4 during the running time. c1 and c2 are the acceleration

SHEN et al.: BVDPSO AND ITS APPLICATION TO MRP IN COMMUNICATION NETWORKS 7143

coefficients set as 2.0. r1j and r2j are two random values in
the range of [0, 1] for the jth dimension.

Since the ring topology is not easy to be trapped into local
optima while can still keep very fast optimization speed [26], it
is adopted herein. Interested readers can refer to [27] and [28]
for enhanced PSOs and [29] for PSO industrial applications.

III. BVDPSO

A. Particle Code

The MRP can be regarded to find a set of nodes (including the
source node, all the destination nodes, and some intermediate
nodes) to construct an optimal multicast tree. Therefore, it is
natural and intuitive to code the solution as a binary string,
whose length is the same as the number of total nodes, and all
the destination nodes are always coded with a bit 1 to indicate
that they are always in the tree. Moreover, if an intermediate
node has a value 1, it means that the node is used to construct
the multicast tree; otherwise, the node is not used to construct
the tree. Therefore, suppose that there are totally N nodes in the
network, the position code of each particle i is defined as

Xi = [xi1, xi2, . . . , xiN], where xij = 0 or 1 (4)

while the velocity is coded by a novel bi-velocity fashion as

Vi =

[
v0i1, v

0
i2, . . . , v

0
ij , . . . , v

0
iN

v1i1, v
1
i2, . . . , v

1
ij , . . . , v

1
iN

]

where 0 ≤ v0ij ≤ 1, 0 ≤ v1ij ≤ 1. (5)

In (5), it is interesting that the jth dimension of the V i is
associated with bivalues. v0ij is the possibility of xij being 0,
and v1ij is the possibility of xij being 1. Note that v0ij and v1ij
are calculated according to the difference between two positions
(e.g., P i and Xi, or Li and Xi) and are independent to stand
for the possibilities of xij being 0 and 1. Therefore, the sum of
v0ij and v1ij is unnecessarily equal to 1.

B. Velocity Update

When updating the particle’s velocity in BVDPSO, it is
important to keep the learning concept in the original PSO.
In our implementation of the velocity update in BVDPSO, the
same equation as (2) is used. However, three modifications
are taken to fit the 0/1 position code and bi-velocity code
in BVDPSO. The details are described as follows and given
in Fig. 1.

1) V elocity = Position1− Position2: Suppose that
Position1 is X1 and Position2 is X2, our BVDPSO
keeps the original PSO learning concept and makes
up V elocity (V i = X1 −X2) by considering the
difference between X1 and X2, when X2 learns from
X1. For the jth dimension of V i, if x1j is b but x2j is
not b (b is 0 or 1), which means that X2 is different from
X1 on this jth dimension, then the particle X2 should
learn from X1 (because X1 is the better position).
Hence, vbij = 1 and v1−b

ij = 0; if x1j is the same as

Fig. 1. Pseudocode of the procedure for velocity update.

x2j , it means that it is unnecessary for X2 to learn
from X1 on this corresponding dimension; hence,
v0ij = v1ij = 0. For example, if X1 = [1, 1, 1, 0, 1, 0, 1, 0]
and X2 = [1, 1, 1, 0, 1, 1, 0, 0], then V i = X1 −X2 =[
0, 0, 0, 0, 0, 1, 0, 0
0, 0, 0, 0, 0, 0, 1, 0

]
.

2) V elocity = Coefficient× V elocity: This operation is
to multiply Coefficient ω, or c× r with each element
of the current V elocity to obtain each element of the
final V elocity. As velocity is to denote the possibility for
the position being 0 and 1, if any dimension of the final
V elocity is larger than 1, this value is set to 1. Suppose
that c× r = [1.5, 1.8, 0.9, 0.5, 1.2, 1.3, 0.8, 0.5] and

V =

[
0, 0, 0, 0, 0, 1, 0, 0
0, 0, 0, 0, 0, 0, 1, 0

]
, then V = (c×

r)× V =

[
0, 0, 0, 0, 0, 1.3, 0, 0
0, 0, 0, 0, 0, 0, 0.8, 0

]
=[

0, 0, 0, 0, 0, 1, 0, 0
0, 0, 0, 0, 0, 0, 0.8, 0

]
.

3) V elocity = V elocity1 + V elocity2: Suppose that
V elocity1 and V elocity2 are V 1 and V 2,
respectively, then V i = V 1 + V 2 is the final
V elocity. The jth dimension vbij in the velocity
V i is the same as the larger one between vb1j
and vb2j , where b = 0, 1. For example, suppose that

V 1 =

[
0.2, 0, 0.8, 0.1, 0, 0, 0.5, 0
0.3, 0, 0.1, 0.4, 0, 0, 0, 0.5

]
and

V 2 =

[
0.4, 0.5, 0.6, 0, 0, 1, 0.3, 0
0.1, 0, 0.9, 0, 0.2, 0, 0.8, 0

]
,

then V i = V 1 + V 2 =[
0.4, 0.5, 0.8, 0.1, 0, 1, 0.5, 0
0.3, 0, 0.9, 0.4, 0.2, 0, 0.8, 0.5

]
.

C. Position Update

When the PSO algorithm works in the continuous domain,
the position update is to add the updated velocity V i to the
current position Xi, as (3). However, the position and velocity
may not be added up directly in the discrete domain. In order to

7144 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 61, NO. 12, DECEMBER 2014

Fig. 2. Pseudocode of the CCG procedure.

keep the learning concept of the original PSO, we construct the
new position by using the strategy as follows:

xij =

⎧⎪⎪⎨
⎪⎪⎩

rand{0, 1}, if (v0ij > α and v1ij > α)

0, if (v0ij > α and v1ij ≤ α)
1, if (v0ij ≤ α and v1ij > α)
xij , if (v0ij ≤ α and v1ij ≤ α).

(6)

With these strategies, the new position pays more attention
to the new velocity. This can help the particle learn more from
the exemplars to the learning concept of the original PSO.

D. Fitness Evaluation

An important issue in using BVDPSO for MRP optimization
is how to calculate the fitness of a solution. The solution is
a 0/1 string, indicating which nodes are used to construct the
multicast tree. The fitness evaluation is to construct a multicast
tree according to this 0/1 string and then calculate the cost of the
tree. In order to construct a promising multicast tree with low
cost, we first transform the MRP network into a cost complete
graph (CCG) based on Floyd’s algorithm with a special data
structure. Then, based on the CCG and the 0/1 binary string
of the solution, we can construct the multicast tree by using
Prim’s minimum spanning tree (MST) algorithm. However, it is
necessary to make some modifications to Prim’s algorithm to fit
the characteristic of MRP. Moreover, the tree has to be pruned,
in order to delete the leaves that are not the destination nodes.
The following parts describe the CCG procedure, modified
Prim’s algorithm, and the prune procedure.

CCG Procedure: In the CCG procedure, every two nodes are
connected by the shortest path. It should be noted that some
of the shortest paths may be “indirect” paths, and the others
are “direct” paths. A direct path means that the path exists
in the original network that connects the two nodes directly.
An indirect path means that the path does not directly connect
the two nodes but via some other nodes. Therefore, we should
record the very next node of the shortest path that connects any
two nodes. This can help to restore the path when necessary.

Fig. 2 gives the pseudocode of the CCG procedure based on
Floyd’s algorithm with a data structure. C(i, j) is the input data

of the CCG procedure to give the cost between nodes i and j
in the original network. C(i, j) = −1 means that nodes i and
j are not directly connected. The data structure S is used to
record the shortest path (with minimal cost) that connects any
two nodes. Specifically, S(i, j).length is the total cost of the
path that connects nodes i and j. S(i, j).next is the very next
node on the path from i to j. That is, if the nodes i and j are
directly connected, then S(i, j).next is j and S(j, i).next is i.
Otherwise, suppose that the shortest path between nodes i and
j is (i, k1, k2, . . . , j), then S(i, j).next = k1, S(k1, j).next =
k2, and so on. With the help of S(i, j).next, we can reconstruct
the path between nodes i and j easily. Note that the CCG
procedure is only carried out once before using BVDPSO to
optimize the MRP. Therefore, the CCG is the preprocess, whose
results can be used again and again in the fitness evaluation
procedure during the entire BVDPSO process.

Modified Prim’s Algorithm for the MST: As there are direct
and indirect paths in the CCG, the modified Prim’s algorithm
prefers the direct paths to the indirect paths when constructing
the MST T . That is, we try to construct the tree according to the
nodes with value 1 in the solution string. Therefore, when there
are both direct and indirect paths that connect these nodes to
the tree, the algorithm selects the shortest direct path, although
it may be longer than some indirect paths. When there are no
direct paths, the algorithm selects the shortest indirect path.

We give an example in Fig. 3 to illustrate the modified Prim’s
algorithm. Fig. 3(a) is the original network with N1, N8, and N9

as the destination nodes. Suppose that the particle position is
defined as X = [1, 0, 1, 0, 0, 0, 1, 1, 1], denoting that the nodes
N1, N3, N7, N8, and N9 are used to construct the tree. The
modified Prim’s algorithm is described in four steps.

Step 1): Initialize T as an empty tree. We first select a random
destination node into T (the source node is also regarded
as a destination node). Then, for any other node i with a
position value 1 in the binary string, record its direct cost
D[i] and indirect cost I[i] to the tree T. As in Fig. 3(b),
we select the destination node N1 into T and then record
D[i] and I[i] for all the other nodes i whose position values
are 1. For example, D[N3] = 3 means that the node N3

connects T via a direct path with cost 3. I[N3] = 2 means
that the shortest path for the node N3 to T has a cost 2, but
it has to use node N2 as an intermediate node. Herein, we
use the word “record” instead of “calculate” because the
cost values have been calculated in the CCG procedure,
which can be used during the entire process.

Step 2): Select the next nearest node into the tree T . In this
step, we prefer the direct path to the indirect path, although
the direct cost may be larger than the indirect cost. For
example, in Fig. 3(c), the node N3 is selected. However,
if there are no nodes that connect T via a direct path,
we select the shortest indirect path, e.g., the node N7 is
selected in Fig. 3(d). When an indirect path is selected, the
corresponding intermediate nodes are also added into the
tree, as shown in Fig. 3(d), where the nodes N2, N5, and
N6 are added.

Step 3): Cost update. Once a node has been added to the tree
(when a direct path is selected) or some nodes have been

SHEN et al.: BVDPSO AND ITS APPLICATION TO MRP IN COMMUNICATION NETWORKS 7145

Fig. 3. Illustration of the modified Prim’s algorithm to construct multicast trees. (a) Original network. (b) Select node N1 into the tree. (c) Select node N3 into
the tree. (d) Select node N7 into the tree. (e) Select node N9 into the tree. (f) Delete the redundant nodes of the tree. (g) Final multicast tree.

added to the tree (when an indirect path is selected), we
have to update the direct cost D[i] and the indirect cost I[i]
to the tree T of the other node i whose position value is 1
in the binary string. For example, in Fig. 3(d), both D[N8]
and I[N8] become 4 because N8 can connect T directly via
N7. In addition, both D[N9] and I[N9] become 3 because
the direct path connects N5 and N9 costs 3. Moreover,
Fig. 3(e) shows the cost update of N8 after the adding of
N9 into the tree.

Step 4): Repeat Step 2) and Step 3) until all the destination
nodes have been added into T .

Prune Procedure: The prune procedure deletes all the non-
destination leaf nodes in T to reduce the redundancy. The
procedure is easy to implement: we find out the node i in
T that has the degree of 1 (the degree of each node can be
recorded during the aforementioned multicast tree construction
process); if i is not a destination node, delete it and reduce
the degree of node j that connects i by 1. Repeat doing this
until no nondestination node with degree 1 can be found. For
example, in Fig. 3(f), the nodes N3 and N7 are redundant and
can be deleted. After the deletion of N7, the node N6 can be
also deleted. Therefore, we can obtain the final multicast tree
T , as shown in Fig. 3(g).

IV. EXPERIMENTS AND COMPARISONS

A. Problem Instances and Algorithm Settings

The experiments on the problems of Categories B/C/D in the
OR-library (http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/)
[25] are carried out. The details of the problems are given in
Table I. The problems are divided into three Categories B/C/D

that can be regarded as small-, medium-, and large-scale MRP
in local networks. OPT is the optimal solution in the library.

The population size M of BVDPSO is set to 20, ω is linearly
decreasing from 0.9 to 0.4, and c1 and c2 are both set to 2.0. The
maximum number of generation G is 1250, and therefore, there
are at most 20× 1250 = 25 000 fitness evaluations (FEs) each
run. This is the same as the configurations in previous studies
[23]. BVDPSO terminates when it finds the global optimum
OPT or it runs out of the FE budget. It should be noted that the
number of FEs is also the number of generated multicast trees.

B. Comparisons on Solution Accuracy

Small-Scale Problem Instances: We first compare the solu-
tion accuracy of the results obtained by different algorithms on
the problems of Category B. The comparisons are based on the
relative error R that is defined as

R% = (Result−OPT)/OPT × 100 (7)

where the Result is the mean solution of 100 independent runs.
The R values of the heuristic methods, such as SPH, DNH, and
ADH, and the GA methods reported in [5] are used here for com-
parisons. The results of ACO are based on the report in [16].

The comparisons in Table II show that the traditional heuris-
tics are easy to be trapped into local optima and result in poor
solution accuracy. The R values of SPH, DNH, and ADH on
some problems are even larger than 5%, indicating that the
traditional heuristic algorithms may not have strong global
search ability to obtain highly accurate solutions. For the EC
algorithms, GA and BVDPSO can obtain OPT on all the
problems in every run, and all the relative error values are 0%,
but ACO cannot.

7146 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 61, NO. 12, DECEMBER 2014

TABLE I
DETAILS OF STPS

TABLE II
COMPARISONS ON SOLUTION ACCURACY (R%) OF DIFFERENT ALGORITHMS ON THE PROBLEMS OF CATEGORY B

TABLE III
COMPARISONS ON SOLUTION ACCURACY (R%) OF DIFFERENT ALGORITHMS ON THE PROBLEMS OF CATEGORY C

Medium-Scale Problem Instances: The experimental results
of the problems in Category C are compared in Table III.
These problems are regarded to be more difficult than those
in Category B because they have more nodes, edges, and
destination nodes. Herein, 30 independent runs are carried out
for each problem because of the large computational burden.
Since the results for the Category-C problems are not available
in [5] or relevant literature for the heuristics such as SPH, DNH,
or ADH, they are not used in the comparisons. Instead, we
compare BVDPSO with the recent heuristics DCH [6], GRASP
[7], and JPSO for multicast routing (JPSOMR) [20]. The results
reported in [6] for DCH and the results reported in [20] for
GRASP and JPSOMR are directly used. Moreover, the results
of DPSO using mutation and the results of GA that are available
in the literature [23] are adopted for comparison. It should be
noted that JPSOMR and DPSO are both DPSO variants. Com-
paring BVDPSO with these DPSOs is interesting in evaluating
the BVDPSO performance in discrete optimization.

It can be observed in Table III that BVDPSO yields the
best performance on 11 (C01–C07, C11, C15, C18, and C19)
out of the 20 problems. DCH, GRASP, and GA often fail to

produce good results on these hard problems. Although DPSO
can obtain the best results on some of the problems, it works
well by using a mutationlike operation and by introducing a new
parameter into the PSO paradigm. This makes DPSO slightly
difficult to use [23]. For JPSOMR, the average R over all the
20 problems is 1.14%, which is beaten by BVDPSO with the
average R = 0.87%. By observing the results in Category C,
BVDPSO offers very good performance and outperforms other
algorithms, in general.

Large-Scale Problem Instances: The problems in Category
D are also solved by BVDPSO, and the results are compared
with those obtained by DCH and GA in Table IV. The problems
in Category D are all very difficult because the networks are
large with thousands of nodes and edges. The results of DCH
are reported in [6]. Since no EC results on these problems
are available in the literature, e.g., the JPSOMR only tested
on Category-B/C problems, herein, we implement GA and
compare with BVDPSO. The data for GA and BVDPSO are
the mean results of ten independent runs. Herein, the parameter
configurations for GA are set with a population size of 50,
and the maximal generation number of 500, using a one-point

SHEN et al.: BVDPSO AND ITS APPLICATION TO MRP IN COMMUNICATION NETWORKS 7147

TABLE IV
COMPARISONS ON SOLUTION ACCURACY (R%) OF DIFFERENT ALGORITHMS ON THE PROBLEMS OF CATEGORY D

TABLE V
COMPARISONS ON CONVERGENCE SPEED ON THE

PROBLEMS OF CATEGORY B

crossover and a bit mutation with the crossover and mutation
probabilities 0.7 and 0.04, respectively, as recommended in [5]
and [23].

The results show that the DCH heuristic fails to obtain
OPT on all the 20 problems. For the EC algorithms, both
GA and BVDPSO can obtain OPT on problems D01, D02,
D06, D07, D11, D12, D16, and D17. These problems, however,
are relatively simple because they all have small number of
destination nodes, e.g., five or ten destination nodes. However,
when the problems become more complex with larger number
of destination nodes, e.g., more than 100, or even as many as
500, GA is always trapped into local optima and results in
larger R values. On contrast, BVDPSO can still obtain very
good results or near-optimal solutions, resulting in smaller R
values. BVDPSO performs best over all the 20 problems, with
average R = 0.49%, whereas GA has an average R = 1.45%.
Moreover, for BVDPSO, eight results are 0, four results are
smaller than 0.1%, and none of the results is larger than 2%.
On contrast, six results obtained by GA are larger than 2%, and
two results are even larger than 6%. The results demonstrate the
strong global search ability and good performance of BVDPSO
in solving large-scale problems.

C. Comparisons on Convergence Speed

In order to verify the advantages of the proposed BVDPSO
in convergence speed when solving MRP, we compared the
mean FEs to obtain OPT by BVDPSO and some other EC
algorithms, such as GA [5] and DPSO [23], in Tables V–VII, for
the problems of Categories B, C, and D, respectively. The FEs
values for GA and DPSO on the problems of Category B and C
are reported in [23] and are directly used here for comparisons.
In these tables, the mean FE value is considered only on the
runs that can obtain OPT . However, if an algorithm fails
totally to obtain OPT on the problem, the result is indicated
by the symbol “-” in the table. The mean FEs can indicate the
convergence speed. Generally, we can say that an algorithm
has faster convergence speed if it can obtain OPT with fewer
FEs. That is, obtain the optimal solution by generating fewer
multicast trees.

TABLE VI
COMPARISONS ON CONVERGENCE SPEED ON THE

PROBLEMS OF CATEGORY C

TABLE VII
COMPARISONS ON CONVERGENCE SPEED ON THE

PROBLEMS OF CATEGORY D

The results in Tables V and VI show that BVDPSO is faster
than GA to obtain the OPT of all problems in Categories B/C
and is faster than DPSO on most of these problems. In average,
BVDPSO used only 111.72 average FEs to obtain OPT over
all the 18 Category B problems, which is fewer than that of
DPSO (141) and much fewer than that of GA (725). Since some
algorithms totally fail to obtain OPT on some problems in
Category C, we calculated the average FEs over the problem in-
stances (C01–C03, C05–C07, C10–C12, C16, and C17) that all
the algorithms successfully solve. Results show that BVDPSO
is faster than both DPSO and GA nearly ten times.

The results in Table VII for the problems of Category D show
that BVDPSO uses fewer FEs than GA to obtain OPT if they
both can, i.e., on the problems D01, D02, D06, D07, D11, D12,
D16, and D17. However, on some of the problems, none of
the algorithms can obtain OPT , which are not presented in the
table. This may be caused by the difficulty of the Category D
problems whose networks have lots of nodes and a large amount
of edges. Nevertheless, BVDPSO can still obtain the OPT
solution on the problems D03, D04, D05, and D20 sometimes,
where GA totally fails. From the comparisons, BVDPSO not
only is robust to obtain the global optimum but also has much
faster convergence speed.

D. Analysis of BVDPSO Parameters

Here, the performance-related parameters ω, c1, and c2
are investigated because they can affect the algorithm perfor-
mance but have light influences on the computational burden.

7148 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 61, NO. 12, DECEMBER 2014

Fig. 4. Parameter analysis on ω and c1/c2.

Fig. 5. Parameter analysis on G and M . (a) C09. (b) C14.

Moreover, the computational-burden-related parameters M and
G are investigated because they affect both algorithm perfor-
mance and computational burden.

Performance-Related Parameters: Herein, we undertake in-
vestigations based on the Category C problems. For inves-
tigating the inertia weight ω, we fix c1 and c2 as 2.0. For
investigating the acceleration coefficients c1 and c2, ω is set
linearly decreasing from 0.9 to 0.4. The results are presented in
Fig. 4. Since the R values of different problems have different
ranges, we only give the results of some problems that are
in similar ranges. The results of ω show that the R values
become smaller as ω increases, for most of the problems. This
may be due to the fact that larger ω can increase the diversity
to maintain better global search. However, when ω is set to
be 1.0 or larger, the results are much poorer, which are not
plotted in the figure due to the fact that they are out of range.
Moreover, the common setting for ω (i.e., linearly decreasing
from 0.9 to 0.4) performs best on most of the problems. The
results of c1 and c2 show that the standard value 2.0 helps
BVDPSO work best on most of the problems. Therefore, the
results demonstrate the advantages that the standard settings
for ω and c1/c2 in the continuous PSO are still effective and
optimal in our proposed discrete BVDPSO.

Computational-Burden-Related Parameters: Herein, we
make further investigation on the influences of M and G
based on the problems of C09 and C14. All the experiments are
implemented in the VC++ 6.0 and run on a PC with Pentium IV
2.8-GHz CPU and 256-MB memory.

Fig. 6. Network topology of Case 1 and the different multicast trees.

The experimental results are plotted in Fig. 5. The investi-
gation includes the population size M of 20, 50, and 100 and
the maximal generations G of 500, 1250, and 2500, making
up nine combinations. In the figure, the R value and the CPU
time are the average values of 30 independent runs for each
combination. It can be observed that the solution accuracy
becomes much better as M or G increases. However, the mean
CPU time also increases as M or G increases. Therefore, the
tradeoff should be determined between the solution accuracy
and the computational burden.

The figure also reveals an interesting observation that the
BVDPSO with a larger M always outperforms the BVDPSO

SHEN et al.: BVDPSO AND ITS APPLICATION TO MRP IN COMMUNICATION NETWORKS 7149

Fig. 7. Packet loss ratio and average delay under different traffic loads.

with a smaller M because of the larger population diversity,
whereas the BVDPSO with a larger G may sometimes not
perform better than the BVDPSO with a small G because of
random noise. From the experimental results in Fig. 5 and
Section IV-B, it can be observed that setting the number of
particles to a small value as M = 20 is sufficient for most
of the problems (e.g., all the problems in Category B and
many problems in Categories C/D). Setting M = 50 should be
promising for very difficult problems, e.g., with node number
up to 500 or higher. If higher solution accuracy is required,
setting M = 100 would be a good choice.

E. Network Simulation Results

We use the network simulator 2 (NS-2) to further evaluate
the multicast tree optimized by BVDPSO herein. NS-2 is a
simulator that can test the performance of any given network
topology by simulating the network traffic [30]. In the simu-
lation, we adopt two network topology cases. In Case 1, we
artificially conduct a network topology, whose links have a
10-Mb bandwidth and a random delay within [1 ms, 10 ms].
When we configure this network into graph for BVDPSO
optimization, the cost of each edge is set to the same as the
delay of the corresponding link. In Case 2, the C15 problem
is used as the network topology. As the cost of each edge is a
random value in [1, 10], when we configure the C15 network
for NS-2, we set the delay of each link with the value the same
as the cost, while the bandwidth of each link with the value as
the result of (11− cost). The network topology of Case 1 is
given in Fig. 6.

In the simulation, we use the distance vector multicast
routing protocol (DVMRP) provided by NS-2 to enable the
multicast function. For performance evaluation and compari-
son, we also input the multicast trees optimized by GA and
BVDPSO into NS-2 for simulation. Therefore, the three multi-
cast approaches DVMRP, GA, and BVDPSO are evaluated and
compared based on Cases 1 and 2 in the NS-2 environments.

We use a constant-bit-rate (CBR) traffic with a 512-B packet
size for the multicast traffic. The packet rate is set at 1, 2,
4, 8, 16, and 32 Mb to emulate different traffic loads. We
compare the network performance of the three multicast routing
approaches by the packet loss metric and the average delay
metric. For a CBR packet sent from the source, if it can reach

all the destination nodes, then it is regarded as a successful
packet. This way, the packet loss ratio can be calculated. For
any successful CBR packet, we can also obtain the time from
the source to any destination node. We consider the maximal
time to one of the destination node as the delay of the packet.
This way, we can obtain the average delay of all the successful
packets. The packet loss ratio and average delay of different
multicast routing approaches under different traffic loads are
compared in Fig. 7. Note that, in Case 1, the GA approach can
obtain the same multicast tree as BVDPSO does, as indicated in
Fig. 6. In this sense, their network performance is the same in
this case and is therefore presented by the same curves in Fig. 7.

Fig. 7 shows that none of the three approaches loses packets
when the traffic load is light (e.g., no more than 4 Mb), except
that DVMRP has slight packet loss ratio in Case 1. With the
increasing of the traffic load, all the approaches are affected,
and more packets are lost. However, GA and BVDPSO can
always do better than DVMRP, whereas BVDPSO can always
does better than GA, as indicated in Fig. 7 that BVDPSO loses
the least packets while DVMRP loses the most packets. Fig. 7
further shows that the average delay of BVDPSO is always less
than those of DVMRP and GA. These results demonstrate that
BVDPSO has advantages in obtaining promising multicast trees
that transfer information from the source to all the destinations
faster and is more reliable than both DVMRP and GA.

V. CONCLUSION

A BVDPSO approach has been developed in this paper
to optimize MRP in communication networks. This proposed
BVDPSO algorithm is motivated by the considerations of pro-
viding a simple and yet efficient method for solving MRP with
higher solution accuracy than traditional heuristics and also
with faster convergence speed than existing EC methods, pro-
viding the researchers a new and practical method for multicast
in communication networks.

The effectiveness and efficiency of BVDPSO have been
demonstrated by comparing it with nine other algorithms on all
the Categories B/C/D problems in the OR-library. The results
show that BVDPSO can obtain better solutions with higher
accuracy than the heuristic methods and with faster conver-
gence speed than the GA and previous PSO-based methods.
This makes contributions to the communication and networking
community by providing a new multicast design method that

7150 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 61, NO. 12, DECEMBER 2014

can obtain optimal or near-optimal solutions to MRP very
rapidly by generating very few multicast trees.

For future research, we plan to investigate the performance
of BVDPSO in solving the MRP with practical QoS constraints
and multiple objectives similar to other industrial problems
[31], [32]. For example, we can also take into account the
average delay of all destination nodes as another optimization
objective. We can also take the delay and the link bandwidth
as QoS constraints. Since PSO has potentials in solving con-
strained problems [33] and multiobjective optimization prob-
lems [34], the proposed BVDPSO is promising to be extended
to solve the constrained and multiobjective MRP problems. The
dynamic routing characteristics of MRP can also be considered
[35]. Moreover, the proposed novel bi-velocity strategy offers a
simple and general technique for BVDPSO to solve a class of
binary optimization in our future work.

REFERENCES

[1] A. Sabbah, A. EI-Mougy, and M. Ibnkahla, “A survey of networking chal-
lenges and routing protocols in smart grids,” IEEE Trans. Ind. Informt.,
vol. 10, no. 1, pp. 210–221, Feb. 2014.

[2] G. Kandavanam, D. Botvich, S. Balasubramaniam, and C. Kulatunga,
“PaCRAm: Path aware content replication approach with multicast for
IPTV networks,” in Proc. IEEE Globecom, 2010, pp. 1–6.

[3] G. Kandavanam, D. Botvich, S. Balasubramaniam, and B. Jennings, “A
hybrid genetic algorithm/variable neighborhood search approach to max-
imizing residual bandwidth of links for route planning,” in Proc. 9th Int.
Conf. Artif. Evol., 2009, pp. 49–60.

[4] K. Han, Y. Liu, and J. Luo, “Duty-cycle-aware minimum-energy multi-
casting in wireless sensor networks,” IEEE/ACM Trans. Netw., vol. 21,
no. 3, pp. 910–923, Jun. 2013.

[5] Y. Leung, G. Li, and Z. B. Xu, “A genetic algorithm for the multiple
destination routing problems,” IEEE Trans. Evol. Comput., vol. 2, no. 4,
pp. 150–161, Nov. 1998.

[6] C. Shampa, B. Arvind, and R. Aman, “Directed convergence heuristic:
A fast & novel approach to Steiner tree construction,” in Proc. Int. Conf.
Very Large Scale Integr., 2006, pp. 255–260.

[7] N. Skorin-Kapov and M. Kos, “A GRASP heuristic for the delay-
constrained multicast routing problem,” Telecommun. Syst., vol. 32, no. 1,
pp. 55–69, May 2006.

[8] Y. H. Du, J. Fang, and C. Miao, “Frequency-domain system identification
of an unmanned helicopter based on an adaptive genetic algorithm,” IEEE
Trans. Ind. Electron., vol. 61, no. 2, pp. 870–881, Feb. 2014.

[9] S. H. Chung and H. K. Chan, “A two-level genetic algorithm to deter-
mine production frequencies for economic lot scheduling problem,” IEEE
Trans. Ind. Electron., vol. 59, no. 1, pp. 611–619, Jan. 2012.

[10] Z. H. Zhan et al., “An efficient ant colony system based on receding hori-
zon control for the aircraft arrival sequencing and scheduling problem,”
IEEE Trans. Intell. Transp. Syst., vol. 11, no. 2, pp. 399–412, Jun. 2010.

[11] Y. J. Gong et al., “Optimizing RFID network planning by using a particle
swarm optimization algorithm with redundant reader elimination,” IEEE
Trans. Ind. Informat., vol. 8, no. 4, pp. 900–912, Nov. 2012.

[12] K. Ishaque and Z. Salam, “A deterministic particle swarm optimization
maximum power point tracker for photovoltaic system under partial shad-
ing condition,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3195–3206,
Aug. 2013.

[13] K. Shen et al., “Elimination of harmonics in a modular multilevel
converter using particle swarm optimization-based staircase modulation
strategy,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5311–5322,
Oct. 2014.

[14] R. B. Godoy, J. Pinto, C. A. Canesin, E. Alves Coelho, and A. Pinto,
“Differential-evolution-based optimization of the dynamic response for
parallel operation of inverters with no controller interconnection,” IEEE
Trans. Ind. Electron., vol. 59, no. 7, pp. 2859–2866, Jul. 2012.

[15] Y. D. Hong, C. S. Park, and J. H. Kim, “Stable bipedal walking with
a vertical center-of-mass motion by an evolutionary optimized central
pattern generator,” IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2346–
2355, May 2014.

[16] G. Singh, S. Das, S. Gosavi, and S. Pujar, “Ant colony algorithms for
Steiner trees: An application to routing in sensor networks,” in Recent

Developments in Biologically Inspired Computing. Hershey, PA, USA:
IGI Global, 2005, pp. 181–206.

[17] R. J. Wai, J. D. Lee, and K. L. Chuang, “Real-time PID control strategy
for maglev transportation system via particle swarm optimization,” IEEE
Trans. Ind. Electron., vol. 58, no. 2, pp. 629–646, Feb. 2011.

[18] Z. H. Zhan, J. Zhang, Y. Li, and H. Chung, “Adaptive particle swarm op-
timization,” IEEE Trans. Syst., Man, Cybern. B, vol. 39, no. 6, pp. 1362–
1381, Dec. 2009.

[19] H. Wang, X. X. Meng, S. Li, and H. Xu, “A tree-based particle swarm opti-
mization for multicast routing,” Comput. Netw., vol. 54, no. 15, pp. 2775–
2786, Oct. 2010.

[20] R. Qu, Y. Xu, J. P. Castro, and D. Landa-Silva, “Particle swarm optimiza-
tion for the Steiner tree in graph and delay-constrained multicast routing
problems,” J. Heuristics, vol. 19, no. 2, pp. 317–342, Apr. 2013.

[21] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle
swarm algorithm,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., 1997,
pp. 4104–4109.

[22] W. N. Chen et al., “A novel set-based particle swarm optimization method
for discrete optimization problems,” IEEE Trans. Evol. Comput., vol. 14,
no. 2, pp. 278–300, Apr. 2010.

[23] W. L. Zhong, J. Huang, and J. Zhang, “A novel particle swarm optimiza-
tion for the Steiner tree problem in graphs,” in Proc. IEEE Congr. Evol.
Comput., 2008, pp. 2465–2472.

[24] Z. H. Zhan and J. Zhang, “Discrete particle swarm optimization for
multiple destination routing problems,” in Proc. EvoWorkshops, 2009,
pp. 117–122.

[25] J. E. Beasley, “OR-library: Distributing test problems by electronic mail,”
J. Oper. Res. Soc., vol. 41, no. 11, pp. 1069–1072, Nov. 1990.

[26] J. Kennedy and R. Mendes, “Population structure and particle swarm
performance,” in Proc. IEEE Congr. Evol. Comput., 2002, pp. 1671–1676.

[27] Z. H. Zhan, J. Zhang, Y. Li, and Y. H. Shi, “Orthogonal learning particle
swarm optimization,” IEEE Trans. Evol. Comput., vol. 15, no. 6, pp. 832–
847, Dec. 2011.

[28] W. N. Chen, J. Zhang, Y. Lin, N. Chen, Z. H. Zhan, H. Chung, Y. Li,
and Y. H. Shi, “Particle swarm optimization with an aging leader and
challengers,” IEEE Trans. Evol. Comput., vol. 17, no. 2, pp. 241–258,
Apr. 2013.

[29] K. Chan, T. Dillon, and E. Chang, “An intelligent particle swarm optimiza-
tion for short-term traffic flow forecasting using on-road sensor systems,”
IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4714–4725, Oct. 2013.

[30] L. Han, J. Wang, X. Wang, and C. Wang, “Bypass flow-splitting for-
warding in FISH networks,” IEEE Trans. Ind. Electron., vol. 58, no. 6,
pp. 2197–2204, Jun. 2011.

[31] H. P. Li and Y. Shi, “Network-based predictive control for constrained
nonlinear systems with two-channel packet dropouts,” IEEE Trans. Ind.
Electron., vol. 61, no. 3, pp. 1574–1582, Mar. 2014.

[32] A. F. Zobaa, “Optimal multiobjective design of hybrid active power filters
considering a distorted environment,” IEEE Trans. Ind. Electron., vol. 61,
no. 1, pp. 107–114, Jan. 2014.

[33] Y. Gong et al., “An efficient resource allocation scheme using particle
swarm optimization,” IEEE Trans. Evol. Comput., vol. 16, no. 6, pp. 801–
816, Dec. 2012.

[34] Z. H. Zhan et al., “Multiple populations for multiple objectives: A coevo-
lutionary technique for solving multiobjective optimization problems,”
IEEE Trans. Cybern., vol. 43, no. 2, pp. 445–463, Apr. 2013.

[35] M. Kodialam and T. Lakshman, “Dynamic routing of restorable band-
width guaranteed tunnels using aggregated network resource usage infor-
mation,” IEEE/ACM Trans. Netw., vol. 11, no. 3, pp. 399–410, Jun. 2003.

Meie Shen received the B.S. degree in industrial au-
tomation from the Huazhong University of Science
and Technology, Wuhan, China, in 1986, and the
M.S. degree in automatic control from the Shenyang
Institute of Automation, Chinese Academy of Sci-
ences, Shenyang, China, in 1989.

She is currently an Associate Professor with the
School of Computer Science, Beijing Information
Science and Technology University, Beijing, China.
Her research interests include intelligent algorithms,
and automatic control theory and application.

SHEN et al.: BVDPSO AND ITS APPLICATION TO MRP IN COMMUNICATION NETWORKS 7151

Zhi-Hui Zhan (S’09–M’13) received the B.S. and
Ph.D. degrees in computer science from Sun Yat-Sen
University, Guangzhou, China, in 2007 and 2013,
respectively.

He is currently a Lecturer with Sun Yat-Sen Uni-
versity. His research interests include particle swarm
optimization, differential evolution, ant colony opti-
mization, genetic algorithms, and their applications
in real-world problems.

Dr. Zhan’s doctoral dissertation was awarded the
China Computer Federation Outstanding Disserta-

tion in 2013.

Wei-Neng Chen (S’07–M’12) received the B.S. and
Ph.D. degrees in computer science from Sun Yat-Sen
University, Guangzhou, China, in 2006 and 2012,
respectively.

He is currently an Associate Professor with the
School of Advanced Computing, Sun Yat-Sen Uni-
versity. He has published more than 30 papers in
international journals and conferences. His research
interests include swarm intelligence algorithms and
their applications in real-world applications.

Dr. Chen’s doctoral dissertation was awarded the
China Computer Federation Outstanding Dissertation in 2012.

Yue-Jiao Gong (S’10) received the B.S. degree in
computer science in 2010 from Sun Yat-Sen Univer-
sity, Guangzhou, China, where she is currently work-
ing toward the Ph.D. degree in computer science.

Her research interests include artificial intelligence,
evolutionary computation, swarm intelligence, and
their applications in design and optimization of in-
telligent transportation systems, wireless sensor net-
works, and radio-frequency identification systems.

Jun Zhang (M’02–SM’08) received the Ph.D. de-
gree in electrical engineering from the City Univer-
sity of Hong Kong, Kowloon, Hong Kong, in 2002.

He is currently a Changjiang Chair Professor with
the School of Advanced Computing, Sun Yat-Sen
University, Guangzhou, China. He has published over
100 technical papers in his research areas. His re-
search interests include computational intelligence,
cloud computing, high-performance computing, data
mining, wireless sensor networks, operations re-
search, and power electronic circuits.

Dr. Zhang was a recipient of the China National Funds for Distinguished
Young Scientists from the National Natural Science Foundation of China in
2011 and the First-Grade Award in Natural Science Research from the Ministry
of Education, China, in 2009. He is currently an Associate Editor of the IEEE
TRANSACTIONS ON EVOLUTIONARY COMPUTATION, the IEEE TRANSAC-
TIONS ON INDUSTRIAL ELECTRONICS, and the IEEE TRANSACTIONS ON

CYBERNETICS.

Yun Li (S’87–M’90) received the B.S. degree
in electronics science from Sichuan University,
Chengdu, China, in 1984, the M.Eng. degree in elec-
tronic engineering from the University of Electronic
Science and Technology of China, Chengdu, China,
in 1987, and the Ph.D. degree in computing and
control from the University of Strathclyde, Glasgow,
U.K., in 1990.

During 1989–1990, he was with the U.K. National
Engineering Laboratory and Industrial Systems and
Control Ltd., Glasgow, U.K. In 1991, he joined as a

Lecturer the University of Glasgow, Glasgow, U.K., where he was the Founding
Director of the University of Glasgow–Singapore, during 2011–2013, and of
the University’s international joint program with the University of Electronic
Science and Technology of China (UESTC), Chengdu, China, in 2013. He was
a Visiting Professor with Kumamoto University, Japan, in 2002 and has been a
Visiting Professor with UESTC since 2004. He has over 180 publications.

Prof. Li is a Chartered Engineer. He established the IEEE Computer-Aided
Control System Design Evolutionary Computation Working Group and the
European Network of Excellence in Evolutionary Computing Workgroup on
Systems, Control, and Drives, in 1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

