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Abstract—The covariance matrix adaptation evolution strategy
(CMA-ES) is a powerful evolutionary algorithm for single-
objective real-valued optimization. However, the time and space
complexity may preclude its use in high-dimensional decision
space. Recent studies suggest that putting sparse or low-rank con-
straints on the structure of the covariance matrix can improve the
efficiency of CMA-ES in handling large-scale problems. Following
this idea, this paper proposes a search direction adaptation evo-
lution strategy (SDA-ES) which achieves linear time and space
complexity. SDA-ES models the covariance matrix with an iden-
tity matrix and multiple search directions, and uses a heuristic
to update the search directions in a way similar to the prin-
cipal component analysis. We also generalize the traditional
1/5th success rule to adapt the mutation strength which exhibits
the derandomization property. Numerical comparisons with nine
state-of-the-art algorithms are carried out on 31 test problems.
The experimental results have shown that SDA-ES is invariant
under search-space rotational transformations, and is scalable
with respect to the number of variables. It also achieves compet-
itive performance on generic black-box problems, demonstrating
its effectiveness in keeping a good tradeoff between solution
quality and computational efficiency.

Index Terms—Evolution strategy, large-scale optimization,
search direction adaptation.

I. INTRODUCTION

THE COVARIANCE matrix adaptation evolution strat-
egy (CMA-ES) is one of the state-of-the-art evolu-

tionary algorithms (EAs) for single-objective real-valued
optimization [1], [2]. CMA-ES learns all pairwise depen-
dencies between decision variables by adapting a search
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distribution to the objective landscape. Through sampling new
solutions from this distribution, its performance is invariant
against any affine transformation of the search space. It also
adopts a special scheme called cumulative step-size adaptation
(CSA) to adapt the mutation strength automatically. Besides
attributing to the rank-based selection operator, CMA-ES
exhibits the invariance to order-preserving transformations of
the objective function values. These properties make CMA-ES
very popular in many practical applications [3]–[5].

Despite its huge popularity, CMA-ES suffers from
performance degradation when tackling problems that have a
large number of decision variables. These problems, referred
to as the large-scale optimization problems (LSOPs), can be
formulated as

min
x∈�

f (x)

where x = (x1, x2, . . . , xn)
T is the decision vector, � ⊂ Rn

is the decision space, f is the objective function, and n is the
dimension of � in large-scale settings (e.g., n > 200) [6].
The challenges of LSOPs stem from the fact, usually known
as the curse of dimensionality, that the search space increases
exponentially with the number of dimensions.

The limitations of CMA-ES in handling LSOPs come
from its time and space complexity. The learning proce-
dure of CMA-ES is conducted on a covariance matrix with
[(n(n − 1))/2] degrees of freedom, thereby taking O(n2)

space and O(n2) time per generation. Sampling new solu-
tions requires extra O(n3) computations to decompose the
matrix, though the asymptotic time complexity can be theoret-
ically reduced to O(n2) by postponing the decomposition. In
addition, CMA-ES relies on the spectral decomposition when
handling numerical errors and ill-conditioning, which is usu-
ally seen as computationally inefficient compared with other
decomposition techniques. These limitations may preclude the
use of CMA-ES for large-scale optimization.

Several approaches have been proposed to address the limi-
tations of CMA-ES. They can be roughly categorized into the
following groups.

A. Partitioning the Decision Space

This approach divides an original LSOP into multiple sub-
problems by grouping the variables. All subproblems are
solved by CMA-ES separably, and then recombined in a coop-
erative coevolution (CC) framework [7]. CC-CMA-ES [8] and
CC-GDG-CMA-ES [9] are representatives of this approach.
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Note that the innovation of this approach is mostly the space
partitioning schemes rather than the CMA-ES itself, so this
paper will focus on the next several approaches.

B. Restricting the Covariance Matrix

This approach imposes sparse constraints on the structure
of the covariance matrix. One simplest way is to restrict the
covariance matrix to be diagonal in order to learn the variable
scalings along each axes separably. This idea has been utilized
in the separable CMA-ES (sep-CMA) [10] and the separable
natural evolution strategy (SNES) [11]. Another implemen-
tation is to model the covariance matrix with a diagonal
matrix combined with a rank-1 perturbation. Such perturba-
tion is usually constructed with a principal search direction,
aiming to capture some but not all variable dependencies.
The main vector adaptation evolution strategy (MVA-ES) [12],
rank-one natural evolution strategy (R1-NES) [13], and VD-
CMA [14] all adopt this method. These variants are useful
especially when the problem is separable or has weak variable
correlations.

C. Using Multiple Direction Vectors

This approach can be seen as an extension to the one
described above. But we consider it alone since the structure
of its covariance matrix is much more flexible. Its core idea
is to maintain a set of m direction vectors, where m � n is a
small positive integer. These vectors indicate some promis-
ing search directions, and can be used to reconstruct the
covariance matrix whenever necessary. By tuning m, a trade-
off between solution quality and computational efficiency
can be achieved. Remarkable examples include the limited
memory CMA-ES (L-CMA-ES) [15], VkD-CMA [16], the
rank-m ES (RmES) [17], and another limited memory variants
called LM-CMA [18]. These variants generally have com-
petitive performance but only require a limited amount of
computational burden.

D. Simplifying the Covariance Matrix Adaptation

The adaptation in the standard CMA-ES can be simpli-
fied under mild assumption. The simplified version, called
matrix adaptation evolution strategy (MA-ES), adapts the
Cholesky factor of the covariance matrix and, thus, avoids
the time-consuming matrix factorization without significantly
worsening the performance [19]. The limited-memory MA-ES
(LM-MA) further extends this variant with the idea of restrict-
ing the matrix structure [20]. It reconstructs the Cholesky
factor with a set of m direction vectors at each generation such
that the adaptation achieves linear time and space complexity.

E. Modifying the Mutation Strength Adaptation

This approach adapts the mutation strength without making
assumptions about the types of search distributions. This is
particularly useful when working with the large-scale CMA-
ES variants introduced above, since their distributions are
usually degenerate, constrained, or even non-Gaussian. Its
basic idea is to keep the success of the sampling opera-
tions reaching a predefined level. The median success rule

(MSR) defines success as the median objective values get-
ting smaller [21]. Alternatively, the population success rule
(PSR) measures success with the rank sum of the current solu-
tions from two successive generations [18]. This idea is further
extended in the rank success rule (RSR) where the weighted
sum is used to favor the top-ranked solutions [17].

Although using multiple direction vectors have been empir-
ically demonstrated to be quite efficient, how to adapt these
vectors is still an open question. For example, in L-CMA-ES,
the direction vectors are the first m principal components of the
covariance matrix. They are calculated using a thin singular-
value decomposition [22]. Its time complexity is O(m2n) and,
hence, it may be still nonscalable when a large m is required.
VkD-CMA, LM-CMA, and RmES all have O(mn) time and
space complexity. However, VkD-CMA involves the natural
gradient calculations [23] while LM-CMA reconstructs two
Cholesky factors per generation. Therefore, they seem to be
even more complicated than the original CMA-ES. RmES rad-
ically simplifies LM-CMA by directly modeling the covariance
matrix with these vectors. But it introduces a new question that
the suitable number of used direction vectors become problem
dependent.

This paper presents a search direction adaptation evolu-
tion strategy (SDA-ES), a large-scale extension of CMA-ES.
Detailed properties of this approach are summarized as fol-
lows.

1) SDA-ES models the covariance matrix with m search
directions and an identity matrix. Sampling new solu-
tions are simple as no matrix factorization techniques
are required.

2) The search directions are adapted iteratively in a man-
ner which simulates the principal component analysis
(PCA) [24].

3) The mutation strength is adapted using a simplified
Mann–Whitney U test [25]. This is a generalized 1/5th
success rule [26] which does not rely on the Gaussian
distribution.

4) SDA-ES only requires O(mn) space. It has a time
complexity of O(mn) per function evaluation.

In the remainder of this paper, we first discuss the back-
ground and motivation of this paper in Section II. Section III
describes the detailed implementations of SDA-ES. Thereafter,
we present the simulation results on two benchmark suites in
Section IV. Finally, Section V concludes this paper and gives
some remarks for the future studies.

II. BACKGROUND AND MOTIVATION

This section briefly describes the CMA-ES algorithm. Other
than restating all detailed implementations, we put more
emphasis on the modeling of covariance matrix. We also pro-
vide a heuristic to reduce the time and space complexity of
the PCA for the covariance matrix estimation which motivates
this paper.

A. CMA-ES

For a given objective function, CMA-ES assumes the exis-
tence of an optimal covariance matrix which removes the
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variable correlations on its landscape. Particularly, on convex-
quadratic objective functions whose variable correlations are
all linear, the correlations can be completely removed. Thus,
CMA-ES “sees” such functions as spherical ones, and solves
them efficiently. This strategy also works for generic black-
box objective functions, as their local landscape can be
approximated by convex-quadratic functions.

Since the optimal covariance matrix is usually unknown,
CMA-ES maintains a multivariate Gaussian distribution
N (m(g), σ (g)C(g)) at its gth generation and adapts it gradu-
ally, where m(g) is the mean vector, C(g) is the covariance
matrix, and σ (g) is the mutation strength. This distribution is
used to guide the search at the gth generation by sampling
new candidate solutions from it. It is updated per generation
after all candidate solutions are evaluated.

The covariance matrix adaptation, the key procedure of
the distribution adaptation, contains two parts: 1) the rank-
1 update [1] and 2) the rank-μ update [2]. The rank-μ update
makes use of the maximum-likelihood estimator of the covari-
ance matrix of current population in order to reduce the
adaptation time. Note that it is designed to work with a
large population size, which is not the case in large-scale
optimization. Thus, we only consider the rank-1 update, which
can be formulated as follows:{

C(0) = In

C(g+1) = (1 − c)C(g) + cp(g)
(
p(g)

)T (1)

where In is the n-dimensional identity matrix, c ∈ [0, 1] is the
learning rate, and p(g) ∈ Rn is a random vector. The vector
p(g), referred to as the evolution path in CMA-ES, is obtained
by cumulating successful mutation steps of the mean vector.
The rank-1 update repeatedly explores the variable dependen-
cies of the evolution path and, thus, increases the probability
of reproducing the successful steps of the population mean.
When g is sufficiently large, the obtained covariance matrix is
adapted to the function landscape automatically.

B. Covariance Matrix Approximation Based on Principal
Component Analysis

The rank-1 update described in (1) takes O(n2) space and
O(n2) time, and is practically nonscalable in high-dimensional
decision space. It is interesting to investigate whether the adap-
tation can be carried out in a low-dimensional space with the
help of dimension reduction techniques such as PCA [24].
This forms the main motivation of this paper.

PCA is a classic statistical technique for linear dimension
reduction. It uses an orthogonal transformation to decorrelate
a set of possibly correlated variables and produces the basis of
correlation eigenvectors. PCA has many different definitions
in the literature. The most popular one is to define PCA as
the orthogonal projection of the data (e.g., the solutions in an
EA) onto a low-dimensional linear space such that the vari-
ance of the projected data is maximized. In the following text,
we reformulate this definition as a sequence of maximization
problems, each of which produces a vector subject to certain
orthogonal constraints. Our idea is to use a subset of such
vectors to reconstruct the covariance matrix and, therefore, the

distribution adaptation can be implemented by updating these
vectors. Instead of using the standard PCA, we will show that
by discarding some of the orthogonal constraints, a heuristic
can be used to approximate these vectors within linear time
and space complexity.

1) Reformulating the Covariance Matrix With PCA: Let z ∈
Rn be a random vector sampled from a Gaussian distribution
N (0, C). Let C = ∑n

i=1 δiuiuT
i be the spectral decomposition

of C, where δ1 ≥ · · · ≥ δn are the ordered eigenvalues, and
u1, . . . , un are the associated eigenvectors. Our task is to find
the first m eigenvectors to approximate C, where m � n is a
small integer.

The first eigenvector u1 is the unit vector determining the
linear subspace such that the variance of the random vectors
projected onto this subspace is maximized

u1 = arg max
vT v=1

vTCv. (2)

With the identity C = E[zzT ], (2) can be formulated as

u1 = arg max
vT v=1

vTE
[
zzT]v = arg max

vT v=1
E
[(

vTz
)2]

(3)

where E denotes the expectation.
Then, the second eigenvector u2 is the one maximizing the

projected variance and being orthogonal to u1

u2 = arg max
vT v=1

vT u1=0

vTCv = arg max
vT v=1

vT u1=0

E
[(

vTz
)2]

. (4)

Let z1 = z and z2 = z− [(zT
1 u1)/(uT

1 u1)]u1. By utilizing the
orthogonal constraint vTu1 = 0, (4) can be expressed as

u2 = arg max
vT v=1

vT u1=0

E

⎡
⎣
(

vT

(
z2 + zT

1 u1

uT
1 u1

u1

))2
⎤
⎦

= arg max
vT v=1

vT u1=0

E
[(

vTz2
)2]

. (5)

Similarly, additional eigenvectors can be calculated by
choosing each new vector to be that which maximizes the
projected variance amongst all possible directions orthog-
onal to those already considered. Specifically, let zj+1 =
z −∑j

i=1 [(zT
i ui)/(uT

i ui)]ui, uj+1 can be formulated as

uj+1 = arg max
vT v=1
vT ui=0
1≤i≤j

vTCv = arg max
vT v=1
vT ui=0
1≤i≤j

E
[(

vTz
)2]

= arg max
vT v=1
vT ui=0
1≤i≤j

E

⎡
⎢⎣
⎛
⎝vT

⎛
⎝zj+1 +

j∑
i=1

zT
i ui

uT
i ui

ui

⎞
⎠
⎞
⎠

2
⎤
⎥⎦. (6)

And finally, we have

uj+1 = arg max
vT v=1
vT ui=0
1≤i≤j

E
[(

vTzj+1
)2]

. (7)
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2) Heuristic to Simplify the PCA Calculation: Equation (7)
contains j orthogonal constraints and, hence, calculating m
eigenvectors requires O(m2n) operations. In order to apply (7)
in adapting large-scale covariance matrix, we wish to perform
it in linear time. This can be done by discarding j − 1 orthog-
onal constraints {vTui = 0|i ∈ {1, . . . , j − 1}}. That is, we
approximate uj+1 with the following relaxed optimization task:

uj+1 ≈ arg max
vT v=1
vT uj=0

E
[(

vTzj+1
)2]

. (8)

Calculating the expectation in (8) is difficult. But it can be
“discretized” by using a greedy heuristic

u(g)

j+1 ≈
g∑

i=1

c(i)
j+1 arg max

vT v=1
vT uj=0

(
vTz(i)

j+1

)2
(9)

where g denotes the index of generation and c(i)
j+1 is a weight

factor. Equation (9) can be easily merged into an ES algorithm
in a way that z(i)

j+1 is collected from the population at the ith
generation.

We also observe that since zj+1 = z −∑j
i=1 [(zT

i ui)/(uT
i ui)]ui = zj − [(zT

j uj)/(uT
j uj)]uj, zj+1 is

orthogonal to uj. This further removes the last orthogonal
constraint in (9) and we have

arg max
vT v=1
vT uj=0

(
vTz(i)

j+1

)2 = z(i)
j+1

‖z(i)
j+1‖2

. (10)

Equation (10) indicates that the direction of uj+1 can
be approximated by the direction of zj+1. Note that when
reconstructing the covariance matrix with these approximated
eigenvectors, not only their directions but also the length
should be taken into consideration. To this end, we omit the
normalization in (10), and u(g)

j+1 can be estimated as

u(g)

j+1 ≈
g∑

i=1

c(i)
j+1z(i)

j+1 (11)

where j ∈ {1, . . . , m − 1} and {c(1)
j+1, . . . , c(g)

j+1} is a set of
weights. The weights should be carefully chosen to make the
estimation unbiased under certain condition. Moreover, when
incorporated into an ES, (11) as well as the z(i)

j+1 calculation
can be simplified by using recursive updating. This will be
detailed in the next section.

Due to the summation operator in (11), the approximated
eigenvectors are usually not pairwise orthogonal. Pairwise
independence are not guaranteed either, because only a few
orthogonal constraints are considered. However, since zj is
orthogonal to uj−1, uj+1 tends to be independent of uj. Thus,
our heuristic turns the “pairwise independence” into “adjacent
independence.” To differentiate these estimated vectors from
the real eigenvectors, we call them the “search directions.”

III. PROPOSED SDA-ES

The proposed SDA-ES adopts the widely used (μ, λ)-ES
framework such that λ candidate solutions are generated at
each generation and the μ best ones are selected to update the
search distribution.

A. Distribution Modeling and Sampling

SDA-ES maintains the following multivariate Gaussian
distribution at its gth generation:

N
(

m(g),
(
σ (g)

)2
C(g)

)
(12)

where
m(g) ∈ Rn mean vector;
C(g) ∈ Rn×n covariance matrix;
σ (g) ∈ R mutation strength.
1) Covariance Matrix Modeling: SDA-ES differs from

other CMA variants in that the covariance matrix takes the
following form:

C(g) = (1 − ccov)In + ccov

m∑
i=1

q(g)
i

(
q(g)

i

)T
(13)

where
ccov ∈ (0, 1) weight factor;
m ∈ Z+ number of used search directions;
q(g)

i ∈ Rn ith search direction, where i ∈ {1, . . . , m}.
Equation (13) approximates the covariance matrix with∑m
i=1 q(g)

i (q(g)
i )T whose rank is not larger than m in the case

of m � n. To ensure the positive definiteness, it is linearly
combined with an identity matrix under the control of a param-
eter ccov. Such combination makes (13) have the same form
of the well-known shrinkage estimator [27]. Shrinkage here
improves the naive estimator

∑m
i=1 q(g)

i (q(g)
i )T and produces a

well-conditioned estimator C(g).
2) Sampling: Sampling new solutions from the distribution

N (m(g), (σ (g))2C(g)) requires no special matrix factorization
techniques. Concretely, a new solution can be generated as

x(g) = m(g) + σ (g)
(√

1 − ccovz1 + √
ccovQ(g)z2

)
(14)

where z1 ∈ Rn is a random vector sampled from N (0, In); z2 ∈
Rm is a random vector sampled from N (0, Im); and Q(g) ∈
Rn×m is a matrix whose ith column is q(g)

i , that is, Q(g) =
(q(g)

1 , . . . , q(g)
m ).

Equation (14) indicates that a solution sampled from
N (0, C(g)) can be seen as an isotropic Gaussian random vec-
tor perturbed by another nonisotropic one. Such a perturbation
is defined in an m-dimensional space and then transformed to
Rn using the linear transformation defined by Q(g).

B. Search Direction Adaptation

SDA-ES adapts the search directions in order to capture the
variable dependencies of the function landscape. This proce-
dure is conducted by exploring the linear correlations among
the variables of the mutation step of the mean vector. It
contains three basic steps.

1) Moving the Mean: At the gth generation, μ solutions
are recombined to form the mean vector

m(g+1) =
μ∑

j=1

ωjx
(g)
j:λ (15)
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where x(g)
j:λ denotes the jth best population member and

f (x(g)

1:λ) ≤ · · · ≤ f (x(g)
λ:λ); and ω1, . . . , ωμ are the recombination

weights subject to
∑μ

j=1 ωj = 1, and ω1 ≥ · · · ≥ ωμ > 0.
2) Calculating the Successful Mutation Step: SDA-ES

learns the variable dependencies from the successful muta-
tion step of the mean vector. This successful mutation step is
given by

z(g) = √
μeff

m(g+1) − m(g)

σ (g)
(16)

where μeff = 1/
∑μ

j=1 ω2
j .

It can be verified easily that under random selection, z(g) ∼
N (0, C(g)). In other words, z(g) is a well-defined statistic in
estimating the covariance matrix, which explains why z(g) can
be utilized in the adaptation procedure.

3) Adaptation: Given the fact z(g) ∼ N (0, C(g)) under ran-
dom selection, we can use z(g) to update the search directions
with the heuristic described in Section II-B.

a) Updating q(g)
1 : The heuristic in (11) does not work

for the first search direction. So we specify an initial step as
follows.

Let z(g)

1 = z(g). The first search direction q(g)

1 is updated as

q(g+1)

1 = (1 − cc)q
(g)

1 +√
cc(2 − cc)z

(g)

1 (17)

where cc ∈ (0, 1) is the learning rate for the search directions.
Equation (17) is identical to the cumulation of the evolution
path in [1].

b) Updating q(g)
2 , . . . , q(g)

m : After updating the jth search
direction q(g)

j , where j ∈ {1, . . . , m − 1}, we first calculate the

residual between z(g)
j and its projection onto the new search

direction q(g+1)
j . It is given by

z(g)
j − t · q(g+1)

j (18)

where

t =
(

z(g)
j

)T
q(g+1)

j(
q(g+1)

j

)T
q(g+1)

j

(19)

is the relative length of the projection.
Then, the residual is rescaled as

z(g)

j+1 = 1√
1 + t2

(
z(g)

j − t · q(g+1)
j

)
. (20)

The scaling coefficient [1/(
√

1 + t2)] is to normalize the
residual such that under random selection, z(g)

j+1 ∼ N (0, C(g))

holds when z(g)
j ∼ N (0, C(g)) and q(g+1)

j ∼ N (0, C(g)). In

other words, z(g)

j+1(z
(g)

j+1)
T is also an unbiased estimator of C(g).

Utilizing this property, the (j + 1)th search direction can be
updated as follows:

q(g+1)

j+1 = (1 − cc)q
(g)

j+1 +√
cc(2 − cc)z

(g)

j+1. (21)

Fig. 1 provides an example of updating two search direc-
tions in the 2-D decision space. Suppose that the initial
distribution is isotropic as shown in Fig. 1(a). The arrowed
vectors depict the two search directions q(0)

1 and q(0)
2 and

Fig. 1. 2-D example of the search direction adaptation. (a) Initial distribution.
(b) Update q(0)

1 with z(0)
1 . (c) Calculate z(0)

2 . (d) Update q(0)
2 with z(0)

2 . (e)
New distribution.

the dotted line depicts the contour of the probability density.
In Fig. 1(b), a vector z(0)

1 is plotted to depict the success-
ful mutation step of the population mean. It is recombined
with the first search direction q(0)

1 using (17), yielding a new
direction q(1)

1 . This increases the probability of reproducing
the successful mutation step. We use the same idea to update
the other search direction q(0)

2 . However, reusing z(0)
1 directly is

inappropriate as the two search directions may become similar,
leading to an ill-conditioned covariance matrix in the long run.
Therefore, we use its component perpendicular to q(1)

1 . This
component, given by z(0)

1 − [((z(0)
1 )Tq(1))/((q(1))Tq(1))]q(1), is

rescaled to obtain a new vector z(0)
2 shown in Fig. 1(c). Then,

in Fig. 1(d), z(1)
2 is used to update q(0)

2 . The new search direc-
tions are finally combined to form a new covariance matrix
as shown in Fig. 1(e). The distribution contour becomes an
ellipsoid which is elongated into the direction of z vector
and, therefore, implies a promising search tendency. It is also
observed that the second search direction moves away from
q(1)

1 because it is recombined with a vector perpendicular
to q(1)

1 . This preserves the interdependence between the two
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search directions which is helpful in large-scale covariance
matrix adaptation.

4) Differences From MA-ES and LM-MA: The proposed
method and those in MA-ES and LM-MA are all designed
to simplify the original CMA-ES, so we would like to make
some remarks about their differences.

1) MA-ES is not designed for large-scale optimization, and
still maintains a full n × n matrix. Contrarily, this paper
aims to scale up CMA-ES, and so the proposed method
only stores a set of vectors (i.e., the search directions).

2) LM-MA and SDA-ES are different in the way of
modeling the covariance matrix. SDA-ES reconstructs
the covariance matrix while LM-MA reconstructs the
Cholesky factor of the covariance matrix. Nevertheless,
neither of them require extra computations for matrix
decomposition.

3) LM-MA and SDA-ES are different in maintaining the
vectors for (covariance) matrix reconstruction. LM-MA
updates the used vectors with the weighted summations
of vectors that are drawn from an isotropic Gaussian
distribution. Whereas in SDA-ES, the search directions
are the accumulations of the scaled residuals between the
successful mutation steps and previous search directions.

C. Mutation Strength Adaptation

CSA in the original CMA-ES heavily relies on the sample
distribution and a proper coordinate system transformation into
isotropic coordinates [21]. Due to the incapacity of the sparse
covariance matrix to capture all variable correlations, CSA is
not suitable for SDA-ES.

Inspired by the comparison-based adaptation schemes, such
as MSR [21], PSR [18], and RSR [17], we propose a gener-
alized 1/5th success rule to adapt the mutation strength. The
1/5th success rule is originally developed for (1+1)-ES where
“success” means accepting an offspring to be the new parent.
It controls the acceptance probability in order to achieve the
optimal convergence rate on the sphere function [26], [28].
In the nonelitist multirecombinant SDA-ES, we can general-
ize the 1/5th success rule by defining success as the rank sum
of the objective function values getting smaller (better). It is
based on the following two facts.

1) The previous and current populations have the same
distribution under random selection. Hence, after com-
bining these two populations and sorting all solutions,
the sum of ranks from the previous population is not
significantly larger than that from the current population.

2) A small mutation strength is likely to increase the
probability of reproducing high-quality solutions.

The first fact can be used directly as the one-tailed null
hypothesis of the well-known Mann–Whitney U test [25]. In
this way, the success probability can be defined as the prob-
ability of rejecting the null hypothesis. We can calculate the
success probability using the Mann–Whitney U test, and adapt
the mutation strength such that the success probability reaches
a predefined target. The procedure works as follows.

1) Calculating the Statistic U: We first combine objective
function values from the previous and current populations into

a mixed set: F(mix) = F(g) ∪ F(g−1). Then, we sort all the
values in F(mix) in ascending order. Let R1 be the sum of the
ranks from the previous population. A statistic, called U, is
calculated as

U = R1 − λ(λ + 1)

2
. (22)

Under the null hypothesis of the Mann–Whitney U test, the
statistic U has a distribution whose mean is λ2/2 and standard
deviation is

√
λ2(2λ + 1)/12.

2) Cumulating the Statistic Z: With the default parameter
settings (discussed later), the sample size is large enough (e.g.,
|F(mix)| = 2λ > 20) to approximate U with a normal distribu-
tion. In other words, we have U ∼ N (λ2/2, λ2(2λ + 1)/12).
Then, a statistic Z is obtained as

Z(g+1) = (1 − cs)Z
(g) +√

cs(2 − cs)
U − λ2/2√

λ2(2λ + 1)/12
(23)

where cs ∈ (0, 1) is the learning rate for the mutation strength.
The use of cs is to average Z over generations to improve
the robustness. The normalization in the last term in (23) is
to eliminate the effect of the population size λ since [(U −
λ2/2)/(

√
λ2(2λ + 1)/12)] ∼ N (0, 1).

One distinct feature of the proposed adaptation scheme is
that the Z calculation exhibits the so-called derandomization
property: it is independent of μ, λ, and other distribution
parameters to be adapted. In addition, Z(g+1) ∼ N (0, 1) holds
under random selection and when Z(g) ∼ N (0, 1).

Since Z(g+1) is obtained by cumulating the normalized sum
of the ranks, it reflects the variation tendency of the rank sum
of the objective function values over the generations. In partic-
ular, Z(g+1) > 0 indicates that the rank sum is getting smaller,
and we consider the sampling operation at the gth generation
is successful.

3) Applying the 1/5th Success Rule: After obtaining Z(g+1),
we adapt the mutation strength as

σ (g+1) = σ (g)exp

(
1

dσ

(
�(Z(g+1))

1 − p∗ − 1

))
(24)

where
p∗ ∈ (0, 1) predefined constant;
dσ damping factor controlling the changing rate of

the mutation strength;
� cumulative distribution function of the standard

univariate normal distribution.
�(Z(g+1)) is the obtained success probability, and 1 −

�(Z(g+1)) is the right-tailed p-value, that is, the signifi-
cance level of the hypothesis that Z(g+1) > 0. Therefore,
�(Z(g+1)) measures how successful the sampling operation
at the gth generation is. The adaptation works as follows:
when �(Z(g+1)) is smaller than a predefined value 1 − p∗,
we decrease the mutation strength to encourage exploitation.
The algorithm then behaves like a local search and the success
probability will increase naturally. Otherwise, we increase the
mutation strength such that the solutions move to unexplored
region and the success probability will gradually decrease.
This procedure is repeated at each generation such that the
success of the sampling operation eventually maintains at a
p∗ significance level.
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4) Comparisons With Existing Schemes for Mutation
Strength Adaptation: The similarities and differences between
the proposed method and existing ones, including MSR, PSR,
and RSR, are listed as follows.

1) The Mann–Whitney U test used in the generalized 1/5th
success rule degenerates to a median test if the objec-
tive function values are drawn independently from two
populations that have the same shape. This happens
under random selection, and in this case, the proposed
method is similar to MSR which captures the evolu-
tionary tendency of the population medians. But they
are not necessarily the same since the proposed method
also detects the change in the spread of the objective
function values even when the medians are equal. Note
that there exist extensive studies concerning the differ-
ence between the Mann–Whitney U test and the test for
medians, and interested readers are referred to [29].

2) PSR, RSR, and our proposed method all rely on the
rank sums, but are different in measuring the success.
PSR and RSR use the change of the rank sums to mea-
sure the success. Instead, our method first transforms
the rank sums to success probabilities and, then, uti-
lizes these probabilities to quantify the success. This also
makes the considered methods differ in the process of
normalization and accumulation.

D. Detailed Implementation

The pseudocode of SDA-ES is given in Algorithm 1. The
algorithm maintains an m × n matrix Q(g) at the generation
g. The ith column of Q(g), denoted by Q(g)

:,i , stores the ith

search direction q(g)
i . Before starting the main loop, the matrix

Q(g) is initialized with columns drawn independent identi-
cally distributed from an isotropic Gaussian 10−10N (0, In) in
lines 2–4. The constant 10−10 is to make the lengths of search
directions sufficiently small while the use of random variables
is to prevent the potential “Division by Zero” error (occurred
in line 16 at the first generation).

At the beginning of the gth generation, a set of λ solu-
tions is sampled using the method described in Section III-A.
These solutions are evaluated and the best μ ones are chosen
to update the search directions as described in Section III-B.
Specifically, the new mean m(g+1) is first formed in line 12,
and a vector z is obtained to measure the (scaled) successful
mutation step of the population mean in line 13. Then, the
search directions are adapted by updating the matrix Q(g) col-
umn by column in lines 14–18. More precisely, we first update
a search direction with the vector z, second calculate the rel-
ative projection length of z onto the updated search direction,
and finally, replace z with its scaled projection residual. This
process is repeated until all the columns are updated.

Lines 19–23 perform the adaptation of the mutation
strength. In lines 19 and 20, the objective function values from
the previous and current populations are merged and ranked
in order to obtain the rank-sum value R1. Two statistics U
and Z(g+1) are calculated based on R1 in lines 21 and 22.
Finally, in line 23, the mutation strength is updated based

Algorithm 1 SDA-ES

Input: m(0): mean vector; σ (0): mutation strength;
1: g = 0
2: for i = 1 to m do
3: Q(0)

:,i ∼ 10−10N (0, In)

4: end for
5: while the termination criterion is not met do
6: for i = 1 to λ do
7: z1 ∼ N (0, In)
8: z2 ∼ N (0, Im)

9: x(g)
i = m(g) + σ (g)(

√
1 − ccovz1 + √

ccovQ(g)z2)
10: end for
11: Evaluate and sort the solutions
12: m(g+1) = ∑μ

j=1 ωjx
(g)
j:λ

13: z = √
μeff

m(g+1)−m(g)

σ (g)

14: for i = 1 to m do
15: Q(g+1)

:,i = (1 − cc)Q
(g)
:,i + √

cc(2 − cc)z

16: t = zT Q(g+1)
:,i

(Q(g+1)
:,i )T Q(g+1)

:,i

17: z = 1√
1+t2

(z − tQ(g+1)
:,i )

18: end for
19: F(g) = {f (x(g)

1 ), · · · , f (x(g)
λ )}

20: R1 = sum of ranks of F(g−1) in F(g) ∪ F(g−1)

21: U = R1 − λ(λ+1)
2

22: Z(g+1) = (1 − cs)Z(g) + √
cs(2 − cs)

U−λ2/2√
λ2(2λ+1)/12

23: σ (g+1) = σ (g)exp
(

1
dσ

(
�(Z(g+1))

1−p∗ − 1
))

24: g = g + 1
25: end while
26: return

on the comparison result between �(Z(g+1)) and its target
value 1 − p∗.

E. Complexity

At each generation, sampling a new solution requires O(mn)

operations for the matrix-vector multiplication in line 9.
Updating the matrix Q(g) in lines 14–18 requires O(mn) oper-
ations. Lines 11 and 20 perform two sorting procedures and
require O(λlogλ) operations. All the other lines can be exe-
cuted within O(n) operations. Therefore, the time complexity
of SDA-ES is O(λmn) per generation or O(mn) per function
evaluation.

SDA-ES maintains a population of λ solutions and stores
m search directions in an n × m matrix. Thus, SDA-ES has
O((λ + m)n) space complexity.

F. Parameters

All parameters used in SDA-ES are summarized in Table I.
Among them, λ, μ, ω1, . . . , ωμ, and μeff are those appeared
in the original CMA-ES, and they are set based on the rec-
ommendation in [2]. The other parameters are discussed as
follows.

1) ccov controls the influence of the search directions on
the estimated covariance matrix. As pointed out in [17],
this kind of parameter essentially determines the chang-
ing rate of the covariance matrix and, hence, can be set
based on some theoretical findings on this subject. It is
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TABLE I
PARAMETERS FOR SDA-ES

found by [30] that the covariance matrix converges to the
inverse of the Hessian at the rate of O(1/

√
n) under the

information geometric optimization framework, while
by [31], that an isotropic ES achieves O(n) expected
time for a fixed relative improvement on a spherical
function. Hence, a changing rate between O(1/n) and
O(1/

√
n) is reasonable. We use ccov = 0.4/

√
n in this

paper.
2) cc is the learning rate of the search directions. For a

given search direction, about 37% of its information
is older than 1/cc generations. Hence, setting it to be
inverse proportional to the degrees of freedom in the
z vectors seems to be a reasonable choice. Note that
z(g)

1 in (17) has O(n) degrees of freedom but the sub-
sequent ones may have less degrees of freedom due to
the orthogonal constraints. Consequently, we set it to the
order of O(1/

√
n). In this paper, cc = 0.25/

√
n is used.

3) cs and dσ both control the changing rate of the mutation
strength. dσ directly determines the change magnitude
of ln σ (g) while cs has an indirect effect by determin-
ing the accumulating rate of the statistic Z(g). Since the
proposed adaptation scheme is independent of the popu-
lation size and the number of parameters to be adapted,
setting them to O(1) is reasonable. In this paper, we rec-
ommend the settings cs = 0.3 and dσ = 1 which have
been used in related works [17], [18], [21].

4) p∗ is the target significance level for the success of
the sampling operation. It plays a similar role like the
acceptance probability in the original 1/5th success rule.
The likelihood of accepting the null hypothesis, that is,
the previous population has a smaller rank-sum value,
increases with the decreasing p∗. We set p∗ to 0.05 as
it is a popular setting in generic statistical tests.

5) m is the number of used search directions. Generally, a
larger m value is expected to lead a better performance,
but also increases the computational burden. We set m to
10 as it is sufficient for the majority of the test instances
as demonstrated by the numerical study.

IV. COMPARATIVE STUDIES

In this section, SDA-ES is compared with nine state-of-
the-art algorithms to demonstrate its effectiveness in handling
LSOPs.

A. Experimental Settings

1) Test Problems: The performance of SDA-ES is evalu-
ated on two sets of test problems summarized in Table II. All
problems have the global minimum value 0.

a) Set 1—basic test problems: The first set consists
of 11 classic problems widely used in the EA community.

TABLE II
TEST PROBLEMS

fSphere, the simplest and fully separable one, serves as a
base for performance analysis. fElli, fRosen, fDiscus, fCigar, and
fDiffPow are separable or only have weak variable correla-
tions. They are chosen to cover a variety of difficulties, such
as ill-conditioning, nonlinear scaling, and flat region. Based
on them, we further construct five nonseparable problems,
namely, fRotElli, fRotRosen, fRotDiscus, fRotCigar, and fRotDiffPow.
This is done by applying an orthogonal transformation R
on the function landscape before evaluating the function val-
ues [32]. The dimensions of nonrotated problems are set to
1000, 2500, 5000, 7500, and 10 000, respectively. However,
each evaluation in the rotated case takes O(n2) time due to
the matrix-vector multiplication in rotating the decision vec-
tors, which is intractable in large-scale settings. Thus, for these
rotated problems, we only consider the 1000-D instances. This
setting is not likely to have significant influences on the results
of this paper, as we will first demonstrate that the proposed
algorithm is invariant against the rotational transformation.

b) Set 2—CEC’2010 benchmark problems: The second
set is the CEC’2010 benchmark suite containing 20 problems.
One distinct feature of this set is that the problem nonsepara-
bility can be explicitly controlled. Technically, we randomly
classify the decision variables into several groups, each of
which contains 50 variables. A predefined number of such
groups are selected to go through a rotational transformation
such that the correlations only exist among variables from the
same group. In this paper, f1–f3 are fully separable, and f19–f20
are fully nonseparable. For f4–f8, f9–f13, and f14–f18, the num-
bers of rotated groups are set to 1, 10, and 20, respectively.
More details about their formulations and characteristics can
be found in [33]. The dimensions of the problems in this set
are fixed to 1000.

2) Algorithms for Comparison: CMA-ES and four large-
scale variants, including sep-CMA [10], LM-MA [20],
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LM-CMA [18], and RmES [17] are used in the empirical
study. Another four non-CMA-ES-based algorithms, includ-
ing the CC-based differential evolution (DECC-G) [34], the
local search chain-based memetic algorithm (MA-SW) [35],
the multiple offspring sampling (MOS) [36], and the ran-
dom projection-based estimation of distribution algorithm
(RP-EDA) [37] are also considered.

CMA-ES and its four variants are compared with SDA-ES
on the first set of problems in order to show the rotational
invariance and scalability, which are desirable features in
designing new ESs. For all these algorithms, the mean vector
is uniformly sampled in the range [−5, 5]n and the muta-
tion strength is initialized to 3. All other parameters are set
according to the suggestions from their original papers.

The four non-CMA-ES-based algorithms, as well as the
original CMA-ES, are used in the comparison conducted
on the second problem set. Among them, DECC-G is one
of the pioneering works in large-scale optimization, MA-
SW wins the CEC’2010 large-scale competition, while MOS
becomes the competition winner from 2013 to 2017. RP-EDA
is a recently proposed Gaussian EDA which shows excel-
lent performance on the CEC’2010 benchmark suite. Unlike
CMA-ES and its variants, RP-EDA employs an ensemble of
distributions estimated in random subspaces. For these algo-
rithms, related parameters are set based on the guidelines of
the CEC’2010 competition as well as their original papers.

3) Termination Criteria: We use two termination criteria in
the experiments on the basic test problems. The primary one
is to stop the algorithm when the best objective value found
is below 10−8, which facilitates the study of the algorithms’
convergence ability. We also employ the maximum number of
function evaluations (denoted by mFEs) as a secondary crite-
rion. This is useful in preventing taking too much time due
to the stagnation. We set mFEs to 1 × 108 for n = 1000 and
5 × 108 for n > 1000.

For the experiments conducted on the second problem set,
we terminate all algorithms when the consumed number of
function evaluations exceeds 3 × 106, which is the default
setting for the CEC’2010 competition.

4) Statistical Method: On each instance in the first test set,
all competitors are independently run 20 times. The results
obtained from the median run are reported. By median run,
we mean the one obtaining the median rank value after sorting
the results in lexicographical order such that: 1) the algo-
rithms producing smaller objective values obtain better rank
values and 2) if two algorithms yield the same results, the
one using less function evaluations obtain better rank val-
ues. In the second test set, SDA-ES, DECC-G, and RP-EDA
are independently run 25 times according to the guidelines
of the CEC competition. For MA-SW and CMA-ES, the
results in [17] are used directly. The results of MOS are
from [38].

B. Effectiveness of the Generalized 1/5th Success Rule

The mutation strength adaptation is crucial for ESs since it
sustains a large diversity or entertains fast convergence to the
desired optimum [39]–[41]. Hence, before testing the overall

Fig. 2. Median results on the 1000-D Sphere problem, shown by evolutionary
trajectories.

performance of the ESs, we first investigate their effectiveness
in adapting the mutation strength.

We test SDA-ES and other ES-based algorithms on the
1000-D Sphere function fSphere as shown in Fig. 2. It is
known that this function can be efficiently solved using a stan-
dard (μ, λ)-ES with optimal mutation strength [42]. Hence,
no adaptation for the covariance matrix is required, and the
performance is mainly influenced by the mutation strength
adaptation. Therefore, this experiment essentially reveals the
effectiveness of the generalized 1/5th success rule.

sep-CMA and CMA-ES converge the slowest among all
competitors. They have almost the same convergence curves
as they both use CSA to control the mutation strength. This
observation seems to be inconsistent with the theoretical find-
ing that CSA seeks to optimize the mutation strength [31].
This is not surprising as the related parameters of CSA are
not well tuned for large-scale optimization. LM-MA also uses
CSA but with a larger adapting rate, and so it performs much
better.

On the other hand, SDA-ES converges faster than CMA-ES
and sep-CMA. It indicates that the generalized 1/5th success
rule has certain advantages over CSA with default parameters.
LM-CMA and RmES, which do not rely on CSA, also per-
form well. Considering their used adaptation schemes, we may
conclude that their good performance may be attributed to the
biased change of the mutation strength under random selec-
tion. However, SDA-ES differs from LM-CMA and RmES in
that it quantifies such bias by using an unbiased statistic Z(g).

C. Invariance Under Search Space Rotational
Transformations

We investigate the invariance of SDA-ES under rotational
transformations on the 1000-D basic test problems. Invariance
under rotational transformations refers to the property of a
given algorithm that its performance on f (x) and f (Rx) is
identical for any full-rank orthogonal matrix R. Usually, the
lack of the rotational invariance implies that an algorithm may
perform better for some R than for others.

Fig. 3 plots the convergence curves on the nonrotated and
rotated problems. In general, CMA-ES exhibits the invariance
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against rotational transformations as its performance is almost
the same on the rotated problems and the corresponding
nonrotated problems. On the contrary, its separable version
sep-CMA is quite sensitive to the search space rotations, as
we can find a significant performance degradation in tackling
with rotated problems. For SDA-ES, its covariance matrix is
an identity matrix combined with a matrix whose rank is not
larger than m, and so it cannot capture all pairwise variable
correlations determined by the rotation matrix R. However, we
observe that the differences in performance on nonrotated and
rotated problems are marginal, demonstrating the rotational
invariance of SDA-ES.

On the Ellipsoid problem shown in Fig. 3(a) and (b),
SDA-ES outperforms sep-CMA, CMA-ES, and RmES, and
is competitive with LM-MA, showing the capacity of captur-
ing the landscape characteristics with a low-rank model. This
result is interesting, as the landscape of fRotElli is far differ-
ent from a low-rank model. SDA-ES is also competitive with
LM-CMA at the early and middle stage. LM-CMA surpasses
SDA-ES at the late stage, and its advantage may come from
the cumulation technique for both the evolution paths and the
covariance matrix. Another observation is that SDA-ES, LM-
CMA, RmES, and LM-MA all surpass CMA-ES despite that
none of them learn all variable correlations. One possible rea-
son is the larger learning rate (e.g., cc in SDA-ES) used in the
four variants. Indeed, realizing fast adaptation may be essen-
tial since the computational resource is quite limited in the
context of large-scale optimization.

The Discus problem has a global structure similar to
the Sphere problem. However, it contains local irregular-
ity in that one single direction (e.g., x1 in the nonrotated
case) is a thousand times more sensitive than all others.
Since most ESs are initialized with an isotropic distribu-
tion, learning the relative scaling between such sensitive
direction and others become challenging even on the non-
rotated problems. As shown in Fig. 3(e) and (f), sep-CMA
fails to convergence in the presence of rotation. On the
nonrotated problem, it requires roughly 5 × 104 function
evaluations to learn the appropriate scalings before perform-
ing an efficient convergence. CMA-ES consumes even more
function evaluations due to its large amount of parame-
ters to be adapted. LM-MA, LM-CMA, RmES, and SDA-
ES perform better than CMA-ES and are invariant against
rotations.

The Different Powers problem is similar to the Ellipsoid
problem except that its variable correlations are nonlinear. The
closer to the optimum, the more difficult an algorithm gets to
approach it further. Therefore, this problem mainly tests the
local exploitation ability. As shown in Fig. 3(i) and (j), SDA-
ES is able to achieve competitive performance. This may be
ascribed to that the vicinity of local optimum on this problem
can be approximated by a sphere. In this case, the used identity
matrix dominates the search, tending to produce high-quality
solutions.

The Rosenbrock and Cigar problems share a common trait
that they can be well approximated with a low-rank model: the
landscape can be seen as a long valley embedded in a flat or
spherical region. By using a sparse covariance matrix, SDA-ES

Fig. 3. Median results on the 1000-D basic test problems with and without
rotation, shown by evolutionary trajectories. (a) fElli. (b) fRotElli. (c) fRosen.
(d) fRotRosen. (e) fDiscus. (f) fRotDiscus. (g) fCigar. (h) fRotCigar. (i) fDiffPow.
(j) fRotDiffPow.

and RmES are better than or as good as other competitors as
shown in Fig. 3(c), (d), (g), and (h).

D. Scalability

We test the scalability of SDA-ES in terms of the num-
ber of decision variables. LM-MA, LM-CMA, and RmES are
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Fig. 4. Median results on the 2500-, 5000-, 7500-, and 10 000-D nonrotated
problems. The curves present the number of function evaluations required to
reach the accuracy 10−8. (a) fSphere. (b) fElli. (c) fRosen. (d) fDiscus. (e) fCigar.
(f) fDiffPow.

selected as they all exhibit rotational invariance. The nonro-
tated problems in the first problem set are chosen, and their
dimensions are set to 2500, 5000, 7500, and 10 000, respec-
tively. The median function evaluations required to reach the
accuracy 10−8 are given in Fig. 4.

On the Ellipsoid problem, SDA-ES possesses clear advan-
tage over RmES and LM-MA on all instances, and outper-
forms LM-CMA when n = 10 000. This shows the ability
of SDA-ES to capture the global quadratic structure in high-
dimensional space. SDA-ES is also robust in handling local
irregularity, and insensitive to the initialization even when the
initial distribution is inconsistent with the landscape charac-
teristics. This can be verified on the Discus problem where
SDA-ES converges the fastest on all instances, whereas the
performance of other algorithms deteriorate significantly when
the problem dimension increases.

SDA-ES sustains the capability of handling narrow and flat
region when the dimension increases. On the Cigar problem,
SDA-ES is slightly slower than RmES, but they both con-
verge faster than LM-CMA and LM-MA do. The Rosenbrock
problem is much harder than the Cigar problem. It is inherently
nonseparable and its long valley cannot be rendered by a single
linear transformation. Moreover, its valley becomes longer and
narrower as the dimension increases. On this problem, SDA-
ES surpasses LM-CMA on all dimensional test instances, and

Fig. 5. CPU time per function evaluation on the fElli problem. The processing
time of the function evaluations is excluded. The dotted lines are obtained
using the least-square regression with the horizontal and vertical axes both in
the logarithmic scale.

is better than or competitive with RmES and LM-MA on the
2500-, 5000-, and 10 000-D instances.

SDA-ES is better than RmES but is surpassed by LM-CMA
and LM-MA on the Different Powers problem. But the dif-
ference in performance is minor even on the 10 000-D test
instance, and all algorithms can converge within less than
2 × 107 function evaluations. Similar results can be observed
on the Sphere problem where all competitors behave similarly.
Considering that these two problems mainly challenge the con-
vergence in the vicinity of local optima, we may conclude that
SDA-ES is competitive with the state-of-the-art variants in the
local exploitation ability.

E. Runtime and Memory Usage

We first validate the time complexity of SDA-ES analyzed
in Section III-E. To this end, we compare the runtimes of
SDA-ES and the other competitors required on the nonrotated
Ellipsoid problem. The simulation is conducted on a PC with
a 3.30-GHz Intel Core i5-4590 CPU. For a certain algorithm,
its runtime refers to the CPU time divided by the number of
used function evaluations, with the CPU time of the func-
tion evaluations excluded from the measurement. Therefore,
the presented result quantifies the internal cost of the algo-
rithm. Fig. 5 presents the results in a log–log plot. CMA-ES
is obviously the slowest while the other variants are much
faster. Specifically, SDA-ES, sep-CMA, and RmES are the
fastest performers, being about 500 times faster than CMA-
ES on the 10 000-D test instance. LM-CMA and LM-MA are
slightly slower than SDA-ES, but still significantly faster than
CMA-ES.

With the time results obtained above, we can determine the
time complexity for these algorithms. The method is from [43],
in which Bošković et al. used the regression models to cap-
ture the asymptotic performance for algorithms. Concretely,
we plot two regression lines in Fig. 5 to show how fast the run-
time scales for different algorithms. The regression lines are
based on the least-square fit in a logarithmic scale. The red dot-
ted line, displaying the polynomial 4 × 10−9 × n1.9, is derived
from the runtime of CMA-ES. It indicates that CMA-ES scales

Authorized licensed use limited to: Hanyang University. Downloaded on November 06,2023 at 06:53:04 UTC from IEEE Xplore.  Restrictions apply. 



1662 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 51, NO. 3, MARCH 2021

TABLE III
MEMORY USAGE

approximately quadratically, being consistent with the fact that
CMA-ES has to adapt a full covariance matrix. On the other
hand, the polynomial derived from the runtimes of the rest
algorithms (depicted as a blue dotted line) is 3 × 10−9 × n1.2.
Hence, we can conclude that SDA-ES and the other large-scale
variants scale approximately linearly.

We further examine the memory usage in terms of the num-
ber of floating-point variables. Our analysis is based on typical
implementations of the algorithms and omit the terms that are
independent of n. All six algorithms explicitly store λ solu-
tions and one mean vector. sep-CMA, CMA-ES, and LM-MA
store two evolution paths, LM-CMA and Rm-ES store one
evolution path, while SDA-ES stores a temporary vector z (in
line 13 of Algorithm 1). Apart from those, sep-CMA only
requires one more vector to express the diagonal matrix, so it
is the cheapest. CMA-ES, on the contrary, is the most expen-
sive one, since it stores one covariance matrix and all its n
eigenpairs. LM-CMA, LM-MA, RmES, and SDA-ES all store
a set of m vectors to represent promising search directions.
In addition, LM-CMA stores m more vectors to express the
inverse of the covariance matrix, while LM-MA maintains an
extra population of λ solutions. The details of memory usage
have been summarized in Table III. Basically, all large-scale
variants are well scalable in high-dimensional space.

F. Parameter Sensitiveness

The parameter m is the number of used search directions,
and determines the low-rank structure of the covariance matrix.
To investigate its effects on the performance of SDA-ES, we
conduct experiments on the 1000-D nonrotated problems with
m chosen from {1, 5, 10, λ, �√n�}.

Fig. 6 plots the median results in terms of the number
of function evaluations required to reach the accuracy 10−8.
We first find that all algorithm instances behave similarly on
the Sphere problem. It means employing more search direc-
tions than are necessary will not deteriorate the performance.
Similar results can be observed on fRosen where the descend
directions on the objective landscape can be efficiently approx-
imated with single one search direction. This phenomenon
may be attributed to that the unnecessary search directions
are rapidly shortened in the projection-based adaptation.

On the other problems, using only one search direction is
not enough as the corresponding algorithm instance converges
much slower. In particular, it leads to a failure of convergence
on fCigar within a reasonable computational budget. On the
contrary, setting m to a large value significantly improves the
convergence ability. This can be explained as a larger m admits

Fig. 6. Number of function evaluations required to reach the accuracy 10−8

on the 1000-D nonrotated problems with different settings of m.

capturing more promising tendencies. However, the advan-
tage of using more search directions becomes marginal when
m ≥ 10. Considering that the time and space complexity scales
linearly with m, setting m to 10 is a reasonable choice.

G. Performance on CEC’2010 Problems

This section provides the comparison results between SDA-
ES and other five state-of-the-art algorithms on the CEC’2010
large-scale benchmark suite. Compared with the first problem
set used in the above experiments, this set is more challenging
as multimodal problems are involved. It is known that ESs are
originally designed for unimodal functions, and are considered
as local optimizers rather than global optimizers [44]. Hence,
it may be inefficient to directly apply SDA-ES on this set
due to its incapacity to escape the local optima. Fortunately,
this weakness can be overcome by increasing the population
size [45] and restarting the optimizer when a stagnation is
detected [46], [47]. Therefore, we randomly restart SDA-ES
when the range of the best objective values over the last n
generations is below 10−8. Each time an independent restart
is launched, we increase the population size by a factor of 2.
This strategy encourages SDA-ES to learn the global topol-
ogy and omit the local characteristics; therefore, improving
the performance on multimodal problems.

The median, mean, and standard deviation of the obtained
objective values on the CEC’2010 problems are summarized
in Table IV. On the whole, SDA-ES obtains the best results
on 8 out of 20 problems and is top ranked according to the
Friedman test [48]. It also significantly surpasses RP-EDA,
DECC-G, and CMA-ES according to the Bonferroni’s post hoc
test [49]. The good performance of SDA-ES comes from its
distribution adaptation in handling variable correlations, and
the restart strategy in escaping local optima.

On fully separable problems f1–f3, SDA-ES is surpassed
by MA-SW and MOS. The reason is that both MA-SW and
MOS incorporate local search schemes to search along each
variable separably or explore only a subset of variables. On the
contrary, SDA-ES does not try to detect such separable struc-
ture and, therefore, does not perform well on these problems.
CMA-ES performs even worse. This may be attributed to its
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TABLE IV
MEDIAN, MEAN, AND STANDARD DEVIATION OF THE OBJECTIVE

VALUES OBTAINED ON THE CEC’2010 PROBLEMS. THE BEST AND THE

SECOND BEST RESULTS FOR EACH PROBLEM, IN TERMS OF THE MEDIAN

OBJECTIVE VALUE, ARE SHOWN WITH DARK AND LIGHT GRAY

BACKGROUND, RESPECTIVELY

low adaptation rate, which has been observed in the above
experiments.

Another observation is that SDA-ES outperforms DECC-
G on two nonseparable multimodal problems f2 and f3

which contain a huge number of local optima. This is
impressive, as the differential evolution (DE) [50] in DECC-
G is usually considered as having better global explo-
ration ability than ES [51], [52]. This indicates that the
restart strategy does improve the performance on multimodal
problems.

On f19 and f20, SDA-ES produces, respectively, the best
and the second best results, showing its advantage in han-
dling fully nonseparable problems. For example, it is the only
one that is able to produce near-optimal solutions on f19. We
also observe that its performance increases when the num-
ber of independent variables decreases. For example, SDA-ES
obtains only one best result on single-group 50-nonseparable
problems, but performs the best on almost all 10- and 20-
group nonseparable problems. Besides, on the 20-group or
fully nonseparable problems where no variable is independent,
the algorithm performance seems to be mainly determined by
the ability of handling variable correlations, while the impact
of multimodality becomes inessential. Due to its capacity in
handling variable dependencies, SDA-ES shows outstanding
performance on these problems.

V. CONCLUSION

This paper presented an SDA-ES for large-scale
optimization. Compared with the original CMA-ES, the
covariance matrix in SDA-ES is modeled with an identity
matrix and a set of search directions. The search directions
are updated by simulating the PCA but in a computationally
cheaper way. We also provide a generalized 1/5th success
rule to control the mutation strength based on the Mann–
Whitney U test and the idea of derandomization. SDA-ES
has linear time and space complexity. The experiments
carried out on 31 test problems demonstrate that SDA-ES is
competitive with the state-of-the-art algorithms in handling
LSOPs.

In the future, we will investigate how to incorporate the
search direction adaptation into the covariance matrix cumula-
tion as it will naturally increase the adaptation speed. Using the
search directions to reconstruct the Cholesky factor rather than
building the entire covariance matrix would also be interesting.
Extending current work to solve constrained problems is also
one of the further studies.
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