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Preface

This book is the proceedings of the 18th International Workshop on Digital Forensics
and Watermarking (IWDW 2019) which was held in Chengdu, China, during
November 2–4, 2019. The IWDW is a premier forum for researchers and practitioners
working on novel research, development, and applications of digital watermarking and
forensics techniques for multimedia security.

IWDW 2019 received 70 valid submissions of original research papers covering the
following topics: digital watermarking, digital forensics and anti-forensics, deep
learning for multimedia security, information hiding, steganography and steganalysis,
as well as authentication and security. There were three reviewers for each submitted
paper with regards to the double-blind peer review process. The decision of the
Program Committee was motivated by a highly competitive basis. Only 22 submissions
were accepted as regular papers and 12 as short papers. Two prizes were awarded for
the best paper and the best student paper, respectively.
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GAN-Based Steganography with the
Concatenation of Multiple Feature Maps

Haibin Wu1, Fengyong Li1,3(B), Xinpeng Zhang2, and Kui Wu3

1 College of Computer Science and Technology, Shanghai University of Electric
Power, Shanghai, People’s Republic of China

fyli@shiep.edu.cn
2 School of Computer Science, Fudan University, Shanghai,

People’s Republic of China
3 Computer Science Department, University of Victoria, Victoria, Canada

Abstract. Steganography has been widely used to conceal secret infor-
mation in multimedia content. Using generative adversarial networks
(GAN) where two subnetworks compete against each other, steganog-
raphy can learn good distortion measurement. Nevertheless, the conver-
gence speed of GAN is usually slow, and the performance of GAN-based
steganography has large room to improve. In this paper, we propose
a new GAN-based spatial steganographic scheme. The proposed learn-
ing framework consists of two parts: a steganographic generator and
a steganalytic discriminator. The former generates stego images, and
the latter evaluates their steganography security. Different from existing
GAN-based steganography, we reconstruct the generator by combining
multiple feature maps, and then expand the maximum number of feature
channels to 256. The reconstruction generator can effectively generate a
sophisticated probability map, which is used to calculate optimal distor-
tion measurement and further provides a better guidance for adaptive
information embedding. Comprehensive experimental results show that,
with the same discriminant network, the anti-steganalysis performance
of our method is better than that of ASDL-GAN scheme and Yang’s
scheme.

Keywords: Steganography · Generative adversarial networks ·
Multiple feature maps · Content-adaptive

1 Introduction

As a hotspot in the field of information hiding, image steganography [2–6,11]
is an efficient technology that hides secret information in cover images. With
the development of steganalysis [8,14,16], the traditional algorithms, e.g., Least
Significant Bit (LSB) methods [1], cannot meet the security requirements.
To address the problem, more sophisticated content-adaptive steganographic
schemes have been proposed to measure each pixel’s degree of modification

c© Springer Nature Switzerland AG 2020
H. Wang et al. (Eds.): IWDW 2019, LNCS 12022, pp. 3–17, 2020.
https://doi.org/10.1007/978-3-030-43575-2_1
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suitability, so that the overall distortion can be controlled. Generally, content-
adaptive steganography, such as HUGO [2], WOW [3], HILL [4], S-UNIWARD [5]
and MiPOD [6], performs data embedding operations mainly in complex texture
regions of cover images. Recently, generative adversarial networks (GAN), that
use two subnetworks to compete against each other to gain overall better per-
formance, have been used in image steganography and steganalysis. Researchers
have showed that GAN can achieve considerable performance improvement in
both steganalysis and steganography.

Regarding Steganalysis. Qian et al. [20] first introduced CNNs to solve ste-
ganalysis problem, and then proposed a network structure that consists of five
convolution layers and three full connection layers. This scheme uses a fixed Ker-
Bohme (KV) kernel in preprocessing layer to obtain image residuals [19], but the
detection results over the BOSSBase image database are slightly lower than that
of Spatial Rich Model (SRM) [8]. Xu et al. [7] proposed another CNN architec-
ture by considering the knowledge of steganalysis. Similar to Qian’s scheme, this
scheme also obtains image residuals by using fixed KV kernel, but, it reduces the
scope of feature map by adding an abstract (ABS) layer. Ye et al. [21] proposed
a 10-layer CNN, in which 30 high-pass filters referring to SRM model are used to
initialize the first layer parameters of this network. This scheme reconstructs the
activation function by using truncated linear unit (TLU), which is more suitable
for the distribution of steganographic noise. By combining channel selection, the
detection performance for adaptive steganography can be significantly improved.

Regarding Steganography. CNN-based GAN is still in its nascency. Tang
et al. [9] proposed an automatic steganographic distortion learning framework
based on generative adversarial network (ASDL-GAN). The steganographic dis-
tortion of each pixel in cover image is learned by alternately training two adver-
sarial subnetworks. Although ASDL-GAN can effectively learn steganographic
distortion, its anti-steganalysis performance has not yet exceeded S-UNIWARD.
Yang et al. [10] improved ASDL-GAN by using Tanh-simulator function to
solve a crucial problem in ASDL-GAN, that is, the ternary embedding simu-
lator (TES) is difficult to propagate backwards in ASDL-GAN. Compared with
ASDL-GAN, the training time of Yang’s scheme is greatly reduced and the anti-
steganalysis capability is significantly improved. The above schemes mainly get
steganographic distortion by adversarial learning, and then choose appropriate
pixels for data embedding. Another thread of research directly generates adver-
sarial examples by adversarial learning [15,22]. Following the design of deep con-
volutional GAN (DCGAN) [12], Volkhonskiy et al. [15] proposed steganographic
GAN (SGAN), which generates cover images more suitable for steganography
than natural images. On the basis of SGAN, Shi et al. [13] replaced DCGAN with
Wasserstein GAN (WGAN) [17] and further proposed a secure steganographic
scheme called SSGAN. Zhang et al. [22] added specific noise to cover image
to obtain an enhanced cover so that the stego images can “mislead” the clas-
sification of deep learning. Although adversarial example-based steganographic
schemes can effectively resist the deep learning-based steganographic analysis
methods, they do not perform well under traditional steganalysis schemes using
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the high-dimensional feature model. The above research has shown that the
steganographic distortions can be learnt effectively and cover images can be
directly constructed with the adversarial network framework. Nevertheless, the
performance with respect to anti-steganalysis capability and training speed, still
has much room for improvement.

We are thus motivated to address the above problems by proposing a new
spatial spatial steganographic framework that uses GAN to find out the optimal
distortion measurement. Overall, we make the following novel contributions in
the context of secure steganography:

– We design a novel steganographic scheme based on a reconstructed generative
adversarial network (R-GAN). The proposed scheme can learn steganographic
distortion measurement effectively and has a fast training speed for optimal
parameters. Moreover, our steganographic scheme is resilient to steganalysis.

– Different from the existing GAN-based research, we reconstruct the generator
of GAN by combining multiple feature maps. The generator can effectively
generate sophisticated probability map, which is used to calculate optimal
distortion measurement and provides a better guidance for achieving adaptive
information embedding.

– We perform comprehensive test over two image databases, including one large-
scale database of natural images as training set and a classical image database,
BOSSBase, as testing set. Testing results show that our solution has a higher
anti-steganalysis capability than that of existing ASDL-GAN scheme and
Yang’s scheme.

The rest of this paper is organized as follows. The related work is reviewed
in Sect. 2. Our proposed framework is described in Sect. 3. Experimental results
and discussions are presented in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Related Work

2.1 ASDL-GAN Model

In [9], ASDL-GAN model is proposed for steganographic distortion calculation.
Its structure is mainly composed of two parts:

1. A steganographic generative subnetwork. It mainly focuses on generating the
modification probability map for cover image.

2. A steganalytic discriminative subnetwork. Its role is to discriminate cover
images and stego images and provides an effective feedback.

In the ASDL-GAN model, the generator G contains 25 groups of convolution
networks, a batch normalization process, and rectified linear units (ReLU). When
cover images are input into the generator G, the change probability for each pixel
is enforced to fall in the interval (0, 0.5). The ASDL-GAN model uses ternary
embedding scheme to construct a TES activation function as the embedding
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simulator. The modification directions are thus φ ∈ {+1, 0,−1}. Since the TES
activation function uses the given change probability pi,j (pi,j ∈ (0, 0.5)) and a
random number ni,j (ni,j ∈ [0, 1]) as input, the output can thus be denoted as
the corresponding modification m

′
i,j .

m
′
i,j =

⎧
⎨

⎩

−1 , if ni,j < pi,j/2
1 , if ni,j > 1 − pi,j/2
0 , otherwise

(1)

As a result, the capacity of the corresponding stego image can be calculated
by accumulating the modification probabilities p+1

i,j , p−1
i,j , p0i,j for {+1, 0,−1},

respectively.
The ASDL-GAN model adopts Xu’s model [7] as the discriminator. By alter-

nately training the generation network and the discrimination network, the
ASDL-GAN model automatically learns embedding change probabilities for each
pixel and coverts them as steganographic distortion. Finally, the embedding pro-
cess uses a minimal-distortion framework, e.g., Syndrome Trellis Codes (STCs)
framework [23]. Nevertheless, the performance of ASDL-GAN is still inferior to
the traditional adaptive steganography scheme S-UNIWARD. In addition, since
TES needs a long time for pre-training, ASDL-GAN is very time consuming.

2.2 Yang’s Model

In [10], Yang et al. proposed another adversarial steganographic scheme, which
consists of a generator, an embedding simulator, and a discriminator. This
scheme uses a more compact generator based on U-NET [24]. With extensive
experiments, the authors verified that this generator improves security perfor-
mance significantly and reduces training time dramatically.

As the key contribution, Yang’s model changes the activation function from
TES to the Tanh simulator. This process can solve the problem that the param-
eters in TES are difficult to back propagate and can save two thirds of training
time for each epoch. The definition of Tanh simulator is as follows:

m′
i,j = −0.5 × tanh(λ(pi,j − 2 × ni,j)) + 0.5 × tanh(λ(pi,j − 2 × (1 − ni,j))) (2)

tanh(x) =
ex − e−x

ex + e−x
(3)

where pi,j and ni,j have the same meaning as in (1) and λ controls the slope at
the junction of stairs.

In addition, the channel selection is considered in the design of the discrim-
inator D, so that the learned distortion measurement can guide the design of a
more secure steganographic scheme. Compared with ASDL-GAN, Yang’s model
has a significant advantages w.r.t. training time, but its anti-steganalysis capa-
bility still has much room for improvement. In the following, we thus reconstruct
the network structures to further improve the secure performance.



GAN-Based Steganography with the Concatenation 7

(a) The overall framework

(b) Yang’s U-NET (c) Reconstructed U-NET

Fig. 1. The framework for proposed scheme. (a) The generator and the discriminator.
(b) Yang’s U-NET structure. (c) Reconstructed U-NET structure. (Color figure online)

3 Proposed Scheme Based on Reconstructed GAN

3.1 The Overall Introduction of Proposed Scheme

Our scheme uses GAN to learn optimal distortion measurement and further
guides steganographic embedding. The proposed framework mainly consists of
two parts: a steganographic generator G and a steganalytic discriminator D, as
shown in Fig. 1(a).

In the steganographic generator G, we reconstruct a new generator by com-
bining multiple feature maps, as shown in Fig. 1(b). For a cover image, the cor-
responding probability map is obtained by the reconstructed generator. Then,
we use the Tanh simulator to construct the embedding modification map, which
is used to generate the stego image by referring to the cover image.

For the steganalytic discriminator D, the cover image and the stego image are
combined as its input. We use Xu’s model to provide feedback so that their anti-
steganalysis performance can be evaluated in real time. An optimal probability
map can be effectively learnt by the two subnetworks competing against each
other. The final probability map is then converted to measure distortion in the
design of secure steganography.
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3.2 Generator Reconstruction

As a good image texture expression structure, U-NET [24] can be used to con-
struct the generator in GAN due to its good performance for image segmentation.
U-NET usually consists of the contracting path (i.e., the left half in Fig. 1(b)) and
the expanding path (i.e., the right half in Fig. 1(b)). If the expanding path does
not combine feature maps from the contracting path, texture information will be
hard to learn. In order to locate image texture information accurately, a common
practice is to combine the high-pixel features extracted from the contracting path
with the new feature maps in the process of deconvolution. This process can pre-
serve image textural features in the previous down-sampling. Unfortunately, for
existing U-NET structures, e.g., the U-NET structure of Yang’s model (shown
in Fig. 1(b)), the expanding path always considers ONE feature map concate-
nation, i.e., the feature map at layer i of the expanding path (counting from
left to right of the expanding path) is combined with the feature map at the
corresponding layer of the contracting path (i.e., layer i of the contracting path
counting from the right to left) [10]. This structure does not combine enough
feature information, especially in the first few layers on the contracting path. As
such, it cannot effectively learn image textures in finer detail. In this section, we
reconstruct a new U-NET to obtain a more sophisticated probability map.

In our generator, the whole structure still consists of the contracting path and
the expanding path. In order to further improve the performance, we reconstruct
the U-NET structure of generator by (1) adjusting the maximum number of
feature channels in the contracting path and (2) combining multiple feature
maps in the expanding path. The details are as follows.

First, we fix the structure and parameters of each path. Specifically, the con-
tracting path contains a convolution structure (corresponding to kernel size 3×3
and step size 2), batch normalization, Leaky-ReLU, max pooling (corresponding
to kernel size 3 × 3, step size 1). Each expanding path contains deconvolution
(corresponding to kernel size 3 × 3, step size 2), batch normalization, ReLU,
concat, convolution (corresponding to kernel size 3 × 3, step size 1). The total
number of layers along a path (i.e., path length) of new generator is L = 16 and
the maximum number of channels is 256. The specific network structure of the
generator is shown in Table 1.

Second, in the contracting path, convolution is used to increase the channel
number of feature maps, while max pooling is used to decrease the size of feature
maps.

Third, in the expanding path, in order to ensure that the image features
learned from the contracting path can be used effectively for image recon-
struction, we combine TWO feature maps before and after convolution in the
corresponding contracting layer. For example, in Fig. 1(c) and Table 1, the ith

(i ∈ [9, 16)) expanding layer combines the (L − i + 1)th feature map after Leaky-
ReLU and the (L − i)th feature map after max pooling.

Forth, in the expanding path, since there are many feature channels after
concatenation, we further reduce the number of channels by adding the convo-
lution layer (i.e., the red layers at the right side of Fig. 1(c)). This operation can
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Table 1. Specific network structure for reconstructed generator.

Layers Output size Kernel size Process

Input 1× 512× 512 / Convolution-BN-Leaky ReLU-Maxpool

Layer1 16× 256× 256 16× (3× 3× 1) Convolution-BN-Leaky ReLU-Maxpool

Layer2 32× 128× 128 32× (3× 3× 16) Convolution-BN-Leaky ReLU-Maxpool

Layer3 64× 64× 64 64× (3× 3× 32) Convolution-BN-Leaky ReLU-Maxpool

Layer4 128× 32× 32 128× (3× 3× 64) Convolution-BN-Leaky ReLU-Maxpool

Layer5 256× 16× 16 256× (3× 3× 128) Convolution-BN-Leaky ReLU-Maxpool

Layer6 256× 8× 8 256× (3× 3× 256) Convolution-BN-Leaky ReLU-Maxpool

Layer7 256× 4× 4 256× (3× 3× 256) Convolution-BN-Leaky ReLU-Maxpool

Layer8 256× 2× 2 256× (3× 3× 256) Convolution-BN-Leaky ReLU-Maxpool

Layer9 256× 4× 4 256× (3× 3× 256)
256× (3× 3× 768)

Deconvolution-BN-ReLU-Concat-convolution

Layer10 256× 8× 8 256× (3× 3× 256)
256× (3× 3× 768)

Deconvolution-BN-ReLU-Concat-convolution

Layer11 256× 16× 16 256× (3× 3× 256)
256× (3× 3× 768)

Deconvolution-BN-ReLU-Concat-convolution

Layer12 128× 32× 32 256× (3× 3× 128)
128× (3× 3× 512)

Deconvolution-BN-ReLU-Concat-convolution

Layer13 64× 64× 64 128× (3× 3× 64)
64× (3× 3× 256)

Deconvolution-BN-ReLU-Concat-convolution

Layer14 32× 128× 128 64× (3× 3× 32)
32× (3× 3× 128)

Deconvolution-BN-ReLU-Concat-convolution

Layer15 16× 256× 256 32× (3× 3× 16)
16× (3× 3× 64)

Deconvolution-BN-ReLU-Concat-convolution

Layer16 1× 512× 512 16× (3× 3× 8)
3× (3× 3× 8)

Deconvolution-BN-ReLU-convolution

Output 1× 512× 512 / ReLU (Sigmod-0.5)

reduce the number of parameters and the amount of computation while ensuring
the symmetry of network structure.

3.3 Discriminator Design

In our framework, discriminator is considered as steganography adversarial tool
(also called as steganalytic tool). Since the whole network can be effectively
trained by steganography and steganalysis competing against each other, a
stronger discriminator can make steganography more secure with a serial of
adversarial training.

In order to improve the effectiveness of discriminator so that the trained
parameters can better express the distortion measurement, we introduce 10 high
pass filters from SRM and consider them as the adversarial basis of discrimi-
nator. Since Xu’s model [7] has good performance in implementation efficiency
and steganalysis, we use it (named as Xu Model in Fig. 1(a)) in our discrim-
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inator D. During each round of training, the generator adjusts parameters to
resist the analysis of the discriminator, while the discriminator also adjusts the
parameters to judge the results of generator. When the process converges (i.e.,
the parameters in both the generator and the discriminator remain stable or a
given maximum number of iterations has been reached), the final parameters are
used to calculate the embedding distortion of each pixel.

3.4 Training of Network

Our training framework contains the generator G and the discriminator D. For
discriminator D, its function is to determine whether an image is a stego image.
The corresponding loss function can be calculated as follows.

lD = −
2∑

i=1

y′
i log(yi) (4)

where yi is the softmax output of the discriminator D and y′
i is the corresponding

truth.
For generator G, the main function is to generate optimal probability

maps and calculate steganographic distortion measurement for each pixel. Stego
images can be produced by combining optimal steganographic distortion mea-
surement and a traditional steganographic method. Thus, its loss function can
be defined in two parts: lD and GLoss. lD makes the produced stego image hard
to detect by the discriminator D, while GLoss ensures that the produced stego
image can embed payload approximate to a given embedding rate Q.

lG = −α × lD + β × GLoss (5)

GLoss = (C − H × W × Q)2 (6)

where H and W are the height and width of cover images, respectively. α and
β are used to control the weights of lD and GLoss, respectively.

In this framework, the total capacity of stego image is denote as C.

C =
H∑

i=1

W∑

j=1

(−p+1
i,j log2p

+1
i,j − p−1

i,j log2p
−1
i,j − p0i,j log2p

0
i,j) (7)

where p+1
i,j and p−1

i,j stand for the probabilities of modifying the corresponding
pixel by adding 1 and subtracting 1, respectively, while p0i,j represents the prob-
ability that the corresponding pixel keeps unchanged. They can be calculated
by embedding probability pi,j , which is the output of generator G.

p+1
i,j = p−1

i,j = pi,j/2 (8)

p0i,j = 1 − pi,j (9)
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By setting a serial of initial parameters (refer to Sect. 4 for the specific values),
the generator G and the discriminator D are alternately trained round by round.
Each round includes two steps:

Step 1: We divide cover images into batches, e.g., 8 cover images a batch,
and put the batch of cover images into the reconstructed U-NET. We then obtain
the actual probability maps. Subsequently, Tanh simulator is used to generate
the modification maps (i.e., {−1, 0, 1}) by combining the embedding probability
maps and random matrices. Finally, the generator G generates the corresponding
stego images by applying the modification maps on the cover images.

Step 2: The batch of cover images and their stego images are input into
discriminator D. In discriminator D, we minimize lD and GLoss by Mini-Batch
gradient descent with Adam optimizer, and then the minimal lG is calculated
by Eq. (5).

3.5 Practical Steganographic Scheme

In this section, we present the actual steganographic process by using our recon-
structed network. Since our reconstructed network only outputs the embedding
probabilities by a serial of adversarial training, the actual embedding distortion
(embedding cost) should be calculated with the trained embedding probabili-
ties. Subsequently, with STCs [19,23], the practical steganographic scheme can
be achieved easily.

Given a batch of cover images, we use the reconstructed generator G and
the discriminator D to alternately train and update the embedding probabil-
ities. When the network model training is completed, an optimal embedding
probability map P can be obtained with a serial of adversarial training. With
the probability map P , the embedding cost β can be calculated according to
Eq. (10). Finally, STCs is used to embed the secret information.

βi,j = ln (1/pi,j − 2) , pi,j ∈ (0, 0.5) (10)

4 Experimental Results and Discussion

4.1 Experimental Setup

We test our method over two image sets: Places365-Standard [18] and BOSSBase
v1.01 [19]. The Places365-Standard image set is used to train our proposed
GAN model, while the BOSSBase image set is used to test the performance. In
the training stage, the parameters α and β in Eq. (5) are set to 106 and 0.1,
respectively. Since the Places365-Standard image set contains a lot of natural
images of big size, we select 36500 JPEG color images from this set and use
“rgb2gray” function and “imresize” function in matlab to transform JPEG color
images into gray images. The images are resized to 512×512. In the testing stage,
we use the BOSSBase images to generate 10000 stego images and build 10000
cover-stego image pairs, which are divided randomly into two parts: 5000 pairs
for training the classification model, while the rest 5000 pairs for testing.
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In addition, we employ ensemble classifier to give an ensemble detection
error rate in our experiments. Generally speaking, a higher error rate indicates a
stronger anti-steganalysis capability. Adam optimizer with 0.0001 learning rate
is chosen to train the model by 160000 iterations and all the experiments were
conducted with TensorFlow on DELL W-2102 Workstation with 16 GB RAM
and an RTX2080 GPU card.

4.2 Steganographic Results

We first show the experimental results of our proposed scheme. Two embedding
payloads, 0.1 bpp and 0.4 bpp, are tested. For illustration purpose, we randomly
choose an image (“1013.pgm”) from BOSSBase and show the testing results.

The corresponding results are shown in Fig. 2. In this figure, Fig. 2(a) is cover
image. Figure 2(b) and (c) are the change probability map and the corresponding
modification map of 0.4 bpp, respectively, while Fig. 2(e) and (f) are the change
probability map and corresponding modification map of 0.1 bpp, respectively.
From this figure, we can see that embedding change probability values of tex-
ture regions are larger than the smooth regions. In other words, the embedding
modification is concentrated in the texture region (i.e., content adaptive). The
experimental results, Fig. 2(c) and (f), also confirm this conclusion.

4.3 Testing for Different Concatenations of Feature Maps

Existing schemes, e.g., Yang’s scheme, use one feature map (after the deconvolu-
tion layers) to learn texture information. This may not be good enough, because
single feature map cannot fully capture image texture information, especially in
the first few contracting layers. In contrast, combining multiple feature maps can
better utilize the texture information and offers a better guidance for building
the probability map. Due to the above consideration, our scheme reconstructs
the U-NET structure by combining multiple feature maps in the contracting
layers to further improve the learning capability. In this section, we evaluate the
effectiveness of different ways of concatenating the feature maps.

Table 2 shows the experimental results. From this table, we can see that
concatenating feature maps leads to a significant improvement over the case
that no feature map is concatenated. The average gains are 6.3% and 8.5% for
0.1 bpp and 0.4 bpp, respectively. Comparing the case where only one feature
map is combined (i.e., Yang’s scheme [10]) and the case where two feature maps
are combined (i.e., our scheme), the average gains are 2.23% for 0.1 bpp and 1.3%
for 0.4 bpp. In the steganography field, such an improvement is nontrivial. In
fact, if more feature maps (e.g., three) are combined, we believe the performance
may be further improved, but, such an improvement may not be good enough
to justify the higher complexity and longer running time.

Since our proposed scheme expands the number of maximum channels to
256 while Yang’s scheme is only 128 channels, we are interested in checking
whether or not increasing the maximum number of channels also contributes to
the performance gain of our method. For this purpose, we modified and tested
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Fig. 2. The steganographic results of proposed scheme. (a) Cover image “1013.pgm”
in BOSSBase with size 512× 512. (b) Change probability map with 0.4 bpp. (c) Mod-
ification map with 0.4 bpp. (d) Stego image with 0.4 bpp. (e) Change probability map
with 0.1 bpp. (f) Modification map with 0.1 bpp. (g) Stego image with 0.1 bpp.

Yang’s method with 256 maximum channels. The results are listed as “One
(256)” in Table 2. From the results, we can see that increasing the number of
maximum channels does not necessarily lead to a better performance, e.g., when
the payload is 0.4 bpp, “One (128)” actually outperforms “One (256)”. We can
thus conclude that the performance gains of our scheme are mainly due to the
concatenation of multiple feature maps.



14 H. Wu et al.

4.4 Comparison with State-of-the-Arts

We compare our scheme with existing state-of-the-art schemes, ASDL-GAN
model (Tang’s scheme), Yang’s scheme and S-UNIWARD scheme. The same
image sets as the above experiments are used in this section. To gain more
insights, we combine ensemble classifier v2.0 (EC for short) and two classical ste-
ganalysis methods, SRM+EC and maxSRMd2+EC. The corresponding experi-
mental results are shown in Tables 3 and 4, respectively. From these tables, we
can observe that our scheme outperforms the above three schemes by a large
margin. In particular, when SRM+EC method is used, compared with Yang’s
scheme, the proposed scheme has the error rate gains 2.1% for 0.1 bpp, 1.8%
for 0.2 bpp and 1.3% for 0.4 bpp; compared with Tang’s scheme, the proposed
scheme has the error gains 8.57% for 0.1 bpp, 7.39% for 0.2 bpp and 6.36% for 0.4
bpp. Similarly, when maxSRMd2+EC method is used, the superior performance

Table 2. Error rates for different generators that are constructed by combining zero,
one, two feature maps, respectively. Note that “Zero” corresponds to the original U-
NET [24], “One (128)” corresponds to Yang’s scheme with maximum number of chan-
nels equal to 128 [10], “One (256)” corresponds to Yang’s scheme with maximum num-
ber of channels equal to 256, and “Two” corresponds to our proposed scheme using
two feature maps concatenation. maxSRMd2+EC is used over BOSSBase.

Payload Number of combined feature maps

Zero One (128) One (256) Two

0.10 bpp 35.02% 39.10% 40.10% 41.33%

0.40 bpp 12.50% 19.72% 19.42% 21.02%

Table 3. Error rates of different steganographic schemes by using SRM+EC over
BOSSBase.

Payload Different steganographic schemes

S-UNIWARD Tang’s scheme [9] Yang’s scheme [10] Proposed

0.10 bpp 40.11% 32.84% 39.33% 41.41%

0.20 bpp 32.30% 27.41% 32.99% 34.80%

0.40 bpp 20.18% 15.31% 20.29% 21.66%

Table 4. Error rates of different steganographic schemes by maxSRMd2+EC over
BOSSBase.

Payload Different steganographic schemes

S-UNIWARD Tang’s scheme [9] Yang’s scheme [10] Proposed

0.10 bpp 40.24% 32.31% 39.10% 41.33%

0.20 bpp 32.21% 26.75% 32.53% 34.17%

0.40 bpp 19.18% 15.08% 19.72% 21.02%
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Fig. 3. The ROC curves and the corresponding AUC information for our proposed
scheme and Yang’s scheme when resisting two steganalysis methods: (a) SRM+EC
and (b) maxSRMd2+EC.

Table 5. Training time (DELL W-2102 Workstation with 16GB RAM and an
RTX2080 GPU card.) for different steganographic schemes based on GAN. In this
test, 160000 iterations are performed.

Steganographic scheme Training time

Tang’s scheme [9] 52 h 41 m

Yang’s scheme [10] 17 h 26 m

Proposed scheme 23 h 44 m

is still obvious. This demonstrates that our scheme has a significant stronger
anti-steganalysis capability.

To test the performance thoroughly, we also compare the proposed scheme
with Yang’s scheme by showing receiver operating characteristic (ROC) curves
and the corresponding area under curve (AUC) values, which are calculated by
ensemble classifier. The results are shown in Fig. 3. In this figure, the lower ROC
curve and the lower AUC value imply that the error rate is higher, or in other
words, the steganographic scheme is more secure. We can see that the proposed
scheme has a better performance than Yang’s scheme [10], whatever the payload
is.

In addition, we compared the training time of the three schemes. All the
three schemes iterate 160000 times, and 8 cover-stego pairs1 are used as input
in each iteration. All experiments are implemented with TensorFlow platform
over DELL W-2102 Workstation with 16 GB RAM and an RTX2080 GPU card.
Table 5 shows the comparison of training time. Compared with Tang’s scheme,
the training time of our proposed scheme is reduced by more than half, but

1 Since RTX2080 GPU card has only 8 GB memory, 8 cover-stego pairs are the maxi-
mum number of images that the processor can process at one time.
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it is about 6 h more than Yang’s scheme. This is because the combination for
multiple feature maps involves extra processing steps in each iteration, e.g., the
convolution layers are added to reduce the number of feature channels after the
concatenation of multiple feature maps (i.e., the red layer at the right side of
Fig. 1(c)).

5 Conclusion

We proposed a secure steganographic scheme using GAN to learn steganogra-
phy distortion. Different from the existing GAN-based steganographic methods,
we build a new generator by combining multiple feature maps in the contract-
ing path of U-NET. Experimental results demonstrate that our method effec-
tively generates a change probability map for better distortion measurement,
and achieves a more secure steganographic scheme.

In the future, we plan to extend the work in two directions. First, we plan
to further simplify the network structure by reducing the training parameters,
while maintaining high anti-steganalysis capability. Second, we plan to consider
some better-structured neural networks to design discriminator, e.g., Recurrent
Neural Network (RNN).
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of Shanghai Municipal Education Commission and Postgraduate Innovation and
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Abstract. Steganography based on text auto-generation technology is
a current topic with great promise and challenges. It has the advantages
of large information hiding capacity compared with the modification-
based text steganographic methods. The biggest challenge faced by pre-
vious methods is that they can hardly generate fluent steganographic
texts, and only pay attention to the statistical distribution of individual
sentences without considering the overall statistical distribution of all
generated texts. This paper proposes a text steganography called GAN-
TStega which based on generative adversarial networks (GANs). Firstly,
we use strategy update algorithm to solve the problem that traditional
GANs are difficult to generate discrete data. Through antagonistic train-
ing on different types of text datasets, GAN-TStega can generate high
quality texts. Then, by encoding the conditional probability distribu-
tion of generator’s output at each iteration, GAN-TStega can achieve
secret information hiding. Through this method, we achieve the statisti-
cal distribution fitting at the sentence level, thus enhancing the security
of steganography system. Experiments show that our method has good
performance.

Keywords: Text steganography · Generative Adversarial Networks ·
Text generation

1 Introduction

For information security systems in cyberspace, Shannon has divided them into
three categories: encryption systems, privacy systems, and concealment systems
[1]. While protecting information security, encryption systems and privacy sys-
tems also expose the existence and importance of information itself, which may
expose the target to potential attackers and thus is vulnerable to targeted attacks
[2,3]. However, the concealment system is different from them. It embeds secret
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information into a particular carrier, hiding the existence of it to ensure informa-
tion security. As a very unique information security system, concealment com-
munication system plays an important role in ensuring cyberspace security [4].

In cyberspace, there are different carriers that can be used for information
hiding, including image [5,6], audio [7,8], text [9,10] and so on. As one of the
most commonly used information medium in daily life, the study of text infor-
mation hiding technology has great academic and practical value [11]. However,
due to the low amount of redundant information in texts, hiding information in
text has a great challenge. At present, text information hiding methods can be
divided into two types, modification-based [12] and generation-based [9,10,13].
Modification-based text information hiding methods are mainly through a small
amount of text modification, such as synonym substitution [12] to achieve secret
information embedding. It is characterized by less text changes, so it can achieve
a high concealment. However, due to the small redundancy of text information,
modification-based text steganography can hardly have a high hiding capac-
ity. Generation-based information hiding methods can automatically generate
steganographic texts according to the secret information, thus to have a higher
information hiding capacity. However, the main challenge they face is how to
generate high-quality natural texts.

Recently, Yang et al. [9] proposed an automatic steganographic text gener-
ation model based on recurrent neural networks. It first learns the statistical
language distribution model from a large amount of normal text, and then gen-
erates texts that conform to such statistical patterns. In the process of sentence
generating, the conditional probability distribution of each word is encoded by
binary tree to realize secret information hiding. But their model only considers
the statistical properties of a single sentence, ignoring the overall distribution of
batch-generated texts, which is incomplete to the whole security.

In this paper, we propose an automatic steganographic text generation model
called GAN-TStega which based on Generative Adversarial Networks (GANs).
By introducing antagonistic learning strategies, our model can further optimize
the statistical distribution characteristics of the overall distribution of batch-
generated sentences, thus further enhance the concealment of generated stegano-
graphic texts.

In the remainder of this paper, Sect. 2 introduces some related works, includ-
ing text generation-based steganography and Generative Adversarial Networks.
A detailed explanation of the GAN-TStega and algorithm details of informa-
tion hiding and extracting are elaborated in Sect. 3. The following part, Sect. 6,
presents the experimental evaluation results and gives a comprehensive discus-
sion. Finally, conclusions are drawn in Sect. 7.

2 Related Works

In this section, we will introduce existing steganography methods and compare
their advantages and disadvantages. At the same time, we will give a brief intro-
duction of Generative Adversarial Networks.
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2.1 Text Generation-Based Steganography

Different from text modification-based steganography, text generation-based
steganography does not need to be given a carrier advance, but directly generate
steganographic texts according to the secret information needs to be transmit-
ted. However, the generator should keep the statistical distribution of generated
steganographic texts as little different from the normal texts as possible.

With the development of natural language processing in recent years, more
and more automatic text generation models have emerged [14]. Based on the
statistical language model [15], natural language generation can be reduced to
a sequence generation problem. For a sequence S = (w1, w2..., wn), whose prob-
ability can be expressed as:

P (S) = P (w1, w2, ..., wn)
= P (w1)P (w2|w1)P (w3|w2, w1) · · · P (wn|wn−1, ..., w2, w1).

(1)

The generator predicts the probability distribution of the next value of the
sequence by the known part of the sequence, and the prediction result can be
expressed as P (wi|wi−1..., w2, w1).

Within this framework, the use of Markov chains to generate steganographic
text has emerged [10,16–18]. But the markov chain also has the limitation of
not catching the long-range dependence. The long short term memory (LSTM)
network proposed by Hochreiter and Schmidhuber can well capture long-range
dependence [19]. Therefore, the application of LSTM in steganography achieves
a better effect than markov chain [9,13].

The performance of text generation-based steganography method depends
largely on the text generation method itself. It is a prerequisite to ensure the
security of steganography to produce natural, smooth and unbiased text. Cur-
rently, most methods use maximum likelihood estimation to train the network
[9,13]. However, training with this method will encounter the problem of expo-
sure bias [20], that is, if there is a pattern that does not appear in the training
data set during the generation process, it will lead to the accumulation of subse-
quent generation errors, which will produce the generation samples completely
deviating from the real distribution.

2.2 GANs for Text Generation

Generative Adversarial Networks was first proposed by Goodfellow in 2014 [21].
The core idea of GANs is antagonistic learning and the main body is the gen-
erator G and the discriminator D. The generator generates the sample G(z)
by inputting the random variable z ∼ pz to make it obey the real distribution
as much as possible pdata. The discriminator trains with the generated sample
G(z) and the real sample x ∼ pdata to determine whether the sample is from
the generator or the real data. The training process can be expressed as follows:

min
G

max
D

V (D,G) = Ex∼pdata(x)[log D(x)] + Ez∼pz (z)[log(1 − D(G(z)))]. (2)
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However, due to the error back propagation requires that the function is con-
tinuous, the basic GANs can not be directly applied to the problem of sequence
generation such as text generation. Yu et al. [22] proposed to use Policy Gradient
in reinforcement learning to train the model, then the GAN can be applied to the
task of text generation. Based on this training method, Guo et al. [23] proposed
LeakGAN to leak the features extracted by the discriminator to the genera-
tor in the process of confrontation learning, thus helping the generator obtain
more useful information to improve the quality of the generated text. MaskGAN
[24] separately designs Critic to provide reward function, and uses the training
method of filling in blanks instead of generating whole sentences from left to
right to improve the quality of generation and generate text diversity.

Because of its excellent generating effect, GAN has been rapidly applied to
image steganography research in these two years [25,26]. However, due to the dis-
crete nature of texts, GANs has never been applied to generative steganographic
texts. In this paper, we use strategy updating method to train text generation
network and then generate high-quality steganographic texts, so as to solve the
shortcomings of previous text information steganography methods. According
to our best knowledge, we are the first to use GANs for text steganography.

3 GAN-TStega Model

This section will introduce the structure and principle of GAN-TStega in detail.
Generally speaking, GAN-TStega can be divided into two relatively independent
parts: the generating part and information hiding part. Its operation mode is
as follows: firstly, a large number of real text samples are trained by generative
adversarial networks and optimize the generators; secondly, the trained genera-
tors are used to generate text automatically, and in the process of generating,
the hidden information is embedded by encoding the conditional probability dis-
tribution of each word. This section will first introduce the generation part, then
elaborate on steganography and extraction algorithm.

3.1 Generator

Based on the statistical language model, the generation of natural text S can
be modeled as a sequential form of S = (w1, w2, ..., wn). The generator reads
each word in the sequence in turn, converts each word into a fixed-length word
vector, and feeds it into the GRU layer. For GRU, the input is the current word
vector xt and the last hidden state ht−1. Its forward propagation process is as
follows:

rt = σ(Wr · [ht−1,xt] + br),
zt = σ(Wz · [ht−1,xt] + bz),
nt = tanh(Wn · [rt ∗ ht−1,xt]),
ht = (1 − zt) ∗ ht−1 + zt ∗ nt,

yt = σ(Wo · ht),

(3)
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where [ht−1,xt] denotes matrix connection, ∗ denotes element-by-element mul-
tiplication between vectors, and σ denotes sigmoid function:

σ(x) =
1

1 + exp(−x)
. (4)

The output of its t-th time step is ht and yt, ht continues to participate in
the next operation as the hidden state of the t + 1 time, and yt is sent as
the output to the next full connection layer of the generator. The purpose of
the full connection layer is to project yt to the probability by using Softmax
to get pt = (Pt1, Pt2, Pt3, ..., Ptv). Among them, Pti represents the conditional
probability that the word wi appears at the position of t in the sequence, that is:

Pti ∼ P (wi|w1, w2, ..., wt−1). (5)

Then, the probability sampling or the value with the highest probability
is directly selected as the next element of the sequence, and the iteration can
complete the generation of the whole sequence.

3.2 Discriminator

The main purpose of discriminator is to judge whether the input text is a real
sentence or machine-generated text. It plays the role of Eve in covert communi-
cation system. In GAN-TStega, we use the latest text steganalysis model [27] as
a discriminator which uses bidirectional GRU to enhance the discriminant abil-
ity. For the discriminator, its input is a complete sequence of S = (w1, w2, ..., wn)
consisting of n words, which can get from real data or samples generated by the
generator. Similarly, the first layer of discriminator is also the embedding layer,
which converts every word in the sequence into a word vector to form a word
vector matrix:

X = Embed(S) = [x1,x2, ...,xn]. (6)

Then the word vector matrix X is input to Bi-GRU layer, and the output is
generated through the full connection layer and the activation function of σ to
form the final binary classification probability. At the same time, we add Dropout
mechanism to the discriminator network to prevent over-fitting.

4 Update Strategy

From the perspective of adversarial learning, for a generator Gθ with θ parameter
set, its task is to generate a natural language sequence S = (w1, w2, w3, ..., wn),
to make it as close to the real data as possible, so that the discriminator DΦ

can not distinguish whether the generated sample comes from the real data.
Based on the statistical language model, Gθ needs to generate each word in the
sequence until the whole sequence is completed. As mentioned before, GAN was
originally designed to handle continuous data. However, sequence generation is
a typical discrete process, and it is impossible to update generator parameters
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directly using error return algorithm. For this reason, we use the method of
reinforcement learning and use the reward function as the generator loss function
to update the generator network.

We first define the concepts of current state, behavior, strategy, etc.
For the current time node t, its state is the generated sequence, st−1 =
(w1, w2, ..., wt−1) = w1:t−1, and the behavior a is the next word added to the
sequence, wt ∈ V , where V is the vocabulary. Gθ is used as a strategy model to
guide the choice of next action. At the same time, the discriminator Dφ acts as
a guide to the generator Gθ to update network parameters. Dφ receives samples
from real data and generates samples of Gθ in an attempt to distinguish the two.
Its discriminant results will guide Gθ to update the weight as an action-value
function. Dφ is a binary classifier in function. We choose cross-entropy loss as
its loss function:

LD = −[y log ŷ + (1 − y) log(1 − ŷ)], (7)

where, y, ŷ ∈ {0, 1}, y represents the true result of the sample, ŷ represents the
predicted result of DΦ. The parameter updating process is as follows:

φ ← φ − αD∇φLD, (8)

Among them, αD is the learning rate. For a complete generating sequence, the
expected reward can be expressed as:

J(θ) = E[Rn|s0, θ] =
∑

w1∈V

Gθ(w1|s0) · QGθ

Dφ
(s0, w1), (9)

where Rn is the reward function value of the complete generated sequence, s0 is
the initial state, QGθ

Dphi(s, a) is the expected cumulative reward of choosing the
behavior a under the current state of s and following the policy of Gθ. So the
goal of Gθ is to maximize the expected reward of J(θ).

In order to calculate J(θ), we need to define a behavioral value function
of QGθ

Dφ
(s, a). Here we use the judgment result of Dφ as the behavioral value

function, that is:

QGθ

Dφ
(s = w1:n−1, a = wn) = Dφ(wn). (10)

But this formula only describes the last step of generation, because the input
of the discriminator must be a complete sequence. We are concerned with the
quality of the whole sequence, so the Q function needs to predict the long-term
quality to some extent while expressing some of the generated quality. So we
use Monte Carlo tree search to complete the sequence to get the Q function.
Specifically, for an incomplete generating sequence w1:t, the following part of
the sample completion sequence w̄t+1:n is sampled with the strategy M to form
a complete sequence, which is then sent to the discriminator Dφ to obtain the
discriminant result. Here we choose M = Gθ, even if the current generator is
used to complete the sequence. Thus the complete Q function can be expressed
as:

QGθ

Dφ
(s = w1:t−1, a = wt) =

{
Dφ([w1:t, w̄t+1:n]) t < n

Dφ(wn) t = n
(11)
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So for generator Gθ, the weight updating process is as follows:

θ ← θ + αG∇θJ(θ), (12)

where αG is the learning rate and the gradient of J(θ) to θ can be expressed as:

∇θJ(θ) = Σn
t=1Ew1:t−1∼Gθ

[Σwt∈V ∇θGθ(wt|w1:t−1) · QGθ

Dφ
(w1:t−1, wt)]. (13)

The derivation process is as follows. From the definition of behavioral function,
we have:

Q(s = w1:t−1, a = wt) =
∑

wt+1∈V

Gθ(wt+1|wt) · Q(s = w1:t, a = wt+1). (14)

so the gradient of Q is found when t < n is:

∇θQ(w1:t−1, wt)

=∇θ

∑

wt+1∈V

Gθ(wt+1|wt) · Q(w1:t, wt+1)

=
∑

wt+1∈V

[∇θGθ(wt+1|wt)Q(w1:t, wt+1) +Gθ(wt+1|wt)∇θQ(w1:t, wt+1)]

=
∑

wt+1∈V

∇θGθ(wt+1|wt)Q(w1:t, wt+1) +
∑

wt+1∈V

P (wt+1|wt;Gθ)∇θQ(w1:t, wt+1).

(15)

When t = n, the formula (11) shows that the value of Q at this time is indepen-
dent of the parameter θ and therefore we has:

∇θQ(w1:n−1, wn) = 0. (16)

Thus the process of finding the gradient of the Eq. (9) can be expressed as:

∇θJ(θ) = ∇θ

∑

w1∈V

Gθ(w1|s0) · Q(s0, w1)

=
∑

w1∈V

∇θGθ(w1|s0)Q(s0, w1) +
∑

w1∈V

P (w1|s0; Gθ)∇θQ(s0, w1)

=

n∑

t=1

∑

w1:t−1

P (w1:t−1|s0; Gθ)
∑

wt∈V

∇θGθ(wt|w1:t−1)Q(w1:t−1, wt)

=

n∑

t=1

Ew1:t−1∼Gθ

[
∑

wt∈V

∇θGθ(wt|w1:t−1)Q(w1:t−1, wt)

]
.

(17)

The whole training process of confrontation learning is divided into the fol-
lowing steps: first, the generator Gθ is pre-trained through MLE in S, then a
pre-training discriminator Dφ is combined with real samples and generated sam-
ples. Then the two networks alternately confront each other until convergence.
In the actual training process, we can make the value Q more stable by averaging
multiple Monte Carlo sampling. At the same time, we can also train generators
or discriminators according to actual needs each time to prevent one side from
being too strong to converge.
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5 Information Hiding and Extraction

GAN-TStega mainly implements covert information hiding by encoding the con-
ditional probability distribution of each word in the process of generation. Here
we refer to previous work [9] and adopt a fixed-length encoding method, that is,
a word is embedded in a fixed-length bits. In the previous paper, we elaborated
on the generator training method based on statistical language model. The out-
put of G in each iteration is based on the conditional probability distribution
of the generated sequence w1 : t and pt. In common sentence generation tasks,
the words corresponding to the most probabilistic value are often chosen as the
next value of the sequence. For a well-trained generator, the most probabilistic
words in its probability distribution are often synonyms or can be replaced with
each other without obvious damage to sentence quality. This property can be
used to hide bit streams. During each generation of the next word, the output
of G is arranged in descending order, pt, and the block of bits to be embedded
is converted to decimal as the basis for choosing the next generation word. The
specific steganography process is as described in the Algorithm 1.

Algorithm 1. Information Hiding Algorithm
Input:
Secret bitstream: B = {0, 0, 1, 0, 1, ..., 0, 1, 0}
Embedding rate: k
Trained generator: G
Output:
Generated sentence collection S

1: while B �= ∅ do
2: if The currently generated word wi is not the end of the sentence then
3: Calculate the probability distribution of the next word pi on the dictionary

V by G
4: Arrange pi in descending order to get p̃i

5: Convert B[0 : k] to decimal b
6: Select p̃i[b] to be the next output word wi+1

7: B ← B[k :]
8: else
9: Randomly initialize the hidden vector z and send into G to generate the

first word w1

10: if The currently generated word wi is not the end of the sentence then
11: Generate the complete sentences with G, select the most probabilistic words

each time

The process of information extraction is similar to that of information hiding.
The principle is to decode sentences using the probability distribution of the
next word generated by the generator as a tool. The receiver needs to use the
same generator as the sender, that is, GR = GS , which requires that both be
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synchronized at all times in the actual application process. When the receiver
receives the set of sentences S = (S1, S2, ..., Sm), for each of the sentences Si =
(w1, w2, ..., wn), the receiver sends the words in turn to the generator G, and gets
the probability distribution of the next word. That is, for wi, i ∈ {1, 2, ..., n −
1}, the generator generates the next word probability distribution pi. After
descending the order of pi, we get p̃i, and then find the index l of wi+1 in it,
and convert the l into binary to get the secret information contained in wi+1.

6 Experiments and Results

This chapter will verify GAN-TStega’s effectiveness and concealment in GAN-
TStega steganographic task through multiple experiments.

Firstly, we tested the contribution of adversarial learning to improving the
quality of generated text. The essence of text generation is sequence generation,
so we can define a randomly initialized LSTM network as Oracle, as a sample
sequence generator GO, whose generated sequence sample space satisfies the
probability distribution PO. The object of anti-learning is to train the sample
generated by generator Gθ to be as close as possible to the distribution PO.
Note that the output of GO is a single hotspot vector of dictionary length v,
representing the next word in the Oracle sequence, while the output of Gθ is
still a probability distribution pi. We adopted the negative logarithm likelihood
loss as the index to measure their similarity:

LO = −
n∑

i=1

GO(wi|w1:i−1) · Gθ(wi|w1:i−1), (18)

In the experimental setting, we used the randomly initialized LSTM net-
work to generate 10,000 sequences with a length of 20 as the real data samples,
and then used the maximum likelihood estimation training generator Gξ and
GAN-TStega anti-learning training generator Gθ respectively. Among them, Gξ

training 150 cycles, the first 100 cycles of Gθ are pre-training, and the last 50
cycles are confrontation training. For comparison purposes, the network struc-
ture of Gξ and Gθ are exactly the same. The final learning curves of the two are
shown in Fig. 1.

It can be seen that in the first 100 cycles, since both of them use the training
generator of maximum likelihood estimation, the loss value is very close, tends
to converge after 50 cycles, and the loss value is stable at about 11. Starting
from the 101st cycle, GAN-TStega has conducted 50 confrontation training. It
can be seen that the loss of GAN-TStega is significantly reduced compared with
MLE, and finally stabilized at around 10.2, which proves that GAN-TStega can
better generate sequences that conform to Oracle sample probability space PO.

Next we test GAN-TStega’s performance on real data samples and compare
it with MLE trained RNN generator [9]. We use Image COCO [28] and EMNLP
WMT17 source dataset as the real sample. Among them, Image COCO is the
dataset for image captioning. We remove the samples whose sentence length is
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Fig. 1. LSTM maximum likelihood estimation vs. GAN-TStega training process loss

less than 10, and then randomly select 10,000 as the training data. EMNLP
WMT17 is a dataset for machine translation. We selected English news data in
it to remove sentences with length less than 20 and low-frequency words, and
also randomly selected 10,000 as the training data.

In order to ensure the concealment of steganographic text, the statistical
difference between steganographic distribution and real distribution should be
as small as possible. Here, we use Perplexity to measure the difference between
two statistical distributions. In the information theory, ρ is used to represent
the fit between the predicted results of the probability model and samples. The
lower ρ is, the better the predicted results of the model will be. Its mathematical
expression is:

logb ρ = − 1
n

n∑

i=1

logb p(Si). (19)

Where Si is the i-th sample sequence. In the formula, the base of b is often
chosen as 2 in informatics. Here, we use b = e for calculation convenience.

After training the generator separately based on each data set, we gener-
ated 1000 sentences on each generator, and then generated steganographic text
with different embedding rates under the guidance of randomly generated 01
bit stream. The confusion mean and variance obtained are shown in Table 1. In
order to compare the differences between the two models, we made the logarith-
mic broken line graph of the confusion mean as shown in the Fig. 2.
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Table 1. Mean and standard deviation of confusion on the Image COCO dataset

Dataset Image COCO EMNLP WMT17

Model RNN [9] GAN-TStega RNN [9] GAN-TStega

ER 0 1.4 ± 0.1 1.3 ± 0.1 3.3 ± 1.4 2.3 ± 0.9

1 22.5 ± 18.2 17.2 ± 14.2 33.2 ± 29.4 19.8 ± 10.5

2 137.1 ± 109.4 84.6 ± 67.8 166.7 ± 101.5 121.2 ± 74.4

3 549.1 ± 368.5 300.9 ± 201.1 546.8 ± 376.4 388.7 ± 173.6

4 1675.5 ± 1028.1 753.5 ± 427.0 1456.5 ± 848.6 949.8 ± 849.2

(a) COCO (b) EMNLP WMT17

Fig. 2. Logarithmic confusion at different embedding rates (ER).

It can be seen from the results that GAN-TStega’s confusion is lower than
that of RNN under different embedding rates, which is also consistent with
previous experimental results – the anti-learning generator can further reduce
losses and improve the quality of generated sequences.

In order to more intuitively show the distribution of generated samples and
real samples, t-distribution random neighborhood embedding (t-sne) [29] maps
the training samples and generated steganographic samples of Image COCO data
sets to low-dimensional space. For sequence S, we first transform it into a word
vector matrix by word vector embedding, and then map it to two-dimensional
space by t-sne algorithm. The result is shown in Fig. 3. It can be seen that
training text and steganographic text are inseparable in the two-dimensional
space of mapping under different embedding rates.

Finally, we present the steganographic sentences generated by our model on
COCO datasets in Table 2. It can be seen that when the embedding rate is
0, that is, no secret information bitstream is embedded, sentences with correct
grammar and fluent semantics can be generated. When the embedding rate is
1, the quality of the generated sentences is still high because the steganographic
selection space is 2. When the embedding rate is increased to 2, the quality of
sentences decreases slightly. We also noticed the pattern collapse of sentences
generated at low embedding rates, that is, the structure of sentences and the
combination of words tend to be singular.
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(a) 1bit/word (b) 2bit/word

(c) 3bit/word (d) 4bit/word

Fig. 3. Image COCO training text and steganographic text distribution, blue dots for
training text, orange dots for steganographic text. (Color figure online)

Table 2. Steganographic sentences generated by our model on COCO datasets

Embedding rate (bpw) Generated steganographic sentences

0 A person riding a motorbike with people
A person wearing red shirt standing next to a shop
Man is riding a motorcycle down a beach

1 A cat sitting on top of a wooden bathroom tub
A motorcycle parked in front of a temple
A pine apple in a corner

2 A safety conscious rock outside of formation in the night
direction
A blurry mirror cuts a sink and medicine pen
A narrow bathroom with a mirror looking toilet behind
some ruins

7 Conclusion

In this paper, we propose an automatic steganographic text generation model
called GAN-TStega which based on Generative Adversarial Networks (GANs).
In the experiment part, we can find that the adversarial learning can further
reduce the loss of generator which has been converged under the training of max-
imum likelihood estimation, which proves that adversarial training is helpful to
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improve the quality of generator generated text. At the same time, it is verified
that GAN-TStega can better fit the real sample distribution when GAN-TStega
generates steganographic text sets under different steganographic embedding
rates by calculating the confusion degree of sentences generated by the trained
RNN network under GAN-TStega and maximum likelihood estimation respec-
tively. Further t-sne mapping proves the inseparability of GAN-TStega generated
steganographic text and real samples in low dimensional space. We hope that
this paper will serve as a reference guide for researchers to facilitate the design
and implementation of better text steganography method.
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Abstract. The convolutional neural network (CNN) based image ste-
ganalyzers have evolved remarkably over the past few years, and design-
ing suitable CNN structures has been currently the fundamental method
to improve the detection accuracy. However, CNN-based steganalyzer
with the universal activation functions of the computer vision (CV) field
barely achieves significant performance improvement. Therefore, a ded-
icated activation function is required to improve the detection perfor-
mance for image steganalysis. In this paper, we propose a point-wise
parametric rectified unit (PW-PReLU) which has different adaptively
learnable parameters for each pixel of the negative inputs to facilitate
the representation capacity of the activated feature maps. Then, in order
to further boost the detection accuracy, the feature fusion is realized by
the concatenation operation in the first layer. Based on the above com-
ponents, an optimized CNN-based steganalyzer is proposed for spatial
image steganalysis. The results of comparative experiments demonstrate
that the proposed network can detect the state-of-the-art spatial stegano-
graphic algorithms with better performance than the previous stegana-
lyzers on the 512 × 512 BOSSbase 1.01 dataset and the resized 256 × 256
union dataset of BOSSbase 1.01 and BOWS2.

Keywords: Convolutional neural network · Spatial image
steganalysis · Point-wise PReLU · Feature fusion

1 Introduction

Image steganography aims to conceal messages into noise residuals of the natu-
ral images through making perturbation as slightly as possible. Nowadays, many
of the content-adaptive spatial image steganographic algorithms have been pro-
posed [1–6]. As the opposite of image steganography, image steganalysis has also
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made tremendous progress, especially the convolutional neural network (CNN)
based image steganalysis.

Recently, CNN-based image steganalysis has achieved remarkable perfor-
mance and outperformed the feature-based image steganalysis. Tan et al. [9]
first attempt to use the stacked convolutional auto-encoders for image steganal-
ysis. Qian et al. [10] employ the Gaussian activation function and KV kernel
to extract the effective features. Xu et al. [11,15] put forward a CNN structure
(called Xu-Net in this paper) equipped with absolute activation layer, hybrid
activation functions, and 1 × 1 convolutional layer, which first exceeds the spa-
tial rich models (SRM) features [7] with ensemble classifier. Imitating three key
steps of the selection-channel-aware SRM algorithm [8], Ye et al. [12] present a
CNN structure called YeNet to further improve the detection performance by
employing 30 SRM kernels, TLU, and the knowledge of selection channel. It
first implements the end-to-end learning for image steganalysis. Inspired by the
inception structure of GoogleNet [16] and SRM [7], Li et al. propose a wider
network named as ReST-Net which consists of three parallel convolutional sub-
nets equipped with diverse activation modules (DAMs) [13]. Mehdi et al. design
a deeper CNN structure called SRNet based on the shortcut operation of the
ResNet [17]. The SRNet achieves the significant improvement for image steganal-
ysis [14]. It is pointed in [14] that using the universal activation functions can
not bring any performance gain.

The breakthrough is closely related to the rapid development of CNNs in
computer vision (CV) field. While, except for truncated linear unit (TLU) pro-
posed in [12], the CNN-based steganalyzers with other universal activation func-
tions, including rectified linear unit (ReLU) [23], leaky-ReLU [25], the parametric
ReLU (PReLU) [24], and Exponential Linear Unit (ELU) [26], can not achieve
any performance gain [14]. Why is the abnormal phenomenon happening? Can
the performance be improved by specially designing an activation function for
image steganalysis?

The main reason for the abnormal phenomenon is that since the secret infor-
mation is embedded by the spatial image steganographic algorithms through
adaptively modifying the values of the target pixels, and the cover images are
statistically similar to the corresponding stego images, which leads to the dif-
ference between cover images and their stego images in the pixel-level. While,
the universal activation functions activate the inputs in layer-level rather than
pixel-level. In other word, the functions have only one fixed or adaptively learn-
able parameter for all feature maps generated from previous convolutional layer,
which causes the CNN-based steganalyzers with the universal activation func-
tions can not extract more effective feature maps.

From the above investigation and analysis, we believe that a suitable pixel-
level activation function will further boost the performance of CNN-based ste-
ganalyzers for spatial image steganalysis. In this paper, we first propose a dedi-
cated activation function called point-wise parametric rectified linear unit (PW-
PReLU). Different from the commonly used PReLU [24], the PW-PReLU is a
point-wise activation function rather than the channel-wise or channel-shared
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activation function, which can activate the negative inputs in pixel-level. Then
in order to further improve the detection accuracy, the feature fusion is real-
ized by the first parallel convolutional layer initialized by 30 random kernels and
30 SRM kernels pointed in [12], respectively. Based on these components, an
optimized CNN structure named as PWNet is designed for the spatial image
steganalysis.

The rest of this paper is organized as follows. Section 2 introduces the struc-
ture of the proposed CNN in detail. The experimental results and analysis are
described in Sect. 3. Finally, we conclude the paper in Sect. 4.

2 The Proposed Architecture

In this section, we first introduce the overall framework of the PWNet. Then,
the PW-PReLU activation function is described in detail. Finally, we state the
design of the feature fusion.

2.1 Architecture Overview

As shown in Fig. 1, the framework of the PWNet with nine convolutional lay-
ers is composed of feature fusion module, convolution module, and classification
module. For the feature fusion module, the concatenation operation is adopted
to fuse the features extracted by two parallel convolutional layers. For the con-
volution module, a stacked architecture consisting of eight convolutional layers
is designed to generate the discriminative features automatically. Each layer uti-
lizes 3 × 3 random kernels, and except for the 8th convolutional layer with the
proposed PW-PReLU activation function, other layers make use of ReLU acti-
vation function. Besides, the maximum pooling operation is utilized to increase
the receptive field of the deep layers. For the classification module, the global
average pooling layer is utilized rather than the fully connect layer [27].

Input 
Image

CONCAT
TLU

Conv2
ReLU, S=1

(32, 3×3, 60)

Conv3
ReLU, S=1

(32, 3×3, 32)

Conv4
ReLU, S=1
Max-pool
(64, 3×3, 32)

Conv5
ReLU, S=1
Max-pool
(64, 3×3, 64)

Conv9
ReLU, S=1
Max-pool
(256, 3×3, 128)

Conv8
PW-PReLU, S=1

Max-pool
(128, 3×3, 128)

Conv6
ReLU, S=1
Max-pool
(128, 3×3, 64)

Conv7
ReLU, S=1
Max-pool
(128, 3×3, 128)

Global_avg
poolingSo max

RAN_Conv
S=1

(30, 5×5, 1)

SRM_Conv
S=1

(30, 5×5, 1)

Fig. 1. The framework of the PWNet consists of feature fusion module, convolution
module and classification module. They are represented by pink boxes, blue boxes
and yellow boxes, respectively. The ConvN is represents the Nth convolutional layer.
The RAN Conv denotes the convolutional layer initialized by the random scheme. The
convolutional layer with 30 SRM kernels is presented by the SRM Conv. The stride of
convolutional layer equals 1 (S = 1). The numbers in boxes represent the number of
kernels, the size of each kernel and the number of inputs. (Color figure online)
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2.2 Point-Wise PReLU Activation Function

It has been demonstrated that activation function is one of keys to the CNNs,
and a suitable activation function not only improves the detection performance,
but also expedites the convergence of training procedure [23–26]. Nevertheless, a
similar study in image steganalysis indicates that the adoption of different exist-
ing activation functions does not bring any significant performance improvement
[14]. In this paper, we propose a dedicated activation function PW-PReLU which
can adaptively activate the negative inputs in pixel-level to further improve the
detection performance. The PW-PReLU is defined as follows:

f(xi
m,n) =

{
xi

m,n, xi
m,n � 0

αi
m,nxi

m,n, xi
m,n < 0

(1)

where xi
m,n represents one point of the ith input for the PW-PReLU activation

function f . αi
m,n is a trainable coefficient controlling the slope for the negative

xi
m,n. The (m,n) denotes the location coordinate.

The dimension of the adaptively learnable coefficients α is consistent with
that of the previous convolutional layer outputs, where α is the tensor composed
of αi

m,n. Namely, the different point of each feature maps has different coefficient
αi

m,n. The update formulations of αi
m,n are simply derived from the chain rule

and back-propagation algorithm [20]. The gradient of αi
m,n for one layer is:

∂l

∂αi
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∂f(xi
m,n)
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where l is the objective function. The term ∂l
∂f(xi

m,n)
is the gradient propagated

from the deeper layer. The gradient of the activation function is given by:

∂f(xi
m,n)

∂αi
m,n

=

{
0, xi

m,n � 0
xi

m,n, xi
m,n < 0

(3)

For the negative inputs, the PW-PReLU not only has a pixel-level activation
values in the forward propagation, but also adaptively learns the most suitable
activation coefficients αi

m,n in the backward propagation.
As shown in Fig. 1, it is a specific design that the PW-PReLU is merely

adopted in the 8th convolutional layer of the PWNet. There are two reasons
for the design: One is that if the PW-PReLU was used in shallow layers, it
would reinforce the difference of the cover and corresponding stego images while
enhancing the local correlation of image content, which will weaken the represen-
tation capacity of the activated feature maps. On the contrary, the PW-PReLU
can activate the high-level features which contain more effective residual infor-
mation than the low-level features extracted by the shallow layers. The other is
that as the number of learnable parameters of the PW-PReLU is consistent with
the size of the previous convolutional layer outputs, the adaption of PW-PReLU
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in the deeper layer requires the less learnable parameters than those in the shal-
low layers. All in a word, the specific design can not only boost the detection
accuracy by facilitating the effectiveness of the activated feature maps, but also
prevent the overfitting in the training phase.

2.3 Feature Fusion

We implement feature through concatenating the different feature maps gener-
ated from two parallel convolutional layers, including the convolutional layer ini-
tialized by 30 SRM kernels and the convolutional layer initialized by 30 random
kernels respectively. The main goal of random kernels is to obtain the optimal
parameters and comprehensive residual information. The SRM kernels serve as
the good priori knowledge to accelerate the convergence of the proposed network
[12]. Furthermore, the maximum pooling operation is utilized in the layers of the
convolution module to keep the texture information and enlarge the receptive
field.

3 Experiment

3.1 Setup

We perform the experiments using the proposed network on two datasets, includ-
ing the 512 × 512 dataset of BOSSbase 1.01 [18] and the resized 256 × 256 union
dataset of the BOSSbase 1.01 and BOWS2 [19]. For the 512 × 512 dataset, we
randomly select 4000 pairs of cover and stego images to train the compared ste-
ganalyzers and 1000 pairs for validation. The remaining 5000 pairs are used for
testing. For the resized 256 × 256 union dataset, it is consistent with the “resam-
ple” images of YeNet [12]. The random 14000 pairs are used for training, 1000
pairs for validation, and 5000 pairs for testing. Three steganographic algorithms
including S-UNIWARD, HILL, and CMD-HILL are employed to generate the
stego images at 0.1 bpp (bit of per pixel) to 0.4 bpp. In the training phase, the
input images are randomly mirrored and rotated to make data augmentation.

The experiments are implemented on the Tensorflow1.8.0 and an NVIDIA
1080Ti graphics card. We utilize the Adadelta optimization algorithm [21] to
update parameters and the training is run for 350,000 iterations. The learning
rate is initialized to 0.4 and decreases to 0.008 at iterations 200,000. The mini-
batch size is 32, including 16 cover images and 16 corresponding stego images.
“truncated normal” initialization method with zero mean and standard devia-
tion 0.01 is chosen to initialize the random kernels in the feature fusion module,
and the weights from the 2rd to 9th convolutional layers are initialized with
the He-initializer [24]. The biases are initialized to 0.2 and the initial value of
the coefficients αi

m,n of PW-PReLU are 0.75. Furthermore, in training phase,
we make use of the common curriculum learning strategy to accelerate the con-
vergence of CNNs [12,14,29]. For instance, the proposed network for 0.3 bpp
payload is fine-tuned on the well-trained network at 0.4 bpp payload. Then, for
0.2 bpp payload, the proposed network is obtained based on the well-trained
network at 0.3 bpp payload, and so on.
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3.2 Results

Comparison with Prior Arts. To assess the performance of the PWNet for
spatial image steganalysis, we conduct several experiments in two datasets with
different sizes, including 512 × 512 BOSSbase 1.01 and resized 256 × 256 union
dataset of BOSSbase 1.01 and BOWS2, against three spatial image stegano-
graphic algorithms.

(1) 512 × 512 dataset: In the Table 1, we compare the PWNet with three
CNN-based steganalyzers, including Xu-Net [11], TLU-CNN [12] (YeNet with-
out the selection channel information), and ReST-Net [13], in terms of detec-
tion accuracy. From Table 1, it is observed that the PWNet increases the detec-
tion accuracies significantly against the three steganographic algorithms at all
payloads. When detecting S-UNIWARD, HILL, and CMD-HILL steganographic
algorithms, the detection accuracies of PWNet are up to 7.72%, 8.95%, and
6.85% higher than that of Xu-Net, and the improvement is up to 5.08%, 6.39%
and 4.67% higher than that of TLU-CNN. Compared with the ReST-Net, the
PWNet detection accuracies are improved by 0.25% at least.

Table 1. Comparison of the detection accuracies against three steganographic algo-
rithms: S-UNIWARD, HILL, and CMD-HILL on the 512 × 512 BOSSbase 1.01 dataset.

Steganography Steganalyzer 0.4 bpp 0.3 bpp 0.2 bpp 0.1 bpp

S-UNIWARD Xu-Net 0.7985 0.7185 0.6553 0.5882

TLU-CNN 0.8139 0.7552 0.6906 0.6146

ReST-Net 0.8544 0.7878 0.7135 0.6567

PWNet 0.8569 0.7932 0.7211 0.6654

HILL Xu-Net 0.7712 0.7194 0.6248 0.5619

TLU-CNN 0.7981 0.7285 0.6504 0.5794

ReST-Net 0.8166 0.7674 0.7064 0.6238

PWNet 0.8219 0.7725 0.7143 0.6342

CMD-HILL Xu-Net 0.7122 0.6654 0.5859 0.5484

TLU-CNN 0.7301 0.6882 0.6077 0.5522

ReST-Net 0.7614 0.7028 0.6514 0.5892

PWNet 0.7638 0.7135 0.6544 0.5987

(2) Resized 256 × 256 union dataset: In order to further test the effectiveness
of the PWNet, we conduct the extra experiments compared with TLU-CNN [12]
in the resized 256 × 256 union dataset. Table 2 shows the performance in terms of
detection accuracy. The experimental results show that the PWNet consistently
outperforms the TLU-CNN for the involved steganographic algorithms and the
tested payloads. For example, the PWNet increases the detection accuracy of
S-UNIWARD at 0.4 bpp by 1.58%.
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Table 2. Comparison of the detection accuracies against three steganographic algo-
rithms: S-UNIWARD, HILL, and CMD-HILL on the resized 256 × 256 union dataset.

Steganography Steganalyzer 0.4 bpp 0.3 bpp 0.2 bpp 0.1 bpp

S-UNIWARD TLU-CNN 0.8660 0.8236 0.7483 0.6621

PWNet 0.8818 0.8357 0.7585 0.6757

HILL TLU-CNN 0.8235 0.7864 0.7241 0.6475

PWNet 0.8365 0.7943 0.7328 0.6594

CMD-HILL TLU-CNN 0.7625 0.7134 0.6753 0.6042

PWNet 0.7735 0.7279 0.6840 0.6179

The Network Structure Design Choices. To the best of our knowledge,
the final accuracy is sensitive to architecture design of the CNN model. In this
subsection, We first investigate the impact of the PW-PReLU activation func-
tion in the different layers, and then evaluate the other three different structure
design choices including the pooling operations, the feature fusion module and
the activation functions.

(1) PW-PReLU in different layers: We first investigate the influence of the
PW-PReLU activation function in the different convolutional layers. We train
several CNN structures using the design illustrated by Fig. 1 with PW-PReLU in
different convolutional layers. The experiment results summarized in the Table 3
indicate that the CNN model can obtain the best performance (88.18%) using
PW-PReLU activation function in 8th convolutional layer. From Fig. 2, it is
observed that the overfitting of the CNN models with PW-PReLU in shallow
layers is more serious than that of the other CNN models equipped with PW-
PReLU in deep layers.

(2) Other design choices: In the remaining experiments, we evaluate the other
three choices. The PWNet is compared with four competitive CNN models, and
the detection accuracies are reported in Table 4. The results of a, b and e show
that the average detection accuracies of PWNet are 0.98% and 1.46% better
than that of the SRM based network and ReLU based network, respectively.
The experiments c, d and e demonstrate that the average pool operation and
stride convolution lead to the decrease of the detection accuracy. Additionally,
Fig. 3 depicts the validation accuracies versus the training iterations for the three
design choices, and the results show that the PWNet converges slightly quicker
to a higher accuracy.
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Table 3. The detection accuracies of PWNet with PW-PReLU on different layers
against S-UNIWARD at 0.4 bpp and 0.1 bpp payloads on the resized 256 × 256 union
dataset. (“conv-layer” indicates convolutional layer)

ID The detail description of the PW-PReLU on different
layers

0.4 bpp 0.1 bpp

a Use the PW-PReLU in 2nd and 3th conv-layers 0.8175 0.6089

b Utilize the PW-PReLU in 4th to 6th conv-layers 0.8344 0.6302

c Employ the PW-PReLU in 6th to 9th conv-layers 0.8606 0.6534

d Employ the PW-PReLU in 7th to 9th conv-layers 0.8689 0.6543

e Use the PW-PReLU in 7th and 8th conv-layers 0.8680 0.6575

f Utilize the PW-PReLU in 7th and 9th conv-layers 0.8677 0.6537

g Utilize the PW-PReLU in 8th and 9th conv-layers 0.8606 0.6545

h Make use of the PW-PReLU in 7th conv-layer 0.8711 0.6672

i Make use of the PW-PReLU in 9th conv-layer 0.8643 0.6512

j The PWNet
(use the PW-PReLU in 8th conv-layer)

0.8818 0.6757

Fig. 2. Detection accuracy v.s. training iterations for PWNet equipped with PW-
PReLU activation function in the different convolutional layers against S-UNIWARD
at 0.4 bpp on the resized 256 × 256 union dataset.
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Table 4. The detection accuracies of PWNet with different components against S-
UNIWARD at 0.4 bpp and 0.1 bpp payloads on the resized 256 × 256 union dataset.
(“conv-layer” indicates convolutional layer)

ID The detail description of the different components 0.4 bpp 0.1 bpp

a Only use a conv-layer with 30 SRM kernels in the first layer 0.8721 0.6658

b Use PReLU activation function from 2rd to 9th conv-layers 0.8665 0.6617

c Use the average pool from the 4th to 9th conv-layers 0.8729 0.6623

d The stride is set to be 2 from the 4th to 9th conv-layers 0.8735 0.6684

e The PWNet
(use the max pool from the 4th to 9th conv-layers)

0.8818 0.6757

Fig. 3. Validation accuracy v.s. training iterations for PWNet equipped with different
components against S-UNIWARD at 0.4 bpp on the resized 256 × 256 union dataset.

4 Conclusion

In this paper, we have proposed an optimized CNN-based steganalyzer by intro-
ducing a new pixel-level activation function and the feature fusion to improve
the detection accuracy for spatial image steganalysis. The experimental results
demonstrate that the proposed CNN structure outperforms three top-performing
CNN-based steganalyzers on the 512 × 512 dataset and the resized 256 × 256
union dataset.

However, the proposed CNN-based steganalyzer is specially designed for spa-
tial image steganalysis. In future work, we will focus on exploring the specific
structure designs of CNNs for JPEG image steganalysis.
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Abstract. In this paper, we propose a light multiscale convolution neu-
ral network to detect adaptive MP3 steganography, which can be used
in attacking both the MP3 steganography based on Huffman codes sub-
stitution and the method through modifying sign bit in MP3 encoding.
Especially, we decrease the model size and the occupation of graphics
memory based on convolution factorization. At the same time, the con-
volution kernels with different size are applied in one layer, which is
conducive to the retaining of the detection performance. And refer to
the residual structure, a shortcut connection is used in the proposed
network to enhance the performance of the network. The experimental
result shows the accuracy can reach more than 90% when the payload
rate is high. And the model size is reduced by 70% than the previous
networks.

Keywords: CNN · MP3 steganalysis · Multiscale convolution ·
Residual structure · Adaptive MP3 steganography

1 Introduction

As we all know, audio is one of the most commonly used digital media. Due to
the high compression rate and high quality, MP3 is widely used for audio file
compression. Steganography is the method of hiding secret information in digital
files. Because of the popularity of MP3 format, steganographic algorithms based
on MP3 have got much attention. In recent years, many MP3 steganographic
algorithms have been proposed. Petitcolas et al. [9] proposed MP3Stego, which
is a well know MP3 steganographic method. The basic idea of the algorithm is
according to the parity of block length, modify in the inner loop MP3 encoder.
Furthermore, Gao et al. [2] and Yan et al. [15] respectively presented stegano-
graphic algorithms which embedding secret messages through Huffman coding
substitution. The algorithms establish a mapping between the secret bit and
the Huffman code. Yang et al. [16] proposed an adaptive algorithm also known
as EECS based on equal length entropy codes substitution, which improves the
c© Springer Nature Switzerland AG 2020
H. Wang et al. (Eds.): IWDW 2019, LNCS 12022, pp. 43–56, 2020.
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embedding capacity and security. Furthermore, in [17], Yang et al. proposed
another adaptive MP3 algorithm also known as SBF-JED. They proposed a
new distortion function in sign bit domain and embed the secret message by
flipping sign bit.

On the contrary, steganalysis is the method to attack the steganographic
algorithms. Up to now, many CNN-methods have been proposed to attack the
steganographic algorithms of spatial and JEPG images, while in the field of
audio steganalysis, people mostly use manually extracted feature to design the
steganalysis algorithms. Jin et al. [7] proposed a steganalysis algorithm by using
one-step transition probability to describe the QMDCT differences along with
the row and column directions (Jin-Makrov). In [10], Ren et al. find the effect
of modifying QMDCT coefficients on the statistical characteristics of inter and
intra frame in different domain. They use the multi-order differential coeffi-
cients of intra-frame and inter-frame (MDI2) as the handcrafted feature to detect
the AAC and MP3 steganography. Besides, Ghasemzadeh et al. [3] proposed a
new set of feature which is extracted through the reversed Mel-frequency cep-
stral coefficients (R-MFCC) to against the steganography. In the CNN-method
research, Chen et al. [1] proposed a convolution neural network (Chen-Net) to
detect ±1 LSB audio steganography in the time domain. After that, an MP3
steganalysis method based on the convolution neural network (WASDN) is pro-
posed by Wang in [13], which takes QMDCT coefficients as input. Furthermore,
Wang et al. [14] proposed a new network architecture with rich high-pass fil-
tering whose role is to increase the steganographic noise, which shows good
performance in steganography detection.

However, the above-mentioned methods have the following disadvantages.
For the features of manual extraction, although their detection efficiency is very
high, they often have poor performance in detection accuracy. For CNN-based
algorithms, good detection results can be obtained, but their network structure
is generally complicated. It takes up a lot of computing resources, and the net-
work model also takes up a lot of storage space. Therefore, a light MP3 audio
steganalysis network with multiscale convolution (LMCNN) is proposed in this
paper to solve these problems. In our design, we are inspired by the design of
GoogLeNet [12], applying multiple convolution kernels and residual structures
in each convolution sub-nets. In order to reduce the number of parameters of
the network, we perform convolution kernel factorization on large-scale convolu-
tion kernels. The network is evaluated on various adaptive MP3 steganographic
algorithms and payload rates. And our network acquires good results in different
algorithms and payload rates.

The rest of this paper is organized as follows. In Sect. 2, we introduce the
related work. Section 3 introduces the design of our proposed network in detail.
Experiment results and discussion are shown in Sect. 4. Finally, the conclusion
is drawn in Sect. 5.
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2 Related Work

In recent years, lots of studies focus on adjusting deep neural structures to strike
an optimal balance between accuracy and performance. Among these works,
three of the most classical structures receive widespread attention, namely multi-
scale convolution, convolution kernel factorization, and residual structure. Below
we will explain the composition and role of these three network structures in
detail.

2.1 Multiscale Convolution Structure

The convolution layer is the most important component of the convolution neural
network, and the convolution operation can be seen as the extraction of the
feature. In convolution network, a convolution kernel is used to capture the
feature within a certain area. Typically, input signals are processed using the
same size convolution kernel in one convolution layer. In [11], the author proposes
the structure of inception. In the design of inception, different sizes of convolution
kernels are adopted in one convolution layer. In principle, large-scale convolution
kernels can provide a wider range of receptive field, but small-scale convolution
kernels have a finer granularity of detection and can capture more detail. The
structure of multi-scale convolution is shown in Fig. 1. In the same convolution
layer, various scale convolution kernels are used, such as 1 × 1, 3 × 3, 5 × 5 and
others.

Fig. 1. Diagram of multiscale convolution structure.

2.2 Convolution Kernel Factorization

The purpose of convolution kernel factorization is to reduce the number of net-
work parameters. Generally, large-scale convolution kernels can provide a larger
receptive field, but introduce more parameters and reduce the efficiency of the
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network at the same time. It is proposed in the paper [12] that large-scale convo-
lution kernels can be factorized into multiple small-scale convolution kernel. The
form of the two convolution kernel factorization is shown in Fig. 2. A large-scale
convolution kernel can be symmetrically factorized into two convolution kernels
of the same small size. For example, a 5×5 kernel can be instead of two cascaded
convolution kernels which size is 3 × 3. If two 3 × 3 convolution kernels are used
instead of a 5 × 5 convolution kernel, the number of parameters will increase
(5× 5+1)/(3× 3+1) = 2.6 times. Besides, the asymmetric factorization can be
applied to the small-scale convolution kernel. For example, the 3×3 convolution
kernel is factorized into the convolution kernel concatenation of 3 × 1 and 1 × 3,
and the number of parameters is further reduced by 48%.

Fig. 2. Diagram of convolution kernel factorization.

2.3 Residual Architecture

As the structure of network deepens, the difficulty of training will gradually
increase. Two main factors hinder network training. One is the disappearance
and explosion of the gradient, and the other is the network’s degradation. At
present, gradient disappearance and gradient explosion can be well solved by
introducing a BN layer. However, the problem of network’s degradation needs
to be solved by adjusting the structure of the network. He et al. [5] pointed out
that the simple stacking of convolution layers does not improve the detection
accuracy of the network, but may lead to a decrease in detection accuracy.
Suppose that two identity mapping layers, i.e. H(x) = x, are added to a shallow
network, as shown in Fig. 3(a). The experimental results show that the deep
network with constant mapping layer is not as good as the previous shallow
network in detection accuracy. The cause of this problem is that the training
difficulty increases with the deepening of the network, resulting in the mapping
relationship F (x) = H(x) being difficult to fit, in other words, the network
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has degraded. In order to solve this problem, He proposed a structure as shown
in Fig. 3(b). Through a shortcut connection, the network training task is changed
from F (x) = H(x) to F (x) = H(x) − x, which is easier to fit. Small changes
in the output signal can also be learned by the network, thereby alleviating the
problem of network degradation. For example, we suppose the network needs to
learn the map from 1 to 1.5. For the structure without shortcut connection, the
mapping is H1(x) = F1(x) = 1.5, so the training task is F1(x) = 1.5. When the
target changes from 1.5 to 1.55, the relative change rate is 3.3%. However, if we
use the residual, the mapping changes to H2(x) = F2(x) + x = 1.5. And the
training task is F2(x) = 1.5−x. Similarly, if the target increases 0.5, the relative
change rate is 10%, which is 3 times than before. As can be seen from the above
example, the residual network structure can make the network more sensitive to
changes in output, thereby improving the efficiency of training.

Fig. 3. Diagram of residual structure. (a) is the directly connected structure and (b)
is residual structure.

3 The Architecture of Proposed Network

In this section, we describe the architecture of proposed network in detail. The
architecture of our network is shown in Fig. 4, which is mainly divided into three
parts. The first part plays the role of preprocessor, which contains a high-pass
filter and a concat function. The second part contains six sub-net blocks, each
block orderly contains three convolution kernels with different scales, a tanh
activation function, a BN layer, and an average pooling layer. The last part is
the feature classification part, which contains two fully connected layers and
followed by the softmax classifier.
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Fig. 4. Architecture of LMCNN. The number in the sub-net block’s second line is the
number of convolution kernels. And S represents strides of convolution.

3.1 The Input Data and Preprocessing

For our network, we use the QMDCT coefficient matrix as input data. The
reasons are as follows: (1) QMDCT coefficients play an important role in MP3
encoding, and the mapping between QMDCT coefficients and Huffman codes
is definite. Therefore, the modification of MP3 encoding is essentially to mod-
ify the QMDCT coefficients. (2) The previous study [7,10] demonstrate that
the statistical characteristics of QMDCT matrix are resultful to attack MP3
steganography.

Each MP3 frame is divided into two granules, one granule has 576 QMDCT
coefficients. And given the existence of the zero value region, we intercept first
400 coefficients to form a matrix. The mathematical expression of the matrix is,

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q1,1 · · · q1,j · · · q1,400

...
. . .

...
. . .

...

qi,1 · · · qi,j · · · qi,400

...
. . .

...
. . .

...

q200,1 · · · q200,j · · · q200,400

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

where qi,j represent the QMDCT coefficient, i ∈ {1, 2, 3, · · · , 200} is the index
of granule and j ∈ {1, 2, 3, · · · , 400} is the index of QMDCT coefficients in one
granule.
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As shown in Fig. 4, the QMDCT matrix is preprocessed by a high pass fil-
ter at the begin of the network to amplify the perturbation introduced by the
embedding. And the processed matrix is added to the original before input to
the next part, which is proved in [14] that can improve detection accuracy.

3.2 The Sub-net Block

The architecture of the sub-net block is shown in Fig. 5. Each sub-net block has
three convolution kernels of different sizes. And in order to reduce the network
parameters, we adopted the strategy of convolution kernel factorization. Besides,
the residual structure is applied to speed up the convergence of the network and
improve the performance.

Fig. 5. Architecture of the sub-net. The F in each block stands for the number of
convolution kernels.

Multi-scale Convolution. QMDCT coefficients of MP3 are divided into three
regions, which are large value region, small value region, and zero value region.
Two coefficients in the large region are encoded to a Huffman code, while four
them in the small region are encoded to a Huffman code. Considering the rule of
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coding, we set the size of convolution kernels as 1×1, 3×3 and 5×5 respectively.
3 × 1 and 1 × 3 kernels are used instead of a 3 × 3 kernel. And the 5 × 5 kernel
is factorized to the scale of 5 × 1 and 1 × 5 to further decrease the number of
parameters. A branch with pooling layer is used to enhance the perception of
the network.

Residual Structure. According to the described in Sect. 2, we use the residual
architecture in each sub-net block. In order to match with the output data of
multi-scale convolution, the data from the previous layer need through one 1×1
convolution layer and BN layer to raise dimension.

Pooling Layer. Pooling layer is used for the reduction of feature dimensions to
decrease the quantity of parameters. We experiment with different pooling layer,
including max pooling and average pooling, which is the most commonly used.
The output of max pooling is the maximum value of the sliding window, which
tends to retain the texture information. The output of average pooling is the
average value of the sliding window that retains the background information. At
last, we choose the average pooling because it provides more excellent detection
performance.

Activation Function and Batch Normalization Layer. For activation
function, ReLu is most commonly used, which can accelerate training. But in our
network, Tanh is selected as the activation function because of the finite range
of Tanh and the response to the negative half axis. The role of the BN layer is
accelerating convergence and increasing detection accuracy. In our network, we
place it behind each branch in the sub-net block.

3.3 The Classifier Part

This part contains two fully connection layers and a softmax function. Through
the fully connected layer, the mapping from feature space to label space is estab-
lished. In our network, we use two FC layers with tanh activation to map the
feature to 2-D label space. Behind the FC layers, a softmax function is used to
transfer the output to the relative probability. In the end, the result is decided
according to the output of softmax.

4 Experiment

4.1 Setup of Experiment

To evaluate the performance of our proposed network, a dataset which consist of
10,000 stereo WAV clips with sampling rate of 44.1 kHz and the duration of 10 s
is constructed. Cover files are made by encoding WAV audio files to 128 kbps
and 320 kbps MP3 audio files via LAME [6]. Then, two steganography algorithm,
SBF-JED [17] and EECS [16], are implemented to generate the stego MP3 audio
files. And the bitrate is set to be the same as cover. The EECS algorithm is
encoded by Syndrome-Trellis Codes (STC), so the embedding capacity is related
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to relative payload α. In practice, we can change the width W of the parity-check
matrix to control α. The relationship between them is α = 1

W . In our experiment,
we choose the first 50 frames of MP3 file to embed secret message. The width of
the parity-check matrix is set from 2 to 6, and the height is fixed at 7. For the
SBF-JED algorithm, the settings of parameters are the same as EECS except
that the threshold is set to 2. Table 1 shows the specific parameter settings and
the corresponding payload rate.

Table 1. The specific parameter settings and the corresponding payload rate

W 2 3 4 5 6

Payload (kbps) EECS 128 kbps 5.0 3.0 1.8 1.5 1.0

320 kbps 11.9 8.0 5.8 4.3 3.9

SBF-JED 128 kbps 7.1 5.2 3.5 2.9 2.4

320 kbps 13.0 10.2 7.0 5.6 4.7

We train all networks on NVIDIA TITAN XP GPU with 12 GB graphics
memory. Networks are trained with an initial learning rate of 10−3. For decay
function, we use exponential decay function with a decay rate of 0.9 and decay
step of 5000. Besides, for the optimizer, we use the Adam algorithm [8] with
β1 = 0.9, β2 = 0.999 and ε = 10−8. The fully connection is initialized by Glorot
[4]. The batch size of each iteration is 16 (8 cover-stego pairs). Furthermore, an
L2 regulation with the gain of 10−3 is used to prevent overfitting. And BN layers
are dropped when we test our network. False Positive Rate (FPR), False Negative
Rate (FNR), and Accuracy Rate (ACC) are used to measure the performance
for steganalysis. The three metrics are defined as below:

FPR =
FP

FP + TN
× 100% (2)

FNR =
FN

FN + TP
× 100% (3)

ACC = 1 − FPR + FNR

2
× 100% (4)

where TP, FP, TN and FN are the number of true positive samples, false positive
samples, true negative samples and false negative samples respectively.

4.2 The Selection of Sub-net Structure

To verify the impact of multi-scale, convolution kernel factorization and residual
structure on the performance of LMCNN, we designed three different sub-net
with dropping part of structures to compare with the sub-net used in LMCNN.
In Sub-Net1, we drop the multi-scale structure, and only use a 3 × 3 convention
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kernel instead of it. And for Sub-Net2 and Sub-Net3, the convolution kernel
factorization and residual structure are dropped independently. We compare the
detection accuracy and the number of parameters of the network with different
sub-nets under the same condition (EECS, 128 kbps, payload = 1.5 kbps). The
experiment results are shown in Table 2.

Table 2. Performance of each sub-net (EECS, 128 kbps, payload = 1.8 kbps)

Sub-net structure Sub-Net1 Sub-Net2 Sub-Net3 Sub-Net of LMCNN

ACC (%) 79.20 81.50 82.30 83.20

Number of parameters (k) 0.65k 4.5k 2.2k 2.9k

As the result shown in Table 2, the number of parameters decreases by 35%
via the factorization of the convolution kernel. On the other hand, the intro-
duction of multi-scale and residual structure can improve the performance of
detection accuracy. Considering of the detection performance and model size
comprehensively, the structure we use is optimal.

4.3 The Result of Detecting MP3 Steganography in Different
Domains

Table 3. Steganalysis performance of proposed network

Algorithm Bitrate (kbps) Payload (kbps) FPR (%) FNR (%) ACC (%)

EECS 128 5.0 3.25 3.70 96.52

3.0 8.95 9.10 90.98

1.8 17.20 16.40 83.20

1.5 23.80 24.10 76.02

1.0 33.65 36.65 70.03

320 11.9 0.05 0.00 99.97

8.0 0.90 0.50 99.30

5.8 2.35 2.50 97.58

4.3 5.00 5.95 94.53

3.9 7.20 8.10 92.35

SBF-JED 128 7.0 0.55 0.55 99.45

5.2 2.20 4.10 96.85

3.5 4.95 5.10 94.98

2.9 7.20 7.60 92.60

2.4 9.50 8.80 90.85

320 13.0 0.10 0.00 99.95

10.2 0.11 0.23 99.83

7.0 0.60 0.80 99.30

5.6 1.58 1.04 98.69

4.7 3.20 2.56 97.12
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To verify the performance of our network, we use our network to attack EECS
and SBF-JBD in the different payload. The result is shown in Table 3. The
result demonstrates that the proposed network can be suitable for detecting
MP3 steganography which acts on different domains. From the table, we can see
that the ACC is bigger than 95% under the high payload. When the payload
drops to about 2.4 kbps, the ACC can still above 90%.

4.4 Comparison with Handcraft Features

To assess the performance of our network, we compare it with two existing
state-of-the-art steganalysis algorithm based on handcraft feature, MDI2 [10]
and Jin-Markov [7]. We use these methods to attack EECS and SBF-JED in
the different payload. The results of detection accuracy are shown in Tables 4
and 5. From the results, we can find that the proposed network outperforms the
conventional method based on handcraft feature, which is improved above 25%
in average.

Table 4. Detection ACC (%) of EECS algorithm

Bitrate (kbps) Payload (kbps) Jin-Markov MDI2 LMCNN

128 5.0 70.99 71.34 96.52

1.8 57.89 57.48 83.20

1.0 48.52 43.75 70.03

320 11.0 73.41 79.95 99.97

5.8 59.25 61.84 97.58

3.9 54.47 56.34 92.35

Table 5. Detection ACC (%) of SBF-JED algorithm

Bitrate (kbps) Payload (kbps) Jin-Markov MDI2 LMCNN

128 7.0 51.30 75.64 99.45

3.5 51.31 64.91 94.98

2.4 51.31 59.03 90.85

320 13.0 51.25 75.37 99.95

7.0 51.25 69.71 99.30

4.7 51.25 61.71 97.12

4.5 Comparison with CNN-Based Methods

In this section, we compare our network with previous CNN-based steganalysis
method, WASDN [13] and RHFCN [14], in memory occupation, model size and
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the number of parameters. From Tables 6 and 7, we can see that the proposed
network has significant advantages in model size. Comparing with RHFCN, the
model size of our network is reduced from 1.7 GB to 47 MB and the memory
occupation is reduced by 40%. In terms of detection performance, the accuracy of
our network is better than WASDN. And compared with RHFCN, the detection
accuracy stay on same level, even slightly increases in some conditions.

Table 6. Evaluation of MP3 steganalytic networks (EECS, 128 kbps, batchsize = 16)

WASDN RHFCN LMCNN

ACC (%, payload = 5 kbps) 92.39 95.40 96.52

ACC (%, payload = 3 kbps) 82.07 89.85 90.98

Model size (MB) 932.29 1764.23 47.20

Number of parameter (K) 8k 15k 2.9k

Memory occupation (MB) 4551 7391 4439

Table 7. Evaluation of MP3 steganalytic networks (SBF-JED, 128 kbps, batchsize =
16)

WASDN RHFCN LMCNN

ACC (%, payload = 7 kbps) 99.15 99.75 99.45

ACC (%, payload = 5 kbps) 96.07 97.32 96.85

Model size (MB) 932.29 1764.23 47.20

Number of parameter (K) 8k 15k 2.9k

Memory occupation (MB) 4551 7391 4439

5 Conclusion

In this paper, we propose a light-weight network with convolution factorization,
multi-scale convolution and residual structure to detect MP3 steganography. The
experimental results show that our network can be used to detect steganographic
algorithm under different bitrates, payload rates, and embedding domains. The
detection accuracy of the proposed network is above 90% when the payload
is more than 3.0 kbps whether EECS or SBF-JBD. And the proposed network
obviously outperforms the conventional schemes under the same experiment con-
dition. Additionally, comparing with other CNN-based methods, our network
requires fewer parameters, memory and storage space without dropping out the
detection accuracy, which means it has the potential to use in widely scenarios,
such as mobile terminal. Furthermore, we will continue to simplify the network
structure, and improve the performance in low payload rate.
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Abstract. In this paper, we propose an effective audio steganalysis
scheme based on deep residual convolutional networks in the tempo-
ral domain. Firstly, considering the weak difference between cover and
stego, a high pass filter is adopted in the proposed network which is
used to calculate the residual map of the audio signal. Then, compar-
ing with convolutional neural networks (CNNs) based audio steganal-
ysis in recent studies, the deeper network structure and complicated
convolutional modules are considered to capture the complex statistical
characteristic of steganography. Finally, batch normalization layers and
shortcut connections are applied to decrease the dangers of over-fitting
and accelerate the convergence of back-propagation. In the experiments,
we compared the proposed scheme with CNNs based and hand-crafted
features based audio steganalysis methods to detect the various stegano-
graphic algorithms on speech and music audio clips respectively. The
experimental results demonstrate that the proposed scheme is able to
detect multiple state-of-the-art audio steganographic schemes with differ-
ent payloads effectively and outperforms several recently proposed audio
steganalysis methods.

Keywords: Audio steganalysis · Deep residual network · Adaptive
steganography · Temporal domain

1 Introduction

Modern steganography is a science and art of covert communication that slightly
changes the original digital media in order to hide secret messages without
drawing suspicions from the steganalyzers [4,10]. Corresponding to the devel-
opment of steganographic techniques, the steganalysis with the aim of revealing
the presence of hidden messages in digital media has also been made consider-
able progress. Recently, many researches about steganalysis have been reported.
However, most existing steganalytic methods are mainly dependent on the high-
dimensional steganalysis features and supervised classifiers, which can not adapt
itself to the various steganographic algorithms. In this paper, we introduce a deep
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H. Wang et al. (Eds.): IWDW 2019, LNCS 12022, pp. 57–70, 2020.
https://doi.org/10.1007/978-3-030-43575-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43575-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-43575-2_5


58 Z. Zhang et al.

learning method over audio steganalysis, which achieve better detection accuracy
than several recent works.

In the past decade, many statistical steganalysis features have been inves-
tigated for detecting audio steganographic algorithms. For instance, the Mel-
frequency based features were introduced for audio steganalysis in [12]. Liu et al.
proposed an approach based on Fourier spectrum statistics and Mel-cepstrum
coefficients to detect the audio steganography [14]. In [15], the authors employed
the Mel-cepstrum coefficients and Markov transition features from the second
derivative of the audio signal to make steganalysis. In [6], the authors tried to
build a linear basis to capture certain statistical properties of audio signal. In
addition, there are some effective features to detect audio steganography in the
frequency domain, such as MPEG-1 audio layer III (MP3) based steganalysis [9],
and advanced audio coding (AAC) based steganalysis [17]. The above researches
are based on hand-crafted high-dimensional features, and the performances of
these works for the steganalysis of audio in the temporal domain are still far
from satisfactory.

Recently, various deep learning architectures are proposed successively, which
have achieved state-of-the-art results in many areas, especially in speech recogni-
tion and computer vision. However, very few deep learning based methods have
been applied for audio steganalysis. Chen et al. [2] first proposed a sample con-
volutional neural network (CNN) to detect ±1 least significant bit (LSB) match-
ing steganography in the temporal domain and achieved better results than the
hand-crafted features. Lin et al. [13] proposed an improved CNN-based method
for boosting the detection performance for the low embedding-rate steganog-
raphy by adopting parameter transfer strategy. Wang et al. [22] presented an
effective steganalytic scheme based on CNN for detecting MP3 steganography
in the entropy code domain by using the quantified modified DCT (QMDCT)
coefficients.

In this paper, we propose a modified deep residual convolutional network
model for steganalysis of audio in the temporal domain. The deep residual net-
work introduced in [7] has achieved promising performance on computer vision
tasks, and also has been used for steganalysis of digital images [1,23,24]. Com-
pared with the traditional convolutional neural network, the residual network
introduces shortcut connections that directly pass the data flow to later layers,
thus effectively avoids the vanishing gradient problem caused by multiple stacked
non-linear transformations. As a consequence, deeper network constructed with
residual block generally gets better performance in comparison with networks
that consist of simply stack layers. The proposed network model is empirically
designed with shortcut connections and a series of proven propositions, such as
tanh activation function and high pass filter. The main contributions of this work
are summarized as follows: (1) According to [2,18,25], employing the residual
filters before inputting the original signal to neural networks usually results in
better performance for steganalytic scheme. Inspired by this, a high pass filter
module is implemented in the proposed scheme. (2) From previous researches [19]
and [20], it is observed that the network model with larger depth can extract
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complex optimal functions more efficiently. Following the notions of residual
network [7], we repeat the convolutional module twice in each residual block
and design the network model with shortcut components. Our experimental
results demonstrate that the proposed scheme obtains considerable improvement
in terms of detection performance compared with several existing steganalytic
methods.

The remaining parts of the paper is organized as follows. In Sect. 2, we
describe the structure of the proposed steganalytic network and discuss the
details for each component of the architecture. Next, the experimental setup
and the overall performance of the proposed scheme for different scenarios are
described in Sect. 3 and Sect. 4 respectively. Finally, we conclude the paper and
state some directions for future works in Sect. 5.

Residual Block1

Residual Block2,
(1,16)

High-pass Filter

1x2, Max Pooling,
s(2)

Residual Block1

Softmax

1x8, Max Pooling,
s(2)

Residual Block1

Input Audio

Probability

Fully Connected

Residual Block1

Residual Block2,
(32,64)

Fully Connected

Residual Block1

Residual Block1

Residual Block2,
(16,32)

Residual Block1

Residual Block1

1x2, Max Pooling,
s(2)

1x4, Max Pooling,
s(2)

Residual Block2,
(64,128)

1x64, Avg Pooling,
s(64)

Residual Block1

Residual Block1

Residual Block2,
(128,256)

Group3

Group4

Group5

Classifier

Size:16000 or 44100

Size:8000x16 or 
22050x16

Size:2000x64 or 
5512x64

Size:16x256 or 
28x256

Size:4000x32 or 
11025x32

Size:1000x128  or 
2756x128

Size: 1x4096

Size: 1x128

Fully Connected

Size: 1x2

Group1

Group2

Fig. 1. The architecture of WavSResNet. The parameters in Residual Block2 are the
input and output channels respectively. For example, “(m, n)” denotes input with m
channels and n output channels. In Max and Avg Pooling layers, “1× 2” denotes that
pool size 1×2 and s(2) denotes that the stride of slide window is 2. The “Size 8000×16”
represents the output dimension of the block, which is the shape of feature maps.
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2 Proposed Method

The proposed network architecture is called “WavSResNet”, which represents
residual network for waveform audio steganalysis. The word “residual” refers to
the residual blocks with shortcut connections from deep learning. The shortcut
connections help propagate gradients to upper layers and encourage feature reuse
in the training process. In addition, residual blocks improve the performance
of network because the vanishing gradient phenomenon that often negatively
affects the convergence of deep network architectures [5,8]. The remainder of this
section is divided into several subsections. Firstly, we describe the architecture
of WavSResNet, and then analyze each part of the network in details. Most of
the explorations focused on components in each residual block, the activation
function, pooling layers and shortcut components.

2.1 WavSResNet Architecture

As schematically depicted in Fig. 1, the proposed WavSResNet is divided into
a concatenation of several segments. The Residual Block1 and Residual Block2
represent identity shortcut (Fig. 2) and projection shortcut (Fig. 3) respectively.
A convolutional layer with a fixed kernel (−1, 2, −1) is placed at the beginning
of the network to transform the input audio data into residual signal, which
act as the high pass filter. Then five groups are stacked one after another and
each group contains one Residual Block2, two Residual Block1 and one max
pooling layer, expect for Group5 with average pooling layer. Each residual block
consecutively consists of convolutional layers, batch normalization (BN), Tanh
activation function and the shortcut component. Among them, the convolutional
layers followed by BN and tanh activation function extract features from different
perspectives. The “shortcut” allows the gradient to be directly back-propagated
to the earlier layer [8]. Tanh activation function help the network decide whether
the information that the neuron received is relevant for the given information
or should it be ignored. The max pooling layers keep the texture information
of the sliding window and reduce the number of parameters from the previous
convolutional layer. Having been processed by five groups of blocks, the input
clips data with size 1 × 16000 or 1 × 44100 (see the experimental setups in
Sect. 3.1) are finally transformed to a 256 feature maps with the size of 1×16 or
1 × 28. In the last segment, three standard fully connected layers and followed
by a soft-max function, which act as a role of “the linear classifier” and map the
features to the label space.

2.2 Convolutional Layers

The convolutional layers are the main components in CNN, which use one or
several filters to convolve the input data and generate different feature maps for
subsequent processing. In the proposed network, there are two kinds of convo-
lutional layers which are the fixed convolutional layer and the common convolu-
tional layer. Fixed convolutional layer is used to capture the minor modification
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introduced by the data hiding methods through reducing the impact of content
information which can be seen as a high pass filter (HPF). The common con-
volutional layers with parameters are used to generate feature maps. In each
convolutional layer, the convolutional kernel with the shape of 1×3 is used with
the stride of (1, 1) and the padding is “SAME”, which is followed by BN step
to speed up training.

2.3 Activation Function

In the proposed network, we choose the nonlinear activation function to intro-
duce nonlinear factors. The Rectified Linear Unit (ReLu) is the most commonly
activation function, which seems maybe faster than Tanh for many of the given
examples [3]. However, considering the property of audio steganalysis task, the
saturation region of the tanh activation function limit the range of data value
which can improve the performance of our model (refer to Sect. 4.2, compared
with network #3). So we choose Tanh as the activation function instead of the
Relu.

2.4 Pooling Layers

In order to extract robust invariant features and reduce the number of parameters
from previous convolutional layer, it is very often to insert a pooling layer right
after the convolutional layer in neural network. The pooling layer can be regarded
as a kind of fixed convolutional layer and realized by average pooling or max
pooling. The difference between average pooling and max pooling is the output
of pooling. The max pooling keeps the texture information of the sliding window
and outputs the maximum value of the sliding window, while the average pooling
outputs the average value of the sliding window.

Considering characteristics of audio steganalysis, the max pooling layer and
the average pooling layer are used in our proposed network. The size of max
pooling layer is 1 × 2, 1 × 4, 1 × 8 with stride (1, 2). The average pooling
layer has the size of 1 × 64 with the stride of (1, 64). In order to keep enough
parameters, we just use five pooling layers and each one follows the second
Residual Block1 in each group.

2.5 Shortcut Components

The proposed WavSResNet contains two types of shortcut connections because
convolutional layers require different shortcut connections. Two main types of
shortcuts are the projection shortcut and the identity shortcut, depending mainly
on whether the input and output dimensions are same or different. The shortcut
connection allows the gradient to be directly back-propagated to earlier layers by
skipping over layers and helps deep residual networks from vanishing gradients.

We insert shortcut connections which turn the network into its counterpart
residual version. The identity shortcuts can be directly used when the input and
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Fig. 2. Identity shortcut with skipping over 2 convolutional layers. The parameters
inside the boxes represent kernel size, layer type, and the number of channels respec-
tively. For example, “1×3, Conv, D” means a convolutional layer with 1×3 kernel size
and D channels. “BN” and “Tanh” represent batch normalization layer and activation
function respectively.

output are of the same dimensions as described in Fig. 2. When the dimension
increases, to make the shortcut still performs identity mapping, the projection
shortcut is used to match dimensions as sketched in Fig. 3 (done by 1 × 3 con-
volution). The difference between projection shortcut with the identity shortcut
is that there is a convolutional layer without any non-linear activation function
in the shortcut path, which is used to resize the input feature map to a different
dimension. In this paper, the shortcut connections skip over 2 layers.

3 Experimental Setup

This section describes the common elements of all experiments that appear in
Sect. 4, including the dataset, evaluation metric, training and testing of WavS-
ResNet.

3.1 Dataset

The experiments will be carried out on three datasets which are SpeechData1,
SpeechData2 and MusicData. SpeechData1 is the dataset used in [2], which
includes the 40,000 cover-stego speech pairs. SpeechData2 and MusicData con-
sist of 40,000 speech clips and 40,000 music clips respectively which were down-
loaded from the public data set [21]. Each clip was recorded with resolution of 16
bits per sample, duration of 1 s and stored in the uncompressed wave audio files
(WAV). The SpeechData1 and SpeechData2 include mono speech corpus with
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Fig. 3. Projection shortcut with skipping over 2 convolutional layers. The parameters
inside the boxes represent the same meaning in Fig. 2.

a sampling rate of 16 kHz, and MusicData is mono audio clips with a sampling
rate of 44.1 kHz. Three steganographic algorithms for WAV audio, which are ±1
LSB matching method (LSBM), modification of the amplitude value of sampling
(Amplitude Modification) [26] and the adaptive steganographic algorithms (Luo
Adaptive) [16], are implemented on original audio clips to generate the corre-
sponding stego audio dataset. The stego clips in SpeechData1 were made by
LSBM algorithm with 0.50 bit per sample (bps). The stego clips in SpeechData2
and MusicData were made by another two steganographic algorithms, which are
Amplitude Modification with payloads 0.5 bps and Luo Adaptive with payloads
0.3 bps. Totally, each dataset contains 40,000 cover-stego pairs. Half of the pairs
are used for training, and the rest are used for testing. In the training stage, the
16,000 pairs are used to train the network, and the rest 4,000 pairs are set aside
for validation to chose the best trained model. In Sect. 4.1, we will introduce the
experimental results on three datasets respectively.

3.2 Training Part

The WavSResNet has been experimented on speech clips dataset and music clips
dataset with the same hyperparameters. The stochastic gradient descend (SGD)
optimizer Adamax [11] was used with mini-batches of 32 cover-stego pairs and
the training database was shuffled after each epoch. The batch normalization
parameters were learned via an exponential moving average with decay rate
0.99. At the beginning of the training, the filter weights were initialized with
random numbers generated from zero mean truncated Gaussian distribution
with standard deviation of 0.1, and L2 regularization. The filter biases were
initialized to zero and no regularization. For the fully connected classifier layer,
we initialized the weights with a zero mean Gaussian and standard deviation
0.01 and no bias.
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On our dataset, the training was run for 100k iterations with an initial learn-
ing rate of r1 = 0.0001. The snapshot achieving the best validation accuracy in
the last 40k iterations was taken as the result of training. This training strategy
was applied for three audio steganographic algorithms at three kinds of WAV
audio datasets.

3.3 Testing Part

For comparison with the current state-of-the-art steganalytic methods of WAV
format audio, the WavSResNet was compared with CNN based method intro-
duced in [2], which we called in this paper ChenNet to distinguish it from the
proposed network. Furthermore, another two hand-crafted features based stegan-
alytic methods called as Liu1 [14] and Liu2 [15] were also used to be compared.
The ChenNet was trained on exactly the same dataset as the WavSResNet and
implemented in TensorFlow.

After choosing the bast trained model, we made the test with mini-batches
of 64 audio clips which were randomly sampling from the test dataset without
replacement until all data were recycled, and calculated the average detection
accuracy. For another two hand-crafted features based steganalytic methods,
after training support vector machine classifiers on the training dataset, the
classifier was carried on the test dataset to calculate the detection accuracy.

3.4 Evaluation Metric

To evaluate the performance of the proposed scheme and state-of-the-art
steganographic algorithms on WAV format audio dataset, the performance is
measured by the detection accuracy of audio clips in the testing dataset. The
detection accuracy is calculated as the number of correctly detection examples
over the total number of the selected audio clips. Mathematically, the detection
accuracy can be stated as:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where TP, TN,FP and FN represent the number of true positives, true nega-
tives, false positives and false negatives respectively. To obtain convincing results,
all the experiments are repeated 10 times by randomly splitting the training and
testing datasets.

4 Experiments

4.1 Experiments on Three Datasets

To show the efficiency of the proposed scheme in improving the performance
of audio steganalysis in the temporal domain, we use WavSResNet and Chen-
Net [2] to make the detection on SpeechData1. Then we make experiments on
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Table 1. The average detection accuracy (%) for LSBM algorithm in SpeechData1.

Steganalysis method Accuracy

ChenNet 88.81

WavSResNet 89.70

Table 2. The average detection accuracy (%) of WavSResNet for different stegano-
graphic schemes.

Steganographic scheme Dataset

SpeechData2 MusicData

Amplitude Modification 99.80 99.39

Luo Adaptive 54.69 52.25

SpeechData2 and MusicData to discuss the influence of sampling frequency to
the WavSResNet. The stego examples are made as described in Sect. 3.1. We
train the WavSResNet for 100,000 iterations with the parameters description in
Sect. 3.2, and choose the best trained model to calculate the average detection
accuracy on the test dataset. The average detection accuracy of WavSResNet
and ChenNet [2] for LSBM on SpeechData1 are shown in Table 1, and the detec-
tion on SpeechData2 and MusicData for another two steganographic algorithms
are shown in Table 2.

From Table 1, the WavSResNet’s detection accuracy has achieved 89.70% on
SpeechData1. It can be seen that the WavSResNet has better performance than
ChenNet, which demonstrate improvement of WavSResNet for making audio
steganalysis. From Table 2, we can see the overall performance on speech is better
than that on the music, which may be interpreted as the samples’ values of music
are more complex than that of the speech clips and the network could not learn
the rules efficiently. In addition, we can see that the steganographic algorithms
have a heavily efficiency for the detection accuracy. The best detection accuracy
is achieved when detects Amplitude Modification in SpeechData2, which reaches
99.80%. However, for the Luo Adaptive algorithm, the WavSResNet can not
get the well results. This loss of performance is due to the fact that adaptive
steganographic algorithms modify less samples and choose the complex area to
embed messages, which makes the WavSResNet difficult to capture the discipline
of this modification.

4.2 Comparison with the Variants

In this experiment, we try to show the effective of the WavSResNet by com-
paring it with its several variants. As listed in Table 3, three variant networks
are used in this experiment, indexing from #2 to #4. The components of these
variant networks are slightly different from the WavSResNet #1. All the net-
works have the same hyper-parameters described in Sect. 2 and are analysised
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on SpeechData1. In order to compare the fluctuation of 50 times experiments’
detection accuracy for different networks, we record each experiment’s detection
accuracy and show the box plot for each network in Fig. 4.

Table 3. Network indices and descriptions.

#1 The proposed WavSResNet

#2 Remove the high pass filter layer

#3 Replace the activation function “Tanh” with “Relu”

#4 Remove all of shortcut connections from Residual Block1 and Residual Block2

#1 #2 #3 #4
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Fig. 4. Box plots of the detection accuracy obtained by different networks for detection
LSBM with 0.5 bps.

From Fig. 4, it is observed that network #1 achieves the highest average
accuracy of 89.70% and has a very stable performance over different times of
testing. Most of detection accuracies of network #2 and #4 are between 84.01%
and 87.72%, which are slight lower than that of network #1. The average detec-
tion accuracy of the network #3 is 51.02% because of the vanishing gradient
problem, which are much lower than that of the proposed network. Moreover,
we can observe from Fig. 4 that the accuracies of network #2 and #4 spread out
in wide ranges, which indicates that these networks are not stable enough. In
addition, we have additionally tested some other variants of the WavSResNet,
which always obtain lower classify accuracy compared with the network #1,
and we do not report them in the paper because of the limitation of space. As
a result, the proposed WavSResNet (#1) converges relatively fast and achieves
the best detection accuracy, so it is the most effective network compared to other
variants.
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Fig. 5. The average detection accuracy of tree steganalytic algorithms for different
steganographic methods.

4.3 Comparison with Previous Methods

In this experiment, we try to show the effectiveness of the WavSResNet by com-
paring it with three state-of-the-art steganalytic methods, which are ChenNet
[2], Liu1 [14] and Liu2 [15]. The average detection accuracy of these steganalytic
methods for three steganographic algorithms are shown in Fig. 5. The LSBM
algorithm is tested on the SpeechData1 and another two steganographic algo-
rithms are tested on SpeechData2.

As we can see in Fig. 5, the proposed WavSResNet has better detection per-
formance for different steganographic algorithms than ChenNet. The average
detection accuracy of WavSResNet improves upon ChenNet by up to 2.32%.
The biggest improvement is typically observed for Luo Adaptive steganography.
In addiction, we show that both network based detectors clearly outperform the
traditional hand-crafted features based steganalytic paradigms. As a rule, the
overall detection accuracy of Luo Adaptive algorithms is not very high. The rea-
son is that the adaptive steganographic algorithms modify less samples, which
makes the steganalytic algorithms hard to detect audio steganography in tem-
poral domain effectively.

To further evaluate the WavSResNet and ChenNet with relatively good per-
formance, we draw the curves of their training and validation accuracy during the
training stage in Fig. 6. It is observed that the training accuracy of both networks
steadily increased with more iterations before the convergence of networks. The
validation accuracy of the ChenNet almost doesn’t increase after about 30,000
iterations, which means that network converges in this case and more iterations
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(a) The proposed WavSResNet.
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Fig. 6. The detection accuracy curves of two networks. (a) Our proposed method
WavSResNet. (b) Chen’s method ChenNet [2].

could not improve its validation accuracy. The WavSResNet, which doesn’t con-
verge even after 60,000 iterations, can eventually converge after more 80,000
iterations and its final detection accuracy is higher than that of ChenNet. On
the whole, the residual blocks and more layers make WavSResNet need more
iterations to be converged, but also make it achieve the better results than the
other CNNs based audio steganalysis.
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5 Conclusion

In this paper, a novel audio steganalytic method based on residual convolutional
neural network is proposed as WavSResNet. Compared with existing CNNs
based audio steganalytic methods, the deeper network structure and the short-
cut connections are utilized to the WavSResNet. Experimental results demon-
strate that the WavSResNet obtains considerable improvement in terms of detec-
tion performance compared with several existing steganalytic methods. However,
although the proposed method can achieve the state-of-the-art performance, it
still has a long way to improve the accuracy of audio steganalysis in the temporal
domain to a high level. All of our source codes and datasets will be available via
GitHub: https://github.com/Amforever/WavSteganalysis.

Further works will be focus on two directions. On the one hand, the higher
quality features of the audio signal can be developed before inputting the orig-
inal audio data to the convolutional networks. On the other hand, some more
powerful neural networks can be adopted to improve the accuracy of audio ste-
ganalysis.
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Abstract. In conventional image steganalysis, cover-source mismatch
is a serious problem restricting its utility. In our work, we validate that
in deep steganalysis, cover-source mismatch still exists. But unlike in
conventional scenarios, sharp accuracy reduction just exists in a part
of cover-source mismatch scenarios in deep steganalysis. To explain
this phenomenon, we use A-distance to measure the texture complexity
between databases. Furthermore, to ease the accuracy reduction caused
by the mismatch, we adapt JMMD into deep steganalysis and design a
new network (J-Net). Extensive experiments prove A-distance and J-Net
works well.

Keywords: Steganalysis · Deep learning · Cover-source mismatch

1 Introduction

Steganography is the technique which embeds information into cover image
imperceptibly to carry out secret and safe communication. Steganalysis is the
technique to detect the existence of steganography, i.e., to judge whether the
image is embedded with secret information. When taking steganalysis into real
world, the images you want to detect and the images used to train the ste-
ganalysis model always come from different distributions. This phenomenon is
called cover-source mismatch, which is a serious problem restricting the utility of
steganalysis. In conventional steganalysis, cover-source mismatch always causes
sharp accuracy reduction, and there are many researchers focusing on solving it
[10,13,15]. In recent years, with the development of deep learning,researchers
started to solving steganalysis problem using deep neural networks. But in
steganalysis based on deep learning, cover-source mismatch problem has not
attracted much attention [4], and there are rare works discussing that. Hence,
in this paper we study the cover-source mismatch scenario in deep steganalysis.

At first, we do analysis on cover-source mismatch scenario in deep steganaly-
sis and validate that cover-source mismatch still exists. But not like the scenario
in conventional steganalysis, sharp accuracy reduction just exists in a part of sit-
uations in deep steganalysis. According to that texture complexity is positively
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related to the steganalysis difficulty, we think it’s caused by the discrepancy of
texture complexity among databases. To explain this phenomenon, we adapt
A-distance [1] to measure the texture complexity among the databases we use.

Now that there is still cover-source mismatch problem in deep steganalysis,
we want to address it. But unlike in conventional steganalysis, deep steganalysis
models unify preprocessing, feature extraction and classifying into one frame-
work. So methods for conventional cover-source mismatch can’t be used to solve
the problem in deep steganalysis. Then inspired by researches in domain adapta-
tion which has similar scenarios as cover-source mismatch, we adapt JMMD [12]
into deep steganalysis and design a deep adaptive network (J-Net) to address
the cover-source mismatch problem. To our best knowledge, there is no research
working for solving this problem in deep steganalysis. And experiments prove
that J-Net can relieve the accuracy reduction caused by cover-source mismatch.

The contributions of this paper are concluded as follows :

1. We validate that cover-source mismatch still exists in deep steganalysis, and
use A-distance to explain it quantitatively, which is instructive for future
works.

2. To ease the accuracy reduction caused by cover-source mismatch, We adapt
JMMD into deep steganalysis and design a deep adaptive architecture
(J-Net).

3. Extensive experiments prove that J-Net can ease the accuracy reduction
caused by cover-source mismatch effectively.

2 Related Works

2.1 Deep Steganalysis

With the impressive performance of deep learning in other fields, scholars started
to utilize deep neural networks into steganalysis. In 2015, Qian et al. [18] first
adapted CNN (convolutional neural network) to abstract the features used for
steganalysis. Based on it, according to the speciality of steganalysis, Xu et al.
[21] adjusted the details in CNN layers to promote its performance. Inspired
by the idea in conventional steganalysis, Ye-Net [22] adapted selection channel
knowledge into deep steganalysis and achieved much better performance than
conventional methods. Utilizing the residuals, Fridrich et al. [3] designed a net-
work which can be used both in spacial domain and JPEG domain. Adapting
spatial pyramid pooling, Zhu-Net [25] could take images in random sizes as input.

In conventional steganalysis, cover-source mismatch attracted much attention
[10,13,15]. But in deep steganalysis, there are rare works discussing it. [4] said
mismatch in deep steganalysis is not yet really well treated and understood.
And [16] proposed that there is no mismatch phenomenon when using CNNs in
steganalysis, but we have found sufficient experimental evidence to prove their
conclusion might be ill-considered to some degree.
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2.2 Deep Domain Adaptation

Domain adaptation focuses on the problem that how to transfer the model
trained on labeled source database to the unlabeled target database without
sharp accuracy reduction, where the source and target database have different
distributions, which is very similar to the cover-source mismatch scenario in ste-
ganalysis. To measure the distance between the source database and the target
database, Ben-David et al. [1] proposed A-distance to measure the domain dis-
crepancy. With the development of deep learning, researchers did lots of works
about the generality of deep neural networks [2,5,7,24]. Glorot et al. [7] proposed
that while deep neural networks are more general than conventional networks,
they still can’t remove the discrepancy across domain. Furthermore, [24] pro-
posed that the features in deep CNNs will transform from general to specific
along the network, i.e, the deeper are the layers, the less transferable are the
features.

Based on these theories, scholars further studied how to improve the domain
adaptation performance of deep neural networks. VRNN [17] learned tempo-
ral dependencies to create domain invariant representations; Madasu et al. [14]
designed GCN to filter out domain dependant knowledge; Deng et al. [6] pro-
posed an active transfer learning network to get competitive performance using
minimally labeled training data.

Among deep domain adaptation researches, MMD (maximum mean discrep-
ancy) is a very popular tool to restrict the discrepancy between source and target
domain. MMD is proposed by [19] to measure the distance between two statistic
distributions. In 2012, Chen et al. [20] started to adapt MMD into deep domain
adaptation. And Long et al. [11] proposed a variant of MMD called multi-kernel
maximum mean discrepancy (M-MMD). Then based on M-MMD, Long et al.
[12] proposed JMMD which takes the joint distribution of the input images and
the predicted labels into account. Inspired by researches above, we adapt JMMD
into deep steganalysis to address cover-source mismatch problem.

3 Methodology

3.1 Analysis of Cover-Source Mismatch in Deep Steganalysis

Steganographies with high concealment always embed information into the high
frequency part of the image, which has less probability of being detected by
steganalysis [9]. It means that, the texture complexity of database is positively
correlated to the steganalysis difficulty [16]. Based on it, we believe that there will
be cover-source mismatch when the training set and testing set come from dif-
ferent database with different texture complexity. In experiment part, we prove
that in spatial domain, there is sharp accuracy reduction when the steganalysis
model is trained on less textured set and tested on more textured set.

To measure the texture complexity among databases, we adapt A-distance [1]
to be the measurement tool. Next we give a simple introduction of A-distance.
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A-distance is proposed to measure the discrepancy between two databases,
which is calculated using the following formula:

d̂
A

= 2(1 − 2 × error) (1)

where error stands for the generalization error of a binary classifier (fully con-
nected layers with 2 outputs here) trained on the binary problem to distinguish
input samples between the training and testing database. More implementation
details will be given in the experiments part.

Although A-distance is just a linear form of binary classifier, it can be used
to measure the discrepancy between 2 databases in the latent space depending
on the features used for the classifier. When the features for the classifier in
A-distance are features used for steganalysis, the latent space where the discrep-
ancy is measured in A-distance is steganalysis-relevant. Therefore, we think that
A-distance can measure the attributes which is relevant to steganalysis between
2 databases, including texture complexity. And the experimental results prove
its effectiveness.

3.2 J-Net for Cover-Source Mismatch in Deep Steganalysis

Since there is cover-source mismatch problem in deep steganalysis, we try to ease
the accuracy reduction caused by cover-source mismatch. Note that cover-source
mismatch in steganalysis is really similar to the scenario in domain adaptation:
the model is trained on the labeled source database and tested on the unlabeled
target database which is in different distribution with the source. Hence, inspired
by the impress performance of JMMD (joint maximum mean discrepancy). [12] in
domain adaptation, we adapt it into deep steganalysis and design J-Net (Fig. 1).
The structure of J-Net can be divided into four part: preprocessing, feature
extraction, classifier and JMMD.

Fig. 1. The structure of J-Net. The dotted line stands for sharing parameters.
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As is known to us, the stego signal is always embedded in the high frequency
part of image. Hence, to improve the signal to noise ratio (the ratio of stego
signal to image signal), we use 30 5 × 5 high pass filters to preprocess the input
images just as Yedroudj-Net [23].

Then the feature extraction part consists of 5 CNN (convolutional neural
network) layers. The implementation details of the CNN layers are shown in
Table 1. Note that, because the average pooling operation acts as a low pass filter
[3] while the stego signal acts as high frequency noise, we get rid of the pooling
operation in CNN1. In addition, since in the bottom CNN layers, relatively to
image signal, stego signal is very small, ReLU (Rectified Linear Unit) is not
suitable for the weak stego signal. Hence, we use TLU (truncate linear unit) [22]
as the activation in CNN1 and CNN2. TLU function is defined as:

f(x) =

⎧
⎨

⎩

−T, x < −T
x,−T ≤ x ≤ T
T, x > T

(2)

The classifier in J-Net concludes 2 fully connected layers followed with a
softmax function which is always used for classifier:

yi =
exi

∑
2
j=1e

xj
(3)

Note that, the FC layers here have no difference from the fully connected layers
in other model. What is special is that, after pre-trained procedure, the FC layers
in J-Net will be fine-tuned under the constraint of JMMD.

At last, we use JMMD (joint maximum mean discrepancy) [12] to measure
and restrict the discrepancy of features in 2 fully connected layers, separately
extracted from the training and testing database which come from different
distribution. JMMD measures the distance of P and Q in reproducing kernel
Hilbert space (RKHS), which is defined as:

DL(P,Q) Δ= ||LZs,1:|L|(P ) − LZt,1:|L|(Q)||2⊗|L|
l=1Hl

(4)

where P and Q stand for the distribution of the training and testing database
respectively, which are called source and target domain respectively here.
LZs,1:|L|(P ) are the features in layer L extracted from P, which are in distri-
bution P, and H represent the reproducing kernel Hilbert space. Assuming that
the source domain Ds has labeled ns points drawn i.i.d from P, while the tar-
get domain Dt has nt unlabeled points drawn i.i.d from Q. The CNN will get
features in layer 1 to L as {(zs1i ,..., zsLi )}ns

i=1 and {(zt1i ,..., ztLi )}nt
i=1. In empirical

calculation, we use the estimate of DL(P,Q), which is defined as :

D̂L(P,Q) =
2
n

n/2∑

i=1

(
∏

l∈L

kl(zsl
2i−1, z

sl
2i−1) +

∏

l∈L

kl(ztl
2i−1, z

tl
2i−1))

− 2
n

n∑

i=n/2

(
∏

l∈L

kl(zsl
2i−1, z

sl
2i−1) +

∏

l∈L

kl(ztl
2i−1, z

tl
2i−1))

(5)



76 X. Zhang et al.

Table 1. Implementation details of CNNs in J-Net.

CNN1 Convolutional 30× (5 × 5 × 30) stride:1 pad:2

ABS

BN

TLU

CNN2 Convolutional 30× (5 × 5 × 30) stride:1 pad:2

BN

TLU

average pooling (5 × 5) stride:2

CNN3 Convolutional 30 × (3 × 3 × 32) stride:1 pad:2

BN

ReLU

average pooling (5 × 5) stride:2

CNN4 Convolutional 32× (3 × 3 × 64) stride:2 pad:2

BN

ReLU

average pooling (5 × 5) stride:2

CNN5 Convolutional 64× (3 × 3 × 128) stride:1 pad:2

BN

ReLU

global average pooling (32 × 32) stride:2

The entire loss function of J-Net is composed of two parts:

min
f

2
ns

ns∑

i=1

(J(f(xs
i ), y

s
i )) + λD̂L(P,Q) (6)

where J(•) is classifier loss, f(xi) represents the predicted output of the input
image, D̂L(P,Q) stands for the JMMD distance between P and Q, in layer L.
Note that, in J-Net the features in fc layers are special and less transferable, so
L = FC1,FC2 . By minimizing D̂L(P,Q), the features in FC1 and FC2 can be
as similar as possible in the reproducing kernel Hilbert space.

4 Experiment

4.1 Experimental Settings

Database. According to the analysis in Subsect. 3.1, we need textured and less
textured database together to conduct experiments. We choose BOSSBase to be
the textured database, which contains 10000 512×512 images in pgm format. As
mentioned above, cover-source mismatch in steganalysis is a serious problem in
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Fig. 2. Database processing programme.

real world, while ImageNet and MIRFlickr are good samples of the real world.
Hence, to match the image format and amount of BOSSBase, we randomly
select 10000 images from ImageNet and 10000 from MIRFlickr respectively and
transform them into pgm format. Then, to maintain the consistency of image
size, we resize the images to 512×512. The database composed of 10000 512×512
images in pgm format from ImageNet (MIRFlickr) is called mini-I (mini-M).

Next, based on Fig. 2, we’ll utilize a simple inference to illustrate that images
in mini-I and mini-M are less textured than images in BOSSBase. As we all
known that, the compression from raw format to pgm format is less lossy than
the compression from raw format to jpeg format; and the format conversion from
jpeg to pgm will bring additional information loss; then the resizing process will
further hurt the texture of image. Hence, mini-I and mini-M are less textured
than BOSSBase. Note that it’s not a serious inference because the images in
BOSSBase, ImageNet and MIRFlickr are from different cameras, but we can
still think that most images in mini-I and mini-M are less textured than images
in BOSSBase (Fig. 3).

Note that, most images in ImageNet and MIRFlickr are smaller than 512 ×
512, so due to the texture hurting, the mini-I and mini-M will be detected with
high accuracy. This scenario can not be used in normal steganalysis research,
but in our experiments, no matter how we process it, what we need is less
textured database. In real world scenario, there will be also many images which
are processed in unknown way.

Implementation Details. All the experiments are implemented on pytorch
with NVIDIA 1080Ti. And we adopt stochastic gradient descent (SGD) algo-
rithm to update the parameters of J-Net, the learning rate is initialized as 0.001,
and multiply 0.9 every 90 epochs. In addition, in all experiments shown in this
paper, we use S-UNIWARD [9] and WOW [8] at 0.4 bpp (bits per pixel) as the
stegaography methods.
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4.2 Validation of Cover-Source Mismatch

To validate the cover-source mismatch in deep steganalysis, we train and test
J-Net without the JMMD module on BOSSBase, mini-I and mini-M respectively,
which make up 9 scenarios totally (Table 2). Note that, without the JMMD
module, the loss function of J-Net can be rewritten as:

min
f

2
ns

ns∑

i=1

(J(f(xi), yi)) (7)

Fig. 3. Image samples.

From Table 2, we can see that there is sharp accuracy reduction, when the
model is trained on the less textured database (mini-I or mini-M) and tested on
the more textured database BOSSBase; while there is little or even no accuracy
reduction when using the model trained on BOSSBase to detect mini-I or mini-
M. In addition, when using the model trained on mini-I (or mini-M) to test
images from mini-M (or mini-I), although there is a little accuracy reduction,
the accuracy on test database still reaches upper than 90%.

Unlike the scenario in conventional steganalysis, sharp accuracy reduction
just exists in a part of situations in deep steganalysis. This phenomenon may
be caused by the strong learning ability of deep neural networks: Since the
texture complexity is positively related to the steganlysis difficulty, when trained
on textured database, the deep model can learn more intrinsical features for
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classifier, which can also perform well on less textured database. But how to
judge a database is textured or not? In the next part, We use A-distance [1] to
measure the texture complexity between databases.

4.3 Texture Complexity Measurement by A-distance

Figure 4 shows that A-distance matches the texture complexity analysis in
Subsect. 4.1 and the experimental results above very well, which will be described
in detail next:

A-distance between 2 of the 3 databases we use is shown in Fig. 4. Note that
in Fig. 4, negative B→I stands for that mini-I is less textured than BOSSBase,
and the larger is the absolute value of B→I, the less is the texture similarity
of BOSSBase and mini-I. And in the process to get B→I, features used for the
classifier are extracted from BOSSBase and mini-I by CNN trained on BOSSBase
for steganalysis.

Table 2. Validation of cover-source mismatch (%)

train:BOSSBase

BOSSBase mini-M mini-I

suni-0.4 81.3 79.9 87.25

wow-0.4 83.323 78.15 85.475

train:mini-M

BOSSBase mini-M mini-I

suni-0.4 54.425 97.975 94.2

wow-0.4 53.825 97.875 95.675

train:mini-I

BOSSBase mini-M mini-I

suni-0.4 61.85 93.275 97.325

wow-0.4 63.175 92.45 96.475

Fig. 4. A-distance among BOSSBase (B), mini-I (I) and mini-M (M).

A-distance in Fig. 4 shows that after the processing programme, mini-I and
mini-M are less textured than BOSSBase, which demonstrate the inference in
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Subsect. 4.1. It matches the experimental results in Subsect. 4.2 well: there is
sharp accuracy reduction when steganalysis model is trained on less textured
mini-I (mini-M) and tested on BOSSBase, while there is just little accuracy
reduction between mini-I and mini-M which have similar texture complexity.
Note that to our best knowledge, there is no research measuring the texture
complexity of databases numerically before, we believe that it’s instructive for
future works.

From experimental results above, we can concluded that not relying on the
image content, the cover-source mismatch problem in deep steganalysis is mainly
related to the texture complexity of the database, which is very different from
mismatch problem in other computer vision fields.

4.4 J-Net for Cover-Source Mismatch in Deep Steganalysis

Table 3. The accuracy promotion of J-Net (%).

train:mini-I test:BOSSBase

pre-train J-Net promotion

suni-0.4 61.85 68.95 7.1

wow-0.4 63.175 71.2 8.025

train:mini-M test:BOSSBase

pre-train J-Net promotion

suni-0.4 54.425 63.875 9.45

wow-0.4 53.825 63.725 9.9

At first, it’s necessary to introduce the training process of J-Net:

1. Pre-train J-Net on training database without JMMD module, which has been
done in Subsect. 4.2;

2. Except full connected layers, fix parameters of J-Net;
3. Fine-tune J-Net with the labeled training images and unlabeled testing

images.

Table 3 gives the J-Net experimental results in cover-source scenarios where
sharp accuracy reduction happens. From Table 3 we can see that, in these cover-
source mismatch scenarios, J-Net can promote the accuracy by 7%–10%, which
demonstrate the effectiveness of J-Net. Note that, up to now, this is the first
attempt to solve the cover-source mismatch problem in deep steganalysis.

Note that, domain adaptation strategy can only be used in the scenario where
the images tested are a set of images. How to address the cover-source mismatch
problem when the image tested is a single image will be the future work.
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4.5 Parameter Analysis

Fig. 5. Analysis of λ in the loss function of J-Net.

In this section, we do analysis on the tradeoff parameter λ in the loss function
of J-Net (Fig. 5). The experiment is implemented in the scenario where training
and testing set is mini-I and BOSSBase respectively, and the steganography is
wow (0.4bpp).

Fig. 5 shows that, along the increasing of λ, the performance of J-Net rise
first and then fall, which demonstrates that the adaptation of JMMD makes
sense. According to Fig. 5, we fixed all the λ in experiments as 0.2.

Table 4. Experiments in steganography mismatch scenario (%).

train:suni-0.4

BOSSBase mini-I mini-M

suni-0.4 81.875 97.325 97.975

wow-0.4 78.575 96.275 97.05

train:wow-0.4

BOSSBase mini-I mini-M

suni-0.4 77.433 97.775 95.375

wow-0.4 83.025 97.925 96.525

4.6 Bonus Experiments

In addition to cover-source mismatch scenario, we do bonus experiments on
steganography mismatch scenario (Table 4). Table 4 shows that there is just
little accuracy reduction when the training and testing database are embed-
ded with different steganographies. It means that whether the steganography
is WOW or S-UNIWARD, J-Net (without JMMD) can learn similar features,
which demonstrates the strong learning ability and generality of deep neural
network in steganalysis.
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5 Conclusion

In this paper, we do analysis on cover-source mismatch scenarios in deep ste-
ganalysis, and find that unlike in conventional steganalysis, sharp accuracy
reduction just exists in a part of situations in deep steganalysis. To explain this
phenomenon, we utilize A-distance to measure the texture complexity between
databases. To address the sharp accuracy reduction caused by cover-source mis-
match, we adapt JMMD into deep steganalysis and design J-Net. Experimental
results prove the effectiveness of J-Net.
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Abstract. The performance of the steganography detector built on deep
learning has been superior to the traditional feature-based methods, and
more adaptive methods for steganalysis are beginning to emerge. How-
ever a single model may encounter a bottleneck in classification accuracy
due to the absent diversity of training data and parameter configuration,
it maybe fails to exert a strong fitting performance of the deep learn-
ing network. To make full use of the classification performance of the
combination of multiple models, we first obtained multiple base learners
from different snapshot and different training sets. Then two strategies
to combine multiple base learners: one achieves the optimal ensemble
effect by majority voting and product combination, another, in view of
the insufficient performance of Softmax classifier, propose a scheme of
feature extraction based on convolutional neural network. Experiments
show that the ensemble scheme proposed can well fuse the output of mul-
tiple convolutional neural networks, thus effectively reduce the detection
error rate of a single model.

Keywords: Steganalysis · Ensemble · Feature fusion · Convolutional
neural networks

1 Introduction

Steganography is an effective mean to protect the communication security. It
embeds information in the communication carrier and then sends it out through
public channel without attracting attention of the third party. It pays atten-
tion to concealment and security of communication process. Steganalysis, as the
confrontation against steganography, aims to determine whether a given object
contains secret information, which has important research significance.

The traditional steganalysis adopts machine learning method to extract gen-
eralized steganalysis features and combines SVM (support vector machine), neu-
ral network and other classifiers to train the general detection model to achieve
the detection target of various steganographic algorithms. In the feature con-
struction phase, residual image is often calculated using a high-pass filter, and
statistical models are used to extract steganalysis features. Common steganalysis
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methods of the spatial image include SPAM [16], SRM [4], etc. Early steganalysis
of JPEG images followed the principle of constructing features in the embedded
domain, usually were based on DCT coefficient to calculate residual and extract-
ing features, such as PEV [17]. Later, JPEG steganalysis constructed residual
features by combining phase information in the decompression domain according
to characteristics of decompressed signal amplification and block phase, includ-
ing GFR [19] and MD-CFR [3]. However, with introduction of a series of high-
dimensional features represented by rich models, traditional classifiers are no
longer applicable due to high training complexity [4]. To address classification
problem caused by high-dimensional features, Fridrich et al. proposed an ensem-
ble classifier in 2012, which had become the preferred classifier for processing
high-dimensional features since it improved prediction accuracy and reduced
training complexity [12].

Recently, scholars have begun to combine steganalysis with deep learning,
and use ability of deep learning model to simulate complex representation to
achieve the purpose of automatic learning effective feature. The early spatial
steganalysis based on CNN model with certain influence was proposed by Qian
[18]. The network includes a preprocessing layer, five convolutional layers and
three full connection layers in preprocessing layer. The fixed KV kernel (Eq. (9)
in [11]) is used to obtain the residual image for subsequent learning and reduce
interference of the image content. XuNet [22] was the first architecture with
competitive performance, where in the front part of network, the absolute value
layer and TanH activation were used, and batch normalization [10] and 1× 1
convolution were used to compress feature map as well. In addition, YeNet pro-
posed in [15] used 30 SRM convolution kernels to initialize parameters and used
TLU and ReLU activation functions in network. The newly proposed SRNet [1]
has achieved better results in both spatial and JPEG domains. SRNet is an end-
to-end CNN steganalysis model. The network does not perform pre-processing
(learning filters) and only subsamples feature map from the first seven con-
volutional blocks. To avoid problem of disappearing gradients, layers 2–11 use
shortcut mechanism [7].

In order to enable deep learning to play a good role in JPEG domain, scholars
have made many adaptive modifications to CNN model. Chen et al. [2] and Xu
et al. [20] introduced deep learning into steganalysis of JPEG images in 2017.
Chen et al. [2] used traditional JPEG steganalysis idea for reference, and trained
different convolutional neural network models based on different phases of JPEG
images. Xu et al. [20] proposed a 20-layer deep convolutional neural network to
detect J-UNIWARD steganography method [9], and used residual structure to
solve vanishing gradient problem. The latest end-to-end network-SRNet [1] can
also be used for steganalysis of JPEG domain images with leading results.

In following work [21], they proposed several different collection methods,
which use two CNN structures with different widths, called “size 128” and “size
256”. Experiments show the best one in S-UNIWARD 0.4 bpp with a detec-
tion error of 18.44%. Inspired by Xu et al. [21] and Ni et al. [14], classification
performance of ensemble method is often better than that of a single model.
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Therefore, we utilize ensemble learning for better performance. In this paper,
we build multiple classifiers based on current best end-to-end model SRNet [1],
and use the following methods to maximize classification accuracy. Experimental
results show that our method achieves better classification accuracy than SRNet
model in both spatial domain and JPEG domain.

First of all, we obtain multiple base learners from different training snapshots
and different training data. On this basis, we adopt two methods to optimize the
classification accuracy: 1. Collected decision output of all models and ensemble
multiple models based on majority voting and product combination. 2. As a
powerful feature extractor, convolutional neural network is better than most
hand-designed traditional feature classifiers. Traditional steganalysis is usually
classified by ensemble FLD classifier [12], which can automatically select feature
and has good detection performance. The paper proposes to take output of the
last convolution module of convolutional neural network as feature, then fuse
all feature of base learner into a new complex feature, finally, let the ensemble
classifier complete the classification task as the second-level classifier.

The rest of this paper is organized as follows. In Sect. 2, we review the bench-
mark CNN for ensemble. How to extract base models and two combination
strategies are shown in Sect. 3. In Sect. 4, we present the experimental settings
and results. Finally, a conclusion is given in Sect. 5.

2 The Framework of SRNet

The proposed ensemble methods require the base learner to be built by SRNet
[1], which has been the state-of-the-art model in steganalysis filed. Therefore, we
will briefly review architecture and novel tricks of SRNet.

The overall structure of SRNet proposed by [1] is similar to CNN framework
for universal image recognition: the first part extracts the features of residual
noise; the second part reduces dimensionality of feature maps to extract more
advanced semantic features; the third part classifies dimensionality reduction
features extracted. Different from previous CNN steganalysis framework, SRNet
is a complete end-to-end network, which does not contain any heuristic and prior
information like fixed preprocessing high pass filter or SRM [4] kernel used to
initialize convolution kernel. SRNet randomly initializes and learns its own filter
kernel.

The overall structure of SRNet is shown in Fig. 1, which has 12 layers of con-
volutional blocks. Generally, it can be classified into four types, 256× 256 gray
scale images are directly input into network, Types 1-2 (Layers 1-7) completes
extraction of low-level features of steganographic signals, Type 3 and Type 4
reduce dimension of feature maps. Finally, the combination of a fully connected
layer and Softmax layer achieves linear classification. It should be noted that
in order to extract sufficient residual noise features, network disallows average
pooling in feature extraction stage (Type 1-2), because average pooling will filter
implicit residual signal as a low-pass filter. SRNet introduces shortcut connec-
tions [7] for Type 2 and Type 3 to ease disappearance of gradients and encourage
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feature reuse. In addition, the nonlinear activation function adopted is ReLU,
and the size of convolution kernel of all convolution modules is 3× 3.
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Fig. 1. Framework of SRNet. L1-T1 represents Layer 1-Type 1. BN represents batch
normalization. The number in the brackets is the number of 3× 3 kernels in convolu-
tional layers.

3 Ensemble Learning

In machine learning, we usually want to train a model with the stable and
good performance in all aspects. However, the performance of a single model
is often not perfect, and we can only obtain multiple models with advantages
and disadvantages. Through ensemble learning, multiple models are combined
to improve classification accuracy.

3.1 Extract Base Models

Base Models Varying Training Data. One way to realize the difference
between models is to train each model on a different subset of available train-
ing data. By using re-sampling methods (such as cross-validation and Bag-
ging), different subsets of training data are naturally trained into model to
obtain the models with different weights. This method aims to estimate average
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performance of model for data not seen in general. The models used in this
estimation process can be combined in so-called resampling-based sets, such as
cross-validation sets or Bagging sets.

In this paper, a sample selection method similar to cross-validation is
adopted. Dataset is divided into two parts, one part is used for training and
the other part is used for testing. Dataset used for training is divided into five
equal parts, and four pieces are used for training each time, one part is used to
verify performance of model in real time during training process. It is necessary
to ensure that dataset selected for verification must be different in each sample.
In the experiment, we select three different training subsets.

Base Models Varying Snapshots. In training process, CNN adopts mini-
batch SGD. Every time a batch of data is input, Loss is calculated and parame-
ters are updated. The various parameters in CNN are constantly updated, and
many local parts are encountered when searching for global minimum. The min-
imum values, the resulting model results will also produce different differences.
We use this to gain versatility between models during training without additional
training time.

Fig. 2. Learning rate cycling procedure

In fact, the idea was implemented by Huang et al. [5] in 2017, which obtains
multiple neural network models by manipulating learning rate without addi-
tional training costs. Generally speaking, learning rate represents optimization
step of SGD. Adjusting learning rate can make model converge to different local
minimum. It saves weight of each local minimum for subsequent ensemble. Specif-
ically, it adopts cyclic attenuation strategy proposed by Loshchilov [13], in which
learning rate is cyclically attenuated in the form of cosine function (see Fig. 2),
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and the sudden increase of learning rate can make model escape from the current
local minimum.

Cyclic cosine annealing can be expressed as

α(t) =
α0

2

(
cos

(
π mod (t − 1, [T/M�)

�T/M�
)

+ 1
)

(1)

where t is the current number of iterations, T is the total number of training
iterations and α(t) is the current learning rate. In the experiment, we set M = 8
and T = 400, that is, complete a cosine attenuation every 400/8 = 50 epochs.
In order to converge sufficiently, this parameter(�T/M�) increases with the size
of training set. At the end of the loop we select the last m = 5 base models for
the subsequent ensemble.

3.2 Combination Strategy

How to make full use of N = 3 × 5 base model obtained in previous section, we
propose two methods to fully fuse the obtained 15 models. The first method is
to combine the decision output of each CNN model. Another method is to fuse
the output of the last layer of the convolutional layer of each model, and finally
input the ensemble classifier [12] for the feature classification. Thanks to the
excellent classification performance of ensemble classifier [12], the final ensemble
result is competitive.

Decision Combination. For classification tasks, ensemble learning will predict
a new result in combination with the category labels of all sub-classifiers. In this
paper, two schemes are used to combine the decision results of neural network,
namely majority voting and product combination.

Majority Voting. The most common combination strategy is the voting. Due to
the steganalysis is a binary classification task, we have N base learners mentioned
above, and the classification labels have two categories, hi is the i-th learner. The
predictor output of hi on sample x is represented as a two-dimensional vector
[h0

i (x), h1
i (x)], plurality voting can be expressed as:

H(x) = cargmax

N∑
i=1

hj
i (x) (2)

where hj
i (x) is the decision output of hi on sample x, j ∈ {0, 1}, hj

i (x) ∈ {0, 1}.

Product Combination. Except for majority voting, there is another decision com-
bination strategy: product combination rule. Suppose a data sample x ∈ Rn,
label class is ωj , j = 1, 2..., C. For steganalysis task, C = 2. The Softmax output
of the N = 15 models introduced in the previous section can be described as:

P (y = ωj |X = x) =
ef

j
k(x)∑C

c=1 ef
c
k(x)

(3)



90 Q. Li et al.

where fk(x) is the output from the last layer of the neural network for k-th
model, f j

k(x) is the score corresponding to j-th label, and P (y = ωj |X = x) is
the predicted probability for data x in class ωj .

In this experiment, the product combination rule for steganalysis can be
described as:

H(x) =
{

0,
∏15

k=1 P (ω0|x) >
∏15

k=1 P (ω1|x)
1, otherwise

(4)

where ω0 and ω1 represent cover and stego respectively.

Algorithm 1. Selective decision combination
Input: N base learners
Output: detection error rates on the testing set
1: for i = 1 to N do
2: for l = 1 to Ci

N do
3: Calculate error rates of every combinations of classifier on training set
4: end for
5: end for
6: Select the combination whose error rate is the lowest, then test on the testing set

It has been proved that not all base classifiers participate in ensemble learning
is best, therefore we compare detection error rates of all the combinations using
two decision combination on training set to obtain the best combination. For we
choose i models from N models (i = 1, 2, 3, ..., N), there are total C1

N + C2
N +

... + CN
N = 2N − 1 combinations, then the best combination whose ensemble

detection error rates is lowest on training set will be selected to be tested on the
testing set. The method above can be expressed as Algorithm 1.

Feature Fusion. The deep learning model has the nonlinear function approxi-
mation ability unmatched by the support vector machine, and can extract and
express the characteristics of the data well. The essence of the deep learning
model is the feature learner. However, the combined classifier with full connec-
tion and Softmax in CNN is often difficult to achieve the desired effect in terms
of independent processing classification and regression.

In order to make full use of the features of multiple base learners extracted
in the previous section, we use ensemble classifier proposed in [12] to replace the
combined classifier with full connection and Softmax. Zhong proposed a similar
method [23]: CNN is used to extract features and ensemble classifier in [12] is
considered as the second-level classifier. In this paper, the output of the last
convolutional layer of every CNN models is fused into a new multi-dimensional
feature, and then the high-dimensional feature is classified by the ensemble clas-
sifier [12] commonly used in steganalysis. For feature fusion strategy, this paper
adopts two fusion strategies: serial fusion and parallel fusion.
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Suppose a data sample x ∈ Rn, the 15 models introduced in the previous
section are D1,D2, ...D15, the 512-dims feature of each model can be described
as: vk

x =
[
vk
x,1, v

k
x,2, . . . , v

k
x,512

]T
, k = 1, 2, ...15, and two fusion strategies can be

described as follows:

Serial fusion

vx =

⎛
⎜⎜⎜⎝

αv1
x
T

βv2
x
T

...

γv15
x

T

⎞
⎟⎟⎟⎠

T

(5)

Parallel fusion
v =

(
αv1

x + βv2
x + ... + γv15

x

)T
(6)

In addition, due to the different ways of feature extraction, the values of the
features are not balanced. In this case, the features need to be normalized. The
normalization of the features of this subsection is normalized by the L2 norm
defined by

norm
(
vk
x

)
=

√(
vk
x,1

)2 +
(
vk
x,2

)2 + · · · +
(
vk
x,n

)2

v′k
x =

vk
x

norm (vk
x)

, k = 1, 2, ..., 15 (7)

Feature fusion can derive and obtain the most effective and minimal dimension
feature vector set, which is conducive to final decision-making. Besides ensemble
FLD classifier can further utilize the fused high-dimensional features.

4 Experiments

4.1 Dataset and Settings

In this experiment, the base model SRNet is implemented by TensorFlow,
which is tested on spatial domain steganography algorithm WOW [8] and JPEG
domain steganography algorithm J-UNIWARD [9] respectively. The embedding
rate used is 0.2 bpp and 0.4 bpp (bpnzac for J-UNIWARD). In terms of data set,
we used BOSSBase v1.01 image set commonly used in this field which consists
of 10,000 512 × 512 grayscale images. Limited to Nvidia GTX 1080Ti memory
capacity of this experimental hardware platform, we adjust the 512 × 512 size
grayscale image to 256 × 256 using “imresize” with default setting in Matlab.
For the spatial domain image, we directly use WOW steganography algorithm
to embed secret information to obtain stego image. For the transform domain
image, first use JPEG toolbox to compress 10,000 grayscale images into JPEG
images with a quality factor of 75, then use J-UNIWARD (Abbr. JUNI) [9]
algorithm to embed secret information, and finally decompress 10,000 pairs of
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cover-stego pairs into the spatial domain. Note that the integer is not rounded
when decompressing.

We compose the original and stego images into image pairs, a total of 10,000
pairs, and guaranteed that the pairs were input into CNN. 5,000 pairs are ran-
domly divided into training sets, and the remaining 5,000 pairs are testing sets,
which do not participate in training during the training process. In order to
obtain multiple different training sets, the training set is further divided into
five subsets, four for training and one for testing.

For hyper parameters, we set epoch = 400, and the learning rate adopted
the cyclic cosine attenuation mentioned in Eq. 1, α0 = 0.002, M = 8 and every
400/8 = 50 epochs to complete a complete cosine attenuation, and we took the
last five models to complete the ensemble experiment. The kernel weights were
initialized with the He initializer [6] and 2 × 104 L2 regularization. Eight pairs
of images are used as a batch, and the model is saved every 10 epochs, but after
each epoch, the training set will be shuffled for training.

4.2 Result and Discussion

We obtain N = 3 × 5 = 15 base models through snapshot ensemble and Bag-
ging, for the N = 15 base models, we implement the two combination strategies
mentioned in Sect. 3.2. First, according to Algorithm1, the output probabili-
ties of each base model are extracted and combined, and finally the optimal
classification results are selected. According to feature fusion strategy, the 512-
dimensional features of the last convolutional block output of each base model
are fused into a more complex feature as the input of ensemble classifier. The
ensemble classifier will select the different combination of feature to obtain better
performance of classification like selective ensemble. Finally, we compare results
of different ensemble scenarios. We use the average error rate PE to evaluate the
performance.

PE = min
PFA

1
2

(PFA + PMD) (8)

where PFA and PMD are the false-alarm and missed-detection probabilities.
Figure 3 shows the comparison of two selective decision combination schemes:

majority voting and product combination. Considering different schemes and
payload, selective decision combination has low error rates when product combi-
nation is used. Table 1 shows results of steganalysis for spatial steganography
algorithm WOW and JPEG steganography algorithm J-UNIWARD, respec-
tively. SRNet represents steganalysis error rates of SRNet run by ourselves.
Product-Sel indicates the results of selective product combination, SF-EC rep-
resents serial feature fusion with ensemble FLD classifier, namely the classifica-
tion of 512 × 15-dimensional serial feature classified by traditional ensemble FLD
classifier, PF-EC represents parallel feature fusion with ensemble FLD classifier.
From results of the table we can conclude that the results of two combination
strategies are always better than the best results of a single model. Overview
the table, feature fusion performs best in classification. More specifically, SF-EC
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Fig. 3. Steganalysis error rates comparison of different ensemble scenarios

and PF-EC perform best in WOW and J-UNIWARD algorithms, respectively.
This means that serial feature fusion and parallel feature fusion have their own
applicable scenarios. In addition, feature fusion is more effective than decision
combination, compared to results of SRNet, and an improvement of up to 1.35%
is observed.

Table 1. Detection errors of different ensemble scenarios

Steganalysis method WOW JUNI

0.2 bpp 0.4 bpp 0.2 bpnzac 0.4 bpnzac

SRNet 0.2007 0.1074 0.2431 0.0995

Product-Sel 0.1960 0.0984 0.2380 0.0924

SF-EC 0.1872 0.0945 0.2367 0.0948

PF-EC 0.1878 0.0951 0.2308 0.0887

5 Conclusion

In this paper, we study several ensemble strategies based on SRNet, which is
the state-of-the-art for steganalysis. We first use two methods to obtain mul-
tiple base learners. Cyclic cosine decay strategy can manipulate learning rate
to obtain multiple models in iterative process, and then use Bagging to obtain
multiple models trained by different data. Multiple base models are combined by
decision combination and feature fusion. Experiments show that two combina-
tion strategies can often perform better than any single classifier, alternatively
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the feature fusion and ensemble FLD classifier has better performance than deci-
sion combination. The reason is that ensemble classifier is more effective than
Softmax in dealing with classification, regression and other issues independently.
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Abstract. Basic image processing operations like median filtering and
Gaussian blurring in general do not change the semantic content of an
image, although they are commonly used to cover fingerprints of falsi-
fication that does alter image content such as copy-move and splicing.
Therefore image forensics researchers are interested in detecting these
basic operations. Some existing detectors track local inconsistencies in
statistics of the image. However these statistics are very sensitive to
image development process. Thus pre-processing operations can be dam-
aging for performances of such detectors. In this paper, we focus on a
very common pre-processing operation, i.e., re-sizing, and study how
it affects performance when trying to detect several image processing
operations on small patches, with Gaussian Mixture Model (GMM) as
feature extractor and a Dense Neural Network (DNN) as classifier. We
first show performance drops. We then introduce an adaptation method
which relies on better fit to testing data for the feature extraction and
fine-tuning for the neural network classifier. Experimental results show
that our method is able to improve results with very few labeled test-
ing samples. We also present comparisons with an improved version of a
recent CNN(Convolutional Neural Network)-based method.

Keywords: Image forensics · Gaussian Mixture Model · Neural
network · Feature adaptation · Weakly supervised · Fine-tuning

1 Introduction

Digital images now play a more and more important role in our decision-making
processes of daily life, either personal or professional. However, people can be
misled by falsified images which can now be created very easily even by non-
experts. Under this context, it is necessary to build reliable tools to assess
integrity of an image and to tell whether it is falsified or not. This is indeed
the goal of image forensics research. In this work, we focus on a specific forensic
problem, i.e., the detection of basic image processing operations on very small
patches of 8×8 pixels. Basic operations, e.g., Gaussian blurring, median filtering
and noise addition, are often used during the creation of a fake image to cover
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the traces of falsifications that do change the semantic meaning of the image.
Detection of such operations on very small patches of 8 × 8 pixels is challenging
due to lack of information, but can make it possible to reliably detect operations
applied within a small spatial extent.

In an image development process it is quite common to re-size an image to
fit some layout or displaying constraints or else to reduce storage. So this oper-
ation is not suspicious in general, as it is a realistic scenario to assume that an
image could have been re-sized before being manipulated. This pre-processing
operation should not harm performances of forensic detectors. It is not practi-
cal to assume that a sufficiently large number of labeled samples are available
to re-train models from scratch. From a computing time and power perspec-
tive it would be exhaustive and very demanding to perform many times of re-
training. A similar issue has been raised in [11] in the field of computer vision,
which underlines the importance and benefit of being able to train a model when
incomplete or only few labeled samples are available. Training with few labeled
samples is also called “few-shot learning” in the machine learning literature
[15,16]. In digital image forensics, recently authors of [4] have proposed an inter-
esting method to tackle a related yet different problem of weakly supervised
learning. Both considered problem and adopted approach are different from
ours. Classifier in [4] is able to distinguish synthetic images from natural ones,
and the “target” domain means a new class of samples (e.g., tested on syn-
thetic images created by a new algorithm). The good performance under weakly
supervised scenario is mainly due to the design of disentangled latent variables in
an auto-encoder-based detector. In this paper, we propose a new and different
weakly supervised approach for a classifier based on image statistical models,
for the forensics of manipulations on images which have undergone re-sizing pre-
processing. In the related field of steganalysis, researchers have expressed some
concerns about similar issues of performance drop under the so-called cover-
source mismatch [7–9]. In general, popular solutions in steganalysis are to train
a classifier with more samples of big diversity, or to train multiple classifiers
and later use the most suitable one during specific testing. By contrast, in this
paper, we propose a light-weight adaptation method to image pre-processing for
the detection of basic manipulation operations. Our contributions are summa-
rized as follows:

– We raise the problem of forensic performance drop under re-sizing pre-
processing, which until now seems ignored and underestimated;

– For image statistical models that have been trained on samples of original size,
we develop a simple weakly supervised (making use of around 2000 labeled
patches) adaptation method to re-sized testing samples;

– Our method takes into account both feature and classifier adaptation and is
very quick and straightforward so as to provide a real shortcut.

We will first introduce in Sect. 2 the research problem. Our approach of
weakly supervised adaptation is described in Sect. 3. Experimental results are
presented in Sect. 4. Finally, we draw the conclusion in Sect. 5.
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2 Background and Research Problem

Image Forensics. Various problems have been considered by image foren-
sics researchers [12], such as camera identification [2], identification of synthetic
images [4,14], detection of falsification such as splicing and copy-move [3,17], and
detection of image manipulation [1,5,10,13]. We are interested in the last topic
of detecting image manipulations. Here we distinguish between falsifications, i.e.,
modifications that alter the semantic content of the image, and manipulations,
i.e., modifications with basic image processing operations which in general do
not change the image’s semantic meaning. Regarding manipulation detection, in
the literature researchers first focused on building specific and targeted detec-
tor for one particular manipulation, e.g., median filtering, JPEG compression,
etc. Then after achieving successful results with these methods, the community
tried to build so-called “universal” detectors. They are detectors not focusing on
one particular operation but capable of detecting several ones with same anal-
ysis pipeline. Our work follows this trend. Existing universal detectors can be
classified into three categories:

1. Explicit statistical modeling of the image (using the Gaussian Mixture Model,
GMM) to spot statistical discrepancy [5];

2. Extraction of steganalytic features, e.g., based on SPAM (Subtractive Pixel
Adjacency Matrix) or SRM (Spatial Rich Model), combined with classifier
training [10,13];

3. “End-to-end” deep-learning-based method [1].

As mentioned earlier, we consider that it is crucial to be able to forensically
analyze very small patches, so as to be spatially more accurate and capable of
detecting manipulation of a very small region. This has driven us to focus on
the first GMM-based approach mentioned above [5], as it appears to be the
most promising method for very small patches. The explicit statistical model-
ing can be effectively conducted on patches of 8 × 8 pixels [5], while the other
two approaches, as described in their original papers [1,10,13], work on larger
patches. These two approaches seem not specifically designed to cope very well
with small patches. In particular, the second approach involves an occurrence
accumulation step which is more reliable with more contributing pixels, and
tends to have decreasing accuracy as the size of patch decreases [10,13]; and
CNNs in the third approach [1] normally contain pooling layers, which would
cause loss of information and thus is not necessarily very suitable for small
patches.

Performance Drop Under Re-sizing. Considered manipulations are bor-
rowed from [5] and listed in Table 1. Most of these manipulations are also used
in [1], but here we consider a slightly more challenging setting (i.e., distortion
introduced by manipulation is smaller) than that in [1]. We decide to focus on
these basic operations as they are among the most common in image processing.
Moreover, they can be used to cover more complex tampering. For instance,
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Table 1. List of considered manipulations.

ORI No image modification

GF Gaussian filtering with 3 × 3 kernel and σ = 0.5

MF Median filtering with window size of 3 × 3

USM Unsharp masking with Laplacian filter of window size 3 × 3 and strength
factor of 0.5

WGN White Gaussian noise addition with σ = 2

JPEG JPEG compression with quality factor Q = 90

Table 2. Testing accuracy (in %) without any adaptation for GMM-based method
using log-likelihood ratio (details in Sect. 3.1). The first column gives the re-sizing
factors. The performance drop compared to the case without re-sizing (i.e., the row of
×1) is given in parentheses. We do not use ratios like 0.5 to avoid the potential special
side effect of such ratios. The last column of “AVG” gives the average accuracy and
performance drop of the 5 classification problems.

GF MF USM WGN JPEG AVG

×1 91 86 97 98 89 92

×0.51 64 (−27) 75 (−11) 73 (−24) 69 (−29) 79 (−10) 72 (−20)

×0.76 78 (−13) 81 (−5) 81 (−16) 73 (−25) 84 (−5) 79 (−13)

×1.15 55 (−36) 80 (−6) 87 (−10) 85 (−13) 79 (−10) 77 (−15)

×1.25 51 (−40) 75 (−11) 74 (−23) 81 (−17) 67 (−22) 70 (−22)

one can use Gaussian blurring to smooth boundary between a spliced part and
the rest of an image. In the following, “source” indicates training samples that
have not undergone re-sizing. “Target” means the testing samples which have
undergone re-sizing before applying a possible manipulation that we want to
detect. This study is interested in the impact of image re-sizing as pre-processing
operations on detection of image manipulations. Bi-cubic interpolation is used
to re-size testing images as, in general, it is the hardest case for carrying out
successful adaptation. Drops of detection accuracy of the GMM-based method,
when there is no adaptation, can be observed in Table 2. From this table, we can
also see that the method works quite well on 8 × 8 patches of images of original
size, with an average accuracy of about 92%. However, the performance drop,
when there is re-sizing pre-processing, is sometimes quite significant.1 This has
motivated our work of detector adaptation presented in the next section.

1 As shown in Sect. 4, performance decrease also exists for CNN-based method [1].



Weakly Supervised Adaptation for Image Manipulation Detection 103

3 Proposed Approach

3.1 Classification Pipeline

Our pipeline is largely inspired by the method of Fan et al. [5] as it is one of the
state-of-the-art methods for detecting manipulations on small patches. Firstly
Gaussian Mixture Models (GMMs) are trained, one for each set of patches (orig-
inal, Gaussian filtered, median filtered, etc.), six models in total (see Table 1).
Models are trained to maximize likelihood on patches with the Expectation-
Maximization (EM) algorithm. Log-likelihood for sample xl under a mixture of
N Gaussian components, parameterized by θ = {πk,μk,Σk}, k=1,2,...,N , is:

L(xl|θ) = log

(
N∑

k=1

πkN (xl|μk,Σk)

)
, (1)

with πk, μk and Σk respectively the weight, mean and multivariate (full) covari-
ance matrix for kth component in the mixture. Here DC component of each patch
is removed so patch mean is 0 thus μk are all zeros. After the GMMs are trained,
a very quick and efficient technique to produce a decision for a testing sample is
to compute log-likelihood for each GMM and compare these values. In the case
of binary classification, it means calculating the log-likelihood ratio between the
GMM of manipulated patches and that of original patches [5], as:

r(xl) =
LGMMmanip

(xl)
LGMMori

(xl)
. (2)

If the ratio r(xl) > 1 then the decision should be that sample patch xl is a
manipulated one, otherwise it is original.

In the first step of EM (E step), we need to compute component scores which
are likelihood values with regard to each Gaussian component in the GMM:

r
(l)
k = πkN (xl|μk,Σk). (3)

We notice that these component scores form a more detailed descriptor than
the log-likelihood value for patch xl. Therefore in this paper we propose to use
them as features to feed a classifier. For binary classification, the 2N -dimensional
feature vector (r(l)1,ori, r

(l)
2,ori, . . . , r

(l)
N,ori, r

(l)
1,manip, r

(l)
2,manip, . . . , r

(l)
N,manip) of patch

sample xl is a concatenation of component scores of the two trained GMMs under
comparison, each having N components. We use a small Dense Neural Network
(DNN) as classifier whose architecture is described in Sect. 4. As expected, exper-
iments show that performances of baseline scenario (i.e., when testing samples
are not re-sized) are almost identical to the detector based on log-likelihood
ratio. In the following we propose a weakly supervised adaptation method of our
classification pipeline composed of GMMs and DNN.
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3.2 Weakly Supervised Adaptation

The proposed adaptation method comprises two sub-steps. First, GMMs are
adapted so that they fit better to the testing samples which have undergone
re-sizing. Then the DNN classifier is adapted by fine-tuning the network. Both
steps are accomplished in a weakly supervised manner, i.e., by using a very
limited number of labeled testing samples of 8 × 8 patches.

In the following, we first show that if DC components of patches are removed
(i.e., Gaussian component’s means μk = 0, ∀k = 1, 2, . . . , N), the weighted
sum of covariance matrices of a GMM is equal to the covariance matrix of the
data. We have X = (X1,X2, . . . , Xp) a multi-dimensional random variable. Here
p = 64 as patches are 8 × 8. Let f be the Probability Density Function (PDF)
of random variable X with DC component removed and fk the PDFs of each
component of the related Gaussian mixture, then we have:

f(xl) =
N∑

k=1

πk fk(xl) =
N∑
i=1

πk N (xl|0,Σk), (4)

with xl a p-dimensional sample of the random variable X, Σk and πk respec-
tively the covariance and the weight for the kth component in the mixture. Now
let us compute elements of the covariance matrix of X:

cov(Xi,Xj) = Ef [XiXj ] − Ef [Xi]Ef [Xj ] = Ef [XiXj ]

=
N∑

k=1

πkEfk [XiXj ] =
N∑

k=1

πk(Σ
(i,j)
k + μ

(i)
k μ

(j)
k ) =

N∑
k=1

πkΣ
(i,j)
k ,

(5)

where superscripts (i), (j) and (i, j) are element index within the corresponding
vector and matrix. Considering that variance is a special case of covariance, from
Eq. (5) we can see that covariance matrix of the data is equal to the weighted
sum of covariance matrices of the Gaussian mixture.

We assume that we have only a few labeled samples on target domain, not
enough to train a model from scratch (this needs around 200000 samples of
each class) but enough to compute empirical covariance matrix per class on tar-
get (around 1000 samples for each class). GMMs’ parameters should be slightly
adjusted so as to enhance the descriptive capability of the model on target data.
GMMs can be adjusted in two ways: the weights or the covariance matrices
(the means are zeros). Beside that, our aim is to have a quick adaptation solu-
tion. Therefore, we choose to adapt the GMM weights. The weights contain less
parameters (only a vector and not matrices). Adaptation of GMMs’ weights can
be formulated as an optimization problem:

minimize
wk

∥∥∥∥∥
(

N∑
k=1

wk × Σk

)
− Σdata

∥∥∥∥∥
F

subject to
N∑

k=1

wk = 1, and 0 < wk < 1, ∀k = 1, 2, . . . , N.

(6)
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In Eq. (6), wk are adapted GMM weights to be deduced, Σdata is the empirical
covariance matrix on target domain, and F stands for Frobenius norm. We do
acknowledge that semi-definite positive matrices lie on a Riemannian manifold,
thus with a curvature. So a geodesic distance would be more adapted; how-
ever we do not notice any differences in classification performances or results
of optimization using Euclidean distance instead of geodesic distance, although
geodesic distance is way more expensive and slower to compute. Therefore in
practice Frobenius norm is used.

These adjustments of weights for each GMM can be seen as a fine-tuning
for feature extraction. It is a means of reducing discrepancy between features of
source and target domains. In the second step of our method, classifier adapta-
tion by fine-tuning the DNN is carried out to cope with drifts in features and
therefore enhance discriminative capability of the classifier.

4 Experiments

In this section, we present some experimental results to show the feasibility of
the proposed weakly supervised adaptation method.

Dataset and Implementation. For experiments, we looked for a large
database (around 1000 images), in high-resolution (more realistic), in RAW for-
mat to be able to control the image development process and with as many image
sources as possible. Dresden database [6] is the best match with these expecta-
tions with 1200 images, in RAW format from various source cameras, different
scenes and exposures and of around 2000 × 4000 resolution. We select randomly
30% of images as testing images. Re-sizing is performed on the full-sized images
(not patches) and before applying the potential manipulations. This is indeed a
pre-processing operation which does not alter fingerprints of manipulations but
only statistics of images. The remaining 70% are used to train the GMMs and the
DNN classifier. This training set is never re-sized. For training, we use 200000
patches of 8 × 8 pixels for each class. These patches are extracted randomly
from images in the training set, with same number of patches coming from each
image. This makes 400000 patches for each binary classification problem.

GMMs have N = 75 components each. This number has been chosen via
cross-validation to reach a good trade-off between classification accuracy and
model complexity (as well as training time). For GMM training, we used Scikit-
Learn implementation with 5 initializations for πk and Σk with k-means. μk

are initialized to be zeros. Initialization that obtains best likelihood on data is
selected. For the classification part, we perform binary classification of original
patches vs. manipulated patches. We used Keras (with Tensorflow backend) for
the DNN implementation and training. It is a very simple network with two
hidden layers of respectively 256 and 128 neurons, ReLU activation, dropout of
0.5 and Adam optimizer with default parameters for minimizing cross-entropy
loss. This architecture has not been optimized as it is not a crucial part given
that classification is quite easy. For fine-tuning, learning rate is reduced to 10−4.
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Table 3. Testing accuracy (in %) of DNN fine-tuning, combined without or with
weights adaptation of GMMs. The improved accuracy of weakly supervised adapta-
tions, compared to the case of “without adaptation”, is given in parentheses. Testing
accuracy without re-sizing is also given in the second row for reference. The last col-
umn of “AVG” presents the average accuracy (and average accuracy improvement in
parentheses, if any) of the 5 classification problems.

GF MF USM WGN JPEG AVG

Without re-sizing 91 86 97 98 89 92

Re-sizing ×0.51
(without adaptation)

64 75 73 69 79 72

Re-sizing ×0.51 (DNN
fine-tuning only)

72 (+8) 75 (+0) 91 (+18) 71 (+2) 82 (+3) 78 (+6)

Re-sizing ×0.51
(GMM adaptation +
DNN fine-tuning)

78 (+14) 76 (+1) 92 (+19) 70 (+1) 86 (+7) 80 (+8)

Re-sizing ×0.76
(without adaptation)

78 81 81 73 84 79

Re-sizing ×0.76 (DNN
fine-tuning only)

78 (+0) 77 (−4) 92 (+11) 81 (+8) 84 (+0) 82 (+3)

Re-sizing ×0.76
(GMM adaptation +
DNN fine-tuning)

83 (+5) 82 (+1) 94 (+13) 85 (+12) 84 (+0) 86 (+7)

Re-sizing ×1.15
(without adaptation)

55 80 87 85 79 77

Re-sizing ×1.15 (DNN
fine-tuning only)

66 (+11) 82 (+2) 95 (+8) 96 (+11) 79 (+0) 84 (+7)

Re-sizing ×1.15
(GMM adaptation +
DNN fine-tuning)

70 (+15) 85 (+5) 95 (+8) 96 (+11) 82 (+3) 86 (+9)

Re-sizing ×1.25
(without adaptation)

51 75 74 81 67 70

Re-sizing ×1.25 (DNN
fine-tuning only)

63 (+12) 78 (+3) 95 (+21) 90 (+9) 70 (+3) 79 (+9)

Re-sizing ×1.25
(GMM adaptation +
DNN fine-tuning)

66 (+15) 80 (+5) 95 (+21) 95 (+14) 78 (+11) 83 (+13)

Batch size is 128. 1000 samples of each class are used to compute empirical
covariance matrices in order to be able to adapt GMM weights and fine-tune the
DNN. Code will be soon available on-line.

With DNN Fine-Tuning Only. DNN fine-tuning helps to improve the detec-
tion accuracy, but sometimes the improvement is rather limited (Table 3, rows
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of “DNN fine-tuning only”). By fine-tuning, the classifier’s decision boundary is
slightly adjusted, somehow similar to the case of selecting a new threshold for the
comparison of likelihood (instead of 1 initially). In order to further enhance the
discriminative power of the whole forensic pipeline, it is necessary to also adapt
GMMs, the underlying feature extractor, which are until now trained solely on
the source data while being “blind” to the target domain. Therefore, GMMs
should be tweaked, more precisely their weights, in order to better fit the target
data (as described in Sect. 3.2).

Table 4. Testing accuracy (in %) of DNN fine-tuning, combined without or with
weights adaptation of GMMs, for the case of mixed re-sizing factors. Re-sizing factor
is drawn following uniform law within the specified interval.

GF MF USM WGN JPEG AVG

Re-sizing ×[0.48, 0.72]
(without adaptation)

71 81 76 72 87 77

Re-sizing ×[0.48, 0.72]
(DNN fine-tuning only)

78 (+7) 81 (+0) 91 (+15) 76 (+4) 87 (+0) 83 (+6)

Re-sizing ×[0.48, 0.72]
(GMM adaptation +
DNN fine-tuning)

83 (+12) 80 (−1) 92 (+16) 80 (+8) 88 (+1) 85 (+8)

Re-sizing ×[1.12, 1.27]
(without adaptation)

53 78 81 83 74 74

Re-sizing ×[1.12, 1.27]
(DNN fine-tuning only)

63 (+10) 78 (+0) 95 (+14) 91 (+8) 75 (+1) 80 (+6)

Re-sizing ×[1.12, 1.27]
(GMM adaptation +
DNN fine-tuning)

64 (+11) 83 (+5) 98 (+17) 95 (+12) 78 (+4) 84 (+10)

With GMM Weights Adaptation. We observe in Table 3 some clear
improvements (e.g., for WGN and JPEG under upsampling of ×1.25) when
fine-tuning of DNN is conducted jointly with GMM weights adaptation. In addi-
tion, there is consistent average accuracy improvement under all the consid-
ered re-sizing factors (last column of Table 3) for adaptation of both GMMs
and DNN, when compared to DNN fine-tuning only. The standard deviation of
results is under 10−1. Accuracy increase offered by adaptation of GMMs and
DNN depends on manipulations. For example our method is able to recover
up to +19% for sharpening (USM) and re-sizing of ×0.51, but there are not
such improvements for median filtering (MF). Median filtering is the manipula-
tion with the smallest score (86% in Table 2, row of ×1) on baseline (without
re-sizing of testing set) and is also across re-sizing factor one of the hardest to
deal with. Beside that, our method works better with upsampling (for example
+13% for average accuracy improvement with a factor of ×1.25 and less for fac-
tors ×0.51 and ×0.76). Our conjecture is that with downsampling, some striking
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local dependencies in patches are partially removed so it needs more complex
transformation than a simple weights adjustment to allow GMM to well describe
them. With upsampling, the dependencies are somehow mildly smoothed so it
is easier to adapt.

Mixed Re-sizing Factors. Our method also performs well with a mix of re-
sizing factors. As shown in Table 4, our method still obtains good results when
factors are randomly (following uniform distribution) drawn within an interval.
This is not a surprise as our method only intends to adapt the GMM-based
feature extractor to the new covariance of the data and the DNN classifier to
these new features, without taking into account the specific factor value and
algorithm of the re-sizing pre-processing.

Table 5. Testing accuracy (in %) of an improved version of Bayar and Stamm’s CNN-
based method [1], for cases of with and without fine-tuning. The improved accuracy of
weakly supervised fine-tuning, compared to the case of “without fine-tuning”, is given
in parentheses. The baseline testing accuracy without any re-sizing pre-processing is
given in the second row. Results in this table are to be compared with those given in
Table 3.

GF MF USM WGN JPEG AVG

Without re-sizing 79 85 91 86 79 84

Re-sizing ×0.51
(without fine-tuning)

68 82 80 66 76 74

Re-sizing ×0.51
(fine-tuning)

73 (+5) 82 (+0) 85 (+5) 69 (+3) 77 (+1) 77 (+3)

Re-sizing ×0.76
(without fine-tuning)

73 83 89 80 79 81

Re-sizing ×0.76
(fine-tuning)

74 (+1) 83 (+0) 89 (+0) 80 (+0) 79 (+0) 81 (+0)

Re-sizing ×1.15
(without fine-tuning)

59 76 79 86 61 72

Re-sizing ×1.15
(fine-tuning)

67 (+8) 80 (+4) 90 (+11) 86 (+0) 66 (+5) 78 (+6)

Re-sizing ×1.25
(without fine-tuning)

55 72 74 82 55 68

Re-sizing ×1.25
(fine-tuning)

65 (+10) 77 (+5) 91 (+15) 86 (+4) 60 (+5) 76 (+8)

Comparisons with Bayar and Stamm’s CNN-Based Method. We com-
pare with the state-of-the-art deep-learning-based method in [1]. The approach
is different from ours as feature extraction and classification are carried out in an
end-to-end way in the CNN. As shown in the following, the CNN-based method
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also experiences some performance drops due to re-sizing pre-processing. In order
to make the CNN work with 8×8 patches, one or some of the four pooling layers
of the network in [1] have to be removed. Otherwise outputs of these layers drop
to 1×1 and following 2D convolution is not possible anymore. We have tried dif-
ferent configurations and numbers of retained pooling layers (0, 1 or 2 retained
layers are technically possible) and found that we obtain better performance
without any pooling. This is understandable as pooling layers would cause loss
of information. Performances are also better with a learning rate of 10−4 instead
of 10−3 (value suggested in the original paper [1]). Results reported in Table 5
have been obtained with these improved settings, best that we can get after
many experiments. We can notice that the baseline scores (without re-sizing) of
CNN-based method are lower than our GMM-based method, with an average
accuracy of 84% for CNN vs. 92% for GMM (see Tables 3 and 5, row of with-
out re-sizing). There is also performance drop for CNN-based method under
re-sizing pre-processing, especially for upsampling. The performance decrease
can be as big as −24% for detection of JPEG compression with re-sizing of
×1.25 (see Table 5, with a decrease from 79% to 55%). We observe comparable
performance drop under re-sizing pre-processing for different settings of CNN
that we tried during our experiments. In general, although CNN has smaller
amount of accuracy decrease (this point deserves further studies), but the final
decreased accuracy without adaptation is comparable for CNN-based and GMM-
based methods (cf. the corresponding rows in Tables 3 and 5), with a same trend
of more accuracy decrease under upsampling for both methods.

For CNN-based method, we used Caffe implementation from authors
available at https://gitlab.com/MISLgit/constrained-conv-TIFS2018. Images
selected for training and testing, patches generated and number of patches gen-
erated are exactly the same as with the GMM-based method. The weakly super-
vised adaptation is realized by the conventional way of fine-tuning the CNN.
Again, we made efforts to try different strategies, i.e., fine-tuning the first few,
the last few, and all layers of the network. We find that only fine-tuning the
dense layers at the end of CNN gives slightly better performance than other
strategies. Learning rate has been reduced to 10−5. This learning rate and fine-
tuning setting gave us the best performances of adaptation in our experiments.
Fine-tuning of CNN is performed on the same number of re-sized samples (2000
patches per class). Adaptation of CNN helps to improve the accuracy under
re-sizing pre-processing, especially for upsampling, as shown in Table 5. In gen-
eral, our adaptation of GMM-based method gives more improvement and higher
improved accuracy than CNN-based method. The final accuracy of GMM-based
method is 80%, 86%, 86% and 83% for the four re-sizing factors (Table 3), against
respectively 77%, 81%, 78% and 76% for the CNN-based method (Table 5).

In all, it is interesting to see that GMM-based method (using explicit image
statistical models) has better performance than CNN for this forensic prob-
lem on small patches, in terms of both baseline accuracy without re-sizing
and improved accuracy after adaptation to re-sizing pre-processing. It is clear
that more theoretical and experimental investigations are needed to better

https://gitlab.com/MISLgit/constrained-conv-TIFS2018
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understand these results. Nevertheless, the results are encouraging for us to
continue on this image-model-based approach when nowadays CNN becomes
dominating in many image forensic research problems.

Example of Image Forgery Localization. Evaluating and analyzing the use
of the proposed image manipulation detection method, probably jointly with
other forensic methods, for the localization of image forgery is out of the scope
of this paper and constitutes one part of our future work. In the following, we only
present an example of forgery localization to show the feasibility of our method
for this task. As highlighted in red circle in Fig. 1(a), a small part (89 × 187

Fig. 1. Example of image forgery localization (Color figure online).
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pixels) has been taken from a source image of the testing dataset and inserted
into a host image also in the testing set. This inserted part (thus the source
image) has previously been JPEG compressed with quality factor Q = 90, while
the host image is an original one. We try to detect this JPEG compression and
therefore localize the splicing forgery indirectly.

Output map of our GMM-based detector on image of original size is shown
in Fig. 1(b). Just next to it, in (c) we show the output of the same detector but
for the situation where source image and host image have been pre-re-sized with
factor of ×0.51 before JPEG compression and spliced part insertion, respectively.
The map in (d) is the result of our detector after adaptation to pre-re-sizing. In
(e) it is the output map with re-sizing pre-processing for the adapted CNN-based
detector of Bayar and Stamm [1] (see previous part of this section for details
of CNN improvement and adaptation). As we deal with small patches, output
map could be noisy, so for better visualization each output map in (b)–(e) has
undergone a 3 × 3 median filtering to smooth the output. The F1 scores given
in Fig. 1 are computed on maps before smoothing. As can be expected from the
performances on 8 × 8 patches, manipulation is quite well localized on image of
original size in (b) but not well on the pre-re-sized image in (c). In particular,
here we show an example where our detector without adaptation has dramatic
performance drop on JPEG compressed patches, i.e., in the spliced part which
has rich texture, and where there is noticeable improvement after adaptation.
This performance drop is however understandable because with downsampling
pre-processing (here of factor ×0.51), in general both original and compressed
patches can have more mid- and high-frequency components. JPEG compres-
sion introduces JPEG grid and also removes mainly high-frequency components
within each block. The grid artifact is quite similar with or without re-sizing
because it is a pre-processing operation. Therefore, a downsampled JPEG com-
pressed patch with rich texture can be very “similar”, in a forensic sens, to an
uncompressed patch without re-sizing. This may explain the low accuracy in
the JPEG compressed spliced part as illustrated in Fig. 1(c), which is below the
accuracy on whole re-sized testing data reported in Table 3.

Our adaptation method improves the localization accuracy, as reflected by
the map and F1 score in Fig. 1(d). It is worth mentioning that the localization
on pre-re-sized image is harder because spliced part becomes smaller after down-
sampling pre-processing. The adapted CNN-based method works not as well as
our method on this example, in particular with a number of false alarms in
the pristine part of the spliced image as shown in (e). As mentioned above, a
thorough evaluation and analysis is scheduled as future work.

Computational Cost. Our adaptation method is very quick. Solving the opti-
mization problem in Eq. (6) takes around 1 min, and DNN fine-tuning 2 min.
Training six GMMs from scratch each with 200000 samples takes around 12 h
in total on CPU, and DNN training about 20 min. Training CNN-based method
of Bayar and Stamm lasts around 2 h on GPU for every binary classification
problem with 200000 samples for each class. This is quite fast because of small
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size of patches. Fine-tuning CNN takes about 10 min. We use a standalone com-
puter with Intel Xeon CPU E5-2630, 64 GB RAM and Nvidia 1080 Ti GPU.
In all, the adaptation of our method is slightly faster then CNN-base method
(about 4 min vs. 10 min). The GMM training would be faster than CNN training
if we could use a GPU implementation.

5 Conclusion

This work outlined how re-sizing as pre-processing could alter performances of
a manipulation detector based on local image statistics and a state-of-the-art
CNN-based detector. We propose a method to adapt both GMM-based feature
extractor, by adjusting weights, and DNN classifier, by fine-tuning. Experimen-
tal results show the feasibility of the proposed weakly supervised adaptation
method which tries to better fit covariance of target domain data for the GMM
feature extractor. In some cases with our method using 2000 labeled target sam-
ples (1000 per class), we obtain almost same results as re-training from scratch
with 400000 labeled samples, e.g., detection of Gaussian noise addition with re-
sizing of ×1.25. Our adaptation takes a few minutes instead of several hours for
re-training from scratch. This provides a shortcut in terms of flexibility and com-
puting power. Our image-statistics-based detector outperforms an improved ver-
sion of the state-of-the-art CNN-based detector [1], in terms of both baseline and
adapted accuracy for the situations without and with re-sizing pre-processing,
respectively. However, we are aware that this CNN-based method has been orig-
inally designed for bigger patches but not for small ones; in the meanwhile, to
the best of our knowledge, there are until now no published results of manipu-
lation detection on 8 × 8 patches for CNN-based and other methods. Therefore,
in the future more appropriate CNNs have to be designed for this specific case
and compared with image-statistics-based method.

The performance of the proposed adaptation under downsampling needs to
be improved, probably with a stronger GMM adaptation which also adjusts the
components’ covariance structure. We would like to mention that in the lit-
erature post-processing is commonly studied when testing a forensic detector,
however effects of pre-processing on performances have been much less investi-
gated. In this paper we introduce new concerns related to the pre-processing and
a new methodology to carry out light-weight adaptation. We plan to extend this
framework to cope with other pre-processing operations, the case of unsuper-
vised adaptation, as well as other forensics domain adaptation scenarios which
have been receiving more and more attention among the research community [4].
We also intend to conduct studies on methods based on other type of features
such as [10,13]. At last, we think that it is possible to improve adaptation of
CNN for specific problems of digital image forensics by using approaches other
than fine-tuning and we plan to work on it.
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Abstract. Voice conversion and speech synthesis techniques present a
threat to current automatic speaker verification systems. Therefore, to
prevent such spoofing attack, choosing an appropriate classifier for learn-
ing relevant information from speech feature is an important issue. In
this paper, a GRU-SVM model for synthetic speech detection is pro-
posed. The Gate Recurrent Unit (GRU) neural network is considered
to learn the feature. The GRU can overcome the problems of gradients
vanishing and explosion in traditional Recurrent Neural Networks (RNN)
when learning the temporal dependencies. The Support Vector Machines
(SVM) plays a role in regression before softmax layer for classification.
An excellent performance after the SVM regression has shown in the case
of classification ability and data gradient descent. We also obtain the
optimal speech feature extraction method and apply it to the classifier
for training by a large amount of verification and analysis. Experimental
results show that the proposed GRU-SVM models gain higher prediction
accuracy on data sets, and an average detection rate of 99.63% has been
achieved in our development database. In addition, the proposed method
can improve the learning ability of the model effectively.

Keywords: Synthetic speech detection · Gate Recurrent Unit ·
Support Vector Machines

1 Introduction

Voice has become one of the most important biometric authentication for identi-
fying individuals. Speech signal can be easily collected, transported and stored,
which makes the voiceprint recognition widely be used in identity authentica-
tion. This speech technique is called Speaker Verification (SV) [1,2]. Nowadays,
the speech synthetic technique can transform text to speech with the voice char-
acteristics of source speaker [3–5]. There are very few differences between source
speech and target speech, it is easy to fake a person’s voice to fool a speaker
verification system. Many verification techniques cannot recognize neither kinds
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of speeches. If the criminals apply the technique to the telephone fraud, it will
cause serious social problems and loss. In order to solve this problem, an auto-
matic speaker recognition system has been proposed to identify an individual’s
identity by using inherent physiological or behavioral characteristics of a com-
puter. Analyzing the signal and extracting its feature will be automatically ver-
ified who the speaker is [6]. The typical automatic speaker recognition system
mainly includes four parts, preprocessing, feature extraction, training model and
pattern recognition [7] and it is shown in Fig. 1.

Fig. 1. Automatic speaker recognition system

Existing audio preprocessing includes endpoint detection, pre-emphasis,
framing, windowing. Preprocessing is an indispensable part of speech signal pro-
cessing, which has a significant influence on quality of feature extraction. Feature
extraction means extracting feature parameters that can indicate the identity of
the speaker. There are a number of studies [7–9] that compare various implemen-
tations of the feature on the speech recognition task. Mel Frequency Cepstrum
Coefficient (MFCC), Gammatone Frequency Cepstrum Coefficient (GFCC) and
Linear Prediction Cepstrum Coefficient (LPCC) are the most common speech
features. MFCC is based on the auditory characteristics of human ear. There
are many reported works on MFCC, Ahmad et al. [10] motivated the use of
combination of MFCC and its delta derivatives (DMFCC and DDMFCC) cal-
culated using mel spaced Gaussian filter banks for text independent speaker
recognition. Research studies on classifiers indicate there are many different clas-
sification algorithms which are applied to the speech recognition task. Jagtap
et al. presented a mainstream machine learning classifier that using Gaussian
mixture model (GMM) for classification [11]. Recently, with the rise of artifi-
cial intelligence, various neural networks have been proposed by scholars. The
classification algorithm based on artificial neural network (ANN) has been suc-
cessfully applied in speech recognition by Shahamiri et al. [12]. Convolutional
neural network (CNN) is a typical deep neural network proposed by Profes-
sor Yann LeCun of the University of Toronto in Canada and his colleagues [13],
which also has been introduced into speech recognition in recent years. The input
needs to be organized as a feature map that can feed into the CNN. RNN is a
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powerful model for sequential data [14]. Mou et al. [15] proposed that the RNN
was inherently deep in time, and the hidden state was a function of all previous
hidden states. However, performance of the RNN in speech recognition has so
far been disappointing. The Long-Short-Term Memory network (LSTM) and the
GRU are special types of the RNN network that can overcome the problems of
vanishing and explosion of gradients in traditional RNN. Therefore, we try to
choose the application of the RNN and its variants in our own scheme. On the
basic of the GRU, we explore a way with adding the SVM to change the GRU
network structure, which can improve the detection rate.

The rest of this paper is organized as follows. The proposed GRU-SVM is
described in Sect. 2. Then experimental results and discussions are shown in
Sect. 3. Finally, a conclusion is given in Sect. 4.

2 Proposed Scheme

2.1 Data Preprocessing

In this paper, MFCC is used as feature for training and taking 20-dimension is
the best in our experiments. The standard MFCC extracts the static features of
the speech, the dynamic features can effectively improve the recognition perfor-
mance of the system. Therefore, the first-order derivative of the extracted MFCC
is usually performed to obtain ΔMFCC, the 40-dimensional feature parameters
of the MFCC +ΔMFCC in this paper is given as:

M = {(C1, C2, · · · , Cm), (ΔC1,ΔC2, · · · ,ΔCm)} (1)

where m is the dimension of the feature parameter of the MFCC.
Now we depict how to feed the speech features to the GRU network further.

We form the feature of each speech sample into an L × 40-dimensional matrix
(L is the max frame length of the audio sample), if the frame length of sample
is shorter than L, we supply it with zero. Making sure that each feature is a
matrix of L × 40 dimensions. All training samples are constructed into a matrix
of L×40×n dimensions, n is the number of training speech samples, the MFCC
feature matrix is shown in Fig. 2.

2.2 The Proposed GRU-SVM Model

GRU and LSTM are both variants of the RNN to overcome the vanishing gra-
dient and explosion problem. Compared with the LSTM, the GRU has better
performance which is easier to train and improve the training efficiency [16].
Suppose we are given a sequence of input (x1, x2, · · · , xt−1, xt), the GRU calcu-
lates the corresponding hidden layers (h1, h2, · · · , ht−1, ht) and outputs a vector
sequence (y1, y2, · · · , yt−1, yt). Then the feature parameters are learned through
the gating mechanism of the GRU which is implemented by the following com-
posite function.

zt = σ(Wz · [hh−1, xt]) (2)
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Fig. 2. MFCC feature matrix.

ut = σ(Wr · [hh−1, xt]) (3){
h̃t = tanh(W · [ut ∗ ht−1, xt])

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t.
(4)

The reset gate, the update gate and the hidden state are described as Eq. (2),
Eq. (3) and Eq. (4) respectively. Where σ(·) is element-wise sigmoid function. Wz

is the matrix weights of the reset gate and Wr is the matrix weight of the update
gate. xt is the input at time t. The GRU has one less gate function than the
LSTM, so the number of parameters is less than the LSTM. On the whole,
training speed of the GRU is faster than the LSTM. The adjustment method of
hyperparameters is similar to other neural networks. During training, the loss
function of the training data sets is minimized. Cross-entropy is chosen to be
the function due to the classification task.

SVM is a powerful and efficient machine learning algorithm and it hardly out-
perform [17,18]. Unfortunately, it is really hard for these algorithms to capture
features in synthetic speech detection sometimes. Due to the good robustness
and generalization performance of the SVM, it is used for regression of the fea-
tures captured by the GRU networks in this paper. So we propose a new method
for synthetic speech detection based on the GRU network and the SVM. With
the introduction of SVM as its second last layer, the parameters are also learned
by regression function of the SVM. After regression, the loss network is using
cross entropy function Eqs. (5–6).

ŷ(i) = min
1
2
||w||2 + C

n∑
i=1

max(0, 1 − y(i)(wTxi + bi)) (5)

L =
N∑
i=1

y(i)logŷ(i) + (1 − y(i))log(1 − ŷ(i)) (6)

where w and bi determine a straight line for classification, ŷ(i) is the forecast
value after the SVM regression, y(i) is the real value. C is a constant (C > 0).
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According to the GRU network, we adopt the 3-layers GRU network and
treat the GRU as a simplified LSTM, there is no more cell state, only hidden
layer state, so final state of the hidden layer could be obtained. We directly
put the final state into the SVM for regression before last layer. We optimize
the classification of the results by the SVM regression, evaluation, finally using
softmax function to output the classification result. The schematic diagram is
shown in Fig. 3.

Fig. 3. GRU-SVM neural network

The proposed GRU-SVM model can be summarized as follows:

(1) Feed the speech features (x1, x2, · · · , xt−1, xt) to the GRU neural network.
(2) Initialize the network parameters such as weights and biases.
(3) The hidden states of the GRU are computed based on the input and its

learning parameters.
(4) At the final time step, the output of the model is fed into the SVM using

Eq. (5).
(5) The loss of the network is cross entropy function using Eq. (6).
(6) For this task, the Adam optimizer is used as an optimization for minimize

loss. Optimization adjusts the weights and biases based on the computed
loss.

(7) This process is repeated until the model reaches the highest accuracy.
(8) After all these processes, the trained model can be used for classification.
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3 Experimental Results and Analysis

In this section, we firstly introduce the data generation and the environment,
then analyze the experimental results.

3.1 Data Generation and Environment Construction

To validate the performance of the proposed model, we use the LJ speech dataset
[19]. This dataset is a public domain speech dataset consisting of 13,100 short
audio clips from a single speaker, with reading passages from 7 non-fiction books.
A transcription is provided for each clip. The lengths of clips vary from 1 to 10 s
and have a total length of approximately 24 h. The audio was recorded in 2016–
17 by the LibriVox project and is also in the public domain. In addition to the
synthetic speech database, we use WaveGlow, a flow-based network vocoder is
computationally challenging and affects quality because of the ability to gener-
ate high quality speech from Mel-spectrograms. WaveGlow combines Glow with
WaveNet in order to provide fast, efficient and high quality audio synthesis.
Mean Opinion Scores (MOS) [20] show that it delivers audio quality as good
as the other publicly available synthetic speech implementation, the MOS are
shown in Table 1.

Table 1. Mean opinion scores

Model Mean opinion scores

Griffin-Lim 3.823± 0.1349

WaveNet 3.885± 0.1238

WaveGlow 3.961± 0.1343

Ground truth 4.274± 0.1340

The MOS are shown in Table 1, the MOS of WaveGlow is 90% higher than
other methods, though the MOS of synthetic samples are very close, no methods
can reach the MOS of natural audio. The most obvious advantages of WaveGlow
are training simplicity and fast speed in training processing. We decide to use
WaveGlow to synthesize the speech samples.

In the experiment, both of the natural speech samples and synthetic speech
samples have a sampling frequency of 22.05 kHz and are standard mono. We used
python and tensorflow to supply with all models and adjust the hyperparameters.
The detailed construction of the experiment environments are shown in Table 2.

After defining the hyperparameters, we select 16000 speech samples from
each two databases as training samples and put them into the proposed method
for training, then we save the generated models. Finally, 8000 speech samples
are selected as the testing samples for detection from the remaining speech in
the database.
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Table 2. Hyperparameters construction

Hyperparameters GRU+ SVM GRU

Batch 10 10

Hidden-cell-size 128 128

Epoch 100 100

Dropout 0.5 0.5

Learning rate 1e−3 1e−3

SVM-C 0.5 N/A

3.2 Results and Discussions

Generally, performance metrics [21] in synthetic speech detection include Detec-
tion Accuracy, False Alarm (FPR) and Missing Alarm (FNR) which are denoted
as

Accuracy =
(TP + TN)

(TP + FN + FP + TN)
(7)

FPR =
FP

TN + FP
(8)

FNR =
FN

FN + TP
(9)

where TP indicates positive samples with the correct classification. TN indicates
negative samples with the correct classification. FP indicates positive samples
with wrong classification, FN indicates negative samples with wrong classifica-
tion. Commonly, the higher the accuracy and the lower the FPR and FNR, the
better the classifier.

Table 3. Accuracy (%) of the different models

Models Natural speech Synthetic speech Hybird speech

Linear SVM 95.70 99.10 97.40

RNN 99.75 47.50 50.11

LSTM 98.55 100 99.28

GRU 99.25 99.85 99.55

GRU + linear SVM 99.30 99.95 99.63

We report the accuracy of different training models as shown in Table 3. In
the database of our development, the performance of the GRU network and the
GRU-SVM network are always more outstanding than the rest networks. This
shows our GRU-based models are more suitable for synthetic speech detection.
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Table 4. FPR and FNR (%) of the different models

Models FPR FNR

Linear SVM 4.16 0.93

RNN 0.52 34.48

LSTM 1.43 0

GRU 0.74 0.15

GRU + linear SVM 0.69 0.10

The GRU-SVM model performs better comparing with other methods. Espe-
cially, the hybird speech means the average detection accuracy of the natural
speech and the synthetic speech, the GRU-SVM is 99.63%, while 99.55% for the
GRU, 99.28% for the LSTM, 50.11% for the RNN, 97.40% for the linear SVM.
The SVM also has a good performance in classification, which is due to the fact
that there are more kernel functions in the SVM and strong classification ability
for linearly inseparable data. In particular, as the time step increasing, the RNN
can no longer connect the feature information, there is a problem of gradient
explosion. The RNN misclassify almost all the test samples into natural speech
that is why the RNN is the best in natural speech. The synthetic speech is
synthesized using the Mel-spectrograms feature which making synthetic speech
feature is more regular than natural speech. Although the LSTM is the best in
detecting synthetic speech, it is less effective in detecting natural speech than
the GRU and the GRU-SVM. The same problem is also seen in Table 4, the
GRU-SVM is the lowest in the false alarm expect the RNN. The GRU-SVM is
the lowest in the missing alarm except the LSTM.

With respect to accuracy and loss in training performance illustrated by
Fig. 4(a) and (b), we compare with the GRU and the GRU-SVM further. The
accuracy rate is a ratio of forecast value and real value in prediction of training
processing, which represents the convergence and the classification ability of the
whole model. If the accuracy is 1, which means the forecast value is equal to
the real value, the model can predict the results with 100% correctly. And loss
rate measures the degree of deviation between the forecast value and the real
value. If the loss is 0, which means there is no deviation between them. We select
the first 4000 iterations and make a statistic. In Fig. 4(a), the accuracy rate of
the GRU-SVM is earlier up to peak than the GRU, and the GRU-SVM is more
stable in the processing up to peak. In Fig. 4(b), the loss rate of the GRU-SVM
is also earlier down to lowest point than the GRU, and the range of the GRU
loss varies greatly, especially between 2000 and 2500 iterations. This proves that
the GRU-SVM model converges faster than the GRU.

The above experimental results show that the proposed method is feasible
and effective in the synthetic speech detection. After the hidden layer of the
GRU output, the SVM performs regression to control the entire feature data in
a specific feature space, which enhances the feature and facilitates subsequent
classification. This is the main reason why the GRU-SVM model success.
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Fig. 4. The accuracy and loss in prediction of training processing. (a) The accuracy of
prediction through 4000 iterations of training processingPro1 (b) The loss in prediction
through 4000 iterations of training processing.

4 Conclusion

In this paper, we propose a GRU-SVM neural network for synthetic speech
detection. The state of the art synthetic speech technique is used to build a
synthetic database. MFCC is extracted as the feature parameters. Our method
is proved to be effective by the experimental results. The approach of using the
GRU-based models to extract useful information from a vast array of speech
feature has shown to be excellent. After the hidden layer of the GRU, the SVM
performs regression before the softmax layer. In summary, the improvement
of the proposed method compared to current classifier is noteworthy. Further
research is required to explore other features and multiclass classifiers to enhance
the effect of the GRU model.
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Abstract. Digital image forgers often use various image processing software to
maliciously tamper with image contents, and then use some anti-forensics tech-
niques such asmedianfiltering to hide the obvious traces of these tampered images.
Therefore, median filtering detection is one of the key technologies in the field of
image forensics. Recently, with the rapid development of the deep learning, more
and more researchers have proposed many image median filtering detection algo-
rithms based on deep learning. Deep learning method can automatically extract
the image median filtering features and unify them with classification steps in a
deep learningmodel, which has better detection performance than traditional algo-
rithms. However, existingmethods based on deep learning still have the promotion
space when facing small size or highly compressed images. To solve this problem,
a median filtering detection method of small-size image using AlexCaps-network
is proposed in this paper. AlexCaps-network is a joint network combining the
classical network Alexnet and Capsule network. Firstly, in order to cope with the
difficulty of extracting median filtering features caused by the low-resolution of
small size and highly compressed image blocks, we add image preprocessing layer
to the first layer of the network to enhance the trace of median filtering. Secondly,
the general feature of median filtering in learning images is extracted by shal-
low ordinary convolutional neural network. The capsule network layer extracts
the more complex spatial information in the median filtering image by dynamic
routing algorithm and predicts the results. Finally, the experimental results show
that the effective detection performance of our proposed method for small size
and highly compressed images, even though the size is 16 × 16 image blocks and
QF of compression is 70, is still good.

Keywords: Digital image forensics · Median filtering detection · Alex network ·
Capsule network

1 Introduction

With the rapid development of digital image technology, digital image forgery cases
emerge in endlessly, which has a serious negative impact on many important social
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fields, such as politics, justice, media and military. In order to judge the authenticity of
digital images and detect the methods of image processing, researchers have proposed a
variety of digital image forensics algorithms. Exposing the processing history of a digital
image is an important part of image forensics, such as the detection of copy-move [1, 2],
image re-sampling [3, 4], contrast enhancement [5, 6], JPEG compression [7, 8], median
filtering [9–11].

As an anti-forensics technology, median filtering is a common nonlinear operation
in image processing. It is generally used to smooth the image, remove noise from the
image and maintain edge information. The forger can hide the operation methods of
forged images by median filtering. For example, median filtering can reduce the discon-
tinuity of forged parts and other parts in copy-paste or spliced images, and make forged
images more real. Therefore, the median filtering detection has been paid more andmore
attention in the field of digital image forensics in recent years.

Median filtering detection methods are generally divided into two categories. One is
the traditional method which based on image features that relies on manually selected
features. In reference [9], Kirchner and Fridrich proposed a first-order differencemethod
based on the strip effect and subtractive pixel critical matrix (SPAM) when the image
quality factor is less than 70 as the detection feature. In reference [10], Cao et al. proposed
a method to calculate the probability of first-order pixel difference of texture region
being zero. However, these two methods have a bad performance on JPEG compressed
image detection. Therefore, Kang et al. proposed to use the coefficient of the fitted
autoregressive model as the feature of median filtering detection in reference [11]. Gao
et al. proposed a median filtering detection method based on joint features of differential
images in reference [12], which is better than the previous methods in detecting low-
resolution images and JPEG compressed images. In reference [13], an untrained one
dimensional feature MF detector based on frequency residual-difference is proposed for
median filtering detection of JPEG processed images.

Another kind of median filtering detection method is based on deep learning. Deep
learning can automatically learn image features and complete classification, which has
been applied into the field of image forensics. In reference [14], Chen et al. first pro-
posed the application of deep learning to median filtering detection, which was also the
first application of deep learning in the field of forensics, opening a new idea for the
subsequent application of deep learning in the field of digital image forensics. Based on
the work of Chen et al., Bayar presented a new convolutional neural network structure
in reference [15], which can automatically learn the predictive error filter by constrains
the new convolutional layer, so as to detect the traces left by image operation. In ref-
erence [16], Liu et al. putted the discernible frequency-domain features obtained into
the conventional CNN model by adding a transformation layer, and could identify the
template parameters of various spatial smoothing filtering operations. In reference [17],
Tang et al. added the famousMlpconv structure layer to the proposed network to enhance
the nonlinear classification ability of the network structure in the paper, which greatly
improved the ability of detecting the nonlinear characteristics of the automatic learning
median filtering of the model.
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About the uncompressed image and the high-resolution image median filtering has
achieved very high detection precision. Currently, the greatest challenge is median fil-
tering detection of compressed JPEG and small size images. When the low-resolution
image is compressed, the trace of median filtering in the image will be weakened, and
the detection performance of existing methods will drop significantly. Moreover, most
of the existing median filtering detection methods are about whether the median filtering
exists which is an image dichotomy problem. In the field of image forensics, it is nec-
essary not only to judge the operation type, but also to detect the specific parameters of
its operation. From the above, to overcome these shortcomings, the contributions of this
paper are as follows. Firstly, a new network AlexCaps-network combining the classical
convolutional neural network Alexnet and the dynamic routing ideas of capsule network
is proposed in this paper. In AlexCaps-network, the general feature of median filtering in
learning images is extracted from shallow network by convolutional neural network and
more complex spatial information is extracted from deep network by capsule network.
Secondly, in view of the weakness of median filter trace in small image blocks, image
preprocessing layer is added to the first layer of the network to put large image blocks
and strengthen the trace of median filter operation. Moreover, our method could also
distinguish images with different filtering window sizes. The last, experimental results
demonstrated the methods we proposed is effective and have good detection perfor-
mance, even though all the test images have been compressed significantly (QF = 70)
and the sizes as low as 16 × 16. The detection accuracy of the network proposed in this
paper can reach 97.01% for the median filtered images with size of 64 and a jpeg90. As
for the same size images, the detection accuracy of median filter window size 3× 3, 5×
5 and 9 × 9 can reach 86.92%.

The outline of the paper is organized as follows: Sect. 2 describes the proposed
detection method, including a brief review of the related network, the framework and
parameters setting of AlexCaps-network. Simulation results and performance analysis
of detection accuracy rate along with the feasibility and advantages of our proposed
method are presented in Sect. 3. Finally, the conclusions and future work are presented
in Sect. 4.

2 Methods

This paper proposes a network structure that can be used for median filtering detection.
By combining the classical convolutional neural network Alexnet and Capsule network,
the median filtering features are automatically extracted from small size and highly
compressed median filtering images. To distinguish it from other existing networks we
name it AlexCaps-network.

2.1 Related Network

In computer vision, Alexnet network proposed by Alex in reference [18] won the cham-
pion of image recognition contest in 2012, which aroused widespread attention for
convolutional neural network (CNN). In reference [19], Hinton proposed a new network
structure in October 2017, called Capsule Network (Capsnet). Capsnet achieving the
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most advanced results with 0.25% test error in digital recognition of highly overlapped
MNIST data sets, initially showing the potential of this network.

Alexnet deepens the network structure on the basis of LeNet, and uses the layered
convolutional layer and pooling layer to enhance the richness of image features. The first
five layers of Alexnet are convolutional layers, among which the first, the second and
fifth layers contain amaximumpooling layer. And the last three layers are full connection
layers. The first five convolutional layers can extract effective features through a small
number of parameters, which is much more important than the fully connected layer.
The Alexnet network structure is shown in Fig. 1.

Fig. 1. The Alexnet network structure

Fig. 2. The capsule structure

The biggest difference between the Capsnet and Alexnet is that the output of neurons
changes froma scalar to a set of vectors. The image spatial information is encoded and the
probability of the existence of image features is calculated by vector length. In Capsnet,
the lower capsule layer is called the primary capsule layer, while the higher capsule layer
is generally called the classified capsule. The capsule structure is shown in Fig. 2.
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2.2 The Framework of Proposed Network

Inspired by Hinton, in order to explore more possibilities of capsule networks in the
field of computer vision, we try to combine the classical convolutional neural net-
work Alexnet and Capsnet, and propose AlexCaps-network that can be used for median
filtering detection.

The proposed network in this paper consists of 8 layers. The first layer is image
magnification layer, 2 to 6 layers are composed of overlapping convolution layer and
pool layer which referring to Alexnet network. The 7th and 8th layers are capsules layer.
Taking size of 32 × 32 image input as an example, the network structure proposed in
this paper is shown in Fig. 3.

In the proposed model, shallow network is composed of ordinary convolutional
neural network to extract the general features of median filtering in images, while deep
network is composed of capsule network to extract more complex spatial information
in images. In view of the weak feature of median filtering trace in small-sized and high
compressed images, the first layer of the network is set as the image preprocessing layer,
which is used to enlarge the image and enhance the tamper trace of median filtering. The
image preprocessing layer makes it easier for subsequent networks to extract the image
features of median filtering.

Considering the size of input image, our network reduces the number of convolution
layers in Alexnet, but still uses the overlay convolution layer and the maximum pooling
layer to extract the feature information in the image. The proposed network consists of
four convolution layers and the maximum pooling layer is set after the third layer.

The main capsule layer contains 10 main capsules, receives the general features
detected by the convolution layer, and generates the combination of features into the
classified capsule layer. The number of capsules in the classification capsule layer is the
number of image categories. In this paper, classified capsules are called median filter
capsules. The detection of whether the image has passed through the median filter can be
regarded as an image classification problem, and the number of median filter capsules
is 2. The module length of the output vector of the median filter capsule layer is the
probability of the existence of corresponding image category features, and the vector
direction is the spatial information of image features. The final model prediction result
is determined by selecting the capsule with the maximum length.

Fig. 3. The framework of proposed AlexCaps-network
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2.3 Image Magnification Method

The first layer in the network is the image preprocessing layer, which is used to expose
the median filtering trace better in small image blocks after magnifying the image. In
this way, network can more easily extract the median filtering feature from the image.
The nearest neighbor interpolation, bilinear interpolation and bicubic interpolation are
three methods commonly used for image magnification.

Nearest Neighbor Interpolation algorithm is a simple algorithm that does not need
extra computation. In the four adjacent pixels to be solved, the nearest adjacent pixel
gray scale is assigned to the pixel to be solved, and its formula is as follows:

Xsrc = Xdst × (Widthsrc/Widthdst )

Ysrc = Ydst × (Heightsrc/Heightdst ) (1)

Xsrc and Ysrc represent the coordinates of the source image, Xdst and Ydst represent the
coordinates of the target image. Then calculate the coordinates of the original image and
fill the coordinate pixel value of the original image into the coordinate position of the
target image.

The core idea of Bilinear Interpolation algorithm is to carry out linear interpolation
in two directions. The pixel value of the target point is obtained by fitting the pixel value
of Qij, the four nearest points of the target point in the original image. The calculation
formula is as follows:

f (x, y) ≈ y2 − y

y2 − y1

(
x2 − x

x2 − x1
f (Q11) + x − x1

x2 − x1
f (Q21)

)

+ y − y1
y2 − y1

(
x2 − x

x2 − x1
f (Q12) + x − x1

x2 − x1
f (Q22)

)
(2)

f(x, y) represents the grayscale value of the target point, and f(Qij) represents the
grayscale value of the four adjacent points.

The BiCubic interpolation algorithm needs to calculate the pixel value at the target
point B(x, y) according to the nearest 16 pixel points of the pixel point A(x, y). The pixel
value of the target point B(x, y) is equal to the weight W(x) weighted superposition of
16 pixel points. Assumption that point P is the target point B(X, Y) corresponding to the
position in the source image. The calculation formula of W(x) is as follows. Parameter
a takes a value of −0.5, and the parameter x represents the distance from the pixel point
to point P.

W (x) =
⎧⎨
⎩
(a + 2)|x |3 − (a + 3)|x |2 + 1 f or |x | ≤ 1
a|x |3 − 5a|x |2 + 8a|x | − 4a f or 1 < |x | < 2
0 otherwise

(3)

The pixel value of the target point B(X, Y) is calculated as follows:

B(X,Y ) =
3∑

i=0

3∑
j=0

ai j × W (i) × W ( j) (4)
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For the interpolation pixel A(x, y), take the nearby 4 × 4 neighborhood point (xi, yj), i,
j = 0, 1, 2, 3. Interpolation is calculated according to the formula as follows.

f (x, y) =
3∑

i=0

3∑
j=0

f (xi , y j )W (x − xi )W (y − y j ) (5)

In order to find the most effective magnification method for median filtering, it is neces-
sary to compare the effects of several magnification methods by analyzing the statistical
eigenvalues of several images. Firstly, 800 images were randomly selected from the
UCID data set for the central image block clipping of 32× 32. The original image block
and the median filter image block are respectively magnified twice in three different
ways.

By comparing statistical characteristic difference of the three image frequency coeffi-
cients of skewness, variation coefficient and kurtosis, the difference in frequency domain
between the median filter image block and the original image block can be intuitively
obtained. The statistical feature difference between the enlarged image block and the
original size image block with different magnification methods is shown in Fig. 4.

In Fig. 4, the horizontal direction is the statistical characteristic difference in the
frequency domain of the image block with size 32 × 32, while the vertical direction
is the statistical feature difference in the frequency domain of the image block with
size 64 × 64 after twice magnification. From left to right are skewness, coefficient of
variation, and kurtosis. The specific calculation formula is as formula (6) follows.

Di f = F(abs(FFT (med(x)))) − F(abs(FFT (x))) (6)

Med (·) represents the median filtering operation, FFT (·) represents the fast Fourier
transformof the image block to obtain its amplitude information in the frequency domain,
and F(·) represents the calculation of three different statistical features, namely skewness,
kurtosis and variation coefficient.

It can be seen from Table 1 that the slope K of the fitting line is almost all greater
than 1. The differences between the median filtered image and original image block
are increased to different degrees by these three magnification methods. By comparing
the slope K, it can be seen that nearest neighbor interpolation magnification effect is
relatively better. Compared with other methods, this method did not introduce new grey
value when magnified image and did not destroy the image of the original pixels when
enhance the median filtering trace information. The pixel interpolation completely from
the original image pixels.

AlexCaps-network is respectively trained on the data set magnified by three different
magnification methods. As can be seen from Table 2, the detection accuracy comparison
results of different magnification methods show that the nearest neighbor interpolation
performs best. Therefore, the nearest neighbor interpolation method is adopted in the
image preprocessing layer of this paper to magnify the image.

2.4 Parameters of Proposed Network

In the network proposed in this paper, the input image is firstly extracted the general
median filtering features through the basic convolutional neural network and then output



Median Filtering Detection of Small-Size Image Using AlexCaps-Network 133

(a)INNER_NEAREST 

(b)INNER_LINEAR 

(c)INNER_CUBIC 

Fig. 4. The difference of three statistical features between the original image and the correspond-
ing median filtered image after different magnification modes. The horizontal direction represents
the difference of the statistical features of the original size image, while the vertical direction is
the difference of the statistical features after the image is magnified twice

to the capsule layer. The capsule layer is divided into the main capsule layer and the
median filter capsule layer. The following table is an example of a 32 * 32median filtered
image dichotomy for the parameters of proposed network.
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Table 1. The slope K of fitting line in the scatter plot. The higher the value of K, the better the
effect of the magnification method (The best results are in bold type)

Slope K Inner_Nearest Inner_Linear Inner_Cubic

Skewness 1.11 0.89 0.94

Variation coefficient 1.97 1.94 2.85

Kurtosis 3.08 2.14 2.39

Table 2. The detection result of Acc (%) for Jpeg90 andmedian filtering 3× 3 images of different
magnification methods (the size of 32 × 32 image magnification twice).

Method Original Inner_Nearest Inner_Linear Inner_Cubic

Accuracy 90.23 92.53 90.82 91.05

After passing through the first five layers of basic convolutional neural network, the
image block of 32× 32 outputs the tensor of 26× 26× 128. The next main capsule layer
contains 10 capsules that receive the basic features detected by the convolutional layer
and generate a combination of features. Each capsule applies 8 3× 3× 128 convolution
kernel to the 26 × 26 × 128 input tensor, generating 12 × 12 × 8 output tensor. Since
there are 10 capsules in total, the total output of the main capsule layer is 12 × 12 ×
8 × 10 tensor. The next median filter capsule layer contains 2 capsules, each capsule
corresponds to the original image and the median filter image, and each capsule accepts
a 12 × 12 × 8 × 10 tensor as input. Inside the capsule, each input vector maps the
8-dimensional input space to the 10-dimensional capsule output space through the 8 ×
10 weight matrix, and finally outputs the 2 × 10 matrix and the probability values of

Table 3. Parameters and settings of proposed network

Layer (type) Kernel Kernel_num Stride Output shape

Magnifying (64, 64, 3)

Conv_1 (Conv2D) (3, 3) 64 1 (62, 62, 64)

Conv_2 (Conv2D) (3, 3) 64 1 (60, 60, 64)

Max_pool (MaxPooling2D) (2, 2) 2 (30, 30, 64)

Conv_3 (Conv2D) (3, 3) 128 1 (28, 28, 128)

Conv_4(Conv2D) (3, 3) 128 1 (26, 26, 128)

PriCap_Conv (Conv2D) (3, 3) 8 × 10 2 (12, 12, 128)

PriCap_reshape (Reshape) (1440, 8)

capsule_1 (Capsule) (2, 10)

lambda_1 (Lambda) (1, 2)
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different categories through the Lambda layer to confirm the model prediction results.
The detailed network structure parameters are shown in the following Table 3.

3 Experimental Results

3.1 Datasets

In order to evaluate the performance of the network structure proposed in this paper
and compare it with other methods, the mixed data set containing 11338 images was
tested in the network. The mixed data set composed of the BOSSBase1.01 [20] and
the UCID database [21], in which the BOSSbase1.01 provides 10,000 PGM images
and UCID database provides 1338 uncompressed tif color images, including images of
natural landscapes and man-made objects.

When preparing the data set, the images are first uniformly converted into grayscale
images, and the images are processed by median filtering. Then, the images processed
by median filtering are centrally clipped to small image blocks of the size required by
the experiment. Finally, the small image block is saved as JPEG compression forma. The
data set withoutmedian filtering in the processed data set is taken as negative sample, and
the data set after median filtering is taken as positive sample. The data sets are randomly
divided into training set, test set and verification set according to the proportion of 8:1:1
respectively.

3.2 Experimental Results

Performance Comparison of Different Magnification Times. 1000 images were
randomly selected from the original mixed data set, and small image blocks with the size
of 32 × 32 were cut out from the center of the image blocks for experiment. Then, jpeg
compression processing with different quality factors (QF) andmedian filtering process-
ing with different window sizes were performed on small image blocks respectively. The
nearest neighbor interpolation in Sect. 2.3 is used to magnify image blocks by different
multiples and train them on the network proposed in this paper. The comparison results
of different magnification times are shown in the following Table 4.

Table 4. The detection result of Acc (%) of different magnification times (Jpeg90 + Mf3
represents images processed with compression QF of 90 and processed by median filter with
window of 3 × 3).

Original size Magnification Jpeg90 + Mf5 Jpeg70 + Mf5

32 × 32 1 94.80 90.28

2 96.42 92.19

3 97.05 92.81

4 97.51 92.38
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It can be seen fromTable 4 that the detection accuracy ofmedian filtering is positively
correlated with the image magnification times. But the detection accuracy is improved
slightly and the computational complexity is high when magnification is 3 or 4 times.
The detection performance is improved significantly when magnification is 2 times.
Therefore, the magnification times of the image magnification layer in the proposed
network is twice.

In order to more comprehensively verify the performance of the proposed network
on small size and compressed image blocks, image with different compression quality
factor, different size and different filtering window size are tested on the proposed net-
work. The size of the image used in the experiment are 16× 16 and 32× 32, the filtering
window sizes are 3× 3 and 5× 5, and the jpeg QF are 70 and 90. The comparison results
of experimental detection accuracy are shown in the following Table 5.

The comparison results show that the detection performance of median filtering
decreaseswhen jpegQF is lowand image size blocks are small, but the detection accuracy
of 16 × 16 image blocks on the network proposed in this paper can still reach 86.68%
when the QF is as low as 70. It can also be seen from the experimental results that the
image magnification layer can significantly improve the detection accuracy and make it
easier to distinguish the median filtered images. Among them, the detection accuracy of
32 × 32 image blocks with QF = 90 is up to 96.42%, on the network proposed in this
paper, with superior performance.

Table 5. The detection result of Acc (%) of different parameters. The contrast parameters include
image size, quality factor and filter window size. (16 × 16 -> 32 × 32 represents the image of
size 16 × 16 enlarged to size 32 × 32 by the nearest neighbor interpolation)

Image size Jpeg90 + Mf3 Jpeg90 + Mf5 Jpeg70 + Mf3 Jpeg70 + Mf5

16 × 16 82.32 88.86 77.47 83.29

16 × 16 -> 32 × 32 85.31 91.23 80.84 86.49

32 × 32 90.23 94.80 85.57 90.28

32 × 32 -> 64 × 64 92.53 96.42 86.68 92.19

Performance Comparison of Median Filtering Multiclassification. In the previous
experiments, median filtering detection is mainly conducted based on whether the image
has median filtering or not which is a image dichotomy problem. In the field of image
forensics, it is not only necessary to determine the type of image processing operation,
but also to detect its specific operating parameters in many scenarios. The size of median
filtering window is directly related to the filtering effect. Different window sizes have
different degrees of image blurring and image edge information loss. Therefore, the
network proposed in this paper is used for image multi-classification to detect and judge
different filtering window sizes which is a median filtering multiclassification problem.
The filter window sizes designed in the experiment are 3 × 3, 5 × 5 and 9 × 9. The
experimental results of median filtering multiclassification are shown in the following
Table 6.
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Table 6. The detection result of Acc (%) of Median Filtering multiclassification.

Heading level Jpeg90 Jpeg70

32 × 32 83.24 71.68

64 × 64 86.92 76.36

Performance Comparison of Different Algorithms. In order to verify the good per-
formance of the network structure in this paper, it is compared with other three median
filtering detection methods. Chen [14] added a preprocessing layer to the improved
Alexnet network structure, calculated the median filtering residue (MFR) of the image,
and took MFR as the input of Alexnet network. Two Mlpconv layers are added to the
MFNet structure of Tang [17], which improves the nonlinear expression ability of the
network structure. The above two methods are deep learning detection methods based
on convolutional neural network. The accuracy comparison results of the three detection
methods are shown in the following Table 7.

Table 7. The detection result of Acc (%) of different algorithms (The best results are in bold
type).

Input image
size

Method Jpeg90 + Mf3 Jpeg90 + Mf5 Jpeg70 + Mf3 Jpeg70 + Mf5

16 × 16 Proposed 85.31 91.23 80.84 86.49

MFNet [17] 86.42 90.67 77.04 84.86

AlexNet [14] NA NA NA NA

32 × 32 Proposed 92.53 96.42 86.68 92.19

MFNet 93.06 95.71 85.23 91.67

AlexNet 88.39 90.24 79.01 84.50

64 × 64 Proposed 96.32 97.01 92.37 96.90

MFNet 95.97 96.62 91.07 96.86

AlexNet 95.30 95.62 89.49 93.81

The network proposed in this paper cannot give full play to its advantages when the
image size is small and the compression ratio is low. Therefore, under the JPEG 90,
when the image size is 16 × 16 and 32 × 32, the accuracy of some detection results
of this network is slightly lower than that of mfnet only about 0.5%. However, it can
be seen from other comparison results in the table that under other parameter settings,
the network detection performance proposed in this paper all performs well and the
accuracy rate is slightly better than that of other networks. The above experiments verify
that AlexCaps-network proposed in this paper can fully extract and identify median filter
features in small-size compressed images, and carry out effective image classification.
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Performance of Median Filter Positioning. When a part of themedian filtering image
is cut and pasted into the non-median filtering image, it is very important to detect the
specific location of the median filtering for image forensics. The proposed network can
detect the median filtering on small image blocks, which can be used for locating the
median filtering on large images.

Fig. 5. Cut a part of the median filter image and paste it into the non-median filtering image, and
call the trained model to detect the position of the median filter in the image. (a1 and a2) Original
image (b1 and b2) forged image (c1 and c2) detection result

Figure 5(a1 and a2) is original image. In Fig. 5(b1 and b2), median filtering image
block was pasted to the corresponding position of the original image. For the images to
be detected of different sizes, they are divided into small image blocks of input size of the
training model. Each small image block calls the trained model to detect successively,
and generates the corresponding detection matrix of the image. The non-zero position in
the matrix refers to the corresponding position of median filtering in the image. Finally,
the non-zero position in the matrix is marked with a color box, and the detection results
are shown in Fig. 5(c1 and c2). In the experiment, the detection model was trained on
the data set with an image size of 16 × 16 and median filtering window size of 9 × 9. It
can be seen from the Fig. 5(c1 and c2) that the network proposed in this paper can mark
the specific location of median filtering more accurately, and individual errors appear
within the acceptable range.
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4 Conclusion

Combined with the popular deep learning technology, this paper studies the median fil-
tering operation detection in the field of digital image anti-forensics. This paper propose
a network called AlexCaps-network, which combines the basic convolutional neural
network with the dynamic routing idea of capsule network. The basic convolutional
neural network can extract the basic feature in the median filtering image, while the
deep capsule network can mine the highly abstract spatial information in the median fil-
tering image through dynamic routing algorithm. For small size and compressed image
blocks, image preprocessing layer is added in the first layer of the network to magnify
the image, which makes it easier to extract and identify the median filtering feature from
the image. In this paper, median filter detection is considered as an image classifica-
tion problem, which can satisfy the median filter detection of different parameters by
increasing or decreasing the number of capsules in the capsule network.

Several experimental results show that the proposed network can be effectively
applied to median filtering detection. And compared with other existing algorithms,
the network presented in this paper performs better.

Acknowledgement. This work is supported by the Ministry of Science and Technology Depart-
ment Foundation of Sichuan Province (No. 2018JY0067, No. 2017GFW0128) and by the Natural
Science Foundation of Guangdong Province, China (No. 2017A030313380).

References

1. Wenchang, S., Fei, Z., Bo, Q., et al.: Improving image copy-move forgery detection with
particle swarm optimization techniques. China Commun. 13(1), 139–149 (2016)

2. Rao, Y., Ni, J.: A deep learning approach to detection of splicing and copy-move forgeries
in images. In: 2016 IEEE International Workshop on Information Forensics and Security
(WIFS), pp. 1–6. IEEE (2016)

3. Popescu, A.C., Farid, H.: Exposing digital forgeries by detecting traces of resampling. IEEE
Trans. Signal Process. 53(2), 758–767 (2005)

4. Hou, X., Zhang, T., Xiong, G., Zhang, Y., Ping, X.: Image resampling detection based on
texture classification. Multimed. Tools Appl. 72(2), 1681–1708 (2013). https://doi.org/10.
1007/s11042-013-1466-0

5. Stamm, M., Liu, K.J.R.: Blind forensics of contrast enhancement in digital images. In: 2008
15th IEEE International Conference on Image Processing, pp. 3112–3115. IEEE (2008)

6. Dong,W.,Wang, J.J.: Contrast enhancement forensics based onmodified convolutional neural
network. J. Appl. Sci. 35(6), 745–753 (2017)

7. Barni, M., Bondi, L., Bonettini, N., et al.: Aligned and non-aligned double JPEG detection
using convolutional neural networks. J. Vis. Commun. Image Represent. 49, 153–163 (2017)

8. Zeng, X., Feng, G., Zhang, X.: Detection of double JPEG compression using modified
DenseNet model. Multimed. Tools Appl. 78(7), 8183–8196 (2018). https://doi.org/10.1007/
s11042-018-6737-3

9. Kirchner, M., Fridrich, J.: On detection of median filtering in digital images. In: Media
Forensics and Security II, vol. 7541, p. 754110. International Society for Optics and Photonics
(2010)

https://doi.org/10.1007/s11042-013-1466-0
https://doi.org/10.1007/s11042-018-6737-3


140 G. Duan et al.

10. Cao, G., Zhao, Y., Ni, R., et al.: Forensic detection of median filtering in digital images. In:
2010 IEEE International Conference on Multimedia and Expo, pp. 89–94. IEEE (2010)

11. Kang, X., Stamm, M.C., Peng, A., et al.: Robust median filtering forensics using an
autoregressive model. IEEE Trans. Inf. Forensics Secur. 8(9), 1456–1468 (2013)

12. Gao, H., Hu, M., Gao, T., et al.: Robust detection of median filtering based on combined
features of difference image. Sig. Process. Image Commun. 72, 126–133 (2019)

13. Li, W., Ni, R., Li, X., Zhao, Y.: Robust median filtering detection based on the difference
of frequency residuals. Multimed. Tools Appl. 78(7), 8363–8381 (2018). https://doi.org/10.
1007/s11042-018-6831-6

14. Chen, J., Kang, X., Liu, Y., et al.: Median filtering forensics based on convolutional neural
networks. IEEE Signal Process. Lett. 22(11), 1849–1853 (2015)

15. Bayar, B., Stamm,M.C.: A deep learning approach to universal image manipulation detection
using a new convolutional layer. In: Proceedings of the 4th ACM Workshop on Information
Hiding and Multimedia Security, pp. 5–10. ACM (2016)

16. Liu, A., Zhao, Z., Zhang, C., Su, Y.: Smooth filtering identification based on convolutional
neural networks. Multimed. Tools Appl. 78(19), 26851–26865 (2016). https://doi.org/10.
1007/s11042-016-4251-z

17. Tang, H., Ni, R., Zhao, Y., et al.: Median filtering detection of small-size image based on
CNN. J. Vis. Commun. Image Represent. 51, 162–168 (2018)

18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

19. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Advances in
Neural Information Processing Systems, pp. 3856–3866 (2017)

20. Bas, P., Filler, T., Pevný, T.: “Break our steganographic system”: the ins and outs of organizing
BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 59–70.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24178-9_5

21. Schaefer, G., Stich, M.: UCID: an uncompressed color image database. In: Storage
and Retrieval Methods and Applications for Multimedia 2004, vol. 5307, pp. 472–480.
International Society for Optics and Photonics (2003)

https://doi.org/10.1007/s11042-018-6831-6
https://doi.org/10.1007/s11042-016-4251-z
https://doi.org/10.1007/978-3-642-24178-9_5


Double JPEG Compression Detection
Based on Markov Model

Jinwei Wang1,2,3,4,5, Wei Huang2, Xiangyang Luo4(B), and Yung-Qing Shi6

1 Jiangsu Collaborative Innovation Center of Atmospheric Environment
and Equipment Technology (CICAEET), Nanjing University of Information Science

and Technology, Nanjing 210044, China
wjwei 2004@163.com

2 Department of Computer and Software, Nanjing University of Information Science
and Technology, Nanjing 210044, Jiangsu, China

3 Shanxi Key Laboratory of Network and System Security, Xidian University,
Xi’an 710071, China

4 State Key Laboratory of Mathematical Engineering and Advanced Computing,
Zhengzhou 450001, China
xiangyangluo@126.com

5 State Key Laboratory of Information Security, Institute Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China
6 Department of Electrical Computer Engineering,

New Jersey Institute of Technology, Newark, NJ 07102, USA

Abstract. In this paper, a feature based on the Markov model in quater-
nion discrete cosine transform (QDCT) domain is proposed for double
JPEG compression detection. Firstly, a given JPEG image is extracted
from blocked images to obtain amplitude and three angles (ψ, φ, and θ).
Secondly, when extracting the Markov features, we process the transi-
tion probability matrix with the corresponding refinement. Our proposed
refinement method not only reduces redundant features, but also makes
the acquired features more efficient for detection. Finally, a support vec-
tor machine (SVM) is employed for NA-DJPEG compression detection.
It is well known that detecting NA-DJPEG compressed images with QF1
≥ QF2 is a challenging task, and when the images with small size (i.e.,
64 × 64), the detection will be more difficult. The experimental result
indicates that our method can still achieve a high classification accuracy
in this case.

Keywords: Color image forensics · Double JPEG compression
detection · Quaternion discrete cosine transform · Markov model

1 Introduction

With the rapid development of multimedia technology, a variety of powerful and
easy-to-use image processing software is widely used to edit and process images,
such as Photoshop and ACDsee, etc. While these softwares bring convenience,
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they also pose potential threats. Indeed, some tampered color images were ille-
gally used in the fields of formal media, scientific discovery and forensic evidence.
There is no doubt that these tampered color images have a negative effect on
social stability. Therefore, many techniques [1–5] have been proposed to detect
whether a digital image has tampered or not. JPEG compression is a popu-
lar image compression standard [6] in recent years, which has the advantages
of saving image storage space and ensuring the quality of highly compressed
images, so a large number of color images are stored in JPEG format. Due to
the widespread use of JPEG compression, double JPEG compression detection
becomes increasingly concerned.

It is well known that peculiar artifacts caused by double JPEG compression
leave in the DCT domain. Accordingly, many proposed detection methods [7–9]
focus on the analysis of first order statistics of DCT coefficients. The methods in
[7,8] based on the distribution of first (and sometimes second) significant digits
(FSDs) in block DCT coefficients, and the one in [9] relies on Benford-Fourier
analysis. However, a major drawback of these methods is that they are designed
to work on the entire image, ie, to detect whether the image is completely sub-
jected to single or double JPEG compression, and it is difficult to estimate
statistics under small blocks or image blocks. Therefore, when only part of the
image is manipulated, these methods are not suitable for this detection scenario.

In the NA-DJPEG scenario, several other methods for detecting double com-
pression have been proposed, and these features are extracted from both pixel
domain and DCT domain. Specifically, a method in [10] is proposed to detect
both aligned and non-aligned double JPEG compression. The scheme works by
combining periodic artifacts in spatial and frequency domains. A set of features
is computed to measure periodicity of blocking artifacts, which is altered when a
NA-DJPEG compression occurs, and another set of features is used to measure
periodicity of DCT coefficients, which is perturbed in presence of A-DJPEG.
This approach for non-aligned recompression detection is outperformed by [11].
Furthermore, in [12] Bianchi and Piva proposed a forensic algorithm for tamper-
ing localization when DJPEG compression occurs, either aligned or not. The pro-
posed scheme is as an extension of their analysis carried out in the paper, where
a unified statistical model characterizing JPEG artifacts in the DCT domain
is considered. In [13], a calibrated RID (C-RID) feature vector generated by a
reference feature is proposed for final binary classification. However, in order to
achieve accurate detection, spatial resolutions lower than 256×256 pixel are not
considered. A method based on CNN is proposed in [14]. A detector is builded by
using the CNN-based method and works in the noise domain. The CNN-based
detector in the noise domain (Cnoise) is able to correctly classify images com-
pressed by NA-DJPEG. Although the low resolution is considered, this scheme
works well as long as QF2 > QF1. Motivated by this recent trend, the goal of
this paper is to design approaches based on Markov in the QDCT domain for
the classification of single and double JPEG compressed images. Specifically, we
are interested in working with small size images.
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The paper is organized as it follows: in Sect. 2 we give some basics on quater-
nion discrete cosine transform and discuss their usage for color image. Then,
in Sect. 3 we present the Markov-based methods proposed to solve the problem
of NA-DJPEG compression detection addressed in the paper. Finally, Sect. 4 is
devoted to the experimental results. Section 5 concludes the paper.

2 Theoretical Introduction of Quaternion Discrete Cosine
Transform for Color Image

2.1 Representation of Polar Coordinates of Quaternion

Quaternion includes a real part component and several imaginary part compo-
nents, which is usually regarded as the generalization of complex number. The
definition of quaternion is introduced as follows:

q = w + xi + yj + zk (1)

where w, x, y, z are real number, i , j and k are operators of complex number
and vector. They all satisfy Hamilton rule as

i j = k , j k = i , ki = j , j i = −k , kj = −i , ik = −j (2)

And they also satisfy i2 = j 2 = k2 = i j k = −1, but they do not satisfy the
commutative property of multiplication.

When the quaternion model is used to represent a color image, where the
coefficients of three imaginary numbers (i,e,. i , j and k) represent the RGB
three channels, respectively.

Since the amplitude and angles are used in the paper, the introduction
of polar coordinates of quaternion is introduced The polar coordinates of the
quaternion consist of amplitude (|q |) and three angles (φ, θ and ψ), which can
be expressed as

q = |q |eiφej θekψ (3)

where the |q | is the modulo of the quaternion, φ ∈ [−π, π], θ ∈ [−π/2, π/2],
ψ ∈ [−π/4, π/4], and these three angles are given by

φ = a tan(2(cd + ab), a2 − b2 + c2 − d2)/2 + kπ, k ∈ Z

θ = a tan(2(bd + ac), a2 + b2 − c2 − d2)/2
ψ = arcsin(2(ad − bc))

(4)

2.2 Quaternion Discrete Cosine Transform

Due to the successful application of QDCT in the field of real and complex
Numbers, relevant researches have been carried out. The basic principle of QDCT
was proposed by Feng and Hu [15], and the definition of L-QDCT and R-QDCT
are as follows:
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L-QDCT:

JL
q (p, s) = α(p)α(s)

M−1∑

m=0

N−1∑

n=0

uq · hq(m,n) · T (p, s,m, n) (5)

R-QDCT:

JR
q (p, s) = α(p)α(s)

M−1∑

m=0

N−1∑

n=0

hq(m,n) · T (p, s,m, n) · uq (6)

where hq(m,n) is a M × N quaternion matrix, m and n is row and column
of the matrix respectively, here, m ∈ [0,M − 1], n ∈ [0, N − 1], uq is a unit
pure quaternion, which can represent the direction of axis of transformation and
satisfies u2

q = −1. p and s is row and column of the transform matrix, respectively.
The definition of α(p), α(s) and T (p, s,m, n) are given by

α(p) =

{ √
1/M p = 0

√
2/M p �= 0

α(s) =

{ √
1/N s = 0

√
2/N s �= 0

(7)

T (p, s,m, n) = cos[
π(2m + 1)p

2M
]cos[

π(2n + 1)s
2N

] (8)

The spectral coefficient of J(p, s) through transformation is still a M ×N quater-
nion matrix, which can be expressed as

J(p, s) = J0(p, s) + J1(p, s)i + J2(p, s)j + J3(p, s)k (9)

In our algorithm, L-QDCT are chosen for block QDCT. Since the com-
putational complexity of QDCT transform can be seen from its definition, to
avoid wasting of resources resulted from complicated calculation, the approach
of QDCT is designed on the basis of DCT that is widely used in the field of real
number and complex number.

3 Proposed Method

In this subsection, the extraction procedure of Markov features in QDCT domain
are described. At first, apply 8 × 8 block QDCT on the reconstructed color
image pixel array, and the corresponding QDCT coefficient array is obtained to
calculate the amplitude and three angles. The amplitude and three angles are
then rounded to integer and take absolute value to form four arrays. Secondly,
difference 2-D arrays are formed from the four arrays. These difference 2-D
arrays are modeled by Markov process and then the transition probability matrix
is calculated with corresponding refinement process. In addition, a threshold
technique is developed to greatly reduce the dimensionality of the transition
probability matrices.
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3.1 Difference 2-D Arrays

The horizontal, vertical, main diagonal and minor diagonal intra-block difference
2-D arrays Fh, Fv, Fd and Fm are calculated by applying Eq. (10).

Fh(u, v) = F (u, v) − F (u + 1, v)
Fv(u, v) = F (u, v) − F (u, v + 1)
Fd(u, v) = F (u, v) − F (u + 1, v + 1)
Fm(u, v) = F (u + 1, v) − F (u, v + 1)

(10)

where u, v denote coordinates in a QDCT coefficient 2-D array, and u ∈ [0,Du −
2], v ∈ [0,Dv − 2], Du,Dv denote the 2-D array’s dimensions in the horizontal
direction and vertical direction, respectively. Thus, F (u, v) denotes a QDCT
coefficient 2-D array formed by each coordinate.

In order to reduce computational cost further, we set the threshold T = 4 in
this implementation. That is, if the value of an element in the difference array
is either larger than 4 or smaller than −4, it will be represented by 4 or −4,
respectively.

3.2 Transition Probability Matrix Derived from Difference 2-D
Arrays

Since JPEG compressed operation changes the correlation between image pixels,
according to random process theory, Markov random process is a tool to charac-
terize the correlation. Instead of applying Markov process directly to coefficient
2-D array, Markov process are applied to the difference array introduced above.
The horizontal, vertical, main diagonal and minor diagonal transition probability
matrices of Fh, Fv, Fd, Fm are calculated by applying Eq. (11).

Phh =
∑Dv−2

v=0

∑Du−2
u=0 δ(Fh(u, v) = a, Fh(u + 1, v) = b)

∑Dv−2
v=0

∑Du−2
u=0 δ(Fh(u, v) = a)

Pvv =
∑Dv−2

v=0

∑Du−2
u=0 δ(Fv(u, v) = a, Fv(u, v + 1) = b)

∑Dv−2
v=0

∑Du−2
u=0 δ(Fv(u, v) = a)

Pd =
∑Dv−2

v=0

∑Du−2
u=0 δ(Fd(u, v) = a, Fd(u + 1, v + 1) = b)
∑Dv−2

v=0

∑Du−2
u=0 δ(Fd(u, v) = a)

Pm =
∑Dv−2

v=0

∑Du−2
u=0 δ(Fm(u, v) = a, Fm(u + 1, v + 1) = b)
∑Dv−2

v=0

∑Du−2
u=0 δ(Fm(u, v) = a)

(11)

where, a, b ∈ (−T,−T + 1, · · · , 0, · · · , T ), and

δ(A = a,B = b) =
{

1, if A = a & B = b
0, Otherwise

(12)

Proverbially, since there exists correlation between coefficients in a coefficient
2-D array, the distribution of the elements in the difference array is somehow
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surrounding zero. The extent to which the distribution of the elements is concen-
trated on zero reflects the strength of the correlation among coefficients. Accord-
ing to the theory of random process, a Markov process can be characterized by
a transition probability matrix. Motivated by this observation, we further think
about the transition probability matrix.

3.3 Refinement Process in Amplitude and Three Angles

It is well known that the DC and AC coefficients differ greatly in amplitude, and
the result obtained after the difference and threshold processing will only be the
maximum or minimum value, so that the transition probability matrix formed
will have a lower sensitivity in reflecting the change of the coefficient. Therefore,
before forming the transition probability matrix, the points obtained by DC-AC
(named as DA points) in the difference matrix are eliminated first.

Fig. 1. Illustration of the proposed feature selection method.

The illustration of the proposed feature selection method in three angles is
shown in Fig. 1. An elliptical box is used to select features on the transition
probability matrix and then those selected features are retained. It is known
that the size of the transition probability matrix is (2T +1)× (2T +1). Since the
concentration along the minor diagonal of transition probability matrix spreads
from the minor diagonal towards the rest of the matrix, we set the center of
the elliptical box to (0, 0) and the size of the long axis is fixed to the minor
diagonal length, while the short axis moves along the main diagonal. If α and β
represent the semi-major axis and the semi-minor axis, respectively, the range
of the semi-short axis can be expressed as

0 < β <
2N − 1

α
(N = 1, 2, · · · , T + 1) (13)

It can be deduced from Eq. (13) that there is a ratio relationship R between β
and α . Therefore, choosing an appropriate R will help to further improve the
detection accuracy.
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4 Experimental Results

The color images selected from the UCID database [16] are cropped to size
64 × 64 for experimental investigation, and the database includes 1338 uncom-
pressed images of size 384 × 512 and 512 × 384. All of these images are divided
into positive and negative samples with equal quantity, half of which are used
for training, and the other half for testing. Positive samples have NA-DJPEG
compressed color images with random cropping vector shift ((x, y) �= (0,0)) and
quality factors QF1 and QF2. On the other hand, the negative samples are singly
JPEG compressed with quality factor QF2. Next, in order to better classify these
tampered images, the soft-margin SVM [17] is used. The Gaussian kernel is used
and the parameters c and γ are determined by a grid-search over a multiplicative
grid (c, γ) ∈ {(2i, 2j) | i ∈ {−7,−6, ..., 7}, j ∈ {−7,−6, ..., 7}} in the SVMs. A
5-fold cross validation is used for training and the average classification accuracy
rate is reported.

Table 1. Experimental results of the Markov features

QF1 QF2

50 60 70 80 90

50 93.87 95.17 96.48 96.94 98.25

60 94.11 95.64 96.01 97.06 97.65

70 93.66 95.38 96.28 97.00 97.98

80 93.69 95.41 96.07 96.66 98.10

90 93.88 94.72 96.31 97.17 97.95

To evaluate the proposed method, the experimental results for detecting
NA-DJPEG compression are listed in Table 1. It is worth noting that NA-DJPEG
compression detection with QF1 ≥ QF2 is a challenging task. When QF1 ≥ QF2,
the primary JPEG compression trace is not only weaker than the secondary one,
but is easy to be covered by the secondary one in double JPEG compressed
images, so the primary JPEG compression trace is difficult to catch for detec-
tion. For instance, in the cases of (QF1, QF2) = (70, 50) and (QF1, QF2) =
(90, 90), the Markov features still achieve the accuracy of 92.25% and 97.31%,
respectively.

For the cases of QF1 < QF2, the proposed method still has certain advantages
in detection. The detection accuracy of the proposed method is greater than 95%
in all cases.

5 Conclusion

In this paper, a novel method has been proposed to detect Non-aligned dou-
ble JPEG (NA-DJPEG) compression for color images. We first analyze the
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quaternion discrete cosine transform for color image. Based on the analysis, the
Markov features are obtained by mapping the reconstructed color image into
QDCT domain. Finally, with the extracted Markov feature, the support vector
machine classifier is employed for NA-DJPEG compression detection. Experi-
mental results show that the proposed method has certain advantages.
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high quality and nearly identical jpeg image recompression. In: Proceedings of the
4th ACM Workshop on Information Hiding and Multimedia Security, pp. 11–21.
ACM (2016)

10. Chen, Y.-L., Hsu, C.-T.: Detecting recompression of JPEG images via periodicity
analysis of compression artifacts for tampering detection. IEEE Trans. Inf. Foren-
sics Secur. (TIFS) 6, 396–406 (2011)

11. Bianchi, T., Piva, A.: Detection of nonaligned double JPEG compression based
on integer periodicity maps. IEEE Trans. Inf. Forensics Secur. (TIFS) 7, 842–848
(2012)

12. Bianchi, T., Piva, A.: Image forgery localization via block-grained analysis of JPEG
artifacts. IEEE Trans. Inf. Forensics Secur. (TIFS) 7, 1003–1017 (2012)

https://doi.org/10.1007/s11042-016-4153-0
https://doi.org/10.1007/s11042-016-4153-0
https://doi.org/10.1007/s10851-015-0602-z


Double JPEG Compression Detection Based on Markov Model 149

13. Yang, J., Zhu, G., Wang, J., Shi, Y.Q.: Detecting non-aligned double JPEG
compression based on refined intensity difference and calibration. In: Shi, Y.Q.,
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Abstract. Image sharpening is an image enhancement method which
has been widely used to improve the quality of images. Therefore, in
image forensics, it is required to be identified as all possible manipula-
tions applied in images need to be detected. In recent years, sharpening
detection get evolved with new detectors proposed every year to gradu-
ally boost the detection performance. This situation continues for several
years till the introduction of convolutional neural networks (CNNs). With
the assistance of CNNs, the detection of sharpening seems to be com-
pletely solved that the detection performance for sharpening achieves
perfect, even when the images are weakly sharpened. Is it true that
we should no longer pay attention to sharpening forensics any more?
To answer this question, in this paper, an anti-forensics method based
on generative adversarial network (GAN) is proposed to investigate the
philosophy. The images generated via our method possess the feature
of sharpening, however, they cannot be simply considered as sharpened
images because no traditional sharpening manipulation is applied during
the procedure. Observed from the experimental results, even the state-
of-art sharpening detector based on CNN can be deceived with the GAN
generated images.

Keywords: Image anti-forensics · Deep learning · Generative
Adversarial Network · Image sharpening

1 Introduction

The explosive development of internet makes the propagation and distribution
of information easier than ever. Under this circumstance, it also enables the dis-
semination of false information which brings immense harm to the community.
Therefore, it is necessary to justify the authenticity and integrity of information
from all possible channels. Generally speaking, people prefer visualized infor-
mation such as images and videos over information in other forms. Thus, the
research of image forensics [1–3] is the guardian to protect people from all kinds
of image attacks.
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The research about detecting USM sharpened images beginning in 2009. In
2009, Cao et al. found that there were aberrations in the histograms of sharp-
ened images and proposed an algorithm to detect such aberration [4]. However,
regarding to their report, this algorithm is not very effective when detecting the
images without wide histogram. Then, Cao et al. revised their algorithm in order
to improve the performance on images with narrow histogram and proposed a
new detecting algorithm [5] in 2011. The algorithm employs a set of side-planar
crosswise pixel sequences to locate on the basis of edge pixels of the detected
image. Then, a set of overshoot strengths is calculated for each side-planar pixel
sequence. The average of the overshoot strengths measures the overshoot metric
of the whole image. Finally, the detected image will be identified refer to which
interval this average overshoot strength belongs to.

After solving the problem about detecting images with narrow histogram,
another weakness of their algorithm has been found, that is, the performance is
limited when detecting images with JPEG compression. This drawback limits
its generality use in practical applications. However, Ding et al. [6] proposed an
novel algorithm based on local binary pattern (LBP) [7,8] in 2013. The authors
thought that the appearance of overshoot artifacts can be regarded as a special
kind of texture modification. Meanwhile, LBP is a widely used texture classi-
fication technique. As a result, the performance of the LBP-based algorithm
exceeds all the sharpening detection algorithm before. However, after that, Lu
et al. [9] proposed a method to remove overshoot artifacts for anti-forensics of
USM sharpening.

Then, Inspired by the LBP-based method, Ding et al. [10] proposed a much
more effective algorithm to detect USM sharpening. The algorithm is called
Edge Perpendicular Binary Coding (EPBC). Since that the texture modification
generated by USM sharpening is mainly along the perpendicular direction of
image edges, EPBC employs a long rectangular window, which is perpendicular
to the edges of images, to extract features of image textures and uses a binary
coding strategy to reduce the size of feature sets. Furthermore, an improved
algorithm, which is Edge Perpendicular Ternary Coding (EPTC), is proposed
in [11]. EPTC replaced the binary coding with ternary coding in EPBC, which
outperformed the EPBC.

The sharpening forensics was further improved later since CNN was intro-
duced. The detection scheme based on CNN came out in 2018. Ye et al. [12]
proposed an advanced CNN architecture that contains four convolutional mod-
ules with 4 layers each. By using max pooling as the pooling function and ‘Relu’
as the activation function, the results of this paper showed that the detection
accuracy on all the cases were over 98% on the CNN model they trained. And
this work represents the state-of-art on image sharpening detection at present.

Since the forensics on sharpening detection has achieved tremendous success,
an anti-forensics sharpening algorithm via GAN is proposed in this paper to
deeply challenge the current state-of-art. The rest of this paper is organize as
follows. Section 2 shows the architecture of pix2pix. The experiment results with
analysis are shown in Sect. 3. Finally, Sect. 4 made a conclusion for this paper.
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2 Pix2pix

Pix2pix [13] is a conditional adversarial network structure, which is proposed by
Berkeley AI Research (BAIR) Laboratory. Compared with classical GAN, it pro-
vides a solution of image-to-image translations. In other words, pix2pix accepts
image pairs as input. One image pair contains a input image and a target image.
Pix2pix will learn the regular pattern of translation from input image to tar-
get image, then perform the translation on input image based on the pattern
it learned and generate an output image. Considering that image sharpening
algorithm only enhances the visual effect of image but not tampers with con-
tent, pix2pix is selected to implement similar treatment with USM sharpening
algorithm.

2.1 The Network Architecture

The architecture of pix2pix is shown in Fig. 1. The discriminator learns to judged
the generated image as unsharpened image and the target image as sharpened
image. Meanwhile, the generator learns to deceive the discriminator by adjust
the output image it generated. With continuously training of the network, the
generated image will be closer and closer to the target image and also has better
performance on the resist of detection.

Output 
image

Discriminator

Input 
image

Unsharpened

GeneratorInput 
image

Target 
image

Discriminator

Input 
image

Sharpened

Fig. 1. The architecture of pix2pix

2.2 Generator and Discriminator

The generator in pix2pix is “U-Net” [14], which follows the rule of skip con-
nection. The authors considered that for image translation, the input and the
output should share some information from the layers on the bottom of the
network. The feature maps in the first half layers from input to output will be
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added to the symmetrical layers in the second half. As a result, some features
on the bottom will be preserved as the reference to output image.

Image generated via L1 or L2 loss is fuzzy because L1 and L2 is not effective
to restore the high frequency part of image. In order to overcome this draw back,
pix2pix provides a discriminator structure called PatchGAN. First, PatchGAN
slices image to patches. Then, it tried to classify each patch, respectively. Finally,
it averaging the results of all the patches and made its decision. This method
can avoid the loss of texture to some extent.

3 Experimental Results

3.1 Datasets

Two image databases were utilized in the experimental. One is named Boss,
which was designed for steganoagraphy and steganalysis. Boss contains 10,000
uncompressed grayscale images in “pgm” format. Another image database, which
named UCID & NRCS by us, was consisted of 1,000 images from the UCID
image database and 1,000 images from NRCS image database. For convenience
purposes, all the images from Boss were scaled to the size of 256× 256. Since
the images of UCID & NRCS are not square, all the images from UCID &
NRCS were cropped into the size of 384× 384 first and then scaled to the size
of 256× 256 as well. In addition, all the images were converted to “png” format
and grayscale images.

Note that, in Sect. 2, we have introduced two parameters, which were λ and
σ. They determine the effect of USM sharpening. In our experiment, we have
worked on five combinations of λ and σ, i.e., ‘λ = 1.5, σ = 1.3’, ‘λ = 1.0, σ = 1.5’,
‘λ = 1.0, σ = 1.3’, ‘λ = 1.0, σ = 0.7’, ‘λ = 1.5, σ = 1.0’. Two image databases
that introduced before were sharpened based on these five cases. The original
image and its sharpened image, which became a pair of images, were labeled as
0 and 1, respectively. 10,000 Pairs of images generated by Boss were used for
training pix2pix model, which can transfer images, and CNN model, which can
distinguish images. 2,000 Pairs of images generated by UCID & NRCS were used
for testing the performance of generated models.

3.2 Platform and Settings

TensorFlow is one of the most popular deep learning frameworks at present.
It has open source feature as well as a large total of convenient APIs. All the
pix2pix architecture and CNN architecture were implemented by Tensorflow.
The version number of the TensorFlow for this experiment is 1.11.0. The graphics
cards employed in the experiment were two NVIDIA GeForce GTX 1080Ti with
10 GB memory. The version number of CUDA is 9.0.

For training pix2pix models, the training batch size was fixed to 1, meaning
that for each iteration, 1 images will get into the network. One epoch means
all the images in training dataset get into the network once. The number of
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epochs for training was fixed to 100. Adam optimizer was employed to train the
whole network. The initial learning rate of Adam was fixed to 0.0002 and the
momentum was fixed to 0.5. The images generated by pix2pix would be classified
by the CNN model, which trained though the CNN architecture in [12].

The CNN architecture is shown in Fig. 2. It has four convolutional modules.
Each convolutional module has a convolutional layer, a normalization layer, a
activation layer and a pooling layer, respectively. The function of activation
layers is Relu. Max pooling is adopted in first three convolutional modules. The
pooling algorithm in the last convolutional module is average pooling, which
concluded the feature maps to 64 single feature elements before getting into
classification module. For training CNN models, the batch size is 64 and the
number of epochs is 50. The learning rate of Adam is 0.001 and the momentum
is 0.9.

Fig. 2. The architecture of CNN for testing. The configuration of each layer is displayed
inside the boxes. The sizes of feature maps are listed on the top, shown as number of
feature maps× (height×width). The sizes of convolutional filter groups are shown in
the boxes follows number of filters× number of input feature maps× (height×width).

3.3 Results

At first, we used the prepared 10,000 pairs of images, which were generated
from Boss, of each five cases to train pix2pix models individually. Second, we
used these models to generate images on UCID & NRCS. The samples of the
comparison between the generated images, the original images and the sharpened
images on the case when λ = 1.5, σ = 1.3 were shown in Fig. 3. Compared with
original images, The generated images do have similar sharpening effect with
generated images visually.

Then, we still used the image pairs of Boss to training CNN models of each
five cases. Finally, 2,000 generated images of each cases were classified by cor-
responding models. The comparison of the average classification accuracy of
generated images and the duration of training pix2pix models for each cases are
shown in Table 1. The time consumption indicates the time count on minutes
that consumed for the model reach convergence.
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Original image Sharpened image Generated image

Fig. 3. Two samples of the generated images, the original images and the sharpened
images on the case of ‘λ = 1.5, σ = 1.3’.

Table 1. The average classification accuracy for each cases and the duration of pix2pix
training process.

Cases Accuracy Time consumption

λ = 1.5, σ = 1.3 87.72% 1259

λ = 1.0, σ = 1.5 83.72% 1267

λ = 1.0, σ = 1.3 78.21% 1260

λ = 1.0, σ = 0.7 73.32% 1255

λ = 1.5, σ = 1.0 85.62% 1260

Considering that the classification accuracy for all the cases are over 98%
in [12], the generated images does have anti-forensics property to some extent.
Besides, The average value of peak signal to noise ratio (PSNR) for the generated
images and the sharpened images of different parameters are computed. The
results can be found in Table 2. It is the evidence that the generated images not
only possess the sharpening effect, but also higher image quality when compares
with the images processed by USM sharpening algorithm.
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Table 2. The average PSNR of the generated images and the sharpened images on
each cases.

Cases PSNR(dB)

Generated Sharpened

λ = 1.5, σ = 1.3 30.74 26.00

λ = 1.0, σ = 1.5 33.40 28.02

λ = 1.0, σ = 1.3 33.11 28.94

λ = 1.0, σ = 0.7 35.73 34.64

λ = 1.5, σ = 1.0 31.44 27.94

4 Conclusion

In this paper, an anti-forensics method is proposed. Our method is capable of
generating images, which have sharpening effect that aims to deceive the state-
of-art sharpening detector. The proposed GAN model consists of a generator
and a discriminator. It features generating images with sharpening effect while
preserving the image contents. Observed from the experimental results, the gen-
erated images can be successfully classified as sharpened images although they
have never been sharpened via any traditional sharpening manipulation. In addi-
tion, the quality of the generated images are also better with higher PSNR when
compare with the real sharpened images. This can be considered as a tremen-
dous success that it shows the potential of GAN models in generating images.
In our future work, we will devote ourselves to further explore the potential of
GAN.
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Abstract. For JPEG images, the current digital watermarking meth-
ods mainly embed the watermark by modifying the DCT coefficients, in
which the spatial visual performance isn’t well taken into account. As a
result, significant visual distortion can be observed in smooth and bound-
ary regions of the marked image. Then, to improve the visual quality of
the marked image, a new JPEG image watermarking method exploiting
the spatial just-noticeable-difference (JND) model is proposed in this
paper. In the proposed method, the watermark is embedded into the
DCT domain, but the embedding strength is directly determined by a
spatial JND model. Moreover, for each DCT block, the variances calcu-
lated from the difference blocks along four different directions are con-
trolled to further enhance the imperceptibility. Finally, an optimization
problem is summarized and developed to obtain the optimal embedding
strength that meets the above requirements. Experimental results show
that, with the same PSNR and robustness, the proposed method has
better imperceptibility than the prior art.

Keywords: DCT domain digital watermarking · Spatial JND model ·
Optimization problem

1 Introduction

Digital watermarking provides a way for copyright protection of digital media
such as images, videos, and text documents, etc [7]. So far, various image water-
marking methods have been proposed, and these methods can be roughly clas-
sified into two categories: quantization based and spread spectrum (SS) based.
For quantization based methods, the watermark is inserted by using different
quantizers to quantize the host image features [3,8,10,14]. For SS based meth-
ods, the watermark is embedded into frequency coefficients of the host image as
pseudo-random noise, either additively [9,11,15] or multiplicatively [5,6,12].
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Nowadays, digital images are commonly stored and transmitted in JPEG for-
mat. Hence, most image watermarking methods are designed for JPEG images.
For example, in [4], Cheng et al. proposed a DCT domain watermarking method.
In this work, based on modifying the mean of DCT coefficients in the middle
frequencies, the watermark is embedded into a JPEG image. This method can
resist JPEG compression and print-and-scan (PS) attack as well. However, sig-
nificant visual distortion still exists in smooth and boundary areas of the marked
image. The main reason is that, when modifying DCT coefficients for watermark
embedding, the just-noticeable-difference (JND) model utilized in this work is
only defined in DCT domain, while spatial visual distortion isn’t well taken into
account.

Then, based on the above consideration and to improve the visual quality
of the marked image, as an extension of Cheng et al.’s work [4], a new JPEG
image watermarking method is proposed in this paper. In the proposed method,
a spatial JND model, which reveals the visibility thresholds of the human visual
system (HVS) for spatial pixels, is directly utilized to determine the embedding
strength of middle frequency DCT coefficients. Moreover, in each DCT block of
the host image, the variances calculated from the difference blocks along four
different directions are controlled to further enhance the imperceptibility. Finally,
based on the aforementioned constraints, an optimization problem is summarized
and developed to obtain the optimal embedding strength. Experimental results
show that, with the same PSNR and robustness, the proposed method has better
imperceptibility than the prior art [4].

The rest of this paper is organized as follows. In Sect. 2, Cheng et al.’s water-
marking method [4] is briefly introduced. Then, the proposed method is described
in detail in Sect. 3. The experimental results and the comparison with Cheng
et al.’s method [4] are shown in Sect. 4. Finally, this work is concluded in Sect. 5.

2 Related Work

In this section, the watermark embedding and extraction procedures of Cheng
et al.’s method [4] are briefly described as follows.

In the embedding process, first, for the host JPEG image, collect all DCT
coefficients xk

u,v in the middle frequency with

(u, v, k) ∈ C � {(u, v, k) : 0 ≤ u, v ≤ 7, 3 ≤ u + v ≤ 6, 1 ≤ k ≤ K} (1)

where (u, v) is the frequency position, k is the block index, and K is the total
number of DCT blocks. Then, encode the watermark by a key into a sequence
(w1, ..., wM ) with wi ∈ {−1, 1}. Next, divide the set C into M subsets as

C = C1 ∪ ... ∪ CM (2)

where the DCT coefficients in each subset Ci have the same frequency. Finally,
embed each watermark bit wi into the host image by shifting the mean value of
the elements in Ci, i.e., the marked DCT coefficient is defined as
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yk
u,v =

{
xk

u,v + ak
u,vwi if (u, v, k) ∈ Ci

xk
u,v if (u, v, k) /∈ C

(3)

where the perceptual mask ak
u,v is defined by, using the HVS model described

in [2]

ak
u,v = 4γ(1 + (

√
2 − 1)δu)(1 + (

√
2 − 1)δv)Tu,v

(xk
0,0

x̄0,0

)a

(4)

where δ is the Kronecker delta function, x̄0,0 denotes the mean luminance of the
host image, xk

0,0 denotes the DC coefficient of the k-th DCT block, the parameter
a is set to 0.649, γ ∈ (0, 1) is a scaling factor controlling the watermark strength,
and Tu,v is the visibility threshold for the AC frequency (u, v) defined by (see
Ahumada et al. [1])

log Tu,v = log
Tmin(f2

u,0 + f2
0,v)2

(f2
u,0 + f2

0,v)2 − 4(1 − r)f2
u,0f

2
0,v

+F
(

log
√

f2
u,0 + f2

0,v−log fmin

)2

.

(5)
Here, in the above equation, fu,0 and f0,v are the vertical and horizontal spatial
frequency (in cycle/degree), respectively, and the parameters are set as r = 0.7,
Tmin = 1.1548, F = 1.728 and fmin = 3.68 cycles/degree.

In this method, the key issue is that, for each set Ci, the mean value of the
DCT coefficients xk

u,v with (u, v, k) ∈ Ci is approximately 0, i.e.,

∑
(u,v,k)∈Ci

xk
u,v ≈ 0. (6)

Then, this mean value is shifted towards left or right according to (3) to embed
one watermark bit wi ∈ {−1, 1}.

In the extraction process, first, divide the marked image into 8×8 sized blocks
and perform DCT on each block. Suppose that the derived DCT coefficients are
zk
u,v. As the marked image is probably degraded in transmission (such as re-

compressing or PS, etc.), we then have, considering (3), for each (u, v, k) ∈ Ci,

zk
u,v = yk

u,v + nk
u,v = xk

u,v + ak
u,vwi + nk

u,v (7)

where nk
u,v can be modeled as i.i.d. noise with mean zero. Then, for each 1 ≤

i ≤ M , calculate the detector Ti as

Ti =
∑

(u,v,k)∈Ci

zk
u,v. (8)

In this way, based on (6) and (7), we have

Ti =
∑

(u,v,k)∈Ci

(xk
u,v + ak

u,vwi + nk
u,v) ≈ wi

( ∑
(u,v,k)∈Ci

ak
u,v

)
. (9)
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Next, since ak
u,v is always positive, the embedded watermark bit denoted w̃i can

be determined by the sign of Ti, i.e.,

w̃i =
{

1 if Ti > 0
−1 if Ti ≤ 0 . (10)

Finally, the extracted sequence (w̃1, ..., w̃M ) is decoded by the same key used in
the embedding process to obtain the embedded watermark.

Experimental results show that the scheme can well resist JPEG compression
and PS attack. However, regarding (4) and (5), when modifying DCT coefficients
for watermark embedding, the JND model utilized in this work is only defined
in DCT domain, which may result significant spatial visual distortion in smooth
and boundary regions of the marked image.

3 Proposed Method

As an extension of Cheng et al.’s work [4], a new JPEG image watermarking
method is proposed. In the proposed method, since the spatial JND model can
directly reflect the visual thresholds of HVS for host pixels, a spatial JND model
is exploited to determine the embedding strength of middle frequency DCT coef-
ficients. Moreover, in each DCT block of the host image, the variances calculated
from the difference blocks along horizontal, vertical, diagonal and anti-diagonal
directions are controlled to further enhance the imperceptibility. The detailed
implementation process is elaborated below.

In the proposed embedding process, the same as Cheng et al.’s method [4], we
also adopt (3) for data embedding, and the only difference between the proposed
method and [4] is the determination of the watermark strength ak

u,v. In our
work, an optimization problem is established to obtain the optimal ak

u,v based
on several constraints.

Suppose that the host and marked spatial pixels are respectively Xk
i,j and

Y k
i,j , where (Xk

i,j)0≤i,j≤7 and (Y k
i,j)0≤i,j≤7 are respectively the inverse DCT of

(xk
u,v)0≤u,v≤7 and (yk

u,v)0≤u,v≤7. Then, we define

Dk
i,j = Y k

i,j − Xk
i,j (11)

as the pixel change due to watermark embedding. Clearly, (Dk
i,j)0≤i,j≤7 is the

inverse DCT of (yk
u,v − xk

u,v)0≤u,v≤7.
On one hand, we propose to utilize a spatial JND model to control the spatial

pixel change, i.e., we impose the following constraint

|Dk
i,j | ≤ Sk

i,j (12)

where Sk
i,j represents the spatial JND threshold. Here, the spatial JND model is

obtained based on the work [13].
On the other hand, since the constraint (12) only controls the single pixel

change, the correlation between adjacent pixels is not considered. We then pro-
pose to control the change of pixel difference. Taking the horizontal direction
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for example, denote the difference block of the k-th image block as HXk and
HY k, for the host and marked image, respectively. Specifically, HXk and HY k

are defined as, for 0 ≤ i ≤ 6 and 0 ≤ j ≤ 7,

HXk
i,j = Xk

i,j − Xk
i+1,j and HY k

i,j = Y k
i,j − Y k

i+1,j . (13)

Then, based on the variances of HXk and HY k, we impose the following con-
straint to control the change of pixel difference in horizontal direction

V ar(HY k) ≤ V ar(HXk). (14)

Similarly, consider the difference blocks of the k-th image block for the host and
marked image along the vertical direction (denoted respectively as V Xk and
V Y k), diagonal direction (denoted respectively as DXk and DY k) and anti-
diagonal direction (denoted respectively as AXk and AY k), we also impose the
following constraints: V ar(V Y k) ≤ V ar(V Xk), V ar(DY k) ≤ V ar(DXk), and
V ar(AY k) ≤ V ar(AXk).

In summary, based on the above constraints, for the k-th image block, the
optimization problem that maximizes the watermark strength, can be expressed
as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize − ∑
(u,v)∈Λ

ak
u,v

subject to ak
u,v ≥ 0

|Dk
i,j | ≤ Sk

i,j

V ar(HY k) ≤ V ar(HXk)
V ar(V Y k) ≤ V ar(V Xk)
V ar(DY k) ≤ V ar(DXk)
V ar(AY k) ≤ V ar(AXk)

(15)

where Λ = {0 ≤ u, v ≤ 7, 3 ≤ u + v ≤ 6} means the set of middle frequencies.
This optimization problem (15) is a standard convex optimization problem, and
it can be solved efficiently based on the conventional gradient decent method.
Finally, after obtaining the watermark strength ak

u,v for each block, the water-
mark embedding can be completed by re-defining the marked DCT coefficient
as

yk
u,v =

{
xk

u,v + βak
u,vwi if (u, v, k) ∈ Ci

xk
u,v if (u, v, k) /∈ C

(16)

where β ∈ (0, 1) is a parameter tuning the PSNR of the resulting marked image.
In the proposed extraction process, the same as Cheng et al.’s work [4], we

also adopt (8) and (10) to extract the watermark bits.

4 Experimental Results

In this section, we use eight standard 512 × 512 sized gray-scale JPEG images
including Lena, Baboon, Airplane, Barbara, Lake, Boat, Peppers, and Elaine to
evaluate the fidelity and robustness of the proposed method. In the experiment,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 1. Visual performance comparison for the image Lena with PSNR=40.35 dB: (a)
the host image; (b) the marked image derived from Cheng et al.’s method [4]; (c) the
marked image derived from the proposed method; (d) (g) (j) 100×100 sized sub-image
of (a); (e) (h) (k) 100×100 sized sub-image of (b); (f) (i) (l) 100×100 sized sub-image
of (c).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2. Visual performance comparison for the image Barbara with PSNR=40.35 dB:
(a) the host image; (b) the marked image derived from Cheng et al.’s method [4]; (c)
the marked image derived from the proposed method; (d) (g) (j) 100 × 100 sized sub-
image of (a); (e) (h) (k) 100 × 100 sized sub-image of (b); (f) (i) (l) 100 × 100 sized
sub-image of (c).
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Fig. 3. Average BER for JPEG compression, for eight test images.

a watermark with length M = 88 is embedded into each host image, and thus,
there are totally K = 4, 096 DCT blocks for each image and 1, 024 elements in
each set Ci. To evaluate the visual performance and robustness, by adjusting
the scaling factors γ and β in (4) and (16), we set the same PSNR = 40.35 dB
for both Cheng et al.’s method [4] and the proposed one.

The visual performance comparison for the image Lena is shown in Fig. 1.
The host image, the marked images derived from Cheng et al.’s method and the
proposed method are respectively shown in Fig. 1(a), (b) and (c). Moreover, we
extract three 100 × 100 sized sub-images from Fig. 1(a), which are respectively
shown in Fig. 1(d), (g) and (j). The same operations are also performed on
Fig. 1(b) (respectively shown in Figs. 1(e), (h) and (k)) and (c) (respectively
shown in Fig. 1(f), (i) and (l)). Similarly, the experimental results for the image
Barbara are shown in Fig. 2. As shown in Figs. 1 and 2, compared with the
host image, in texture region, the pixel changes in Cheng et al.’s method and
the proposed one are both hardly to be perceived by human eyes. However, in
smooth and boundary regions, there is significant visual distortion in the marked
image for Cheng et al.’s method, while the distortion in our marked image is
hardly to be perceived. With the same PSNR, the proposed method has less
obvious visual distortion than Cheng et al.’s method. The experimental results
for other six images also demonstrate the superiority of the proposed method.
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Moreover, to evaluate the robustness, the bit error ratio (BER) for eight
host images embedded by Cheng et al.’s method and ours, is respectively com-
puted, with different JPEG compression factors. Figure 3 shows the average BER
curves. According to this figure, one can see that the robustness of the proposed
method is approximately the same as that of Cheng et al.’s method, whatever
the JPEG quality factor is. Moreover, the proposed method is robust enough for
JPEG compression when the JPEG quality factor is above 50.

In conclusion, compared with Cheng et al.’s method, with the same PSNR,
the watermark in the proposed method is hardly to be perceived by human
eyes, and there is almost no degradation for the robustness against to JPEG
compression. The spatial JND model is proved to be effective in enhancing the
embedding performance of the DCT domain watermarking scheme.

5 Conclusion

In this paper, as an extension of Cheng et al.’s work [4], a new JPEG image water-
marking method is proposed. In the proposed method, a spatial JND model is
exploited to determine the DCT domain watermark embedding strength. More-
over, in each DCT block, the variances calculated from the difference blocks
along horizontal, vertical, diagonal and anti-diagonal directions are controlled to
further enhance the imperceptibility. By the proposed approach, the embedding
strength is in line with the HVS threshold for spatial pixel, and the visual qual-
ity of the marked image is guaranteed. Experimental results have demonstrated
that the proposed scheme is robust to JPEG compression. And, compared with
Cheng et al.’s method [4], the proposed scheme has better invisibility with the
same PSNR and robustness. For the future work, we will extend the proposed
approach to more effective DCT domain image watermarking schemes.
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Abstract. In any application of watermarking, the selection of feature
vectors from a given multimedia content is important from the per-
spective of robustness and security. In the case of PDF document, the
spaces between words and characters are commonly utilized for embed-
ding watermark in the conventional schemes. Instead of modifying the
space values directly, researchers proposed to manipulate the frequency
components of the space values by using the quantization index modula-
tion (QIM) watermarking method. The QIM method is further combined
with dither modulation (DM) to enhance secrecy of watermark. In this
paper, we improve the imperceptibility of watermarked PDF document
by investigating into the DM operation. The proposed method selects the
best secret key among some candidates which minimizes the degradation
caused by embedding watermark. Information about the selected key is
also embedded as side information so that the embedded watermark can
be extracted without referring to the original PDF document. The degree
of distortion caused by watermark embedding is quantitatively measured
in our experiment. It is verified that the gain in terms of signal-to-noise
ratio in the proposed method is increased with the number of secret key
candidates.

Keywords: PDF document · Watermark · Dither modulation ·
Quantization index modulation

1 Introduction

Digital watermarking technique enables us to embed information into multime-
dia content without causing noticeable perceptual degradation. It is desirable
to embed more information with less distortion. Robustness of a watermark,
which refers to its ability to withstand common attacks, is also important for
actual deployment or application of the watermarking scheme. Such watermark-
ing schemes can be roughly categorized into two classes, namely, (a) spread
spectrum [4], and (b) quantization index modulation (QIM) [3]. Due to its high
robustness against attacks and low embedding distortion, QIM-based technique
has been employed in many watermarking schemes. When adversaries only know
c© Springer Nature Switzerland AG 2020
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the embedding algorithm but not the secret key, they focus on the components
(i.e., venues) which may contain watermark signal for attacking the watermark.
Hence, such components should be selected according to a secret key, and infor-
mation leakage by means of direct observation should be prevented from a secu-
rity point of view. In Chen et al.’s QIM method [3], some extensions are also
investigated for enhancing the secrecy of watermark as well as the robustness
against additive noise.

Among all multimedia contents, we focus on PDF document in this study.
PDF stands for portable document format [5], which has been developed by
Adobe Systems Society as a page description language. Due to the compatibility
requirement in various environments, office documents are commonly stored in
the PDF format. With PDF, one can set the permissions to prevent the file
from being viewed, copied, printed, and so on. However, the protection against
information leakage becomes difficult when such permissions are allowed, even
just for one time. In the case of internal leakage by a malicious party (e.g., spy),
we need other protection mechanism such as watermark to identify the traitor
based on the leaked PDF file.

Since PDF conforms to a standard, we should be mindful not to violate the
constraints in PDF document, i.e., format-compliant. Otherwise, a PDF viewer
detects irregularities in the format and refuses to open the file. Specifically, in
a PDF file, a TJ operator displays strings of text with the specified position
and space lengths between characters. In some conventional schemes [1,2,6–10],
the space lengths are applied for embedding watermark. For example, Bitar et
al. [2] combined QIM with the spread transform dither modulation (STDM) [3]
to embed watermark. Due to its spreading operation in STDM, the analysis of
watermark becomes difficult. However, the payload is small due to the charac-
teristic of STDM. In [6], an ordinary dither modulation (DM) is used in the QIM
method to ensure the secrecy of the watermark. A set of space lengths in each
line is regarded as a host vector, and its frequency components are modified for
embedding purpose. For the enhancement of secrecy, a random permutation is
introduced prior to frequency transformation. The maximum payload of the DM
method is significantly larger than the STDM-QIM method, and the payload can
be controlled by a rate parameter.

In this paper, we propose a method for suppressing the distortion caused by
embedding watermark using the DM-QIM method. A random sequence is used
in the DM operation, and it is generated according to a secret key. The proposed
method increases the number of the candidates of such random sequence and
finds the one that minimizes the distortion. Information of the selected candidate
is embedded as side information in order to provide a blind watermarking scheme,
which can extract a watermark without referring to the original content. By
introducing a spreading operation among every lines, the embedding information
is widely spread over all space lengths for not compromising the secrecy of side
information as well as watermark. The degree of reduction in distortion and file
size are numerically compared with the original DM-QIM method.
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2 Preliminaries

In this section, we briefly review the DM-QIM watermarking method and review
a conventional watermarking method [6] for PDF document.

2.1 DM-QIM Watermarking

Let d be an element in the feature vector exploited for embedding, and let
w ∈ {0, 1} be a watermark. In QIM, d is quantized into the nearest even/odd
point, which is a multiple of a quantization step size δ. For example, if δ = 10,
the resulting quantized value will be a member in the set {0,±10,±20,±30, · · · }.
If a malicious party knows the embedding algorithm in use, each element of the
feature vector can be found by simply observing the values. Therefore, the DM
operation is introduced to enhance secrecy.

In the DM operation, a random number k is identically and independently
selected from the range [−δ/2, δ/2]. Then, a watermark w is embedded into d
using k as follows:

d′ = DM-QIM(d,w, k)

=
{

δ · ⌊
d+k

δ

⌋
if

⌊
d+k

δ

⌋
mod 2 = w;

δ · (⌊
d+k

δ

⌋
+ 1

)
otherwise.

(1)

The above operation quantizes d+k into the nearest even/odd value according to
the watermark bit w. Then, the watermarked element d� is calculated as follows:

d� = d′ − k. (2)

At the receiver’s end, the watermark w is extracted as follows:

w =
⌊d� + k + δ

2

δ

⌋
mod 2. (3)

2.2 PDF File Structure

A PDF file assumes a structured binary file format with four components,
namely: header, body, cross-reference table, and trailer. The header is the first
line of the PDF file, and it indicates the version of the PDF specification. In
the body, there are objects such as text streams, images, other multimedia ele-
ments, etc. The body is utilized to hold all the data in the document, which will
be rendered by a PDF viewer. The cross-reference table contains the references
to all the objects in the document. It allows random access to objects in the
file, where each object is represented by one entry in the table. The Trailer is
utilized to find the cross-reference table, similar to a dictionary indicating the
link to each object.

Within the PDF standard, some operators are defined for representing the
text document. Specifically, the Tf operator specifies the text style and font size,
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and the Td operator specifies the offset of the beginning of the current line.
When the current coordinate is (x, y), the Td operator shifts the coordinate to
(x+Δx, y+Δy). The TJ operator shows the text characters and spaces between
characters.

For each TJ operator, a collection of space lengths are specified for the text
characters. The value of space length indicates the horizontal position of the
characters.

2.3 Conventional Method

Without loss of generality, assume that one TJ operator is placed at each line
of a PDF document file. The number of space lengths in the t-th line is denoted
by �t, and the collection of space lengths in the t-th line is denoted by a vector
st = (st,0, st,1, . . . , st,�t−1). When the number of lines is n, the total number of
space lengths is

∑n
t=1 �t. The conventional method can embed at most �t − 1

watermark bits into the t-th line, and hence, the total amount of embeddable
information is

∑n
t=1(�t − 1) bits. The embedding operation, which consists of

there sub-operations, is executed for each line. The sub-operations, namely, Fea-
ture Extraction, Embedding, and Inverse Feature Extraction, are detailed in the
following sub-sections.

Feature Extraction. The order of elements in st of length �t is randomly
permuted according to a secret key key and the index of line t.

s̄t = Permute(st , key, t, �t), (4)

where Permute() is a random permutation function. Then, the permuted vector
is transformed by Discrete Cosine Transformation (DCT), i.e.,

dt = DCT(s̄t). (5)

Embedding. The DC element dt,0 is kept unchanged in order to maintain the
total space length. Therefore, one can embed at most (�t − 1)-bit of watermark
information into the t-th line. In order to control the trade-off between distortion
and payload, the amount of watermark information is reduced by a factor R
where 0 < R ≤ 1. The payload becomes

�′
t = �R�t� − 1. (6)

Using a pseudo-random number generator PRNG, the random sequence kt

of length �′
t is generated according to the secret key key:

PRNG(key, t, �′
t) = kt = (kt,1, . . . , kt,�′

t
), (7)

where the value of kt,j is uniformly distributed over [−δ/2, δ/2]. The embedding
operation is performed as follows:

d′
t,j =

{
DM-QIM(dt,j , wt,j , kt,j) 1 ≤ j ≤ �′

t;
dt,j otherwise. (8)
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Finally, the watermarked DCT coefficients d�
t,j are calculated as follows for

1 ≤ j ≤ �t − 1:
d�

t,j = d′
t,j − kt,j . (9)

Inverse Feature Extraction. The watermarked DCT coefficients d�
t is trans-

formed by IDCT:
s̄′

t = IDCT(d�
t ). (10)

The same permutation function is used to obtain the watermarked vector s′
t :

s′
t = Permute(s̄′

t , key, t, �t). (11)

3 Proposed Method

3.1 Expected Degree of Distortion

In the conventional method, a random sequence generated according to a secret
key is utilized in dither modulation, where the expected degree of distortion can
be theoretically calculated.

During the quantization process, a DCT coefficient dt,j is quantized into
its nearest odd/even multiple value with respect to the quantization step δ.
Before/after the quantization process, the value kt,j is added/subtracted because
of the dither modulation. Due to the randomness of kt,j , the difference d�

t,j−dt,j is
uniformly distributed within the range [−δ, δ]. Hence, the expectation of squared
difference can be computed as follows:

E
[
(d�

t,j − dt,j)2
]

=
1
δ

∫ δ

−δ

x2dx =
δ2

3
(12)

If kt,j is selected so that |d�
t,j − dt,j | < δ/2, the distortion caused by the

embedding can be reduced. However, such kt,j must be determined from a given
dt,j . Thus, the extraction of watermark requires the information about the orig-
inal dt,j , which leads to a non-blind watermarking scheme. Since the advantage
of QIM watermarking scheme is its blind property in watermark extraction, the
use of the aforementioned strategy for determining kt,j is futile.

3.2 Improved DM-QIM Watermarking

We propose a solution for reducing the distortion by using some potential
keys derived from a single master secret key to systematically generate random
sequences.

Let α be a positive integer. A random sequence kα is generated by using a
secret key key and α. Specifically,

kα = PRNG2(key, α, L) = (kα,0, kα,1, kα,2, . . . , kα,L−1), (13)
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where PRNG2 is a different pseudo-random number generator from PRNG and

L =
n∑

t=1

�′
t. (14)

Then, α̃ is determined by the following operation:

α̃ = arg min
α

{Dα}, (15)

where Dα is a parameter for measuring the distortion level. Once α̃ is determined,
the watermarked vectors s�

t are calculated by embedding watermark. Finally, a
watermarked PDF document file is output as the result.

During the extraction of watermark, α̃ as well as the secret key key are
required to generate the sequence kα̃ . It should be noted that α̃ is dependent
on a given PDF file, although key is independent. In order to realize a blind
watermarking scheme, α̃ is separately embedded by using DM-QIM technique
with key. If the number of candidates for α̃ is N , we need to embed log2 N bits
to retrieve it, which reduces the payload to L − log2 N .

From the security point of view, if the log2 N -bit information about α̃ is
embedded in specified positions (e.g., the first line of the document), it is easy
for an attacker to make watermarked unextractable by intensively adding noise
only to those positions. Even if a secret key key is used in the permutation at
each line, such an attack cannot be avoided. To immunize against such an attack,
the log2 N -bit information as well as watermark are randomly spread over all
space lengths in the proposed method.

Let β be the vector composed of dt,j for 1 ≤ j ≤ �′
t and 1 ≤ t ≤ n.

β = (d1,d2, . . . ,dn )
= (d1,1, . . . , d1,�′

1
, d2,1, . . . , d2,�′

1
, . . . , dn,1, . . . , dn,�′

1
) (16)

It is stressed that the DC elements dt,0 for 1 ≤ t ≤ n are not involved in the
vector β. Notice that the number of elements in β is L. The order of elements
in β is randomly permuted according to a secret key key with index 0, i.e.,

β̄ = Permute(β, key, 0, L). (17)

Then, the permuted vector is transformed by DCT to obtain

θ = DCT(β̄) = (θ0, θ1, . . . , θL−1). (18)

For a given watermark sequence w of length L − log2 N , the parameter Dα of
distortion level is calculated as follows.

Dα =
L−1∑
j=0

(
DM-QIM(θj , wj , kα,j) − θj

)2
. (19)

According to Eq. (15), α̃ is determined by using Dα for 1 ≤ α ≤ N .



Improved DM-QIM Watermarking Scheme for PDF Document 177

3.3 Embedding Procedure

The proposed method measures the sum of squared differences using the random
sequence kα for a given α, and finds α̃ which yields the minimum sum. From
Eq. (12), the expected value of the sum is Lδ/12. As the sum is fluctuated around
Lδ/12, the sum is decreased as the number of candidates for α increases.

The embedding procedure of the proposed method is summarized as follows.

(1) At each line of a PDF document file, its space vector st is permuted by
using a secret key key, and it is transformed by DCT.

(2) Except for the DC element dt,0, the DCT coefficients dt,j are selected for
1 ≤ j ≤ �′

t and 1 ≤ t ≤ n to create a single vector β of length L.
(3) The vector β is further permuted by using key and is transformed by DCT.
(4) For 1 ≤ α ≤ N , α̃ is determined from θ by using Eq. (15).
(5) Each watermark bit wj is embedded into the selected DCT coefficients θj

using kα̃,j . The number of embeddable watermark bits is L − log2 N .
(6) For the last log2 N DCT coefficients θj for L − log2 ≤ j ≤ L − 1, a ran-

dom sequence k0 = PRNG(key, 0, log2 N) of length log2 N is generated
using key, and watermarked coefficients θ�

j are calculated by embedding
the binary representation of α using the DM-QIM technique.

(7) By performing inverse operations, the watermarked vectors s�
t are calcu-

lated and a watermarked PDF document file is created.

For the above procedure, steps (1) to (3) are the feature extraction opera-
tions, and step (7) is the inverse operation. Steps (4) to (6) are the main embed-
ding operations.

3.4 Extraction Procedure

The watermark is extracted from a suspicious PDF file using the same secret
key key following the procedure below.

(1) The same operations detailed in Steps (1) to (3) of the embedding procedure
are performed to each line of a suspicious PDF document file.

(2) α̃ is extracted from the last log2 N DCT coefficients θ̃j using k0, which is
in turn generated by key.

(3) The random sequence kα̃ is generated, and each watermark bit wj is
extracted from θ̃j for 0 ≤ j ≤ L − log2 N − 1 by using Eq. (3).

4 Experimental Results

A PDF document file is generated by Latex using an extended version of
dvipdfm-0.13.2c. Specifically, the document is the first 5 chapters of Genesis
in the Old Testament of the Bible, which contains 3178 words with 15694 char-
acters and 150 lines. We select lines each having �t ≥ 10 spaces for embedding
purpose, while leaving the rest unchanged. The number of lines for embedding
is 147 in this case, and the payload of the PDF file is at most 3810 bits.
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side info.

L

L− log2N log2N

watermark

Fig. 1. Embedding data.

Table 1. Payload [bits] in the case of log2 N = 8.

R 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

L − log2 N 162 581 964 1369 1788 2161 2548 2949 3350 3802

For experiment purpose, 1000 random sequences of zeros and ones are gen-
erated and utilized as watermark. Figure 1 illustrates the embedding data which
is composed of watermark and side information. The proposed scheme modifies
L elements to embed L− log2 N watermark. For fair comparison, the payload of
the conventional method is reduced to L − log2 N , where the last log2 N DCT
coefficients are left unmodified. The payload varied by considering different R
values as recorded in Table 1 in the case of log2 N = 8.

4.1 Distortion

After embedding the watermarks, the average signal-to-noise ratio (SNR) and
file size are calculated. We use the following SNR in this experiment:

SNR = 10 log10

( ∑ ∑
(st,j)2∑ ∑

(s�
t,j − st,j)2

)
[dB]. (20)

The comparison of SNR between the conventional and proposed methods is
shown in Fig. 2. Results suggest that SNR for both the conventional and pro-
posed methods are increased when N increases. However, a higher rate of SNR
improvement is observed for the proposed method. The detailed numerical results
are recorded in Table 2 for log2 N = 8. The SNR gain refers to the difference
of SNR between the conventional and proposed methods. It is observed that
the gain is inversely correlated to the rate R. It means that the sum of squared
differences tends to be small when the number of DCT coefficients dt,j is small.
A similar trend can be observed from the results in Table 2. From the above
results, we can conclude that the proposed method can suppress the distortion
caused by embedding watermark into a PDF document.

We use the “PDFtk” toolkit1 to compress/decompress PDF file. The doc-
ument of PDF file is compressed when it is created by the dvipdfm tool from
Latex. The size of the original PDF file is 24, 767 bytes, while the size becomes

1 https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/.

https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
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Fig. 2. Comparison of distortions caused by embedding.
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Table 2. SNR gain [dB] in the case of log2 N = 8 for different R.

R δ

3 6 12 24 48

0.1 0.668 0.407 0.453 0.485 0.480

0.2 0.263 0.289 0.291 0.308 0.308

0.3 0.225 0.239 0.231 0.245 0.249

0.4 0.201 0.206 0.199 0.212 0.214

0.5 0.179 0.185 0.182 0.189 0.186

Table 3. Comparison of file size [Bytes] in the case of log2 N = 8.

R method δ

3 6 12 24 48

0.1 conv. 25047.5 25464.5 25969.8 26496.5 26965.8

prop 25012.5 25431.7 25928.2 26456.3 26931.4

(gain) (−35.0) (−32.8) (−41.6) (−40.2) (−34.4)

0.2 conv. 25433.5 25928.7 26457.9 26934.5 27321.2

prop 25412.7 25900.9 26433.2 26910.7 27302.8

(gain) (−20.8) (−27.8) (−24.7) (−23.8) (−18.4)

0.3 conv. 25600.8 26127.7 26636.9 27090.2 27443.8

prop 25581.2 26104.7 26617.7 27074.1 27429.7

(gain) (−19.6) (−23.0) (−19.2) (−16.1) (−14.1)

0.4 conv. 25729.5 26263.3 26756.2 27189.5 27528.1

prop 25709.5 26245.1 26740.9 27175.4 27513.3

(gain) (−20.0) (−18.2) (−15.3) (−14.1) (−14.8)

0.5 conv. 25828.6 26364.4 26847.4 27258.2 27594.9

prop 25813.2 26346.7 26833.3 27247.0 27583.5

(gain) (−15.4) (−17.7) (−14.1) (−11.2) (−11.4)

52, 445 bytes after decompression. Note that the watermark is embedded into
the decompressed PDF file, and a watermarked PDF is compressed again by
using the “PDFtk” tool in our experiment. The file size achieved by the conven-
tional and proposed methods are recorded in Table 3 when log2 N = 8. From the
information theoretical point of view, the increase of file size must be suppressed
when the watermarked PDF file is compressed in the proposed method. It is
observed that the file size of the proposed method is indeed reduced. From the
results in Table 3, we can conclude that the proposed method can reduce the file
size when compared with the conventional method.
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4.2 Robustness

We evaluate the robustness against additive noise under the following conditions.
Neither the vectors θ nor β can be observed without the secret key key, and it
is assumed that white Gaussian noise (AWGN) is directly added to the space
vectors st . The watermark-to-noise ratio (WNR) is calculated by using the ratio
between the total amount of energy embedded into a PDF and the energy of
AWGN:

WNR =

∑�−1
j=0(s

�
j − sj)2∑�−1

j=0 ε2j
. (21)
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Fig. 3. Comparison of bit error rate.

The bit error rate is calculated as the ratio of the number of error bits to the
total bits L. The results are as summarized as Fig. 3. It is observed that BER of
the proposed method is lower than that of the conventional method. It is due
to the side information, which is of length log2 N -bit. If the side information is
not correctly extracted, the extraction of payload will fail, and the number of
error bits increase significantly in the proposed method. On the other hand, if
at least one error appears in the extracted watermark of length L, we regard
it as a detection error in the measurement of word error rate. Specifically, in
this experiment, we count the average number of detection errors for 103 trials,
then calculate its ratio as the word error rate. The results are shown in Fig. 4.
The results indicate that the probability of error detection is suppressed in the
proposed method. It is because the proposed method can suppress the distortion
caused by embedding as confirmed in Fig. 2. Nonetheless, error correcting code
appears to be a promising approach to further improve robustness, which is left
as our future work.
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Fig. 4. Comparison of word error rate.

5 Conclusion

In this work, we improve the DM-QIM watermarking scheme by increasing the
candidates for random dither sequence. Information about the selected candi-
date is also embedded as side information into the PDF document file along with
the watermark. With the increase of such candidates, the distortion caused by
embedding watermark can be suppressed. Although the payload is slightly sac-
rificed for realizing blind detection, we can improve the quality of watermarked
PDF document and reduce the file size. The theoretical analysis on the relation-
ship between the gain and the number of candidates will be pursued as one of
our future works.
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Abstract. In this paper, we propose a new self-embedding image watermarking
scheme based on reference sharing and Poisson equation.With Laplacian operator,
the relationship of each pixel and its neighborhood in original image is established
and can be converted to compression bits. Then, after scrambling, compression
bits are interleaved through the reference sharing mechanism, which can intro-
duce more redundancy into the reference bits to be embedded for future content
recovery. Thus, the relationship between each compression bit and each reference
bit is constructed so that the recoverable area for tampered image can be increased
effectively. Tampered contents can be recovered with the Laplacian values of
tampered blocks and the boundary values around tampered blocks based on tam-
pering localization and Poisson equation solver. Experimental results demonstrate
the effectiveness of the proposed scheme.

Keywords: Self-embedding · Reference sharing · Poisson equation · Tampering
recovery

1 Introduction

Nowadays, with the rapid development of network technology, the transmission ofmulti-
media data has been increasinglywidely. Digital images can also bemore easilymodified
by powerful image processing tools than before. As a result, we cannot ensure whether
our received digital images are faked or not [1–3]. Therefore, how to protect the integrity
of digital images has been attractedmore andmore attentions, andmany researchers have
deeply studied the solutions to image authentication [4–8], which includes tampering
detection and content recovery for suspicious images.

Fragile imagewatermarking is an effective technique for image authentication,which
embeds watermark data into original image on the sender side and extracts watermark
data from watermarked image on the receiver side for tampering detection and image
recovery. If the embedded watermark data is related with the image itself, this technique
can also be called as self-embedding watermarking.
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Chang et al. presented a fragile watermarking scheme of ownership detection and
tampering detection for digital images [2]. This scheme embedded adaptive least sig-
nificant bits (LSBs) of the pixels to localize the tampered area accurately. Although the
accuracy of tampering detection was high, the function of content recovery for tam-
pered images cannot be achieved. Lin et al. proposed a hierarchical self-embedding
image watermarking scheme for both tampering detection and content recovery [3]. A
3-level stage detection for tampered blocks based on parity check bits was applied in
this scheme, and the average intensity of image block was utilized to recover tampered
region. But, this scheme cannot restore images with higher tampering rate very well. Lee
and Lin proposed a dual-watermark scheme for image tampering detection and recov-
ery [4]. This scheme provided a second opportunity for content recovery when the first
copy of the extracted watermark data was damaged. Even if the watermarked image was
destroyed with relatively higher tampering rate, visual quality of recovered image can
still be satisfactory. Zhang et al. proposed a self-embedding imagewatermarking scheme
in [5], which was capable of recovering the original principal content of damaged region
in extensive areas. In this scheme, DCT coefficients were shared to form reference-bits
that can be used to recover original principal content when the tampering rate was not
greater than 59%, and the PSNR value of recovered image can achieve [26, 29] dB.

In this work, in order to achieve higher visual quality of watermarked images and
recovered images, we propose a new paradigm for self-embedding fragile image water-
marking based on Poisson equation. In our new paradigm, reference bits for content
recovery are derived from two-order Laplacian values of original image after refer-
ence sharing. Watermark bits are embedded into 3 LSB planes of original image. On
the receiver side, the extractable reference bits from LSB, the intact information from
MSB in the undamaged regions and their relationships are employed during the content
recovery procedure. Tampered contents can be recovered with the Laplacian values in
tampered blocks and the boundary value around tampered blocks through solving Pois-
son equation. Even if tampering rate is not low, visual quality of recovered image can
be satisfactory.

2 Watermark Embedding Procedure

In our scheme, original image is first divided into a series of non-overlapping 8 × 8
blocks. Each pixel in original image can be transformed into a new value based on the
relationship with its neighborhood according to the Laplacian operator. Then, through
the reference sharing mechanism, the reference bits for content recovery are produced
based on Laplacian values. After that, the authentication bits of each block for tampering
detection are also calculated through the hash function. Reference bits after scrambling
are embedded into the whole image dispersedly and authentication bits of each block
are embedded into the block itself. Thus, the final watermarked image can be obtained.
The flowchart of the self-embedding procedure is shown in Fig. 1.

2.1 Laplacian Operator Processing

The 3 LSBs of each pixel are first set to zeros for initialization. In order to establish the
connection between eachpixelwith its neighboringpixels, Laplacian operator processing
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Fig. 1. Flowchart of watermark embedding procedure

is conducted. Four common Laplacian operators are shown in Fig. 2. In order to achieve
higher recovery efficiency, Laplacian operator of Type 1 in Fig. 2(a) is applied in our
scheme. Original image A sized N1 × N2 is convolved with the Laplacian operator L
to construct a new matrix B:

B = A ⊗ L. (1)

The value of each pixel in A ranges from 0 to 255, which can be represented by
8 bits. In order to make the length of Laplacian bits fixed, the maximum bmax and the
minimum bmin of all the values of pixels in B need to be calculated, where bmin must be
less than or equal to 0. A newmatrix of Laplacian valueC can be obtained by Eq. (2) and
the fixed length k of each pixel in C can be calculated by Eq. (3), where k is transmitted
to the receiver together with other secret keys.

C = B + ∣
∣bmin

∣
∣, (2)

k = ⌊

log2(bmax − bmin) + 1
⌋

. (3)

Then, the matrix C is divided into N /64 non-overlapping blocks sized 8 × 8, where N
= N1 × N2. Thus, each 8 × 8 block produces 64k bits. After all blocks are processed,
total k·N Laplacian bits of C can be acquired.

2.2 Reference-Bits Generation and Embedding

All the k·N Laplacian bits should be divided intoN /64 subsets pseudo-randomly accord-
ing to a secret key, and each subset contains 64k Laplacian bits. Denote the i-th subset
as Ti = {ti,1, ti,2, …, ti,64k}, i = 1, 2, …, N /64. For each 8 × 8 block of original image
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0 -1 0

0 1 0
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-1 8 -1

-1 -1 -1
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(a) Type 1         (b) Type 2     (c) Type 3     (d) Type 4

Fig. 2. Four common Laplacian operators
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A, 160 reference bits for further content recovery are generated from the 64k Laplacian
bits:

⎡

⎢
⎢
⎢
⎣

ri,1
ri,2
...

ri,160

⎤

⎥
⎥
⎥
⎦

= Hi ·

⎡

⎢
⎢
⎢
⎣

ti,1
ti,2
...

ti,64k

⎤

⎥
⎥
⎥
⎦

, i = 1, 2, . . . , N/64, (4)

where Hi is a binary matrix sized 160 × 64k and generated according to the secret key.
The calculation in Eq. (4) should be module 2.

For each 8 × 8 block of A, the 32 authentication bits for tampering detection can
be gained by feeding its 5 MSB and the corresponding 160 reference bits into a hash
function. For each block of A, the 192 watermark bits, including 160 reference bits and
32 authentication bits, are permuted and used to replace 3 LSB of the block itself. After
all N /64 blocks are processed, the final watermarked image P can be acquired.

3 Content Recovery Procedure

Suppose that the potential adversary may modify some contents of watermarked image
Pwithout changing image size. Hence, tampering detection and further content recovery
should be implemented on the receiver side. The flowchart of content recovery procedure
for our scheme is illustrated in Fig. 3.

Reserved 
Blocks

Boundary 
Values

Recovered 
Image

Received Image Poisson 
Equation

Tampered 
Blocks

Laplacian 
Values

Tampering Detection Content Recovery

Fig. 3. Flowchart of tampering detection and content recovery

3.1 Tampering Detection

Denote the received, possibly tampered image as P′. First, P′ is divided into 8 × 8 non-
overlapping blocks. For each block, the 192 watermark bits extracted from the 3 LSBs
are parsed into two parts, i.e., 160 reference bits and 32 authentication bits, according the
same secret key with the sender side. If the extracted 32 authentication bits differ from
the hash result of the 320 bits of 5 MSBs and 160 extracted reference bits corresponding
to the current block, the block is marked as tampered. Otherwise, the block is marked
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as intact. In addition, After all blocks in P′ are conducted with tampering detection,
boundary values f of tampered blocks can be obtained, which can be used to recover the
tampered blocks f ′ with the restored Laplacian values in tampered area through solving
the Poisson equation, as illustrated in Fig. 4.

(a) Tampered area and its boundary (b) Gradient field of tampered area

Fig. 4. Illustration of tampering detection

3.2 Restoration of Laplacian Bits

Asmentioned in Sect. 2, the extracted 3N /2 reference bits are derived from the Laplacian
bits scattering in the whole image. When the contents of the blocks containing these
reference bits are altered by the adversary, the number of reference bits extractable from
intact blocks, u, may be less than 160 in each subset, thus, Eq. (4) can be rewritten as
Eq. (5).

⎡

⎢
⎢
⎢
⎣

ri,e(1)
ri,e(2)

...

ri,e(u)

⎤

⎥
⎥
⎥
⎦

= H(E)
i ·

⎡

⎢
⎢
⎢
⎣

ti,1
ti,2
...

ti,64k

⎤

⎥
⎥
⎥
⎦

, i = 1, 2, . . . , N/64, (5)

where ri.e(1), ri.e(2),…, ri.e(u) are the extractable reference bits from reserved blocks, and

H(E)
i is a matrix with rows taken fromHi corresponding to the extractable reference bits.

Although the reference bits embedded into tampered blocks are unknown, the extractable
reference bits can be obtained to recover the Laplacian bits in each subset. CR and CT
are denoted as the two column vectors consisting of Laplacian bits in intact blocks and
tampered blocks, respectively. Equation (5) can be re-formulated as:

⎡

⎢
⎢
⎢
⎣

ri,e(1)
ri,e(2)

...

ri,e(u)

⎤

⎥
⎥
⎥
⎦

− H(E,R)
i · CR = H(E,T)

i · CT, (6)

where H(E,T)
i and H(E,R)

i are the two matrixes whose columns are those in Hi corre-
sponding to Laplacian bits in CT and CR, respectively. In Eq. (6), the left side and the
matrix H(E,T)

i are known, only CT is unknown and required to be solved. Denote the
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length of CT as nT, so that the binary matrixH(E,T)
i is sized as v × nT. As long as Eq. (6)

has a unique solution, it can be solved by using the Gaussian elimination algorithm. That
is to say, the extractable reference bits and Laplacian bits in intact region can be both
utilized to restore the Laplacian bits of tampered blocks in each subset.

3.3 Tampered Content Recovery

After tampering detection and Laplacian-bits restoration are completed, we can recover
the tampered contents by solving Poisson equation [9], see Eq. (7).

� f ′ = ∇ · w, (7)

where w denotes the gradient field of tampered area and ∇·w is the Laplacian values in
the tampered blocks. The received image can be divided into two parts: reserved blocks
and tampered blocks. For the reserved blocks, 5MSBbits can be kept unchangedwithout
recovery. For the tampered blocks, Laplacian bits solved by Eq. (6) can be rearranged
based on the same secret key. As shown in Fig. 4, by solving the Poisson Equation, the
pixel values f ′ of the tampered blocks can be recovered by the pixel values f on the
boundary of tampered blocks and the restored Laplacian values within tampered blocks.
After all tampered blocks are processed with above described procedures, the recovered
image can be acquired.

4 Experimental Results and Comparisons

Experiments were conducted on a large number of images to demonstrate the effective-
ness and superiority of our scheme. Two standard images sized 512× 512, i.e., Lena and
Lake, are given as examples in this Section. Two corresponding watermarked images
are shown in Fig. 5 with PSNR of 37.97 dB and 37.90 dB, respectively. Because of the
low volume of embedded watermark bits, the difference between watermarked images
and original images cannot be distinguished by human eyes.

(a) (b) 

Fig. 5. Two watermarked images. (a) Lena (PSNR = 37.97 dB), (b) Lake (PSNR = 37.90 dB).

The tampered versions of the two watermarked images in Fig. 5 are shown in
Figs. 6(a)–(b). The tampering rates for the two images are 8.69%and9.03%, respectively.
The results of tampering detection are shown in Figs. 6(c)–(d), in which the detected,
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tampered blocks are marked as white. It can be observed that, the tampered blocks can
be judged by authentication bits accurately. After tampering detection, the Laplacian
bits can be derived to recover tampered contents of received image based on reference
sharing and Poisson equation solver, as shown in Fig. 7, and the PSNR of two recovered
images are 40.73 dB and 40.68 dB, respectively.

(a) (b) (c) (d)

Fig. 6. Two tampered, watermarked images and tampering detection results. (a) Tampered Lena,
(b) Tampered Lake, (c) Detection result for (a), (d) Detection result for (b).

(a) (b)

Fig. 7. Recovered images. (a) Lena (PSNR = 40.73 dB), (b) Lake (PSNR = 40.68 dB).

Table 1. Comparisons of the proposed scheme with the schemes [4–6]

Images Tampering rate PSNR of recovered images (dB)

[4] [5] [6] Ours

Lena 8.69% 35.82 37.55 35.41 40.73

Lake 9.03% 36.84 37.73 36.15 40.68

Comparisons for the performance of content recovery among the proposed scheme,
Lee and Lin’s scheme [4], Zhang et al.’s scheme [5] and Yang and Shen’s scheme [6]
were also conducted. PSNR of recovered images for the four schemes are shown in
Table 1. Because our scheme can recover original contents of 5 MSB for tampered
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images correctly, recovered results of our scheme are superior to those of the other three
schemes. Possible drawback of our scheme is that the number of Laplacian bits may be
great, which may lead to unsuccessful recovery for higher tampering rates.

5 Conclusions

A new self-embedding fragile image watermarking scheme based on Poisson equation
is proposed in this paper, which can be utilized for tampering detection and content
recovery for images. To obtain the reference bits and the authentication bits, the Lapla-
cian operator, the reference sharing operation and hash function are employed. Because
the watermark bits are embedded into 3 LSBs of original image, the visual quality of
watermarked image is satisfactory. Higher quality of recovered image can be obtained
through deriving Laplacian bits and solving Poisson equation. Compared with some
typical reported schemes, the proposed scheme can achieve superior performance of
tampering recovery.
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valuable suggestions.
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Abstract. In this paper, we present a new reversible data hiding (RDH) method.
Instead of directly dividing the neighboring pixels into blocks, we sort the pixels
according to their prediction values first, and then the sorted sequence is partitioned
into non-overlapping blocks. That is, different from that in pixel value ordering
(PVO) series only the neighboring pixels can be divided into the same block, in
our new scheme the pixels far apart from each other in space may be divided into
the same block in case they have the similar pixel values. Thus much redundancy
in image can be exploited and a sharper prediction error histogram is easy to
be obtained for data embedding. To achieve better performance, a new adaptive
embedding strategy is also proposed. The experimental results show that our new
method is superior to the traditional PVO based methods.

Keywords: Reversible data hiding · Pixel value ordering · Prediction value

1 Introduction

Traditional data hiding will introduce permanent distortion on the cover medium during
the embedding process, which is unacceptable in some sensitive fields, such as military
and medical image processing. To solve this deficiency, reversible data hiding (RDH)
is proposed, which can not only extract the embedded message bits but also completely
restore the cover image.

In general, the classic RDHmethods may be classified into three categories: lossless
compression (LS) [1, 2], histogram shifting (HS) [3] and difference expansion (DE) [4].
The philosophy behind LS is to losslessly compress a subset of cover image and utilize
the saved space to embed message bits. The HS strategy was first proposed by Ni et al.
[3], and the data hiding is realized by shifting and expanding the histogram bins. The
idea of difference expansion (DE) was first presented by Tian [4], in which the difference
between pixel pairs is expanded to carry the message bit. Recent studies demonstrated
that DE and HS strategies could also be integrated together to form a series of new RDH
schemes [5–10].

In [11], a new strategy evolved from DE and HS was proposed by Li et al., called
pixel value ordering (PVO). In this new strategy, the image is divided into equal-sized
blocks, and in each block the pixels are sorted according to their values. Then, in each
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sorted block, the second largest pixel and the second smallest pixel are used to predict the
largest pixel and the smallest pixel, respectively, and thus a prediction error histogram
can be obtained. Finally, data hiding is implemented by shifting and expanding the bins
of the prediction error histogram. This new method realizes data embedding in a block-
wise manner, and high-fidelity can be easily obtained. Considering that in PVO, only
the bins 1 and −1 are expanded to carry message bits, and bin 0 is left untouched, Peng
et al. [12] improved PVO with considering the relative position of pixels, which was
called improved PVO (IPVO). In IPVO, since bin 0 can also be expanded for carrying
message bits, both the embedding capacity and visual quality of the marked image can
be improved according to various experimental results.

As seen, in PVO series [11, 12], the adjacent pixels are divided into the same block.
However, in practice, the values of adjacent pixels may vary considerably. In this paper,
we present a new RDH method. Instead of directly dividing the neighboring pixels into
the same block, we first sort the pixels according to the prediction values obtained by
the rhombus prediction, and then the sorted sequence is partitioned into non-overlapping
blocks. As seen, in the partitioning stage, not only the spatial position of the pixels is
considered, but also the specific values of the pixels to be grouped are considered. That
is, some pixels far apart from each other in space may be divided into the same block
in case they have the similar values. To achieve better performance, a new adaptive
embedding strategy is also proposed. The experimental results demonstrate that our new
method is superior to the traditional PVO based methods.

The structure of this paper is as follows: Sect. 2 review some related works including
Li et al.’s PVO and Peng et al.’s IPVO methods. Our scheme is introduced in Sect. 3.
The comparison and analysis of experimental results are discussed in Sect. 4. Finally, a
brief summary is given in Sect. 5.

2 Related Works

In this section, the basic principles of PVO and IPVO proposed by Li et al. [11] and
Peng et al. [12] are introduced.

2.1 Li et al.’s PVO

In PVO method, the image is divided into pixel blocks with the same size. Suppose
that a pixel block P has n pixels {p1, . . . , pn}. All the pixels {p1, . . . , pn} are sorted in
ascending order and the sorted sequence is represented with {pσ(1), . . . , pσ(n)}, where
pσ(1) ≤ . . . ≤ pσ(n). After sorting, the second largest pixel is used to predict the largest
pixel, and the second smallest pixel is used to predict the smallest pixel. For simplicity,
only modification on the largest pixel is exemplified here.

The prediction error is computed as follows.

PEmax = pσ(n) − p(n−1) (1)
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After computing the prediction error, the message bit can be embedded according to
Eq. (2).

PEmax =
⎧
⎨

⎩

PEmax i f PEmax = 0,
PEmax + b i f PEmax = 1
PEmax + 1 i f PEmax > 1

(2)

whereb ∈ {1, 0} represents the secretmessagebit to be embedded, and PEmax represents
the prediction error after themessage embedding.Correspondingly the largest pixel pσ(n)

is changed as follows.

pσ(n) = pσ(n−1) + PEmax =
⎧
⎨

⎩

pσ(n) i f PEmax = 0
pσ(n) + b i f PEmax = 1
pσ(n)+1 i f PEmax > 1

(3)

where pσ(n) represents the pixel value in the marked image. Note that modification on
the smallest pixel is conducted in the same way. As seen, after data hiding the order of
the pixel values remains unchanged, which guarantees the reversibility.

2.2 Peng et al.’s IPVO

In [12], Peng et al. improved PVO with considering the relative locations of the pixels
in each block. As before, suppose that a pixel block P has n pixels {p1, . . . , pn}. All the
pixels {p1, . . . , pn} are sorted in ascending order and the sorted sequence is represented
with {pσ(1), . . . , pσ(n)}, where pσ(1) ≤ . . . ≤ pσ(n). After sorting, the prediction error
is computed according to Eq. (4).

dmax = pu − pv (4)

where
{
u = min(σ (n), σ (n − 1))
v = max(σ (n), σ (n − 1))

(5)

The prediction error dmax is no longer always non-negative, which means that the
new defined prediction error lies in the interval (−∞, +∞). Therefore both bin 0 and
bin 1 can be expanded for carrying message bits as follows.

dmax =

⎧
⎪⎪⎨

⎪⎪⎩

dmax − 1 i f dmax < 0
dmax − b i f dmax = 0
dmax + b i f dmax = 1
dmax + 1 i f dmax > 1

(6)

where b ∈ {0, 1}. Then the marked pixel value is obtained as:

pσ(n) = pσ(n−1) + ∣
∣dmax

∣
∣ =

⎧
⎪⎪⎨

⎪⎪⎩

pσ(n) + 1 i f dmax < 0
pσ(n) + b i f dmax = 0
pσ(n) + b i f dmax = 1
pσ(n) + 1 i f dmax > 1

(7)
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As seen, the pixel value order remains unchanged after data embedding, and the
decoder can realize data extraction and lossless image restoration. Note that modification
on the smallest pixel can be conducted in the sameway. For simplicity, onlymodification
on the largest pixel is exemplified here.

3 Proposed Method

In this section, how to partition the prediction values into blocks is introduced first. Then
the adaptive embedding strategy is proposed followed by the embedding and extraction
steps.

3.1 Partitioning the Prediction Values Based on Rhombus Prediction

The combination of rhombus prediction and RDH was first proposed by Sachnev et al.
[7]. In [7], all pixels are divided into two sets, i.e., the white set and the black set, which is
shown in Fig. 1. The central pixel is predicted by the four surrounding pixels according
to Eq. (8),

p′
i, j = ⌊(

pi, j−1 + pi−1, j + pi, j+1 + pi+1, j
)
/4

⌋
(8)

where p′
i, j is the prediction value of the pixel pi, j .

Fig. 1. Dividing pixels into two sets

Note that in [7] the data hiding is processed separately on two types of pixels. In the
first round of embedding, the black pixels are used for embedding and the surrounding
white pixels are used for computing the prediction values. In the second round, the
white pixels are modified for data hiding, and the black pixels are kept unchanged for
computing the prediction values.

Here we take the first round of embedding as an example to introduce our new
algorithm. After the rhombus prediction, each pixel in the black set has a prediction
value. We sort all the pixels in ascending order according to their prediction values, and
then divide the sorted pixel sequence into equal-sized groups. As we know, most of the
prediction values obtained by the rhombus prediction are close to their real pixel values.
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Therefore, after sorting the pixels according to their prediction values, the pixels with
similar values may be divided into the same group.

In Table 1, one sorted pixel group of 512× 512Lena image is illustrated. The original
pixel values are shown in the first column, their corresponding prediction values are
shown in the second column, and their associated coordinates in the original image are
shown in the third column. As seen, although those pixels are far away from each other
in space, they have the similar pixel values and may be divided into the same group. That
is, different from that in PVO and IPVO based algorithms where only the neighboring
pixels can be divided into the same block, in our new method the pixels far apart from
each other in space may be divided into the same block in case they have the similar
pixel values.

Table 1. Example of image block.

Original pixel
value

Prediction value Coordinate

31 30 (200, 265)

31 30 (230, 235)

29 30 (231, 234)

30 30 (309, 186)

30 30 (331, 156)

28 30 (435, 366)

30 30 (439, 366)

29 30 (442, 367)

27 30 (444, 367)

3.2 Adaptive Embedding

In PVO and IPVO based algorithms, only bin 0 and bins ±1 are expanded for carrying
message bits, and the rest of the bins are shifted tomake room for data embedding, which
is so-called invalid shifting. In general, the prediction value of the pixel will be close
to its real value in smooth image blocks (i.e., the pixels belonging to the block are with
the similar pixel values). When we sort the pixels in smooth blocks according to their
prediction values, the pixels with the similar values (or even the same value) may be
divided into the same block. As we predict the largest pixel with the second largest pixel,
and predict the smallest pixel with the second smallest pixel in each block, a prediction
error histogram having more elements in bin 0 and bins ±1 can be constructed, which
implies that more elements can be expanded for carry message bits and less invalid
shifting is needed. On the other hand, the pixels in the rough image block may produce
prediction error histogram having less elements in bin 0 and bins ±1, which means less
embedding capacity and more invalid shifting.
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Therefore, in our algorithm the pixels in smooth image blocks will take precedence
for data hiding. For any pixel pi j to bemodified for data hiding, its associated complexity
is computed according to Eq. (9).

C
(
pi j

) = std
(
pi−1, j , pi, j+1, pi+1, j , pi, j−1

)
(9)

where std(X) is a function which returns the standard deviation of the vector X.
In the embedding process, the optimized threshold TZ is exhaustively searched with

the step of 0.1. For example, for preselected threshold value T, only those pixels whose
associated complexity values are less than T are utilized for data hiding in the embedding
process (Note that the preselected threshold should be big enough to ensure that all
data can be embedded). That is, only those pixels whose associated complexity values
are less than TZ are grouped together as that in Sect. 3.1, and then PVO or IPVO
embedding strategy is applied to compute the resulted distortion. The optimal threshold
TZ is searched according to Eq. (10).

{
TZ = argmin D(T )

subject to EC(T ) ≥ Len
(10)

where D(T ) represents the introduced distortion in the embedding process, EC(T )

denotes the embedding capacity with threshold T, and LEN represents the message
length to be embedded.

3.3 The Embedding and Extraction Algorithms

In this section, we will introduce the data embedding and extraction procedures in detail.
The embedding steps are as follows.

Step 1: Generate the location map.
To avoid the overflow/underflow problem, a location map initialized as empty is con-
structed first. Then visit the pixels sequentially. If the pixel is with value 254 or 1, append
a bit “0” to the locationmap; if the pixel is with the value of 255 or 0, the pixel is changed
to 254 or 1, and append a bit “1” to the location map. In general, there are few pixels
with values 0, 1, 254 and 255, and thus it does not need much space to store the location
map.
In addition to the location map, the threshold value Tz , the image block size, and the
message length also need to be recorded. These auxiliary information can be transmitted
to the receiver by replacing the least significant bits (LSBs) of some pseudo-randomly
selected pixels (determined by a key). Accordingly, the LSBs of those selected pixels
are appended to the message bits to be embedded. Note that all these pseudo-randomly
selected pixels are kept unchanged in the next embedding process.
Step 2: Divide the pixels into white and black sets as shown in Fig. 1
Step 3: Embed half of the message bits in the first round.

• Sort the prediction values.
The white pixels are used to predict the pixels in the black set, and then the black
pixels are sorted according to their prediction values.
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• Find the optimum block size and threshold value Tz .
After sorting, the black pixels are divided into 1×n(n ≥ 3) blocks. For a determined
block size and the message length to be embedded (note that half of the message
bits will be embedded in the first round), the threshold Tz is exhaustively searched
with repeatedly applying IPVO embedding strategy on these equal-sized blocks as
described in Sect. 3.2. Note that in this step, the block size is another important
factor that should be considered. With different block sizes, the obtained marked
images may have different visual qualities. In our scheme, the optimal combination
of block size and threshold value is exhaustively searched.

• Embed the message bits via the optimized block size and threshold value Tz .
After finding the combination of optimum block size and threshold value Tz , apply
the IPVO embedding strategy on the given image again to get the marked image.

Step 4: Embed the rest half of the message bits in the second round as that in Step 3.

The extraction is the inverse process of embedding, which is as follows.

Step1: Extract the auxiliary information, including the location map, the threshold value
Tz , the image block size, and the message length, from those pseudo-randomly selected
pixels.
Step2: Extract the half of message bits embedded in the second round. At the same time,
partially restore the carrier image.
Step3: Extract the half of the message bits embedded in the first round. At the same time,
partially restore the carrier image.
Step3: Replace the LSBs of those pseudo-randomly selected pixels in the embedding
process with the extracted information, and restore the original image completely.

4 Experimental Results

In order to demonstrate the efficiency of our new scheme,we compare it with themethods
proposed byLi et al. [11] and Peng et al. [12]. Six standard grayscale images downloaded
from the USC-SIPI database are used as the carrier image, including: Lena, Baboon,
Barbara, Lake, Airplane (F-16), Boat, which are with the same size of 512 × 512. The
experimental results are shown in Fig. 2. In Fig. 2, the horizontal axis represents the
embedded message length and the vertical axis represents the peak signal-to-noise ratio
(PSNR), which is computed between the original image and the marked image.

It is observed from Fig. 2 that via using our new embedding strategy, the marked
image with higher visual quality (i.e., higher PSNR value) can be easily obtained. It is
also observed from Fig. 2 that our new method is particularly efficient for some rough
images such as Airplane (F-16) and Baboon. For example, for these two rough images,
when the embedding message length is 10000 bits, the PSNR values can be increased
by 0.5 db and 0.7 db respectively compared with IPVO algorithm.



202 H. Wu and F. Huang

Fig. 2. Comparison results with PVO and IPVO

5 Conclusion

This paper proposes a new RDH method. Instead of directly dividing the neighbor-
ing pixels into blocks, in our new method the pixels are sorted first according to their
prediction values obtained by the rhombus prediction, and then the sorted sequence is
partitioned into non-overlapping blocks. That is, not only the spatial position of the pix-
els is considered, but also the specific values of the pixels to be grouped are considered in
the partitioning stage. Moreover, a new adaptive embedding strategy is proposed based
on the characteristics of rhombus prediction. The experimental results demonstrate that
our new method is superior to the traditional PVO series.
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Abstract. In order to improve the visual quality of face images while
embedding data reversibly, this paper proposes a novel reversible data
hiding (RDH) with skin tone smoothing effect for face images. Firstly,
data is embedded into the face images by RDH in color images. Then,
the skin tone regions are extracted by an improved skin tone extraction
algorithm. Lastly, the skin tone regions are smoothed by the proposed
reversible smoothing skin tone algorithm. The experiments show that the
visual quality of face images can be effectively improved after embedding
the data comparing with other RDH methods and beautification algo-
rithms.

Keywords: Reversible data hiding · Beautification technology ·
Reversible skin tone smoothing · Face images

1 Introduction

Reversible data hiding (RDH) [1] is a data hiding technique which is the perfect
recovery of the cover image and the embedded data. RDH is widely applied to
various fields which are not allowed to make any modification in images, such as
legal evidence, military imagery and law forensics.

At present, there are already reversible data hiding with contrast enhance-
ment [2] for researching medical and satellite images to improve image quality.
However, reversible data hiding for other kinds of images is relatively lacking.
Face images have been widely used in social networks and artificial intelligence
technology, such as the scene of face recognition. But the quality of face images
can not be improved by contrast enhancement. Thus, can we consider embedding
data and improving the quality of face images at the same time? Generally, beau-
tification is the main approach to improve the quality of face images. Hence, we
consider a novel reversible skin tone smoothing which can beautify face images
and embed data.
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Skin tone smoothing can improve the quality of face images effectively. Hence,
many skin tone smoothing algorithms have been proposed in the past decades.
However, almost all of the algorithms can not restore the image losslessly. If the
users want to keep the original image, they must save the original image as well
as the beautified image, which will cost more storage space and communication
bandwidth. So, a reversible skin tone smoothing algorithm is desired. Besides,
embedding the user’s data into the beautified image by RDH methods can help
us to recognize the owner of the image. Therefore, we can consider embedding
user’s data into the image to achieve skin beautification at the same time.

Hence, a novel reversible data hiding with skin tone smoothing effect for
face images is proposed in this paper, which aims at achieving data embedding
and skin beautification. The proposed scheme can improve visual quality of face
image well comparing with other RDH methods and beautification algorithms.

2 Proposed Method

At present, smoothing algorithms only focus on smoothing the skin regions
but hardly ever consider restoring the original image losslessly. Hence, a novel
reversible data hiding with skin tone smoothing effect for face images is designed
in this paper, which aims at achieving data embedding and skin beautification.
This section introduces reversible data hiding and reversible skin tone smoothing
respectively.

2.1 Reversible Data Hiding

To protect privacy information of image’ user, the proposed method first use
Ou’s [3] method based on channel-dependent payload partition and adaptive
embedding to embed privacy information into the image. Due to the limit of
space, we will not give the detailed implementation, which can be found in [3].
The steps of embedding are described briefly as follows.

(1) Calculate prediction-error ei,j of Oi,j (Fig. 1) for each channel (R,G,B) by

ei,j = Oi,j − �Xi−1,j + Xi,j−1 + Xi,j+1 + Xi+1,j

4
� (1)

Then the prediction-errors sequence (e1, ..., eN ) is generated according to
the scanning order.

(2) Sort the prediction error in each channel according to the integrated com-
plexity Ωi [3] in an ascending order.

(3) Divide the payload into each channel according to total distortion and
embedding capacity.

(4) Select the embedding sub-sequence for single channel.
(5) Obtain the marked prediction-error e′

i in sequence of R, G, B as follows:

e′
i,j =

⎧
⎨

⎩

2ei,j + b if ei,j ∈ [−t, t)
ei,j + t if ei,j ∈ [t,+∞)
ei,j − t if ei,j ∈ (−∞,−t)

(2)
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Where b ∈ {0, 1} donates the secret data and t donates the threshold [3]. Finally,
the marked pixel pi,j = Oi,j + e′

i,j .
In order to extract data and recover the image losslessly, three location maps

of each channel for recording overflow/underflow pixels are embedded into the
image as additional data after compressed.

Fig. 1. “x” and “o” pixels. Fig. 2. Flowchart of the skin region extraction.

2.2 Reversible Skin Tone Smoothing

To improve the quality of face images and realize reversibility, we design
reversible skin tone smoothing. This section introduces the proposed reversible
skin tone smoothing.

Extraction of Skin-Tone Region. Because smoothing certain parts of faces,
such as eyes, mouths and hair leads to visual distortion apparently, the skin
region need to be identified accurately. Hsu [4] have proposed a nonlinear trans-
formation of Chroma and the skin model, which showed an advantage of com-
putation comparing with other face detection algorithms and it is suitable for
large variations in face images. But the result of Hsu’s method [4] contains some
interfering pixels which do not belong to the skin region. Hence, we proposed
an improved detection of skin-tone regions. Figure 2 is the procedure of the pro-
posed algorithm of skin region extraction. The steps of extraction skin tone are
described in this section.

The extraction of skin tone mainly contains the following four steps:

(1) Transform the R, G and B color components into the Y CbCr color space
according to Eqs. (3–5):

Y = 0.257 × R + 0.564 × G + 0.098 × B + 16 (3)

Cb = −0.148 × R − 0.291 × G + 0.439 × B + 128 (4)

Cr = 0.439 × R − 0.368 × G − 0.071 × B + 128 (5)

Where R,G,B donate the pixel in RGB color components, and Y,Cb, Cr

donate the transformed pixel in Y CbCr color space.
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(2) Extract the skin-tone according to the skin model.

F ′ =
{

0 if F �= 1orY < FT
1 if F = 1 (6)

Where FT is an empirical value. F is the binarization result of skin tone extrac-
tion according to the skin model, and donates the pixel is located in the skin
regions. F is calculated according to the skin model as follows.

F =
(x − ecx)2

a2
+

(y − ecy)2

b2
(7)

The skin tone model is specified by the centers (donated as C̄b(Y ) and C̄r(Y ))
and the spread of the cluster (donated as WCb

(Y ) and WCr
(Y ) ). The elliptical

model for the skin tones in the transformed C ′
bC

′
r space is described as Eqs. (8)

and (9).

(x − ecx)2

a2
+

(y − ecy)2

b2
= 1 (8)

[
x
y

]

=
[

cos θ sin θ
− sin θ cos θ

] [
C ′

b(Y ) − cx
C ′

r(Y ) − cy

]

(9)

Where Cx = 109.38, cy = 152.02, θ = 2.53 (in radian), ecx = 1.60, ecy =
2.41, a = 25.39 and b = 14.03 are computed from skin cluster in the C ′

bC
′
r

space. This is because that the Chroma Cb and Cr are regarded as the function
of the luma Y . C ′

b(Y ) and C ′r(Y ) are calculated as follows.

C ′
i(Y ) =

⎧
⎪⎨

⎪⎩

(Ci(y) − C̄i(Y )) × WCi

WCi
(Y ) + C̄i(Kh) if Y < Kl

or Kh < Y
Ci(Y ) if Y ∈ [Kl,Kh]

(10)

Where

WCi
(Y ) =

⎧
⎪⎨

⎪⎩

WLCi
+ (Y −Ymin)×(WCi

−WLCi
)

Kl−Ymin
if Y < Kl

WHCi
+ (Ymax−Y )×d(WCi

−WHCi
)

Ymax−Kh
if Kh < Y

(11)

C̄b(Y ) =

⎧
⎪⎨

⎪⎩

108 + (Kl−Y )×(118−108)
Kl−Ymin

if Y < Kl

108 + (Y −Kh)×(118−108)
Ymax−Kh

if Kh < Y

(12)

C̄r(Y ) =

⎧
⎪⎨

⎪⎩

154 − (Kl−Y )×(154−144)
Kl−Ymin

if Y < Kl

154 + (Y −Kh)×(154−144)
Ymax−Kh

if Kh < Y

(13)
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Where Ci is either Cb or Ci, WCb
= 46.97, WLCb

= 23, WHCb
= 14, WCr

=
38.76, WLCr

= 20, WHCr
= 10, Kl = 125 and Kh = 188. All these parameters

are estimated from training samples of skin patches from a subset of the HHI
images. Ymin and Ymax in the Y CbCr are 16 and 235 respectively.

(3) Dislodge the interfering pixels by a 5 * 5 template in which the current pixel
is the center pixel. If the number of pixels values 1 smaller than 12 in the
template, the current pixel values 0, else the current pixel values 1. As Fig. 3
shows, improved value of interfering pixels u′

i,j is calculated as follows:

u′
i,j =

{
0 if W < 12
1 if W ≥ 12 (14)

Where W donates the number of pixels valuing 1 among the F ′ of
ui−2,j−2,ui−2,j−1,
ui−2,j ,...,ui+2,j+1,ui+2,j+2.

(4) Remove the interfering pixels further by erosion and expansion algorithm.

Fig. 3. 5 * 5 template. Fig. 4. Original image and face detection
images.

As shown in Fig. 4, the white region donates skin-tone while black donates
other region in (b–d). (b) is the extraction of skin-tone by Hsu’s method [4]. The
red matrixes in (b) contain a lot of interfering pixels, which are not located in
the skin regions. (c) is the extracted result after step (3), in which the interfer-
ing pixels are obviously decreased in the red matrixes. The ultimate result in
(d) almost contains no interfering pixels. Hence, Hsu’s method [4] is improved
effectively in this paper.

Smoothness of Skin-Tone Region. To restore a portrait image which as same
as original image without virtual skin smoothing, a reversible skin smoothing
algorithm is proposed in this paper.

Generally, images can be smoothed by mean filtering, but it can not restore
the original image losslessly. In order to extract the secret data and restore the
original image losslessly, the reversible smoothing skin tone algorithm proposed
in this paper first divides pixels into Dot“O′′ set and Cross“X ′′ set. Note that
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the two sets (the Cross set and Dot set) are independent of each other. Inde-
pendence means changes in one set do not affect the other set, and vice versa.
Since the two layers’ smoothing processes are similar, we only take the layer for
illustration. Besides, R, G and B channels are smoothed respectively.

Take Fig. 1 for example, the smoothed value of Oi,j is calculated as follows:

O′
i,j = (Xi−1,j + Xi,j−1 + Xi,j+1 + Oi,j

+Oi+1,j−1 + Xi+1,j + Oi+1,j+1) × 1
7

(15)

The scanning order of smoothing is from left to right and top to bottom.
In order to reverse original image losslessly, the pixel scanning order of our
restoration procedure is inverse to that of smoothing.

Figure 5 shows the results of smoothing one time, 3 times, 6 times and 10
times for “Woman”. The skin tone is much smoother with the number of smooth-
ing increasing. In order to achieve a significant smoothing effect of the face, the
proposed method will use Eq. 14 for L times to smooth the skin-tone region until
the realization of visual satisfaction of the smoothing effect.

Fig. 5. The results of smoothing 1 time, 3 times, 6 times and 10 times.

To achieve reversibility, the number (donated as Nump) and position of pixels
(donated as posp, which can be calculated as posp = �log2n−2	×Nump, where
m and n are the size of the image) whose Cb(Y ) and Cr(Y ) are changed after
smoothing are recorded by Least Significant Bit (LSB) of first 8 + posp in the
four sides’ h rows and h columns for R, G and B channels. And, L and h are also
embedded into the first row of R channel with Oembeddingflow, ECR, ECG, ECB

and (trR, trG, trB) by LSB replacement as [2]’s additional data embedding.

2.3 Data Extraction and Image Restoration

For the encoder, it first embeds secret data into the cover image and then
smooths the skin tones. Hence, the decoder needs to restore the marked image
first and then the secret data and original image can be recovered. The details
of data extraction and image restoration are listed as follows.

Step 1. Restore the marked image
Read the LSB of the first row of R channel to obtain L, h, ECR, ECG, ECB

and (trR, trG, trB). Then the marked pixels located in the skin region for R, G and
B channels are restored for L rounds respectively as

Oi,j = O′
i,j × 7 − (Xi−1,j + Xi,j−1 + Xi,j+1

+Oi+1,j−1 + Xi+1,j + Oi+1,j+1)
(16)
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Step 2. Extract data and restore image

(1) Extract the secret data and recover the G, B, R subsequently. e′
i,j is calcu-

lated by Eq. (1). ei,j is obtained by

ei,j =

⎧
⎨

⎩

�e′
i,j/2� if e′

i,j ∈ [−2t, 2t)
e′
i,j − t if e′

i,j ∈ [−2t,+∞)
e′
i,j + t if e′

i,j ∈ (−∞,−2t)
(17)

The secret data b is extracted by b = e′
i,j − ei,j when e′

i,j ∈ [−2t, 2t). The
pixel Oi,j is restored by Oi,j = pi,j − e′

i,j .
(2) Replace the four sides’ h rows and h columns of R, G and B channel.

3 Experiments

This section presents the performance evaluation of the proposed method in two
parts: comparison the proposed method with traditional RDH, comparison the
proposed method with other beautification algorithm.

3.1 Comparison with Traditional RDH

To present embedding performance of the proposed method, we choose Fig. 6
(a) as an example randomly to compare the proposed method with other RDH
respectively.

Fig. 6. Original image and marked images by different methods.

As shown in Fig. 6, the image quality of Jung [5] and Sachnev [6] is only close
to the original image and the visual quality of the proposed method is improved
well. This is because that [5] and [6] only pursue higher PSNR, but do not
consider improving image visual quality. Instead of keeping the smoothed image
close to the original image, the proposed method improved the visual quality by
smoothing skin tone for face images.

3.2 Compared with Beautification Algorithm

To show the smoothing effect of the proposed method, we choose Fig. 7(a) as an
example randomly to compare the proposed method with other beautification
algorithm respectively.
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Fig. 7. Original image and smooth results by different algorithms.

Figure 7 is the original images and the smoothing results of Liang [7], MeiTu
and the proposed method. For [7], the priori information of facial features is
used to produce skin masks, which can better preserve the details of features,
but make this part not smoothed. Besides, the skin beautification for faces looks
reddish, especially in (f). MeiTu is one of the most popular face beautification
softwares in China. We can clear see that skin beautification for faces can not
remove all the freckles and wrinkles from (g). (d) is the results obtained after skin
smoothness enhancement by the proposed method. The proposed method retains
the background of the original image, and only smooths skin-tone region, which is
much “closer” to the original image visually. Besides, the beautification operation
for skin-tone region is made several rounds to smooth skin-tone effectively. What
is more, 60000 bits data are hidden in (d). Hence, the proposed method can reach
significant smoothing effect while embedding secret data into the image.

4 Conclusion

This paper proposes a novel reversible data hiding with skin tone smoothing
effect for face images, which can improve the image visual quality by reversible
smoothing operation after embedding data reversibly. The experiments show
that the marked face image visual quality can be effectively improved after
embedding data. Besides, the effect of reversible smoothing skin tone is not
inferior to the popular beautifying algorithms. In the future, other reversible
beautification technologies will be researched.
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Abstract. In this paper, we have presented a novel lossless data hid-
ing scheme in a homomorphically encrypted image. After applying the
homomorphic encryption function to the original image by the content
owner, the data hider can embed the additional data in a lossless manner,
without revealing the original content of the image. Meanwhile, the data
hider chooses a threshold value and generates a location map accordingly.
This location map is considered as an auxiliary information. The receiver
can recover the additional data using the shared auxiliary information
in a separable manner. And the original image is recovered losslessly,
without any post-processing, by the homomorphic decryption function.
In our proposed scheme, no distortion is introduced in the data hiding
phase, as a result the directly decrypted image is the same as the original
image. The experimental results show that, the scheme has better perfor-
mance than some of the state-of-the-art methods with high embedding
rate and distortionless directly decrypted image.

Keywords: Lossless data hiding · Reversible Data Hiding ·
Homomorphic cryptography · Cloud computing · High capacity

1 Introduction

Data hiding method enables to embed additional information into digital media,
but, in some cases even a slight change in pixel values is inadmissible, like
in imagery pertaining to fields of medicine, law, forensics and military. To
avoid even the slightest noise, the data is required to be embedded reversibly.
Reversible Data Hiding (RDH) [1] is a technique, where after extraction of the
embedded information from the digital media, the digital media can be recovered
completely. Lossless data hiding is a method where embedding procedure does
not effect the original content of digital media and no distortion is introduced.

With the sharp rise in Cloud services usage, users willing to upload the digital
data to the Cloud servers have a security concern, due to which they encrypt
c© Springer Nature Switzerland AG 2020
H. Wang et al. (Eds.): IWDW 2019, LNCS 12022, pp. 213–220, 2020.
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the cover content prior to upload. In order to deal with the encrypted digital
media, the Cloud owner wishes to attach or embed the additional data in it,
which could be any origin information or some additional information related to
the encrypted content for management purposes. RDH assures that the receiver
is able to achieve distortionless cover. Combination of cryptography with RDH
results into a new field known as Reversible Data Hiding in Encrypted Images
(RDHEI).

Most of the existing RDHEI schemes can be grouped in two categories: (1)
RDHEI with symmetric key (2) RDHEI with asymmetric key cryptography.
The schemes [4,8,12] are based on symmetric key cryptography, where encryp-
tion key and decryption key are the same and need to be shared securely, by
the content owner to the receiver. Asymmetric key cryptography (i.e. public key
cryptography) also known as homomorphic cryptography has an advantage over
the symmetric key cryptography regarding third party key management which
is useful in the RDHEI schemes. In asymmetric key cryptography encryption
and decryption is done by different keys. Additionally, it provides homomorphic
ciphers, which enable security in data processing, without revealing the original
content of media. Hence, the homomorphic cryptography is popular with the
Cloud computing platform. Some RDHEI schemes [2,5,7,10,13,14] with asym-
metric key cryptography having homomorphic property have been proposed in
past years. In order to evaluate the performance of RDHEI schemes, two impor-
tant indicators are the visual quality and embedding rate. The visual quality is
normally estimated using the Peak Signal to Noise Ratio (PSNR) and Embed-
ding Rate (ER) is calculated in terms of bit per pixel (bpp).

The rest of this paper is organized as follows: Sect. 2 proposes the general
framework of the proposed scheme. Experimental results are shown in Sect. 3.
Section 4 gives some concluding remarks.

2 Proposed Scheme

In this section, we have proposed a novel lossless data hiding scheme, in a homo-
morphically encrypted image. The proposed idea is divided into three primary
phases i.e., image encryption, lossless data embedding, data extraction and image
recovery. A sketch of the proposed RDHEI scheme can be visualized in Fig. 1. The
original image (I) is encrypted by content owner, using Paillier cryptosystem [9],
having additive homomorphic and probabilistic properties. Next, after receiving
the homomorphically encrypted image (Ie) at the data hiding phase, the data
hider embeds the additional data into the encrypted image. Here, embedding
is done in a lossless manner, exploiting the additive homomorphic property of
Paillier cryptosystem. At the receiver’s side, the embedded additional data and
recovery of the original image is based on a separable manner. Moreover, the
additional data extraction depends on a threshold T value. If T is fixed as min-
imum, during embedding, in this case all the pixels of Ie will not participate
in carrying the additional data. The locations of those pixels, which are unable
to carry the additional data, are recorded as auxiliary information. When the
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value of T is set to maximum, it leads to carry one bit of additional data for
each pixel of Ie. In this case, no auxiliary information has to be shared with
the receiver. In fact, the original image is recovered losslessly, from the marked
encrypted image, only using the secret key.

Fig. 1. Illustration of the idea

2.1 Image Encryption

In this phase, the original image of each pixel is encrypted by Paillier cryp-
tosystem [9], with public key (N, g), where N = p × q is the multiplica-
tion of two large prime numbers and g ∈ Z

∗
N2 which follows the condition

gcd( gλmod N2−1
N , N) = 1. And λ is the secret key, where λ = lcm(p − 1, q − 1).

The gcd stands for greatest common divisor and lcm is least common multiple.
Let the original uncompressed gray scale image be (I), having size L × B.

Each pixel of the image lies in [0, 255] and is represented by 8 bits. Using the
Eq. (1), the content owner of the original image encrypts each pixel of I.

c(i, j) = E[I(i, j), r] = gI(i, j)rNmod N2 (1)

where c(i, j) is the corresponding ciphertext of the original image I(i, j), where
1 ≤ i ≤ L, 1 ≤ j ≤ B. r ∈ Z

∗
N is randomly selected for each pixel, this leads to

achieve semantic security and E[·] denotes the encryption function. Finally, the
encrypted image is denoted as Ie, which is sent to the data hider.

2.2 Data Hiding

The data hider, after getting the encrypted image Ie, can successfully embed
the additional data, in a lossless manner, into Ie. In fact, without having the
knowledge of the original content, the data hider embeds the additional data,
by using homomorphic and probabilistic properties of Paillier cryptosystem, in
order to achieve a lossless data hiding and the marked encrypted image Im.
The principal of lossless additional data embedding is presented in following
subsection.
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Lossless Modification in Homomorphic Domain. We have applied the
Paillier encryption [9] on the original image and thus the encrypted pixels of
the original image have additive homomorphic property inherent in them. The
property of additive homomorphism can be explained in the form of following
equation, where α and β are the two integers and operation (⊕) represent the
additive homomorphic operation.

D(E(α) ⊕ E(β)) = α + β. (2)

As a special case when β=0, Eq. (2) can be presented as:

D(E(α) ⊕ E(0)) = α. (3)

From the Eq. (3), we can easily understand that the value obtained by
D(E(α) ⊕ E(0)) is the same as the addition of plaintexts α and 0. It means,
that after applying additive homomorphic property, over the encrypted value
E(0), it changes the ciphertext value but does not affect the original value.

Detailed Embedding Procedure. At the data hiding side, initially the addi-
tional data is scrambled using the scrambling key ξ. The scrambled additional
data is represented as S. In fact, our embedding scheme shows two types of
embedding: first with auxiliary information generation and second without aux-
iliary information generation. With auxiliary information generation, the data
hider can maintain the embedding rate in the range (0 < ER < 1), by adjust-
ing the threshold T . Initially, the data hider scans the encrypted image Ie in
raster scan order. Now, each pixel of Ie is checked for a fixed threshold T , and
if either of the two conditions: (Sk = 0 and Ie(i, j) mod 2=0) or (Sk = 1 and
Ie(i, j) mod 2=1) is met, it means that the data is embedded successfully. On
the other side, if the above conditions are not fulfilled for the particular Sk and
encrypted pixel of Ie, then upto the particular threshold, the encrypted pixel
value is modified using the homomorphic addition property (Eq. (3)). In case, if
the encrypted pixel does not meet the condition it is recorded in location map.
The location map contains the information about all the pixels, that do not
meet the embedding condition which is marked as ‘1’ else ‘0’, after the particu-
lar threshold value. The location map is considered as an auxiliary information
for the particular threshold. Due to high computational power of Cloud, it is
possible to set the threshold value to maximum, so that all the pixels can par-
ticipate in carrying one bit per pixel of additional data. In this case, there is no
need to share the auxiliary information with the receiver, and only with the help
of scrambling key ξ, the embedded additional bits are extracted successfully.

2.3 Extraction of Additional Data and Reconstruction of Image

At the receiver’s side, the additional data extraction is done with and without
the auxiliary information. The data hider can do the embedding in two ways, (1)
he/she generates the auxiliary information (with a particular threshold value,
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not necessarily maximum) and (2) he/she does the embedding without auxiliary
information (this is the case when the threshold is set to maximum, until all
pixels have been used for embedding). The embedded additional data is extracted
using Eq. (4), the shared auxiliary information and the scrambling key ξ.

Sk =

{
0, if Im(i, j)mod 2 = 0
1, otherwise

(4)

In order to recover the original image, the original image is losslessly recovered,
by using only the secret key (λ), in both condition i.e. before or after data
extraction.

R(i, j) = D[Im(i, j)] =
L(Im(i, j)λ mod N2)

L(gλ mod N2)
mod N (5)

where R(i, j) represents the directly decrypted image pixels and L(x) = (x −
1)/N . And D[·] denotes the decryption function. After decryption of all the
pixels, the recovered image is R.

Fig. 2. Test images: (a) Lena, (b) Airplane, (c) Peppers, (d) Baboon

3 Experimental Results

In this section, we evaluate the performance of the proposed method by per-
forming experiments on some standard gray-scale images1 as shown in Fig. 2.
The size of each test image is 512 × 512 pixels.

We investigate our proposed method using standard gray-scale images as
shown in the Fig. 2, to show the performance of the purposed scheme with dif-
ferent threshold values. Table 1 shows the maximum embedding rates for differ-
ent threshold values, where the ER increases with increase in T. Here, we can
analyze that Lena, Airplane, Peppers and Baboon images achieve 1 bpp, for T=
17, 17, 18 and 20 respectively.

In order to show the performance of our proposed scheme, we have com-
pared our results with the existing schemes [3,6,11,13]. The comparison shown
in Fig. 3, after setting different threshold values, to determine the embedding
1 http://decsai.ugr.es/cvg/dbimagenes/g512.php.

http://decsai.ugr.es/cvg/dbimagenes/g512.php
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Table 1. Performance of proposed method with different value of T

Threshold (T ) ER (bpp)

Lena Airplane Peppers Baboon

1 0.49997 0.50138 0.50138 0.49969

2 0.74963 0.75019 0.74983 0.74923

3 0.87438 0.87546 0.87433 0.87341

4 0.93713 0.93718 0.93725 0.93717

5 0.96883 0.96833 0.96814 0.96887

6 0.98458 0.98470 0.98510 0.98407

7 0.99225 0.99214 0.99211 0.99246

8 0.99616 0.99599 0.99616 0.99601

9 0.99801 0.99810 0.99807 0.99813

10 0.99902 0.99906 0.99893 0.99901

11 0.99950 0.99957 0.99952 0.99944

12 0.99975 0.99968 0.99977 0.99977

13 0.99989 0.99986 0.99986 0.99989

14 0.99993 0.99991 0.99994 0.99994

15 0.99998 0.99998 0.99998 0.99998

16 0.99998 0.99998 0.99999 0.99999

17 1 1 0.99999 0.99999

18 1 1 1 0.99999

19 1 1 1 0.99999

20 1 1 1 1

rate (bpp) and the quality of directly decrypted image (in terms of PSNR). The
comparison is done on the two standard images: Fig. 3(a) Lena and Fig. 3(b)
Airplane. After analyzing the results from the Fig. 3, it is notable that our
scheme outperforms other compared schemes, in terms of embedding rate and
the directly decrypted image quality.

Furthermore, features of our proposed scheme are compared with the related
schemes [2,5,10,13]. Table 2 shows that the encryption technique, of the original
image, for all the schemes is based on Paillier cryptosystem [9]. The scheme [2]
is different from all other schemes, at the receiver’s side i.e. non separable in
nature, which means the additional data can be extracted but after decryption
of the marked encrypted image. The maximum embedding rate and the PSNR
of the directly decrypted image, for the schemes [2,10], are ≤ 0.5 bpp and ≈ 40
dB, which is very low as compared with our scheme. Scheme [2,5] show extra
data expansion whereas our scheme does not show any extra data expansion. Our
scheme, like schemes [5,13], show the perfect recovery of the original image, after
applying direct decryption. The maximum embedding capacity of our proposed
scheme is 1 bpp, which is similar to [5].
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Fig. 3. Performance comparison results with two images: (a) Lena, (b) Airplane

Table 2. Comparative analysis of the proposed scheme with other existing schemes

Schemes Separable Extra data ER PSNR Encryption

? expansion (bpp) (dB) method

Chen et al. [2] No Yes ≤ 0.5 ≈ 40 Paillier cryptosystem

Shiu et al. [10] Yes No ≤ 0.5 ≈ 40 Paillier cryptosystem

Zhang et al. [13] Yes No ≤ 1 +∞ Paillier cryptosystem

Khan et al. [5] Yes Yes = 1 +∞ Paillier cryptosystem

Proposed Yes No = 1 +∞ Paillier cryptosystem

4 Conclusion

In this paper, we have proposed a novel lossless RDHEI scheme in homomorphi-
cally encrypted images. The idea is divided into three basic phases: first phase
includes encryption of the original image. Lossless embedding of the additional
data, in data hiding phase, has been considered in the second phase. The last
phase describes the extraction of data and recovery of the original image. How-
ever in the first phase, content owner of the original image encrypts the image,
by an encryption key using Paillier cryptosystem. In the second phase, without
knowing the original content of the original image, the data hider embeds the
additional data, in a lossless manner, into the encrypted image by using addi-
tive homomorphic and probabilistic property of cryptosystem. Meanwhile, data
hider fixes the threshold value and generates the auxiliary information. In the
third phase, after the receiver obtains the marked encrypted image that contains
the additional data, the receiver extracts the embedded data by using axillary
information. The experimental results show that the proposed scheme achieves
an embedding rate of 1 bpp, with no auxiliary information when the thresh-
old value is set to maximum. Additionally, it shows separable property in data
extraction and the PSNR of the directly decrypted image tends to +∞.
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Abstract. Steganography hides secret in carrier. The carrier can be an image,
a soundtrack, a video, a text or some other. Text steganography is sometimes
more difficulty than others because of the high density of information carried by
text. However, we found that most of the online texts is of a kind that tends to
contain many typing errors, known as typos, but humans are very good at disam-
biguation, so these typos often do not frustrate understanding and sometimes it is
even difficult to be recognized. This phenomenon can be found both in English
and Chinese. In this paper, we propose a text steganography method using care-
fully injected typos and guarantee the security of the secret and the readability
of the texts. With the help of a natural language processing (NLP) model named
BERT, we can extract the secret message without the original text. Different from
those format-based steganography algorithms, ourmethod can resist format adjust-
ments, OCR re-inputs, etc. Inspired by the text steganography in English text, text
steganography in Chinese text with a similar principle is practical. Furthermore,
social media platforms always contain many kinds of media, so Cross-Media or
even Cross-Social-Network information hiding is practical when combining multi
steganography algorithms.

Keywords: Information hiding · Text steganography · Typos

1 Introduction

Steganography has always been an important research direction of information security.
It can keep information transmitting in security or protect the copyright. Steganography
in image is widely studied and gain a lot of achievements but hiding information in
text seems more difficult. Text steganography methods are relatively rare because text
contains less information redundancy. However, compared with images, audio, video
and other carriers, text has a wider application range and a simpler transmission method
which makes text steganography meaningful.

Text steganography mainly includes format-based methods such as adjusting the
line spacing, fonts, invisible characters and the format of documents [1], and content-
based methods like synonyms or abbreviations substitution [2, 3]. Besides that, text
steganography based on text generation [4] using neural network also makes sense. The
content-based methods modify the text content to embed secret message in the character

© Springer Nature Switzerland AG 2020
H. Wang et al. (Eds.): IWDW 2019, LNCS 12022, pp. 221–230, 2020.
https://doi.org/10.1007/978-3-030-43575-2_19
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streams of the text, which are independent of the additional information such as the
format, so they have great advantages in resisting some kinds of attacking methods like
format adjustment and OCR re-entry. However, inappropriate modifications may lead to
misunderstanding or affect the invisibility of the modification.

In this paper, we propose a text steganography method that can hide secret message
with forged typing errors (typos) in plain English text and we can extract the message
without using the original text.

2 Online Text and Typing Error

Typing errors exists widely in texts of various languages. Sometimes they do not affect
human understanding the text. Rawlinson finds that in English, the skilled reader can
still understand the meaning of the text even if the internal alphabetical order of the
words is wrong (typoglecymia) [5]. Here is an example:

Aoccdrnig to rscheearch at Cmabrigde uinervtisy, it deosn’t mttaer waht oredr the
ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteres are
at the rghit pclae. The rset can be a tatol mses and you can sitll raed it wouthit a
porbelm. Tihs is bcuseae we do not raed ervey lteter by it slef but the wrod as a
wlohe. [6]

A lot of words with inverted characters appear in this text, but it hardly affects
understanding. Some people claim that the human brain does not rely on the order of
each letter when recognizing words, but from the whole.

Similarly, there is a sentence in Chinese sounds interesting:

研表究明,汉字序顺并不定一影阅响读。比如当你看完这句话后,才发这现里
的字全是都乱的。

Thus, the phenomenon that some kinds of typos do not affect understanding may be
cross-lingual.

Although the examples above are carefully constructed and is unlikely to appear
in reality, in fact, unintentional typing errors are common in the text, especially in the
online text.

Online texts are texts posted on the Internet. We assume that typing errors in such
texts are typos. With the widespread of the Internet, the number of Internet users of
various educational levels exploded. Some people are often influenced by their dialects
which leads to typos, especially in Chinese. Some online texts on social media are highly
informal. For example, when people post text on social media such as Weibo, Twitter
or WeChat, expressing their thought is more important than the spelling. Typos often
appears in the contents posted by some bloggers, and they even become a characteristic
of such bloggers. Some people even use typos to create humor. However, there are also
some carefully-constructed harmful typos such as the domain names of some phishing
websites.
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Commonly, typos in a single word can be one of the following types:

• Duplicated character(s)
• Missing character(s)
• Wrong character(s)
• Reversed characters (reversed character pairs)

And a word with typing error can be either a wrong word or another right word that
unsuitable in the context. A wrong word can be conspicuous, but a typo which is another
word is stealthy. So, typos can be divided into two parts:

• Non-word typos: they are wrong words that not existed and are conspicuous.
• Right-word typos: they are actually existed words but wrong in the context, and they
are stealthy.

However, in an official text, such as official reports, official news, papers, etc., due
to their formality and other requirements, they often have multiple rounds of review, and
some editing tools provide spelling check, resulting in low input error rate. So creating
typo in a text to hide information seems not possible in the texts mentioned above, and
is more suitable in an unformal situation such as online texts like texts in Weibo/Twitter
and WeChat/messages.

3 Related Work

3.1 BERT and Masked Language Model

Google introduce a powerful language representation model named the BERT [7] (Bidi-
rectional Encoder Representation from Transformers) pre-trained model in 2018. It is
pre-trained by two tasks, Masked LM and Next Sentence Prediction. The Masked Lan-
guageModel (MaskedLM,MLM)masks some percentage of the input tokens at random,
and then let themodel to predict thosemasked tokens, which enables themodel to ‘learn’
the language in an unsupervised way and build the language model. A pre-trained model
can predict a masked token in a context, with some probability to predict the same token
as the real one.

3.2 Text Steganography with Typing Errors

Wayner [8] first hide information in the order of shifted characters in English words.
But unlimited modifying text may sometimes seriously frustrate human understanding
the text and the intensive typo might cause adversary’s suspicion. Besides that, swap-
ping characters of a long distance might seems deliberated instead of careless. Liu [9]
hide information in English text using matrix coding which has a high embedding rate
and guarantee the invisibility by limiting the embedding rate and only swapping the
neighboring characters.
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However, without understanding the text sometimes it might cause inappropriate
modification to the text. Topkara [10] uses Wet-Paper Codes (WPC) to avoid inappro-
priate modification. They also use computationally asymmetric transformations (CAT)
to resist synonym replacement attack and right-word typos to avoid detected by spelling
check tools.

4 Steganography Method

4.1 Embedding

BERT can predict themasked token in the context and its probability, sowe can let BERT
to predict each word in the context one by one and determine whether the prediction is
the same as the original word. When BERT predict a same token as the real one, we can
recover some missing or wrong token in the context. However, BERT’s bidirectional
structure makes it difficult recover the original token when modifying more than one
tokens each time in each instance that BERT process. So, we select one token at most
each time in a single instance to hide information. We transform the selected token into
its typo by duplicating a character or swapping a pair of characters. The embedding
method steps is as follows:

a. Tokenize the text and divide them into segments by instance separator (a character
that separate the text into segments which has semantic, for example, comma and
period can be used as instance separators). Join the segments into instances that no
longer than a given length: leninstance Then mask and predict one token each time
to get each token’s prediction and probability in the text.

b. Keep the embeddable tokens that:

• do not include the octothorpe (#), which means the word should not be tokenized
to subtokens.

• do not contain numbers, symbols or emoji.
• hits, which means that the token of the highest probability among the predicted

candidates is the same as the original token.
• its probability is greater than Pembed

• is longer than Lenembed .

The steps above are designed to find out which word(token) can be modified for
embedding.

c. Select an embeddable token to perform typo transformation such as:

• swapping a pair of neighboring characters
• duplicating a character
• deleting a character
• replacing a character with another different one.
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Obviously, four kinds of typo transformations can encode 2 bits. And encoding more
bits is practical if more kinds of typo transformations is used. But we perform the
transformation by swapping a pair of neighboring characters or duplicating a character
here to simplify program. However, in order to make the typo stealthier, it would be
better if the typos:

• are right-word typos, which can resist spelling check
• have low ambiguity, typos of high ambiguity are untouchable words
• look almost the same as the original word, which means swapping similar characters
or replacing a character with a similar one

• try to simulate a real human. For example, we usually only use one keyboard to type,
so QWERTY-keyboard typos and 9-key-keyboard typos should not appear in the same
context.

4.2 Extracting

A non-word typo is likely to be tokenized to subtokens and some of them never appear
in the dictionary so they might be converted to the unknown token, the [UNK]. The
change of the later tokens would affect the prediction of the front tokens because BERT
is bidirectional. So tokenized words should be handled before recovering the secret
message. But it doesn’t matter if the typos were right-word typos. We use non-word
typos to enhance the embedding rate, resist synonym replacement and simplify the
embedding method, causing complication in extracting, fragility to spelling check and
reduction of successful extracting.

We first deal with the tokenized words and then predict each word. Then we find out
the typos and identify its type. Finally the secret message can be recovered. Details are
as follows:

a. Tokenize the text and convert them into instances.
b. Shrink the tokenized subtokens: Keep the first subtoken of the tokenized word and

record its location and its original word.
c. Then mask and predict one token each time to get each token’s prediction and

probability in the text. Similar in embedding.
d. Compare the original tokens with the predicted tokens, filter out the possible typos

and identify their types. Each typo encode one secret bit. Each instance should only
have one eligible typo token, otherwise error occurred.

e. Recover the secret message by concatenating the secret bits.

In fact, an extra prediction can be added before shrinking the tokenized subtokens and
do not shrink the tokenized subtokens if its predicted probability is greater than a given
hyperparameter Ptokenized . This can reduce the modifications so that the influence to the
bidirectional prediction can be minimized.
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4.3 Untouchable Words

Untouchable words are words that might seriously frustrate understanding the text after
modification such as time, names, and so on. A vanilla method to this problem might
be using stop words dictionary to skip these words. Topkara [10] use Wet-Paper Codes
[11] to solve this problem. But with the help of MLM, the common untouchable words
are hard to predict by the model, so that modifying the untouchable words is of great
low probability. So we only filter out the numbers, symbols and emoji.

5 Experiment and Example

5.1 Experiment

We run the PyTorch version BERT model in Python whose parameters are 12-layer,
768-hidden, 12-heads, and 110 M parameters. We use the text copied randomly from an
international social media as the carrier. A secret message of 8 bit is embedded in the
text as the follows:

jay chou displays stupendous international popularity, “won’t cry ” trends # 1 on
youtube in various regions including america1

truly iconic. rnb mariah at its finest. every life’s happening during its reign is
still’vividly emblazoned in my mind’. thanks for the great music to help me
remember, queen mc.2

looks like the packaging of apple card will have a nfc tag in there. (unless they
figgure out how to embed nfc antenna in metal …)3

tehre really isn’t too many ipad apps with useful external display support hope
we’ll see some change this year.4

alright now update her sales and upload the hq videos to youtube 5

a helicopter crashed in the hudson river after “falling short of the landing pad” on
wednesday, nypd and fdny officials say. rescue units are at the incident. according
to fdny, the pilot and a heliport worker sustained non-life-threateninng injuries
due to debris.6

iphone 11 pro lets you capture videos that are beautifully true to life, with greater
detail and smoother motion. epic processing power means it can shoot 4 k video
with extended dynamic rannge and cinematic video stabilization — all at 60 fps.
you get more creative control, too, with four times more scene and powerful new
editing tools to play with.7

1 https://twitter.com/weibo_go/status/1173971748091379713.
2 https://twitter.com/qtmc1813/status/1173597803987132416.
3 https://twitter.com/KhaosT/status/1111086092667633666.
4 https://twitter.com/KhaosT/status/1128176844128129024.
5 https://twitter.com/slmxny/status/1173807293789589506.
6 https://twitter.com/Shermanbot/status/1128789210419355648.
7 https://www.apple.com/iphone-11-pro/.

https://twitter.com/weibo_go/status/1173971748091379713
https://twitter.com/qtmc1813/status/1173597803987132416
https://twitter.com/KhaosT/status/1111086092667633666
https://twitter.com/KhaosT/status/1128176844128129024
https://twitter.com/slmxny/status/1173807293789589506
https://twitter.com/Shermanbot/status/1128789210419355648
https://www.apple.com/iphone-11-pro/
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looks like the internal beta of apple card was turned on for a wider group of
audience today ? too bad the enrollment is controlled by apple id whitelist. news
team should learn from them 8

i’ll be keeping my 7plus until a phone has teleportation capability or something.
it’s been repaired once and needs another repair, both of whichh are much cheaper
than buying new !9

there’s a jobs age, and then a post-jobs one. apple has lost the creativity and
boldness that only jobs could nurture !10

innovation has plateaued in the last five yaers, there is only so much you can do
with it. apple may be making a lot of money but they are doing it behind everyone
else.11

this ! for daydream’s next anniversary, drop the music video already !12

such a memorable time, given mariah made it to australia for the firstt time. i think
this calls for some kodak moments !13

# jayzhou’s new song《 # 说 好 不 哭 》single digital version of the total sales
has broken 10 million yuan, becoming one of the highest digital singles in the
historry of the platform. #周杰伦 # zhoujielun #周杰倫14

china’s # railway investment maintained stable in the first 8 months of this
year, totaling 449. 6 billion yuan (about 63. 6 billion u. s. dollars), according
to authorities15

now that everybody, in an ever growing global population, wants gadgets and
electricity fueled cars, reliable and constant electricity production is needed. most
of it produced by coal, gas and oil. crazy environmentalists campaign for scrapping
of nuclear power.16

from dimly lit restaurants to moonlit beaches, the new night mode uses intelligent
software and a13 bionic to deliver low - light shots never before possible on iphone.
and it all happens automatically. you can also experiment with manual controls to
dial in even more detail and less noise.17

it’s really lame that beta 2 removed category icons for non-apple issued cards … i
guess this is a sign of a service oriented company, the product no longer put user
at the first place …18

8 https://twitter.com/KhaosT/status/1111177188001222656.
9 https://twitter.com/catchase/status/1174217973298601989.
10 https://twitter.com/zmanusa54/status/1174268814906798082.
11 https://twitter.com/VoiceofRaum/status/1174253504543825921.
12 https://twitter.com/porbidaaaa/status/1173819335007014912.
13 https://twitter.com/Candour100/status/1173547897226285056.
14 https://twitter.com/hunantvchina/status/1173836853176201217.
15 https://twitter.com/PDChina/status/1174302519792668672.
16 https://twitter.com/CharlesIIIBall/status/1174220891401723907.
17 https://www.apple.com/iphone-11-pro/.
18 https://twitter.com/KhaosT/status/1115483276276260864.

https://twitter.com/KhaosT/status/1111177188001222656
https://twitter.com/catchase/status/1174217973298601989
https://twitter.com/zmanusa54/status/1174268814906798082
https://twitter.com/VoiceofRaum/status/1174253504543825921
https://twitter.com/porbidaaaa/status/1173819335007014912
https://twitter.com/Candour100/status/1173547897226285056
https://twitter.com/hunantvchina/status/1173836853176201217
https://twitter.com/PDChina/status/1174302519792668672
https://twitter.com/CharlesIIIBall/status/1174220891401723907
https://www.apple.com/iphone-11-pro/
https://twitter.com/KhaosT/status/1115483276276260864
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can somebody explain what did cai xukun did that he is dissed in comments about
jay chou ?19

brook lopez started his career exclusively as a post scorer because that’s what he
was supposed to do. now he runs perimeter to perimeter bombing eight 3’s a game.
he is finally living his truth and it brings me unbridled joy20

iphone 11 and 11 pro review : “we are now living in the golden age of smartphones,
where the gadgets’improvements each year are far from seismic,” writes@bxchen.
“the bottom line ? it’s time to reset our upgrade criteria.”21

today in 1997,@mariahcarey transformed herself & all of us with the release of
her sixth album, “butterfly.” follow along as we remember some iconic bits from
that era, starting with this mimi & the sailors moment from the “honey” music
video.22

wow !@mariahcarey’s ‘in the mix’has already climbed to # 1 on the itunes r & b
chart in the usa with a 40% lead over its nearest competitor.23

it would be nice if we can get a home app redesign this year. the current one just
look sad with mar-zipan24

bought the cd and didn’t stop listening to it the whole week after.25

today marks the anniversary of@mariahcarey’s signature album, ‘butterfly’.
regarded as one of the greatest r & b albums in history, this masterpiece was a
declaration of personal & musical independence, and it elevated the genre to new
heights. timeless. genius. iconic. 26

thank u for this unmatched piece of art miss mariah i love u27

did we miss a favorite moment of yours from the “butterfly” era ? reply and let us
know what your favorite mimi moment is.28

And we can extract the secret message without using the original unmodified text.
And Fig. 1 is the screenshot of the extraction program result.

5.2 Result

Embedding 8 bits in 4939 characters (including spaces) seems a little bit inefficient
compared with Liu [9] and Topkara [10]. But the maximum embedding rate is not only
related to the number of characters or the number of words, but also to the semantic of the

19 https://twitter.com/Bunny_Citizen98/status/1173972466059943937.
20 https://twitter.com/uuords/status/1128855726917640192.
21 https://www.apple.com/iphone-11-pro/.
22 https://twitter.com/Sony/status/1173621121331159042.
23 https://twitter.com/wemissmusic/status/1174254427890507777.
24 https://twitter.com/KhaosT/status/1125434528699273216.
25 https://twitter.com/The_Bot/status/1173625354965192706.
26 https://twitter.com/MariahCareyAU/status/1173538261618135040.
27 https://twitter.com/patr1ck_w116/status/1173577562230067200.
28 https://twitter.com/Sony/status/1173621262196891649.
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https://twitter.com/The_Bot/status/1173625354965192706
https://twitter.com/MariahCareyAU/status/1173538261618135040
https://twitter.com/patr1ck_w116/status/1173577562230067200
https://twitter.com/Sony/status/1173621262196891649
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Fig. 1. Screenshot of the extraction program. 8 bits of secret message extracted.

text. 18 suitable words are found in this experiment and up to 36 bits of secret message
can be embedded using 4 kinds of typos and more information could be embedded by
using more kinds of typos and by using efficient coding methods. The predicting might
change the status of themodel and a same order of the sequences should be followed both
embedding and extracting. Importantly, the original context should not contain typos,
otherwise it might frustrate our embedding and extracting. But we can overcome that by
hiding control bits in other typos. Hiding information in typos with NLP methods still
have a long way to go.

However, the machine learning and deep learning based natural language processing
(NLP) methods are always of great complexity and need huge computing resources, so
embedding might take a long time or even doesn’t work with lowly equipped machines.
But text steganography with the understanding of the text is a cross-lingual idea and it
also works in other languages such as Chinese. Although Chinese is extremely different
from English, we can also hide information in Chinese text by injecting Chinese typos
such as homonym. It also works in other languages, and the only restriction is that an
NLP model can learn such a language.

For example, we embed 0b1101 in to a Chinese paragraph using Chinese typos:
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6 Conclusion

In this paper we have presented a method that hides secret message in text by creating
typing errors with the help of BERT, an NLP model and extracts the message without
using the original unmodified text. We proved that NLP method is also applicable to
steganography. Our method is suitable for both steganography and digital watermarking
in cursory texts of informal situation such as social media, message and chatting.

In the future, we can present a method that hide information in Chinese text with
a similar idea. More opportunities might show up with de development of NLP and
human’s researches of language itself.
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Abstract. Reversible data hiding in encrypted images is an effective technology
to embed additional data in the encrypted domain without accessing the content
of the original image. During the decoding process, the secret message can be
extracted accurately and the original image can be reconstructed perfectly. In this
paper, an efficient reversible data hiding scheme for encrypted images based on
MSB (most significant bit) prediction is proposed, which has high embedding
capacity. Combining with the characteristic of prediction technology, the predic-
tion error is first identified and its location is stored in the locationmap. The stream
cipher is then used to encrypt the original image. According to the location map,
the data-hider substitutes up to three MSBs of embeddable pixels in encrypted
image with the secret message. At the receiving end, the secret message can be
extracted without error, and the original image can be perfectly reconstructed by
utilizing MSB prediction technology. Experimental results show that the scheme
can achieve higher embedding capacity than most related methods.

Keywords: Reversible data hiding · Image encryption · Image security · MSB
prediction · High capacity

1 Introduction

Cloud computing provides the most effective solution for the storage and management
of massive image data. However, under the existing cloud computing architecture, users
basically lose absolute control over data, which lead to a series of security issues such
as confidentiality, privacy and so on. Encryption is an important means to protect the
confidentiality and privacy of user data in a cloud computing environment. Users first
encrypt sensitive content before uploading it. All the processing and computing in the
cloud are performed in the encrypted domain. However, image data loses its original
characteristics after encryption, and the effective management, integrity and reliability
protection of massive ciphertext image data in the cloud has become an urgent and
challenging problem. In recent years, data hiding in encrypted domain has become a
research hotspot. It directly embeds some additional messages in the encrypted data,
including copyright information, owner identity, or authentication data.

In the past few years, some algorithms for data hiding in encrypted images or videos
have been proposed [1–4]. However, within these algorithms, the original carrier is
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permanently modified during the data embedding process, and cannot be recovered
losslessly even after data extraction. This is not feasible in some sensitive areas, such as
medical science, law forensics, and military applications [5]. For this reason, reversible
Data Hiding in encrypted images (RDH-EI) has become an interesting and challenging
research field. At the receiving end, RDH-EI aims to accurately extract secret message
and completely restore the original image. Existing RDH-EI methods can be classified
into three categories, namely vacating room after encryption (VRAE) [6–11], reserv-
ing room before encryption (RRBE) [12–15], and the method based on homomorphic
encryption [16–19].

The early VRAE framework is proposed by Zhang [6, 7]. The entire data of an
uncompressed image is encrypteddirectly by a streamcipher. Then thedata-hider embeds
the additional data by modifying a small portion of encrypted data. Later, Huang et al.
[8] designed a new framework for RDH in encrypted domain, which integrates previous
difference histogram shifting based RDH approaches via a new encryption strategy. Wu
and Sun [9] proposed a separable RDH-EI method, where 1-layer or 2-layer MSBs are
emptied for storing the additional bits. The context adaptive interpolation algorithm
is adopted to estimate the MSBs. Qian and Zhang [10] proposed a RDH-EI scheme
using distributed source coding (DSC). As estimating MSB is much more accurate
than estimating LSB planes, the MSB plane can be recovered by DSC decoding with
an acceptable decoding error probability. More recently, high capacity reversible data
hiding approach with correction of prediction errors and high capacity reversible data
hiding approach with embedded prediction errors are presented in [11].

Ma et al. [12] first proposed a RRBEmethod. Specifically, by using traditional RDH
method, LSBs of some pixels are embedded into other pixels to empty the room, and
then the image is encrypted. So the positions of these LSBs in the encrypted image can
be used to embed data. Later, Zhang et al. [13] proposed a RDH method in encrypted
images based on estimation technique. The additional data is embedded in the encrypted
image by modifying the estimating errors. In [14], another RRBE method was proposed
by using the interpolation technique to make room for data embedding. Yi et al. [15]
proposed an RDH-EI method using parametric binary tree labeling scheme. In general,
the RDH-EI methods based on RRBE can achieve larger embedding capacity than those
based on VRAE. But it is impracticable, because the data hider should know the vacated
room created by the content owner before encryption. In addition to VRAE and RRBE,
another RDH-EImethod suggests to use homomorphic encryption to encrypt the original
image [16–19]. However, the most important problem of homomorphic encryption is
that it will suffer from pixel expansion.

In this paper, we present an efficient high-capacity reversible data hiding scheme for
encrypted images based on MSB prediction. Due to the local correlation, adjacent pixel
values in the image are generally close. Therefore, we can use the decrypted previous
pixels to predict the current pixel value. During the data hiding phase, three MSBs of
each available pixel in the encrypted image are substituted by the secret bits. The rest of
the paper is structured as follows. Section 2 describes the details of the proposed scheme
including location map generation, image encryption, data embedding, data extraction
and original image recovery. Experimental results and comparisons are provided in
Sect. 3. Finally, the conclusion is drawn and future work is concluded in Sect. 4.
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2 Proposed Scheme

The framework of the proposed RDH-EI method based on MSB prediction is illustrated
in Fig. 1. Although there is local correlation in the image, adjacent pixel values can be
used to predict the current pixel values. But sometimes there are errors in the prediction.
Therefore, the first step is to identify the prediction error and store its position information
in the locationmap. Then, the content owner encrypts the original image using a standard
stream cipher. After that, data embedding can be carried out by substituting three MSBs
of embeddable pixels in encrypted image with the secret message. At the receiver side, if
the receiver only has the data hidingkey, he can extract the hiddendata. If the receiver only
has the encryption key, the original image can be reconstructed. If both the encryption
key and the data hiding key are available, the receiver can extract the hidden data without
any errors and restore the original image perfectly.

Fig. 1. The framework of proposed RDH-EI scheme

2.1 Generation of Location Map

Without loss of generality, assuming that the size of the original grey image is H × W,
and the pixel value is represented by xi, j ∈ [0, 255], 1 ≤ i ≤ H, 1 ≤ j ≤ W.
According to the prediction mode, all pixels are divided into four categories, that is,
X I = {

x1,1
}
, X I I = {

x1,2, x1,3, . . . , x1,W
}
, X I I I = {

x2,1, x3,1, . . . , xH,1
}
, X IV ={

xi, j |i = 2, 3, . . . , H, j = 2, 3, . . . ,W
}
. The pixel in X I will be kept unchanged dur-

ing the whole data embedding phase. On the other hand, the pixels in X I I , X I I I , and
X IV will be approximately predicted by those adjacent pixels. Some prediction methods
have been proposed to estimate pixel values in spatial domain [20]. In this work, the
adjacent pixels are used to predict the target pixel by the following expression.

x̃i, j =

⎧
⎪⎪⎨

⎪⎪⎩

xi, j xi, j ∈ X I

xi, j−1 xi, j ∈ X I I

xi−1, j xi, j ∈ X I I I
⌊
wd · xi−1, j−1 + wv · xi, j−1 + wh · xi−1, j

⌋
xi, j ∈ X IV

(1)

where �•� is a floor function that maps a real number to the largest previous integer, and
x̃i, j is the predicted pixel value. Weighting coefficients wh , wv and wd are satisfied with



234 D. Xu et al.

wh + wv + wd = 1, 0 ≤ wh, wv,wd ≤ 1. For the sake of simplicity, we set wh = 0.4,
wv = 0.4 and wd = 0.2.

As the MSB values are substituted by the secret bits during the data embedding
phase, it is important to predict them without any errors. To recover the original image
perfectly, we need to analyze the image content to detect the possible prediction errors.
The difference between the predicted pixel value and the original pixel value can be
calculated as �or = ∣∣xi, j − x̃i, j

∣∣.
Each pixel xi, j with gray value falling into [0, 255] can be represented by 8 bits,

bi, j (0), bi, j (1), . . . , bi, j (7), such that

bi, j (k) =
⌊ xi, j
2k

⌋
mod 2, k = 0, 1, . . . , 7 (2)

where mod() represents the modulo operation. In general, data embedding can be per-
formed using up to three-layer MSB. If there are more layers of MSB, the prediction
accuracy will decrease and the auxiliary information will increase accordingly. There-
fore, we take the three-layer MSB as an example to illustrate. First of all, different types
of flipping on the MSBs of xi, j are performed to obtain the following seven values.

x̄1i, j = b
′
i, j (7) · 27 + bi, j (6) · 26 + bi, j (5) · 25 +

∑4

k=0

(
bi, j (k) · 2k

)
(3)

x̄2i, j = bi, j (7) · 27 + b
′
i, j (6) · 26 + bi, j (5) · 25 +

∑4

k=0

(
bi, j (k) · 2k

)
(4)

x̄3i, j = bi, j (7) · 27 + bi, j (6) · 26 + b
′
i, j (5) · 25 +

∑4

k=0

(
bi, j (k) · 2k

)
(5)

x̄4i, j = b
′
i, j (7) · 27 + b

′
i, j (6) · 26 + bi, j (5) · 25 +

∑4

k=0

(
bi, j (k) · 2k

)
(6)

x̄5i, j = b
′
i, j (7) · 27 + bi, j (6) · 26 + b

′
i, j (5) · 25 +

∑4

k=0

(
bi, j (k) · 2k

)
(7)

x̄6i, j = bi, j (7) · 27 + b
′
i, j (6) · 26 + b

′
i, j (5) · 25 +

∑4

k=0

(
bi, j (k) · 2k

)
(8)

x̄7i, j = b
′
i, j (7) · 27 + b

′
i, j (6) · 26 + b

′
i, j (5) · 25 +

∑4

k=0

(
bi, j (k) · 2k

)
(9)

where b
′
(i, j)(k) is the flipped value of b(i, j)(k), i.e., 0 is converted into 1, and vice versa.

The differences between the predicted value and the flipped values are then calculated

as �̄1 =
∣∣∣x̄1i, j − x̃i, j

∣∣∣, �̄2 =
∣∣∣x̄2i, j − x̃i, j

∣∣∣, �̄3 =
∣∣∣x̄3i, j − x̃i, j )

∣∣∣, �̄4 =
∣∣∣x̄4i, j − x̃i, j

∣∣∣,

�̄5 =
∣∣∣x̄5i, j − x̃i, j

∣∣∣, �̄6 =
∣∣∣x̄6i, j − x̃i, j

∣∣∣, and �̄7 =
∣∣∣x̄7i, j − x̃i, j

∣∣∣. In addition, theminimum

of these differences is defined as follows.

�̄min = {
�̄1, �̄2, �̄3, �̄4, �̄5, �̄6, �̄7

}
(10)

If �or ≥ �̄min , it means that there is a prediction error. Otherwise, there is no
prediction error because the original pixel value is closer to its predicted pixel value than
the flipped values.
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In order to ensure that the original image can be completely reconstructed, a binary
location map L1, is introduced to record the positions of the prediction errors. More
precisely, if there is a prediction error, the corresponding element is marked as “1” in
L1. Otherwise, the element is marked as “0”. The location map is losslessly compressed
using arithmetic coding and appended to the front of the payload, along with its size.

2.2 Image Encryption

Decompose pixel xi, j into 8 bits bi, j (0), bi, j (1), . . . , bi, j (7) using Eq. (2). A pseudo-
random binary sequence with H ×W × 8 bits is generated via a standard stream cipher
determined by the encryption key Ken . Then, the bitwise exclusive-or (XOR) operation
is performed between the original bits bi, j (k) and pseudo-random bits ri, j (k) as follow.

B̂i, j (k) = bi, j (k) ⊕ ri, j (k) (11)

where ⊕ represents a bitwise XOR operator and B̂i, j (k) denotes the k-th associated
encrypted bit. In the next step, the encrypted bits are concatenated orderly as the
encrypted pixel value x̂i, j .

x̂i, j =
∑7

k=0

(
B̂i, j (k) · 2k

)
(12)

Thus, an encrypted version of the original image is obtained.

2.3 Data Embedding in Encrypted Image

After receiving the encrypted image, the data hider cannot obtain the plaintext content,
because there is no encryption key. However, the data-hider can still embed additional
information by MSB substitution technology. Suppose the message to be embedded is
a binary sequence. In order to enhance the security, the to-be-embedded message is
encrypted by a stream cipher according to the data-hiding key Kdh . Thus, the to-be-
embedded binary information, i.e., W = {w(l)|l = 1, 2, . . . , K , w(l) ∈ {0, 1}}, is an
encrypted version. It is difficult for anyone without a data hiding key to recover the
message.

During the data hiding phase, the error location map L1 can be used to detect where
it is possible to embed bits of the secret message (i.e. pixels without prediction error).
Subsequently, the data hider scans pixels of the encrypted image from left to right, then
from top to bottom and substitutes the MSBs of all the available pixels by secret bits.

Xi, j = w(l) · 27 + w(l + 1) · 26 + w(l + 2) · 25 +
∑4

k=0
B̂i, j (k) · 2k (13)

where Xi, j is the marked encrypted pixels.
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2.4 Data Extraction and Original Image Recovery

At the receiving end, the receiver can extract the additional message using the data hiding
key and reconstruct the original image using the encryption key. In this section, we will
consider the following three scenarios.

(1) Data Extraction with Only Data Hiding Key

After obtaining themarked and encrypted image Xi, j , a receiverwith the data hiding
key Kdh and the error locationmap L1 can extract the hiddenmessage directly. First
of all, the pixels are scanned from left to right, then from top to bottom mentioned
above. Then, the MSBs of embeddable pixel are extracted as Eqs. (14)–(16) to
retrieve the secret message.

w̃(l) =
⌊
Xi, j/2

7
⌋

(14)

w̃(l + 1) =
⌊
mod

(
Xi, j , 2

7
)
/26

⌋
(15)

w̃(l + 2) =
⌊
mod

(
Xi, j , 2

6
)
/25

⌋
(16)

Then, by using the data hiding key Kdh , the corresponding plaintext message can
be further obtained by decryption. It can be seen that if the receiver only has the data
hiding key, he/she can extract the additional message. But without the encryption key,
he/she is unable to access the content of the original image.

(2) Image Recovery with Only Encryption Key
In the second scenario, if the receiver only has the encryption key Ken , the additional
message cannot be extracted. But according to the following steps, he can directly
decrypt the marked encrypted image and restore it to the original image.

Step 1. Similar to the image encryption process, the encryption key Ken is used to
generate pseudo-random sequence with H × W × 8 bits.
Step 2. The pixels of the marked encrypted image are scanned from left to
right, then from top to bottom, and each pixel can be represented by 8 bits,
b′
i, j (0), b

′
i, j (1), . . . , b

′
i, j (7).

b′
i, j (k) =

⌊
Xi, j

2k

⌋

mod 2, k = 0, 1, . . . , 7 (17)

Step 3. Image decryption can then be done as follows.

Bde
i, j (k) = b′

i, j (k) ⊕ ri, j (k) (18)

where ri, j (k) are the key stream bits generated by the encryption key.
Step 4. The decrypted pixel value xdei, j can be calculated as

xdei, j =
∑7

k=0

(
Bde
i, j (k) · 2k

)
(19)
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Since the MSBs of each pixel (except x̂1,1) are substituted with the secret bits during
data embedding, these MSBs of xdei, j are different from the MSBs of the original image.
For this reason, the prediction of MSBs should be performed.

Since x1,1 does not change during the data embedding process, its value can be accu-
rately obtained after decryption. Thus, the estimation of xi, j , denoted by x̃i, j , can be
obtained using the same prediction technology as Eq. (1). According to the local corre-
lation of the image, the difference between the original pixel and its neighboring pixel
is small. On the contrary, the difference between the marked pixel and its neighboring
pixel is relatively large. Therefore, in order to recover the MSBs, the following eight
values should be first calculated.

X
0

i, j = 0 * 27 + 0 * 26 + 0 * 25 +
∑4

k=0

(
Bde
i, j (k) · 2k

)

X
1

i, j = 0 * 7 + 0 * 26 + 1 * 25 +
∑4

k=0

(
Bde
i, j (k) · 2k

)

X
2

i, j = 0 * 27 + 1 * 26 + 0 * 25 +
∑4

k=0

(
Bde
i, j (k) · 2k

)

X
3

i, j = 0 * 27 + 1 * 26 + 1 * 25 +
∑4

k=0

(
Bde
i, j (k) · 2k

)

X
4

i, j = 1 * 27 + 0 * 26 + 0 * 25 +
∑4

k=0

(
Bde
i, j (k) · 2k

)

X
5

i, j = 1 * 27 + 0 * 26 + 1 * 25 +
∑4

k=0

(
Bde
i, j (k) · 2k

)

X
6

i, j = 1 * 27 + 1 * 26 + 0 * 25 +
∑4

k=0

(
Bde
i, j (k) · 2k

)

X
7

i, j = 1 * 27 + 1 * 26 + 1 * 25 +
∑4

k=0

(
Bde
i, j (k) · 2k

)

Then the differences between the predicted value and these eight values are calculated

as �0 =
∣∣∣∣X

0

i, j − x̃i, j

∣∣∣∣, �1 =
∣∣∣∣X

1

i, j − x̃i, j

∣∣∣∣, �2 =
∣∣∣∣X

2

i, j − x̃i, j

∣∣∣∣, �3 =
∣∣∣∣X

3

i, j − x̃i, j

∣∣∣∣,

�4 =
∣∣∣∣X

4

i, j − x̃i, j

∣∣∣∣, �5 =
∣∣∣∣X

5

i, j − x̃i, j

∣∣∣∣, �6 =
∣∣∣∣X

6

i, j − x̃i, j

∣∣∣∣, and�7 =
∣∣∣∣X

7

i, j − x̃i, j

∣∣∣∣.

Similarly, the minimum of these differences is defined as follows.

�min =
{
�0,�1,�2,�3,�4,�5,�6,�7

}
(20)
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Consequently, the original pixel xi, j can be recovered as follows.

xi, j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X
0

i, j i f �min = �0

X
1

i, j i f �min = �1

X
2

i, j i f �min = �2

X
3

i, j i f �min = �3

X
4

i, j i f �min = �4

X
5

i, j i f �min = �5

X
6

i, j i f �min = �6

X
7

i, j i f �min = �7

(21)

It can be seen that the method is fully reversible and the original image can be
completely reconstructed.

(3) Data Extraction and Image Recovery with Both Keys
If the receiver has both Ken and Kdh , he can extract the secret messagewithout error
and completely restore the original image at the same time. At first, the receiver

extracts the secret message from Xi, j by applying the above data extraction proce-
dure. Subsequently, the original image can be further reconstructed by utilizing the
above image recovery procedure. Note that data extraction should be carried out
before image restoration.

3 Experimental Results and Analysis

In this section, we present the experimental results obtained by applying the proposed
method and comparisons with several existing relatedworks. Eight standard gray images
shown in Fig. 2 and 80 images selected from the Miscellaneous gray level images
database [21] are selected as test images. The size of all images is 512 × 512 × 8. The
secret message is a binary sequence created by pseudo random number generator.

3.1 Analysis of Scrambling Effect

In order to show the scrambling effect visually, the original images are demonstrated
in Fig. 2, while the corresponding encrypted results are shown in Fig. 3. It can be seen
that the data hider cannot obtain any available visual information of the original image
from the encrypted image. In addition, PSNR (Peak Signal-to-Noise Ratio) is used as an
objectivemetric to evaluate image visual quality.PSNR values of eight encrypted images
are 9.5545 dB, 9.5776 dB, 7.8921 dB, 8.4937 dB, 8.9873 dB, 9.6351 dB, 8.0840 dB,
and 7.6121 dB, respectively. We have also applied our proposed method to another 80
images which are selected from the Miscellaneous database [21]. Figure 4 presents the
PSNR results of 80 encrypted images. It can be seen that PNSR values of the encrypted
images are very low and the visual imperceptibility is guaranteed.
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(a) Lena (b) Baboon (c) Barbara (d) Peppers

(e) Boat (f) Truck (g) Airplane (h) Man

Fig. 2. Eight standard gray images

(a) Lena (9.5545dB) (b) Baboon (9.5776dB) (c) Barbara (7.8921dB) (d) Peppers (8.4937dB) 

(e) Boat (8.9873dB) (f) Truck (9.6351dB) (g) Airplane (8.0840dB) (h) Man (7.6121dB) 

Fig. 3. The corresponding encrypted images
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Fig. 4. PSNR values of 80 encrypted images Fig. 5. Embedding rates of 80 test images

3.2 Analysis of Reconstructed Image Quality

In the proposed method, with the data hiding key, all embedded bits can be extracted
without any error. In addition, with the prediction technology and the location map L1,
the original image can be perfectly reconstructed after MSB prediction, as indicated by
a PSNR which tends to +∞.

3.3 Analysis of Embedding Capacity

The embedding capacity is defined as themaximumnumber of bits that can be embedded
in a given cover image. In general, it is expressed in bit per pixel (bpp) and is expected to
be as large as possible in order to hide the maximum amount of information. Embedding
capacity is measured by two metrics, namely the total embedding capacity and the
actual embedding capacity. The total embedding capacity refers to the total number of
bits that can be hidden in the encryption domain. The actual payload should be the
total embedding capacity minus the side information. In the proposed approach, the
factors affecting the embedding capacity include the number of prediction errors and
the efficiency of lossless compression algorithm. For eight standard gray images, the
embedding rates with different MSBs are given in Table 1. For the sake of comparison,
in addition to providing the test results of the three-layer MSB method proposed in
this paper, we also provide the results of the single-layer and two-layer MSB method.
The embedding rate of the single-layer MSB method does not exceed 1 bpp, because
only one bit of information is embedded in each embeddable pixel byMSB replacement.
Compared with the single-layer MSBmethod, the embedding rate of the two-layer MSB
method is improved significantly, because two bits of information can be embedded in
each embeddable pixel.

In addition, the embedding capacity depends strongly on the characteristics of the
original cover image, as each image has a different number of embeddable pixels. Taking
the three-layerMSBmethod as an example, the maximum embedding capacity is 2.8434
bpp, while the minimum is 1.9918 bpp. The reason is that some pixels cannot be used
for information embedding due to prediction errors. In general, for relatively smooth
images, the total embedding capacity is large and the encoded auxiliary information
is less. In addition, 80 images selected from the Miscellaneous database [21] are also
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Table 1. Test results of eight standard images

Standard
test
images

Total embedding rate (bpp) Actual embedding rate (bpp) PSNR

1-layer
MSB

2-layer
MSB

3-layer
MSB

1-layer
MSB

2-layer
MSB

3-layer
MSB

Lena 0.9992 1.9782 2.8434 0.9912 1.9159 2.6543 9.5545

Baboon 0.9842 1.7311 1.9918 0.8725 1.2530 1.2205 9.5776

Barbara 0.9652 1.7159 2.2053 0.8339 1.3555 1.7207 7.8921

Peppers 0.9975 1.9656 2.8224 0.9794 1.8722 2.5817 8.4937

Boat 0.9990 1.9419 2.6668 0.9890 1.8076 2.3156 8.9873

Truck 0.9997 1.9696 2.5798 0.9958 1.8594 2.0121 9.6351

Airplane 0.9974 1.9478 2.7731 0.9740 1.8073 2.5036 8.0840

Man 0.9960 1.9260 2.6131 0.9630 1.7531 2.1959 7.6121

tested, and their total embedding rates are shown in Fig. 5. The embedding rates in
the best and worst cases are 2.9309 bpp and 1.7534 bpp, respectively, and the average
embedding rate is 2.4999 bpp.

3.4 Comparison and Discussion

In terms of embedding rate and reconstructed image quality, several comparisons are
made between the proposed method and some existing methods [10, 11, 14]. The com-
parison of embedding rate is shown in Fig. 6. It can be seen that the embedding capacity
of our three-layerMSBs substitution strategy has been greatly improved. In addition, the
original image can be reconstructed losslessly (PSNR→ +∞) using only the encryption
key. In conclusion, in addition to being error-free during data extraction, the proposed
method can provide better performance in terms of embedding capacity and image
restoration quality.

Fig. 6. Comparison of embedding rates between the proposed method and some state-of-the-art
methods
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4 Conclusions and Future Work

In this paper, we proposed a high-capacity reversible data hiding method in encrypted
images based on MSB prediction. To ensure that the original image can be completely
reconstructed, information about the position of prediction errors is stored in the binary
location map. Then the original image is converted into encrypted form by using encryp-
tion key. After that, the data-hider embeds the secret data into the encrypted image by
substituting the MSBs of each embeddable pixel with secret bits. Since the data hider
cannot access the content of the original image, the confidentiality is guaranteed. In
addition, this algorithm can achieve real reversibility, i.e., the original image can be
perfectly recovered and the secret message can be extracted without error. Experimental
results show that the proposedmethod can achieve higher embedding capacity compared
to most related methods. Future work is aimed at designing more efficient prediction
technique to reduce the number of prediction errors. At the same time, an efficient
compression technology should be designed for location map to improve the actual
embedding capacity.

Acknowledgements. This work is supported by the National Natural Science Foundation of
China (61771270), Zhejiang Provincial Natural Science Foundation of China (LY17F020013,
LR20F020001), and Ningbo Natural Science Foundation (2018A610054, 2018A610192).
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Abstract. Currently, the design of cost functions which measure the
embedding distortion becomes the main task left in steganography
with the emergence of Syndrome-Trellis Codes. Whether heuristically
designed, e.g., Hill, WOW, or statistical model-based, e.g., HUGO,
MiPOD, the embedding distortion is almost a sum of each element’s dis-
tortion. This paper proposes a new non-additive cost function designed
by incorporating an eight-element neighborhood Gaussian Markov Ran-
dom Field Model (8-GMRF). This proposed scheme, which could be
viewed as an extension to MiPOD, derives change probabilities from min-
imizing the total KL divergence with a given payload and then imple-
ments adaptive steganography. Experimental results demonstrate that
the proposed 8-GMRF performs superior or comparable to some of the
state-of-the-art schemes in resisting steganalysis detectors.

Keywords: Adaptive steganography · Markov Random Field Model ·
KL divergence

1 Introduction

Spatial image steganography is the art and science of concealing messages into
images by modifying pixel values [1]. The most crucial criterion is the abil-
ity of resisting the state-of-the-art steganalysis detectors. Since efficient practi-
cal coding method which embed near the payload-distortion bound exists, e.g.,
Syndrome-Trellis Codes (STCs) [2], the main concern in modern steganographic
scheme design is the distortion function.

Currently, the design of distortion function is almost in an additive form. The
designer starts by assigning costs of changing each element (e.g., pixel or DCT
coefficient) and then compute the total distortion as a sum of costs of all modified
elements [3]. Assigning pixel cost is often done by empirically quantifying the
impact of making an embedding change on outputs of one or more high-pass
filters (noise residuals) [3]. For instance, the cost function of HILL (High-pass,
Low-pass and Low-pass) [1] is constructed by applying one high-pass filter and
two low-pass filters on cover image, sequentially. The cost function of WOW
c© Springer Nature Switzerland AG 2020
H. Wang et al. (Eds.): IWDW 2019, LNCS 12022, pp. 247–255, 2020.
https://doi.org/10.1007/978-3-030-43575-2_21
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(wavelet obtained weights) [5] which can be adopted in JPEG domain is also
designed with the help of a group of directional filters. Only a few distortion
functions consider cover model in their design [4]. HUGO [6] is the first attempt,
whose distortion is defined as the weighted sum of difference between cover and
stego images in SPAM (subtractive pixel adjacency matrix) [7] feature space.

The scheme, which called MG (Multivariate Gaussian) [10], begins to mea-
sure statistical detectability in the design of distortion. It employs KL divergence
between cover and its stego version, and models the cover pixels as a sequence
of independent quantized Gaussians. MG performs comparable to HUGO and
subpar with respect to HILL [4]. In [3], the MG is extended by incorporating
a Multivariate Generalized Gaussian (MVGG) model with a properly adjusted
variance estimator, the MVGG performs superior for the selection-channel aware
feature set maxSRMd2 [11] and comparable for SRM, when compared with the
state-of-the-art steganographic scheme HILL in spatial images.

MiPOD (Minimizing the Power of Optimal Detector) [4] adopts the same
model as [3,10] with better setting of parameters, while minimizes the power
of the most powerful detector instead of the KL divergence. Although its secu-
rity performance is slightly inferior to HILL against SRM, it outperforms HILL
against maxSRMd2. However, all models above are additive. In this paper, we
propose a non-additive scheme for spatial images by incorporating an eight-
element neighborhood Gaussian Markov Random Field Model (8-GMRF). Our
steganography task is formulated as an optimization problem to minimize the
KL divergence between the cover and stego images. Experimental results demon-
strate that the proposed 8-GMRF performs superior or comparable to some of
the state-of-the-art methods in resisting steganalysis detectors.

The rest of this paper is organized as follows. In Sect. 2 we introduce notations
and review model adopted in MG. Our 8-GMRF are presented in Sect. 3. We
demonstrate the effectiveness of our work by comparing to other steganographic
scheme experimentally in Sect. 4. Section 5 lies conclusions.

2 Preliminaries and Prior Work

2.1 Notations

Throughout the paper, the symbols X = (xi)n, Y = (yi)n denote the residual
image obtained by using a two-dimensional wiener filter and stego image, respec-
tively. σi is the variance of xi, and ρij is the correlation coefficient between xi

and xj . i ↔ j represents xi, xj is adjacent.
For better readability, p

(i1,i2,...,im)
j1,j2,...,jm

denotes the joint probability P{xi1 =

j1, xi2 = j2, ..., xim = jm} and q
(i1,i2,...,im)
j1,j2,...,jm

denotes its stego version. Their super-
script or subscript would be elliptical if necessary.

2.2 Model in MG

MG designs the cover model as a sequence of independent but not necessarily
identically distributed quantized Gaussians. It’s cost function equals the sum of
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each pixel’s KL divergence. By minimizing the total KL divergence by means of
Lagrange multipliers, the optimal embedding change probabilities are obtained
and used to modify each pixel at most 1 symmetrically and independently.

For an individual pixel xi with small change rate βi, the stego pixel dis-
tribution and its partial derivative become (1). Then the total KL divergence
between the cover and stego objects is well-approximated as (2) by Ii(0), the
steganographic Fisher information (FI).

qj(βi) = (1 − 2βi)pj + βipj−1 + βipj+1,
∂qj

∂βi
|βi=0= − 2pj+pj−1+pj+1. (1)

n∑

i=1

DKL(p(i)||q(i)(βi)) ≈
n∑

i=1

1
2
β2

i Ii(0), Ii(0) =
∑

j

1

p
(i)
j

(
∂q

(i)
j (βi)
∂βi

|βi=0)2 ≈ 1
σ2

i

.

(2)

5 1 8

2

6

0 4

3 7

Fig. 1. 8-element neighborhood GMRF Model. Every two pixels are adjacent if con-
nected or independent if disconnected.

3 8-GMRF Model

3.1 Cover Model

In our approach, each cover pixel interacts with its 8 adjacent pixels which are on
the upper-left, upper, upper-right, left, right, down-left, downward, and down-
right. These 9 pixels {0, 1, 2, 3, 4, 5, 6, 7, 8} compose one block shown in Fig. 1, and
have 9-variate Gaussian distribution with zero mean, i.e., p(0 ∼ 8) ∼ N(0, Σ9×9).
p(0 ∼ 8) can be written as (3) by Markovianity (for proof see Appendix A).

p(0 ∼ 8) =
p(1, 0, 2, 5) · p(3, 0, 2, 6) · p(3, 0, 4, 7) · p(1, 0, 4, 8) · p(0)

p(0, 1) · p(0, 2) · p(0, 3) · p(0, 4)
(3)

p(v1, v2, v3, v4) ≈ p(v1, v2)p(v1, v3)p(v1, v4)p(v2, v3)p(v2, v4)p(v3, v4)
p2(v1)p2(v2)p2(v3)p2(v4)

(4)
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Our cover model is a series of 8-element neighborhood GMRF model blocks,
each block’s structure is same as Fig. 1. To feasible calculation of the KL diver-
gence of one block, we need to decompose p(0 ∼ 8) in terms of 1-variate Gaussian
and 2-variate Gaussian, for which we propose an appropriation of 4-variate prob-
ability distribution as (4). Thus p(0 ∼ 8) and the KL divergence of one block
can be approximated in (5)–(6) taking advantage of equation (3)–(4).

p(0 ∼ 8) ≈ Πi↔jp(i, j)

p7(0) · 4

Π
k=1

p4(k) · 8

Π
l=5

p2(l)
. (5)

DKL(p(0∼8)||q(0∼8)(β0 ∼ β8)) ≈
∑

i↔j
DKL(p(i,j)||q(i,j)(βi, βj))−

4
4∑

k=1

DKL(p(k)||q(k)(βk))− 2
8∑

l=5

DKL(p(l)||q(l)(βl))− 7DKL(p(0)||q(0)(β0)). (6)

3.2 Stego Image Model

In our work, change probabilities are not mutually independent like MG and
MiPOD, but interact between adjacent pixels. For a pair of adjacent pixels xi, xj ,
modified by at most ±1 with small probabilities βi = β+

i = β−
i , βj = β+

j = β−
j ,

their corresponding stego pixels distribution and its partial derivative become:

qk,l(βi, βj) = (1 − 2βi)βj(pk,l−1 + pk,l+1) + βi(1 − 2βj)(pk−1,l + pk+1,l)

+ βiβj(pk−1,l−1 + pk−1,l+1 + pk+1,l−1 + pk+1,l+1) + (1 − 2βi)(1 − 2βj)pk,l, (7)

∂qk,l

∂βi
|βi=0,βj=0 = −2pk,l + pk−1,l + pk+1,l,

∂qk,l

∂βj
|βi=0,βj=0 = −2pk,l + pk,l−1 + pk,l+1. (8)

The total KL divergence is formulated as (9) utilizing (6) and simplifying,
where Di

KL denotes the KL divergence of the block centered in the pixel xi. And
DKL(p(i)||q(i)(βi)) is given in (2). Two-dimensional KL divergence between the
cover and stego object, and its key components, the Fisher Information matrix
with size 2 * 2 list in (10) (for proof see AppendixB):

n∑

i=1

Di
KL = 2

∑
i↔j

DKL(p(i,j)||q(i,j)(βi, βj)) − 31
n∑

i=1

DKL(p(i)||q(i)(βi)). (9)

DKL(p(i,j)||q(i,j)(βi, βj)) ≈ 1
2

[
βi βj

]
[

I
(11)
ij (0) I

(12)
ij (0)

I
(21)
ij (0) I

(22)
ij (0)

] [
βi

βj

]
,

I
(11)
ij (0) ≈ 2

σ2
i (1 − ρ2ij)

2
, I

(22)
ij (0) ≈ 2

σ2
j (1 − ρ2ij)

2
, I

(12)
ij (0) = I

(21)
ij (0) ≈

2ρ2ij

σiσj(1 − ρ2ij)
2

.

(10)
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3.3 Minimizing the KL Divergence

By means of Lagrange multipliers, we obtain optimal change rates by minimizing
the total KL divergence with a given payload constraint. The total payload
embed in the image is the sum of entropies as (11). Differentiating the objective
function w.r.t. βi gives (12)–(13). (13) will be solved through several times of
iterations such that we embed with the solution and obtain the cost map using
ρi = ln( 1

βi
− 2) [3].

αn =
n∑

i=1

h(βi), h(x) = −2xlnx − (1 − 2x)ln(1 − 2x). (11)

∂

∂βi
(

n∑

i=1

Di
KL − λ(

n∑

i=1

h(βi) − αn)) = 0, (12)

∑
i↔j

(I(11)ij (0) · βi + I
(12)
ij (0) · βj) − 31

2
Ii(0) · βi − λln

1 − 2βi

βi
= 0. (13)

4 Experimental Results and Analysis

In this section, we conduct a series of experiments on BOSSBase ver.1.01 [14],
which contains 10,000 gray-scale image with size 512 * 512. The covariance matri-
ces among pixels are estimated by a function named empirical covariance of
sklearn package in python. For numerical stability, we adjust the results by:
ρ = min{0.99, ρ}, σ = max{0.01, σ}. Making use of the estimated variance and
covariance of pixels above, (13) will be quickly solved for change probabilities.
Then we adopt the ternary version of STCs to implement the actual embedding
algorithm near its payload-distortion bound.

The security performance is evaluated with two state-of-the-art steganaly-
sis feature sets, i.e., the 34,671-dimensional feature set SRM and its selection-
channel-aware version, maxSRMd2 with ensemble classifiers [15]. We adopt the
average of the false positive rate and false negative rate by ten times of 5000/5000
randomly database splits as test error, with symbol PE . Inspired by MiPOD, we
introduce an average filter operation to our cost map with size 9 * 9. This indeed
brings promotion if embed with the change rates converted from the filtered
cost. Tables 1 and 2 show the average total probability of error PE for payloads
R ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} bpp (bits per pixel) for our 8-GMRF, MG and
other prevailing embedding methods.

It is observed that our method outperforms consistently MiPOD and MG for
both SRM and maxSRMd2, if the obtained cost values or FIs are not low-pass fil-
tered, as shown in Table 1. Table 2 illustrates the performance comparison of our
method (8-GMRF) with HILL and MiPOD when the obtained cost values and
FIs are low-pass filtered. Under the circumstance, both our method and MiPOD
are superior to HILL against the feature set maxSRMd2, while inferior to HILL
against SRM. It is noted that our method outperforms MiPOD consistently for
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Table 1. Performance in term of PE versus embedded payload in bits pixels (bpp) for
MiPOD without filtered FI, MG and our method without filtered cost using ensemble
1.0 classifier with two feature sets: SRM and maxSRMd2

Feature Algorithm Payload (bpp)

0.05 0.1 0.2 0.3 0.4 0.5

SRM MiPOD 0.4511 0.4051 0.3274 0.2723 0.2218 0.1821

8-GMRF 0.4580 0.4137 0.3348 0.2758 0.2298 0.1909

MG 0.3689 0.2953 0.2146 0.1658 0.1357 0.1119

maxSRMd2 MiPOD 0.4294 0.3772 0.3037 0.2498 0.2053 0.1683

8-GMRF 0.4382 0.3856 0.3112 0.2475 0.2039 0.1651

MG 0.2315 0.1653 0.1161 0.0936 0.0813 0.0715

SRM, while is comparable or slightly inferior to MiPOD for maxSRMd2. These
results are expected, because the selection channel aware feature set maxSRMd2
could obtain more statistical information with our method by taking advantages
of the GMRF model, thus leading to more accurate steganalysis for our method.

Table 2. Detectability in term of PE versus embedded payload in bits pixels (bpp)
for Hill, MiPOD with filtered FI and our method with filtered cost using ensemble 1.0
classifier with two feature sets: SRM and maxSRMd2.

Feature Algorithm Payload (bpp)

0.05 0.1 0.2 0.3 0.4 0.5

SRM HiLL 0.4704 0.4330 0.3582 0.2975 0.2450 0.2018

MiPOD 0.4547 0.4118 0.3419 0.2865 0.2385 0.1986

8-GMRF 0.4564 0.4170 0.3490 0.2905 0.2409 0.2004

maxSRMd2 HiLL 0.4237 0.3732 0.3094 0.2590 0.2169 0.1789

MiPOD 0.4426 0.3966 0.3273 0.2700 0.2275 0.1886

8-GMRF 0.4465 0.4002 0.3320 0.2719 0.2249 0.1852

5 Conclusions

In this paper, we propose a new steganographic scheme (8-GMRF) by incorpo-
rating an eight-element neighborhood Gaussian Markov Random Field Model for
spatial images. With the GMRF, the task of image steganography is formulated
as the optimization problem that minimize the total KL divergence between the
cover and stego images for the constraint of given payload. For the 8-element
neighborhood GMRF model, we decompose a 4-variate distribution probability
in terms of 1-variate and 2-variate form to facilitate the computation of KL
divergence. The proposed method could be viewed as an extension to MiPOD.
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Experimental results demonstrate that the proposed 8-GMRF outperforms and
shows comparable performance to MiPOD for the feature sets SRM and maxS-
RMd2, respectively. How to extend the 8-element neighborhood model to GMRF
model with neighborhood of arbitrary shape is the topic of our future research
work.

Acknowledgments. This work is supported in part by National Natural Science
Foundation of China under Grants 61772573 and U1736215, and in part by the Science
and Technology Program of Guangzhou under Grants 201707010029 and 201804010265.

Appendix

A. Joint probability of one 8-element neighborhood GMRF block

Recall Fig. 1, which illustrates 9 pixels of one block with index {0 ∼ 8}. Every
two pixels are adjacent if connected or independent if disconnected. For those
independent (e.g. pixels, i, j), we can easily obtain (14). Accordingly, we proceed
with a group of pixels according to Markovianity shown in (15), which will be
repeatedly used in this proof.

p(i, j) = p(i|j) · p(j) = p(i) · p(j) (14)

p(i, j1...jm) = p(i|j1...jm) · p(j1...jm) = p(i|jk, i ↔ jk) · p(j1...jm) (15)

Firstly, it is obvious to get (16) using (15) and then take the second term of
former formula repeatedly we can get (17). (18) is derived from (17).

p(0 ∼ 8) = p(5|0 ∼ 4, 6 ∼ 8) · p(0 ∼ 4, 6 ∼ 8) = p(5|0, 1, 2) · p(0 ∼ 4, 6 ∼ 8) (16)

p(0 ∼ 4, 6 ∼ 8) = p(6|0, 2, 3)·p(0 ∼ 4, 7, 8), p(0 ∼ 4, 7, 8) = p(8|0, 1, 4)·p(0 ∼ 4, 7)

p(0 ∼ 4, 7) =
p(0, 1, 3, 4)
p(0, 1, 3)

· p(0, 1, 2, 3), p(0, 1, 2, 3) =
p(0, 1, 2)
p(0, 2)

· p(0, 2, 3) (17)

p(0, 1, 3, 4) =
p(0, 3, 4)
p(0, 4)

· p(0, 1, 4), p(0, 1, 3) =
p(0, 1)
p(0)

· p(0, 3) (18)

Substitute (18) into (17), (17) into (16), p(0 ∼ 8) can be formulated as:

p(0 ∼ 8) =
p(1, 0, 2, 5) · p(3, 0, 2, 6) · p(3, 0, 4, 7) · p(1, 0, 4, 8) · p(0)

p(0, 1) · p(0, 2) · p(0, 3) · p(0, 4)
(19)

B. 2 × 2 steganographic Fisher Information matrix

Stimulated by one-dimensional steganographic Fisher Information (2) in MG,
we construct 2 × 2 steganographic Fisher Information matrix as following:

Iij(0) =

[
I
(11)
ij (0) I

(12)
ij (0)

I
(21)
ij (0) I

(22)
ij (0)

]
, (20)
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where I
(12)
ij (0) = I

(21)
ij (0) =

∑
k,l

1
pk,l

(∂qk,l(βi,βj)
∂βi

|βi,βj=0) · (∂qk,l(βi,βj)
∂βj

|βi,βj=0),

I
(11)
ij (0) =

∑

k,l

1

pk,l
(
∂qk,l(βi, βj)

∂βi
|βi,βj=0)

2, I
(22)
ij (0) =

∑

k,l

1

pk,l
(
∂qk,l(βi, βj)

∂βj
|βi,βj=0)

2.

Note that pk,l, i.e. p
(i,j)
k,l , equals P{xi = k, xj = l}, which can seemed as

a point in the two-dimensional Gaussian distribution f(xi, xj) (21). xi, xj , k, l
are used as continuous for differential and integration in this proof. Given pk,l =
f(k, l), pk±1,l = f(k±1, l), pk,l±1 = f(k, l±1), we have the Taylor approximation
at points (k ± 1, l), (k, l ± 1):

f(xi, xj) =
1

2πσiσj

√
1 − ρ2ij

exp(− 1
2(1 − ρ2ij)

(
x2

i

σ2
i

− 2ρijxixj

σiσj
+

x2
j

σ2
j

)). (21)

− 2pk,l + pk−1,l + pk+1,l ≈ ∂2f(xi, xj)
∂xi

2
|xi=k,xj=1, (22)

− 2pk,l + pk,l−1 + pk,l+1 ≈ ∂2f(xi, xj)
∂xj

2
|xi=k,xj=1. (23)

After substituting (21)–(23) and (8) into (20), we can finally derive:

I
(11)
ij (0) =

∑

k,l

(−2pk,l + pk−1,l + pk+1,l)
2

pk,l
≈

∫

k

∫

l

(
∂2f(xi, xj)

∂xi
2

|xi=k,xj=l)
2

dkdl

f(xi, xj)

I
(22)
ij (0) =

∑

k,l

(−2pk,l + pk,l−1 + pk,l+1)
2

pk,l
≈

∫

k

∫

l

(
∂2f(xi, xj)

∂xj
2

|xi=k,xj=l)
2

dkdl

f(xi, xj)

I
(12)
ij (0) = I

(21)
ij (0) =

∑

k,l

(−2pk,l + pk−1,l + pk+1,l)(−2pk,l + pk,l−1 + pk,l+1)

pk,l

≈
∫

k

∫

l

(
∂2f(xi, xj)

∂xi
2

|xi=k,xj=l)(
∂2f(xi, xj)

∂xj
2

|xi=k,xj=l)
dkdl

f(xi, xj)

I
(11)
ij (0) ≈ 2

σi
2(1 − ρij

2)2
, I

(22)
ij (0) ≈ 2

σj
2(1 − ρij

2)2
, I

(12)
ij (0) = I

(21)
ij (0) ≈ 2ρij

2

σiσj(1 − ρij
2)2
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Abstract. Conventional steganography embeds secret data into an
innocent cover object such as image and video. The resulting stego object
will be sent to the desired receiver via an insecure channel. Though the
channel monitor cannot distinguish between normal objects and objects
containing hidden information, he has the ability to intercept and alter
the objects so as to break down the covert communication. It inspires
us to introduce new steganography in Blockchain in order to overcome
the aforementioned problem since an attacker cannot tamper Blockchain
data once a block was generated, meaning that, a receiver will always be
able to fully retrieve the secret data with the secret key. For the proposed
work, the miner serves as the steganographer, who embeds secret data
into the transactions within a block during the process of generating the
block. To secure the data embedding process within a block, we choose
a part of transactions in a block according to a secret key, and embed
the secret data by repeatable-address arrangement. Our analysis demon-
strates that, it is difficult for an attacker to extract the embedded data.
Since the miner collects normal transactions for generating a block and
does not generate abnormal transactions, the data embedding process
will not arouse suspicion, providing a high level of security.

Keywords: Steganography · Blockchain · Bitcoin · Behavior

1 Introduction

Information hiding [1] is an emerging and interdisciplinary research area covering
different applications, among which digital watermarking and steganography [2]
are the most common use nowadays. In particular, the ease of use, reproduction,
edit and distribution of digital commercial products has led great concern to
copyright protection for digital media, leading watermarking to a major activity
in media signal processing. Different from digital watermarking, steganography
disguises confidential information into unobtrusive general information, thereby
achieving the purpose of covert transmission.
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H. Wang et al. (Eds.): IWDW 2019, LNCS 12022, pp. 256–267, 2020.
https://doi.org/10.1007/978-3-030-43575-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43575-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-43575-2_22


Broadcasting Steganography in the Blockchain 257

The principle of steganography can be described as follows. A sender also
called steganographer randomly selects a cover such as image from a given
database. Then, with a key, he/she embeds a secret message into the cover
by slightly modifying the noise-like component of the cover. The resulting stego
will not arouse suspicion and be sent to a receiver via an insecure channel. A
channel attacker also called steganalyst may intercept the stego and test whether
it contains a secret payload or not. If the desired receiver receives the stego, he
can extract the embedded data by the pre-shared key. To secure steganographic
communication, we expect to reduce the difference between the cover and the
stego as much as possible. It inspires us to often design steganographic schemes
from two aspects [3], i.e., preserving the cover source model [4], and minimizing
the distortion between the cover and the stego [5]. Though both steganography
and cryptography provide the access to secret communication, the former even
conceals the presence of the present communication while the latter leaves marks
on ciphertext for an attacker to trace down.

Recently, with the rise of digital currency, Blockchain has gained more and
more attention. As the technology behind Bitcoin [6], Blockchain is a shared and
immutable ledger that facilitates the process of recording transactions and track-
ing assets which can be tangible or intangible in a business network. Blockchain
was first mentioned in the year 2008 [6] and thereafter became widely known with
the launch of the Bitcoin network1 in the year 2009. In Bitcoin and its variants,
the transfer of digital assets takes place in a distributed system. Bitcoin users
can digitally sign and transfer their rights to digital assets to another user and
the Bitcoin blockchain records this transfer publicly, allowing all participants of
the network to independently verify the validity of the transactions.

Blockchain needs to handle a huge number of transactions, which, actually,
can be well exploited for steganography. Compared to conventional media-based
steganography, Blockchain-based steganography has two significant advantages:

– Anonymity: In Blockchain, the network nodes are identified by virtual
addresses, which are hash values of the public keys that will not reveal the
real identities of users. It makes an attacker hard to track the steganographer.

– Non-editability: Blockchain is independently maintained and managed by a
distributed group of participants. Along with cryptographic mechanisms, it
allows the Blockchain to resist against illegal attempts to alter the ledger
later. It is impossible for an attacker to modify blocks and forge transactions
to break the steganographic communication, meaning that, the receiver has
ability to perfectly retrieve the embedded information.

In addition, as mentioned above, Blockchain records asset-transfer informa-
tion in a public way. It indicates that, the steganographer only needs to hide
the message once in the Blockchain, multiple receivers can easily extract it as
long as they have the secret key. Moreover, the steganographer has no need to
identify the receivers. This can be considered as a kind of broadcasting steganog-
raphy. Moreover, due to the huge number of users in Blockchain, steganography
1 https://en.wikipedia.org/wiki/Bitcoin network.

https://en.wikipedia.org/wiki/Bitcoin_network


258 M. Xu et al.

in Blockchain transactions can be easily concealed by the huge number of user
normal activities. In particular, a receiver can extract secret information locally
without downloading from other communication channels if he/she is a full node.
Because in Blockchain, each full node maintains a complete ledger, and once one
copy changes, the other copies are updated simultaneously after verification [7].

The first article suggesting Blockchain-based steganography is [8]. In [8],
the LSB of an address is used to carry a secret bit. A steganographer sends a
payment to the corresponding address, the generated transaction is then verified
and packaged into the block, allowing the receiver finally extracts the LSB of
the address. Since the steganographer only sends one payment, the embedding
capacity for each block is only one bit. Moreover, taking Bitcoin for example,
generating a block needs ten minutes, i.e., transmitting one bit takes ten minutes,
which is not desirable if we want to convey a large payload.

It is straightforward to extend [8] by sending more payments to carry more
data, which, however, may arouse suspicion. The reasons are, the steganogra-
pher does not collect transactions for generating a block, and, the miner may
not exactly collect all the transactions of the steganographer. It indicates that,
the probability of having two identical and specific addresses in a block is low.
Accordingly, once an attacker finds multiple identical addresses in a block, he
may infer that steganography is happening. To deal with this problem, we pro-
pose to embed secret data into Blockchain transactions during the generation
of a block by the miner. The secret data is carried by arranging a list of trans-
actions that are collected by the miner in a block, which allows us to embed
a significantly larger secret payload compared to LSB embedding mentioned
above. Moreover, we do not require the steganographer to send payments, which
will not arouse suspicion, having demonstrated the superiority.

The rest of this paper are organized as follows. We present the basic concepts
in Sect. 2. In Sect. 3, we introduce the proposed steganographic scheme exploiting
the Blockchain transactions. Thereafter, we provide performance evaluation in
Sect. 4. Finally, we conclude this paper in Sect. 5.

2 Preliminaries

Blockchain can be informally defined as [9]: Blockchain is a distributed digital
ledger of cryptographically signed transactions that are grouped into blocks.
Each block is cryptographically linked to the previous one (making it tamper
evident) after validation and undergoing a consensus decision. As new blocks are
added, older blocks become more difficult to modify (creating tamper resistance).
New blocks are replicated across copies of the ledger within the network, and
any conflicts are resolved automatically using established rules.

There are two kinds of Blockchains [10,11]: permissioned and permissionless.
If anyone can release a new block, it is permissionless. If only particular users
can publish blocks, it is permissioned. In this paper, we focus on permission-
less Blockchain based steganography. However, we would like to point that, our
work can be applied to permissioned Blockchain, by appropriate modification.
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Blockchain seems to be complex, but it can be simplified by analyzing each com-
ponent individually. The main components include cryptographic hash functions,
transactions, asymmetric-key cryptographic, addresses, ledgers, blocks, and how
blocks are chained together [9]. To well present our work, we give brief introduc-
tion about transactions, addresses and blocks in the following. For simplicity, we
will only introduce those related to our work.

Just similar to what we understand usually, transactions in Blockchain mean
the transfer of Bitcoin value [12]. The information about bitcoin transactions
can be observed in a specific platform2 where we can easily find that a normal
transaction is composed of the addresses of the payer and recipient and the
amount of the transaction. They are broadcast to the network and packed into
blocks after verification. The verification here is done by miners. Miners are the
nodes which contribute their computing power to mining [13].

Blockchain is the underlying technology of cryptocurrencies, among which
Bitcoin and Ethereum are two of the most popular. Throughout this paper, we
take Bitcoin as the Blockchain implementation. That is, when we talk about
transactions in the Blockchain, one may imagine that we are discussing trans-
actions in Bitcoin network. Let us first review what will happen to the trans-
actions in the Blockchain when they were generated. Firstly, each node verifies
the transactions and adds the verified transactions to the transaction pool. The
transaction pool, also known as memory pool, is not a network-wide pool, but
that each node maintains its own memory pool. Then, each node selects trans-
actions from its memory pool and packs them in its candidate block. Next, each
node uses its own computational power to solve a hard mathematical problem
to compete the right to create a new block to be chained, which is typically
called mining. The winning miner will get rewards and its candidate block will
be verified by other nodes in the network and then appended to the end of the
Blockchain. Figure 1 shows the sketch of chaining a block, where the nodes rep-
resent the miners. The miners are actually competing to solve a mathematical
puzzle based on the cryptographic hash algorithm. A miner repeatedly calcu-
lates the hash of the block header and continually modifies the nonce until it
meets the corresponding requirement. The computational difficulty is dynami-
cally adjusted in real time by Bitcoin network to ensure that a block is usually
generated every ten minutes.

The description of Blockchain in [6] is a chain of blocks, each block refers to
the hash of the previous block to form a longest chain from the Genesis block to
the current block [14]. Blocks in Blockchain are all composed of block header and
block body. Block header contains version, nonce, difficulty bits, timestamp, the
hash of the previous block and other necessary information. Blocks are connected
by the hash of the previous block. If you want to modify something in the one
block, you also have to change all the blocks that come after, which makes
Blockchain virtually tamper-proof. Block body stores transactions, typically, a
block contains at least 500 transactions. A transaction represents a transfer of the
cryptocurrency between Blockchain users. Though the data in a transaction can

2 https://www.blockchain.com/explorer?currency=BTC&stat=transactions.

https://www.blockchain.com/explorer?currency=BTC&stat=transactions


260 M. Xu et al.

Fig. 1. The sketch for chaining a block.

be different for every Blockchain implementation, the mechanism for transacting
is often the same. In Bitcoin network, each transaction records the sender and
the receiver information, both of which are identified by an address having a
total of 160 bits. We here skip the detailed introduction about the address since
it is not the main interest of this work. The only one important thing is that, we
will use these addresses to hide secret data. We will not change their values, but
rearrange their positions in a block. It should be noted that the address is the
unique identifier of the user, and different users have different addresses. A real
user may have multiple addresses. He may use different addresses requesting for
recording transactions, avoiding exposure and protecting his privacy [15].

3 Proposed Method

In this section, we present a method to realize steganography in the Blockchain.
Let us recall the process of generating a block for a miner. Initially, a transaction
pool contains a number of transactions. The miner then selects a certain number
of transactions from the transaction pool and packs them in his candidate block.
The miner uses his own computational power to solve a mathematical problem to
compete the right to chain his candidate block. Once he wins the mining game,
the block will be appended to the chain. For each transaction to be processed,
it usually has one sender address that can be regarded as a stream, which will
be used for steganography in this paper. We point that, in a transaction, there
actually may be multiple addresses as sender, in this case, we can concatenate
the addresses to form a single stream, also called an address stream for the sake
of simplicity. For better presentation, we will assume that, in a transaction, we
have only one sender address stream below.

The main idea of proposed work is described as follows. First, a steganog-
rapher (miner) selects n transactions from his transaction pool. Then, the
steganographer packs the selected transactions in an arbitrary order in a new
block. Thereafter, according to a key, he selects m transactions out from the
block and rearrange them so that the corresponding transaction list matches the
secret data to be embedded. Finally, the steganographer produces the new block
containing hidden information (also called stego block), and tries to chain the
stego block with his computational power. Once the stego block is chained, a
receiver could extract the hidden information from the stego transactions in the
stego block according to the key. We detail the transaction arrangement based
data embedding and extraction procedure below. We also provide an example.
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3.1 Data Embedding

Let P = {P1, P2, ..., PN} represents the list that contains all the transactions in
the transaction pool, where Pi means the i-th transaction in the pool. Each Pi is
a data structure consisting of the transaction information including the sender
address si, receiver address ri, and so on. Since we only use the sender addresses
for steganography, for simplicity, we separate the sender address si out from Pi,
meaning that, we will use S = {s1, s2, ..., sN} to represent the sender address
information, namely, si means the sender address for the i-th transaction. Notice
that, it is possible that si = sj for some i �= j. In addition, N denotes the number
of transactions in the pool.

The steganographer first selects n < N transactions out from P. Suppose
that the corresponding transaction-index set is I = {i1, i2, ..., in}, the selected
transactions can be therefore denoted by B = {Pi1 , Pi2 , ..., Pin}. Without the
loss of generality, we assume that 1 ≤ i1 < i2 < ... < in ≤ N . Then, the
steganographer uses a secret key to generate m < n different integers in range
[1, n], denoted by T = {t1, t2, ..., tm}, where 1 ≤ t1 < t2 < ... < tm ≤ n.
Accordingly, the steganographer can determine a sublist of B as:

C = {Pit1
, Pit2

, ..., Pitm
}, (1)

which will be used to carry a payload.
The sender address information for C can be denoted by SC = {sit1 , sit2 ,

..., sitm }. It can be seen that, we can sort all the elements in SC and enumer-
ate all the arrangements according to their values even though they are binary
strings. Each arrangement can be associated with an index indicating its order
among all arrangements. For example, all arrangements of {1, 2, 3} are {{1, 2, 3},
{1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}}. Thus, we can assign an index “0”
to {1, 2, 3}, “1” to {1, 3, 2}, ..., and “5” to {3, 2, 1}. If all elements in SC are
different from each other, then there are a total of m! different arrangements.
From a general point, the total number of different arrangements for SC is

LC =
m!

∏
e∈UC f(e)!

, (2)

where UC represents the set containing all the different address values in SC . For
example, if SC = {1, 3, 2, 4, 2}, then UC = {1, 2, 3, 4}. f(e) returns the number
of element e ∈ UC appearing in SC , e.g., f(2) = 2 for the above case. In this
way, we can easily determine the total number of different arrangements as
LC for SC even though there may be identical values in SC . For example, if
SC = {1, 1, 2, 3, 1, 4, 5, 2}, then LC = 8!

3!2! = 3360. Obviously, if we use these
arrangements to carry a payload, the embedding capacity is log2LC bits.

Suppose that, the secret data is a non-negative integer M in range [0, LC −1].
It is necessary to translate M as an arrangement that can be represented by SC .
Without the loss of generality, we assume that, sit1 ≤ sit2 ≤ ... ≤ sitm . We want
to find such an arrangement of {1, 2, ...,m}, denoted by {x1, x2, ..., xm}, that

{sitx1
, sitx2

, ..., sitxm
} (3)
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corresponds to M , i.e., one can always determine M out from this sequence. To
solve this problem, we formulate a task as:

Given a sorted sequence 1 ≤ v1 ≤ v2 ≤ ... ≤ vm ≤ m and an index
M ∈ [0,D − 1] where D is the total number of different arrangements of
{v1, v2, ..., vm}, find the M -th lexicographically smallest sequence, e.g., the 8-
th lexicographically smallest sequence of {1, 1, 2, 3} is {2, 3, 1, 1}. Here, given
two different sequences of the same length {a1, a2, ..., am} and {b1, b2, ..., bm},
the first one is lexicographically smaller than the second one means there exists
an index i that aj = bj for all j < i (if any) and aj < bj when j = i. Two
sequences equal each other when each element in one sequence equals the corre-
sponding element in the other one.

It can be easily inferred that the 0-th sequence is {v1, v2, ..., vm} and
the (D − 1)-th sequence is {vm, vm−1, ..., v1}. We could determine the M -th
sequence from the first element to the last element one by one. For each element
position, we collect all possible values, and then identify its value according to
the index. Assuming that, there are q different values U = {u1, u2, ..., uq} and
u1 < u2 < ... < uq in the sequence, it means that, ∀i ∈ [1,m], vi ∈ U . Let
Z = {z1, z2, ..., zm} be the sequence we want to determine out. We first find z1
as follows. It can be inferred that, if z1 = ui, M should be in [x1, y1), where

x1 =
i−1∑

j=1

(m − 1)!
[f(uj) − 1]!

∏
e∈U\{uj} f(e)!

(4)

and

y1 = x1 +
(m − 1)!

[f(ui) − 1]!
∏

e∈U\{ui} f(e)!
. (5)

For example, for a sequence V = {1, 1, 2, 2, 3}, we can find U = {1, 2, 3}. The
number of different arranged sequences that start with 1 is 4!

2! = 12, meaning
that, any 0 ≤ M < 12 corresponds to a sequence started with 1. For sequences
started with 2, they requires that 12 ≤ M < 24. And, 24 ≤ M < 30 means a
sequence started with 3.

Therefore, given M , we can easily find z1 out. We continue to determine z2.
This can be done by the similar procedure. Suppose that we have found out that
z1 = ui, then if z2 = uj , we must have M − x1 ∈ [x2, y2), where

x2 =
j−1∑

k=1

(m − 2)!
∏

e∈U [f(e) − δ(e, ui) − δ(e, uk)]!
(6)

and

y2 = x2 +
(m − 2)!

∏
e∈U [f(e) − δ(e, ui) − δ(e, uj)]!

, (7)

where δ(x, y) = 1 if x = y, and δ(x, y) = 0 for x �= y.
We still take the above example for explanation. If M = 19, we have z1 = 2,

x1 = 12, y1 = 24. Then, we can find z2 = 2 since M −x1 = 19−12 = 7 ∈ [x2, y2),
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Algorithm 1. Determine the M -th lexicographically smallest sequence.
Input: Sequence 1 ≤ v1 ≤ v2 ≤ ... ≤ vm ≤ m and M .
Output: M -th lexicographically smallest sequence.
1: Find D = LC based on Eq. (2)
2: if M /∈ [0, D − 1] then
3: return M is out of range
4: end if
5: Set R as an empty sequence
6: for i = 1, 2, ...,m do
7: for j = 1, 2, ..., q do
8: Set zi = uj

9: Find xi and yi with Eqs. (8, 9)
10: if M − ∑i−1

k=1 xk ∈ [xi, yi) then
11: Append uj to R
12: Break
13: end if
14: end for
15: end for
16: return Sequence R

where x2 = 6 and y2 = 9 in case z1 = z2 = 2. It means that, for M = 19, the
corresponding sequence should start with two 2s.

Generally, given M , if we have determined out the values of {z1, z2, ..., zi−1},
then zi will be equal to such a unique uj that M − ∑i−1

k=1 xk ∈ [xi, yi), where

xi =
j−1∑

k=1

(m − i)!
∏

e∈U [f(e) − ∑i−1
t=1 δ(e, ut) − δ(e, uk)]!

(8)

and

yi = xi +
(m − i)!

∏
e∈U [f(e) − ∑i−1

t=1 δ(e, ut) − δ(e, uj)]!
. (9)

Therefore, we can correctly construct the required sequence, which allows
us to embed M into the corresponding transaction list. Algorithm1 shows the
pseudo-code of determining the M -th lexicographically smallest sequence.

3.2 Data Extraction

Since the blockchain is public to anyone, for a receiver, he will be able to extract
all the transactions from the stego block. And, according to the secret key, he can
further identify the m transactions containing hidden information, from which
the sender addresses can be all parsed. With the address sequence, the receiver
can finally reconstruct the embedded integer M , which is equivalent to solving
the following problem: Given {z1, z2, ..., zm}, find its lexicographical order.

Similarly, let U = {u1, u2, ..., uq} and u1 < u2 < ... < uq denote all the
different values in the sequence. We can determine M by processing each element
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in the sequence in order. Let us first consider z1. Suppose that, z1 = ui. Then,
we count the number of all sequences that start with anyone in {u1, u2, ..., ui−1},
denoted by c1, which is computed as

c1 =
i−1∑

j=1

(m − 1)!
∏

e∈U [f(e) − δ(e, uj)]!
. (10)

For example, if the given sequence is {3, 1, 2, 1}, then we have c1 = 3!+ 3!
2! = 9.

It indicates that, the lexicographical order of {3, 1, 2, 1} should be no less than 9.
Notice that, here, the lexicographical order of a sequence is started from 0. We
continue to process the second element. Assuming that, we have z1 = ui, z2 = uj ,
then the number of all the sequences that the first element is ui and the second
one is anyone in {u1, u2, ..., uj−1} will be

c2 =
j−1∑

k=1

(m − 2)!
∏

e∈U [f(e) − δ(e, ui) − δ(e, uk)]!
. (11)

We still take {3, 1, 2, 1} for explanation. Since z1 = 3 and z2 = 1, we have
c2 = 0. It means that, the lexicographical order of {3, 1, 2, 1} is no less than
c1 + c2 = 9. Generally, given {z1, z2, ..., zm}, if we have determined out the
values of {c1, c2, ..., ci−1}, and suppose that zi = uj , then ci will be equal to

ci =
j−1∑

k=1

(m − i)!
∏

e∈U [f(e) − ∑i−1
t=1 δ(e, ut) − δ(e, uk)]!

. (12)

In this way, M will be determined as:

M =
m∑

i=1

ci

=
m∑

i=1

q∑

j=1

j−1∑

k=1

δ(zi, uj) · (m − i)!
∏

e∈U [f(e) − ∑i−1
t=1 δ(e, ut) − δ(e, uk)]!

.

(13)

3.3 Example

We present an example for better explanation. Suppose that, we have collected
a total of 10 transactions to be packed in a block, and intend to use 6 of them to
carry a payload. Figure 2 shows the data embedding procedure. In Fig. 2, each
Ai (1 ≤ i ≤ 10) represents the original sender address in the corresponding
transaction. In the Bitcoin network, Ai is a 160-bit stream. One can easily com-
pare two addresses according to their values. From a general perspective, we can
use a function denoted by “MAP” for the addresses, which allows us to map a
bitstream to an integer. Obviously, there are many ways to define such a func-
tion. In this example, we will not discuss its definition since it is a quite simple
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Fig. 2. Example for data embedding.

task, but rather directly assign a value to each address for the sake of simplicity.
Notice that, two identical addresses should map to the identical integer.

The steganographer selects 6 addresses from the list according to a key, which
constitutes a sublist shown in Fig. 2. According to the sublist, we can construct
a sequence according to the mapped values of the addresses, i.e., {9, 8, 2, 8, 2, 4}.
Then, we can sort the sequence as {2, 2, 4, 8, 8, 9}. The secret integer is M = 107.
We use the rearrangement of {2, 2, 4, 8, 8, 9} to carry M according to Algorithm 1,
resulting in a new sequence {8, 2, 8, 9, 4, 2} that carries M . The corresponding
address list is {A7,A5,A4,A2,A10,A9}. Notice that, since there may be two
identical sender addresses, the address list that can carry M may be not unique.

The steganographer will insert the “rearranged” sublist into the original
address list, and then generate the “stego” block expected to be chained. Once
the stego block is chained, a receiver would be able to reconstruct the “rear-
ranged” sublist, and then determine the secret integer according to the proposed
data extraction procedure. Accordingly, the steganographic communication is
finished.

4 Performance Evaluation

It has been shown that, the embedding capacity for the proposed work is log2LC
bits per block, which is significantly larger than the work introduced in [8].
Though, in theory, there could be many identical addresses in a block, the
steganographer may intentionally choose and arrange the transactions to be
packed according to a specific rule such that the generated address sublist to
be embedded has no two identical addresses (or say, the number of identi-
cal addresses is small). It indicates that, the capacity can approach log2m! in
practice.

The data embedding procedure requires us to solve a sequence generation
problem, which, as shown in Algorithm1, will need a complexity of O(m2q2).
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Since in practice, both m and q could be relatively small, the time complexity
to generate the required sequence is therefore small. The data extraction pro-
cedure requires us to identify the index of the corresponding sequence, which
needs a low complexity of O(mq2). Therefore, the proposed work requires a low
computational cost, which is quite desirable for practice.

The steganographer conveys secret data over transactions selected from the
mempool, clearly, it is the arrangement of the transactions in the block that
carries the secret data. The steganographer selects the transactions whose pay-
ers’ addresses correspond to random-like numbers. For those transactions shar-
ing the same payer, the steganographer can select the transactions having high
transaction fees, in which way the steganographer can gain good profits. All the
transactions are packed into a block in a specific order to express the information
to be delivered. The transaction pool differs from nodes to nodes. Therefore, it
will not be noticed that the block is abnormal. It is rather hard to distinguish the
blocks containing payload from a normal block. Moreover, the steganographer
does not generate new transactions, but rather collect normal transactions for
data embedding, which will not arouse suspicion.

Besides, even the attacker knows that there is secret information in a certain
block, he cannot extract the information without the key. On the contrary, the
recipient who shares the key with the transmitter is able to extract the secret
information with high reliability. If an attacker wants to retrieve the secret data,
he has to identify the address sublist. The probability of reconstructing the
required sublist is 1/2n, which is quite small for large n, indicating that, the
attacker will hardly reconstruct the embedded information, demonstrating the
high security. Moreover, in blockchain, each node is identified by an address,
which is not associated with its real identity. The attacker will not know about
the real identity of the transmitter and recipient.

5 Conclusion

In this paper, we present a new steganographic scheme to blockchain. The secret
message is carried by rearranging a part of the sender addresses of transactions
within a block. The rearrangement assignment is equivalent to finding the M -
th lexicographically smallest sequence for a given sorted sequence where M is
the secret integer to be embedded. Since there may be identical elements in the
sequence, we present an element-by-element determination algorithm to find the
required sequence, which has a very low computational cost. A receiver will be
able to effectively retrieve the secret integer from the “stego” sequence by the
presented reconstruction algorithm with the secret key. It is analyzed that, the
proposed work can provide a high embedding capacity, a low computational cost,
and a high security level, which is suitable for practice under condition that the
miner has the sufficient ability to chain the stego block.
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Abstract. The JPEG image is the most commonly used image for-
mat, and the content-adaptive embedding mechanism is widely adopted
for JPEG steganography. The embedding distortions for existing adap-
tive JPEG steganography are mostly additive distortions, while the non-
additive distortions in JPEG steganography have not been sufficiently
explored. In this paper, we propose a non-additive distortion design
method to measure the embedding effects of DCT coefficients on the
spatial domain by using blocking artifacts reduction (BAR). The main
idea is to reduce the spatial domain blocking artifacts, from which to
guide the selection of the polarity of embedding changes for DCT coef-
ficients in the JPEG domain. Because the changes of DCT coefficients
will increase the blocking artifacts, the BAR principle can maintain the
spatial continuity in both inter-blocks and intra-blocks. The proposed
BAR principle can be applied to current additive JPEG steganography.
Experimental results show that our method significantly improves the
security of additive JPEG steganography, especially for high embedding
payloads.

Keywords: JPEG image · Steganography · Blocking artifacts ·
Non-additive distortion

1 Introduction

Steganography is the art of covert communication, and it conceals the existence
of secret messages by slightly modifying the digital carrier without causing sus-
picions [1]. JPEG image is a commonly used steganographic carrier for its wide
application, and the steganography based on JPEG images has become a hot
research topic.

The content-adaptive embedding mechanism has been a main trend for image
steganography. The adaptive steganography firstly assigns an embedding cost
to each element of the cover image to indicate its security level according to
the texture complexity of the image, and then embeds the secret message into
c© Springer Nature Switzerland AG 2020
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the image while minimizing the overall distortion with some coding schemes,
such as syndrome-trellis codes (STCs) [2]. The representative adaptive JPEG
steganographic algorithms include EBS [3], UED [4], UERD [5], JUNIWARD [6]
and RBV [7]. The EBS [3] designs the embedding costs based on the entropy of
8×8 DCT coefficient blocks. The authors of UED [4] proposed the idea of uniform
embedding, in which the embedding cost are decided by the magnitudes of DCT
coefficients, so that the embedding changes are uniformly spread over the DCT
coefficients with all possible magnitudes. Similar to UED, UERD [5] also use
the uniform embedding strategies to design embedding costs with the statistic
model of DCT coefficients. Unlike other steganographic algorithms, JUNIWARD
[6] constructs the distortion function in a wavelet domain, and the embedding
costs of DCT coefficients are defined as the sum of the relative changes of the
directional wavelet coefficients obtained from the decompressed image. RBV [7]
evaluates the embedding risk from both spatial domain and JPEG domain, and
the embedding costs are based on the filtered residuals of decompressed spatial
pixels and the quantization steps of DCT coefficients.

When designing the distortion functions, the above adaptive JPEG steganog-
raphy all assumes that the modifications between neighboring elements are inde-
pendent with each other, namely, the embedding distortions are additive. The
modification of a DCT coefficient will cause more changes to the corresponding
spatial pixels, which are vulnerable to the current successful JPEG stegana-
lytic features [8–10] that are constructed from the spatial domain. Therefore,
the adaptive JPEG steganography needs to consider not only the modification
magnitudes of spatial pixels but also the interactions among neighboring pix-
els. However, due to the transformation between DCT coefficients and spatial
pixels, the non-additive distortions [11,12] for spatial domain are difficult to be
directly applied to JPEG images. Recently, a principle called block boundary
continuity (BBC) [13] is proposed for non-additive distortions in JPEG images.
The BBC tries to preserve the spatial continuity at block boundaries in spa-
tial domain, and adjusts the existing additive distortions to non-additive ones
by decomposing joint distortion (Dejoin) [14]. However, the BBC only consid-
ers the interactions of modifications between neighboring blocks (inter-block),
and is not sufficient to measure the interactions among spatial pixels within the
same block (intra-block), especially for the spatial modifications caused by high
frequency DCT coefficients.

In this paper, we propose a non-additive distortion design method to mea-
sure the interactions among neighboring modifications in spatial domain based
on blocking artifact reduction (BAR). The blocking artifacts, which mostly
result from the block based lossy compression, are typically characterized as the
changes of pixel intensities at the block boundaries. For the stego images gener-
ated by JPEG steganography, the embedding changes of DCT coefficients also
increase the discontinuity of spatial pixels for inter-blocks and intra-blocks, and
this embedding effect reflected in spatial domain is similar to the blocking arti-
facts. This motivates us to use BAR method to preserve the spatial continuity,
which can be served as a measurement of interactions among neighboring modi-
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c5,1 c5,2 c5,3 c5,4 c5,5 c5,6 c5,7 c5,8
c6,1 c6,2 c6,3 c6,4 c6,5 c6,6 c6,7 c6,8
c7,1 c7,2 c7,3 c7,4 c7,5 c7,6 c7,7 c7,8
c8,1 c8,2 c8,3 c8,4 c8,5 c8,6 c8,7 c8,8

b1,5 b1,6 b1,7 b1,8 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8
b2,5 b2,6 b2,7 b2,8 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7 a2,8
b3,5 b3,6 b3,7 b3,8 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7 a3,8
b4,5 b4,6 b4,7 b4,8 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7 a4,8
b5,5 b5,6 b5,7 b5,8 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7 a5,8
b6,5 b6,6 b6,7 b6,8 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7 a6,8
b7,5 b7,6 b7,7 b7,8 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7 a7,8
b8,5 b8,6 b8,7 b8,8 a8,1 a8,2 a8,3 a8,4 a8,5 a8,6 a8,7 a8,8

(b)

Fig. 1. Neighboring relations of 8 × 8 blocks.

fications. By reducing the blocking artifacts defined on the spatial discontinuity
of inter-blocks and intra-blocks, the preferred polarity of embedding changes
can be determined and the non-additive embedding can be achieved. Experi-
mental results show that the principle of BAR can be applied to the current
adaptive JPEG steganography with additive distortions, and can improve their
steganographic security against the advanced JPEG steganalysis, especially at
high embedding payloads.

The rest of this paper is organized as follows. In Sect. 2, the blocking artifacts
and the quality assessment methods for JPEG images are introduced. Section 3
details the design of non-additive distortion using blocking artifact reduction
(BAR). In Sect. 4, extensive experiments are performed to demonstrate the effec-
tiveness of the proposed method. Finally, the paper is concluded in Sect. 5.

2 Preliminaries

Our proposed non-additive distortion design method is based on the reduction
of blocking artifacts, so the measurement of blocking artifacts should be firstly
introduced. To make this paper more self-contained, this section describes the
concept of blocking artifacts, and the quality assessment methods for blocking
artifacts in JPEG images.

The blocking artifact is a phenomenon in which the discontinuity of pixel
intensities occurs at the edges of spatial blocks due to JPEG lossy compression.
The smaller the quality factor (QF) is, the larger the block boundary disconti-
nuity will be. The blocking artifacts can be evaluated by some quality assess-
ment methods. The most widely used one is the no-reference quality assessment
method, that is, no information of the original raw image is needed to mea-
sure the blocking artifacts. Typical measurements used for no-reference quality
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assessment methods include the blockiness and flatness measure (BFM) [15] in
block boundary, Referenceless quality Measure of Blocking artifacts (RMB) using
Tchebichef moments [16], grid strength and regularity (GridSAR) [17] and block-
iness and luminance changes (BLC) [18]. In this paper, the quality assessment
method with blockiness and flatness measure (BFM) [15] is used for designing
non-additive distortions (the selection of quality assessment methods is detailed
in Sect. 4.2), so it is introduced as follows.

The BFM [15] measures the local blocking artifacts using the blockiness and
flatness across block boundaries in spatial domain. Figure 1 shows the relation-
ships of a spatial 8 × 8 block and its four neighboring blocks. The blockiness
is based on pixel differences, and the horizontal blockiness Bh between block A
and B is defined as

Bh =
{

Nh

Dh
if Dh �= 0

0 otherwise
(1)

where Nh and Dh are defined as

Nh = γ1 ×
8∑

i=1

|ai,1 − bi,8| (2)

and

Dh = γ2 ×
8∑

i=1

⎛
⎝ 7∑

j=5

|bi,j+1 − bi,j | +
3∑

j=1

|ai,j+1 − ai,j |
⎞
⎠ +

8∑
i=1

|ai,1 − bi,8| (3)

In (2) and (3), ai,j and bi,j denote the spatial pixel values, Nh is the inter-block
pixel difference by calculating the boundary pixels between block A and B, and
Dh is the weighted average of the intra-block pixel difference and inter-block
pixel difference. The γ1 and γ2 are the weighting coefficients and are set 10 and
1.5, respectively.

The flatness is measured by the proportion of zero-valued pixel difference,
and the horizontal flatness between block A and block B is defined as

Zh =
10
56

8∑
i=1

⎛
⎝ 7∑

j=5

z(bi,j , bi,j+1) +
3∑

j=1

z(ai,j , ai,j+1)

⎞
⎠ +

10
56

8∑
i=1

z(ai,1, bi,8) (4)

where

z(x, y) =
{

1 if |x − y| = 0
0 otherwise (5)

The vertical blockiness Bv and the vertical flatness Zv between the block A
and block C are defined analogically. The BFM [15] only use neighboring blocks
B and C for measuring block artifacts; in this paper, the neighboring blocks
D and E are also considered. The horizontal blockiness and horizontal flatness
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Table 1. Evaluation values of blocking artifacts for different stego images.

Steganography
algorithm

BFM [15] BLC [18] RMB [16]

Q Cover 2.1363 2.893 0.52121

Q EBS 2.1483± 3.01× 10−6 3.0517± 1.56× 10−4 0.51716± 1.80× 10−5

Q UED 2.1471± 3.95× 10−6 3.0099± 3.90× 10−3 0.51781± 3.65× 10−6

Q UERD 2.1388± 1.27× 10−6 3.0049± 7.82× 10−5 0.51872± 2.23× 10−5

Q JUNI 2.1374± 1.15× 10−6 2.9931± 1.64× 10−4 0.52107± 1.88× 10−6

between A and D are denoted by B′
h and Z ′

h, and the vertical blockiness and
vertical flatness between A and E are denoted by B′

v and Z ′
v. Finally, the local

blocking artifacts QBLK is defined as

QBLK = max(BBLK , ZBLK) (6)

where

BBLK =
Bh + Bv + B′

h + B′
v

4
(7)

and

ZBLK =
Zh + Zv + Z ′

h + Z ′
v

4
(8)

The QBLK is a quality measure for one 8×8 block, and a larger QBLK value
indicates more severe blocking artifacts. The quality of an JPEG image can be
measured by averaging the QBLK values of all 8 × 8 blocks.

3 Proposed Method

3.1 Motivation

The blocking artifacts are characterized by the discontinuity of pixel values for
8×8 spatial blocks. In addition to the blocking artifacts caused by lossy compres-
sion, the ±1 modifications of DCT coefficients in JPEG images can also result in
spatial discontinuity between and within blocks. Intuitively, stego images should
lead to little spatial discontinuity to ensure steganographic security. Therefore, if
the steganographic embedding can be performed in a blocking artifact reduction
manner, the steganographic security can be increased. To verify this conjecture,
we conduct an experiment as follows.

First, an uncompressed image named ‘Lena.tiff’ is compressed into a JPEG
image with QF 75, and it is regarded as a cover image. Then, four types of
stego images are generated by using the steganographic algorithms J-EBS [3],
JC-UED [4], J-UERD [5], J-UNIWARD [6] with payload 0.4 bpnzac (bits per
non-zero AC coefficient). Next, three blocking artifact evaluation methods (BFM
[15], BLC [18] and RMB [16]) are used to measure the above cover image and all
kinds of stego images. Each type of the stego image is repeatedly generated with
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different random seeds 10 times, and the mean and variance of the evaluation
values of the blocking artifacts for stego images are reported in Table 1. Note
that for BFM [15] and BLC [18], larger evaluation values mean larger blocking
artifacts; while for RMB [16], smaller evaluation values stand for larger blocking
artifacts.

It can be seen from Table 1 that all types of stego images have larger block-
ing artifacts than the cover image, and the securer steganographic algorithm
tends to have less blocking artifacts. For example, the J-UNIWARD is the most
secure one of all four types of steganographic algorithms, so it has the least
blocking artifacts. This demonstrates that the blocking artifacts are related to
the steganographic security, and reducing the blocking artifacts of the image is
beneficial to improve the security of steganographic algorithms.

3.2 Selection of Modification Directions

The ±1 modifications on the DCT coefficients lead to the changes of the pixels
in the spatial domain, and different modification directions of DCT coefficients
have different effects on the blocking artifacts. It is obvious that selecting the
proper modification direction which has the least blocking artifacts for each DCT
coefficient is more suitable for embedding.

In order to select the best modification direction, the blocking artifacts caused
by ±1 modification on each DCT coefficient should be evaluated, and this can
be done by using the quality assessment methods as mentioned in Sect. 2. Let
a JPEG cover image be denoted by x, and the JPEG stego images obtained by
only +1 and −1 on the ij-th DCT coefficient of x be denoted by y+1

∼i,j and y−1
∼i,j .

For y+1
∼i,j and y−1

∼i,j , their corresponding quality scores are denoted by Q+1
i,j and

Q−1
i,j , respectively. The quality scores can be obtained by BFM [15], BLC [18] or

RMB [16]. If Q+1
i,j < Q−1

i,j , the +1 modification produces less blocking artifacts
than the −1 modification, and the +1 modification is more preferable than the
−1 modification. Otherwise, the −1 modification is preferred.

Note that the current quality assessment methods are used to calculate the
quality scores for the whole image. For the embedding in the JPEG image,
modifying one DCT coefficient will make the 64 pixels in the corresponding
8 × 8 spatial block to change, and the blocking artifacts caused by embedding
only occur at a local area as shown in Fig. 1. Therefore, the Q+1

i,j and Q−1
i,j are

obtained by applying the quality assessment methods on a 24 × 24 pixel area
(see Fig. 1 (a)), and this will reduce computational complexity greatly.

3.3 Embedding with Blocking Artifact Reduction

For the ±1 modification on a DCT coefficient, the embedding cost corresponding
to the preferred modification direction should be decreased, while the embed-
ding cost with opposite modification direction should be increased. Therefore,
the embedding costs need to be further adjusted after selecting the modification
directions. To capture the mutual embedding impacts in the spatial domain of
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Fig. 2. Division of a JPEG image into sub-images.

the image, the embedding costs are updated in a dynamic way. Inspired by the
clustering modified directions (CMD) [11], the decompressed JPEG cover image
is first decomposed into several disjoint sub-images, and then the payload is
embedded into sub-images sequentially. During the embedding, the embedding
costs of the subsequent sub-images are dynamically updated based on the previ-
ously modified images. The detailed embedding process is described as follows.

(1) Divide the JPEG cover image x into four disjoint JPEG cover sub-images,
and a cover sub-image containing DCT blocks is denoted by

xu,v = {Bu+2s,v+2t | u = 1, 2, v = 1, 2, s = 0, ...,
S

2
− 1, t = 0, ...,

T

2
− 1} (9)

where Bu+2s,v+2t is a 8 × 8 DCT block, u,v are the indices of sub-images,
and S and T are the number of 8 × 8 blocks for horizontal and vertical
directions. The division of a JPEG image into sub-images is illustrated in
Fig. 2.

(2) Segment the embedding payload m into four equal-sized sub-payloads
denoted by mu,v, u = 1, 2, v = 1, 2.

(3) Calculate the embedding cost ρ+1
i,j = ρ−1

i,j = ρi,j for each DCT coefficient
in JPEG cover image x using a specific steganographic algorithm, such as
J-UED, J-UERD and J-UNIWARD.

(4) Determine an embedding order for the JPEG cover sub-images, and the
horizontal zig-zag order adopted in CMD is used for embedding.

(5) Embed m1,1 into the first JPEG cover sub-image x1,1 with the initial
embedding costs using ternary embedding, and obtain a JPEG stego sub-
image denoted by y1,1.

(6) Replace the x1,1 in x with y1,1 to obtain the JPEG stego image y.
(7) Calculate the embedding cost ρ+1

i,j = ρ−1
i,j = ρi,j for each DCT coefficient in

JPEG stego image y.
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(8) For the JPEG sub-image xu,v, u �= 1, v �= 1, compute the quality scores
Q+1

i,j and Q−1
i,j for each DCT coefficient from the previously obtained stego

image, and adjust the embedding cost ρ+1
i,j and ρ−1

i,j as follows:

ρ+1
i,j =

{
α · ρi,j if Q+1

i,j < Q−1
i,j

ρi,j otherwise
(10)

and

ρ−1
i,j =

{
α · ρi,j if Q+1

i,j > Q−1
i,j

ρi,j otherwise
(11)

where α ∈ (0, 1) is a scaling factor determined by experiments (see
Sect. 4.2).

(9) Embed the mu,v, u �= 1, v �= 1 into the JPEG sub-image xu,v with the
adjusted embedding costs using ternary embedding.

(10) Replace the xu,v in y with yu,v to update the JPEG stego image y.
(11) Go back to step (7) until all sub-payloads are embedded into the corre-

sponding JPEG sub-images.

The message extraction is just the reverse process of embedding. First,
the stego image is decomposed into four sub-images as did in the embedding.
Then the sub-payload is extracted from each sub-image sequentially. Finally, the
extracted sub-payloads are merged into a whole message.

4 Experiments

4.1 Experimental Setup

The image database employed for our experiments is the BossBase ver. 1.01 [19],
which contains 10,000 gray-scale images of size 512 × 512 pixels. All the images
in the BossBase are JPEG compressed with quality factors (QFs) 75 and 95. The
comparative steganographic algorithms include three additive distortion schemes
JC-UED [4], J-UERD [5] and J-UNIWARD [6], and their non-additive distortion
versions using the principle of BBC [13], namely JC-UED-BBC, J-UERD-BBC,
and J-UNI-BBC. All the BBC based steganographic algorithms use the UpDist-
DeJoin2 method to update their embedding costs. For simplicity, the optimal
embedding simulator [20] instead of STC [2] is used for embedding, and the
embedding payload ranges from 0.05 to 0.5 bpnzac (bits per non-zero AC coef-
ficient). The used steganalytic features are DCTR [9] and GFR [10], which are
trained with FLD-based ensemble classifier [21]. For each steganographic algo-
rithms, payload and QF, 5,000 cover-stego pairs of images are randomly selected
for training, and the remaining 5000 pairs are used for testing. The stegano-
graphic security is evaluated by testing error rate, which is the mean value of
the false positive rate and the false negative rate. Each experiment is repeated
10 times to obtain the averaged testing error rate.
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Table 2. Testing error rates of JC-UED with and without blocking artifact reduction.

Algorithm QF = 75 QF = 95

JC-UED 0.0450 0.2057

JC-UED-BFM 0.0801 0.2784

JC-UED-BLC 0.0794 0.2717

JC-UED-RMB 0.0581 0.2359

Table 3. Testing error rates of J-UERD with and without blocking artifact reduction.

Algorithm QF = 75 QF = 95

J-UERD 0.1470 0.3007

J-UERD-BFM 0.1999 0.3305

J-UERD-BLC 0.1998 0.3301

J-UERD-RMB 0.1473 0.3008

Table 4. Testing error rates of J-UNIWARD with and without blocking artifact reduc-
tion.

Algorithm QF = 75 QF = 95

J-UNI 0.1557 0.3336

J-UNI-BFM 0.2470 0.3858

J-UNI-BLC 0.2466 0.3854

J-UNI-RMB 0.1560 0.3346

4.2 Determination of Steganographic Settings

There are two steganographic settings should be determined before implementing
embedding: one is the blocking artifact reduction method, and the other is the
scaling factor α.

The quality assessment methods described in Sect. 2 are used for artifact
reduction methods to design non-additive distortions. Arbitrary blocking arti-
fact reduction methods can be incorporated into the proposed BAR principle,
and we select the one that contributes most to steganographic security. Three
blocking artifact reduction methods based on BFM [15], BLC [18] and RMB [16]
are incorporated into JC-UED with payload 0.4 bpnzac at two QFs, and result-
ing in three steganographic algorithms named JC-UED-BFM, JC-UED-BLC
and JC-UED-RMB. The scaling factor α is 0.7, and the DCTR is used for ste-
ganalysis. The testing error rates of JC-UED with and without blocking artifact
reduction (BAR) are shown in Table 2. This process is also applied to J-UERD
and J-UNIWARD, and the corresponding results are reported in Tables 3 and 4.

We can see from Tables 2, 3 and 4 that all the three blocking artifact reduction
methods can improve the security of the original steganographic algorithms, and
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Fig. 3. Effect of different scaling factors on steganographic security.

the non-additive distortion schemes with BFM have the highest testing error.
So the BFM [15] is selected for our BAR principle in the following experiments.

For a specific blocking artifact reduction method, Eqs. (10) and (11) use the
scaling factor α to adjust the embedding costs of DCT coefficients. To find
the best value of α, the blocking artifact reduction method BFM [15] with dif-
ferent α is applied to JC-UED, J-UERD and J-UNIWARD respectively (their
non-additive distortion versions are with suffix “BAR” as shown in Fig. 3). The
embedding payload 0.4 bpnzac and QF 75 and 95 are used for experiments, and
the employed feature set is also DCTR. The testing error rates of BAR based
steganographic algorithms are shown in Fig. 3.

The Fig. 3 shows that different scaling factors have different effects on the
steganographic security, and the trends of changes of testing error rates for differ-
ent steganographic algorithms are almost the same. For QF 75, all the stegano-
graphic algorithms get the highest testing error rates when the value of α is 0.7,
so we set α = 0.7 for the JPEG images with QF 75. For QF 95, the scaling
factor α is set to be 0.7 for JC-UED-BAR, and 0.8 for JC-UERD-BAR and
J-UNI-BAR.

4.3 Comparison to Prior Art

This subsection evaluates the effectiveness of our proposed BAR principle. The
JC-UED-BAR, J-UERD-BAR and J-UNI-BAR are compared with the three
additive distortion schemes (i.e., JC-UED, J-UERD and J-UNIWARD) and
three non-additive distortion schemes (i.e.,JC-UED-BBC, J-UERD-BBC and
J-UNI-BBC). The feature set GFR is used for steganalysis, and the testing error
rates of various steganographic algorithms for two QFs are shown in Fig. 4.

It is observed from Fig. 4 that the BAR based steganographic algorithms
significantly outperform their corresponding additive distortion schemes for all
payloads and QFs. At QF 75, the BAR principle increases the testing error
rates by at most 7%, 6% and 10% for JC-UED, J-UERD and J-UNIWARD,
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Fig. 4. Testing error rates of various steganographic algorithms for QF 75 and 95.

respectively. Besides, the improvement achieved by BAR is more pronounced
for QF 75 than QF 95. This is because the lower QF corresponds to larger
quantization steps, and this will lead to greater spatial blocking artifacts, which
is conducive to exert the potential of BAR for selecting the polarity of embedding
changes.
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Compared with the BBC based schemes, the BAR based schemes also have
obvious advantages. This is because the BBC uses the DCT coefficient pairs in
different blocks to adjust embedding costs, and only preserves the spatial conti-
nuity for inter-blocks. While the BAR modulates the embedding costs directly
by the reduction of blocking artifacts in the spatial domain, and the evaluation
of blocking artifacts also considers the spatial continuity in both inter-blocks
and intra-blocks, which fully exploits the interactions of modifications of spatial
pixels.

5 Conclusion and Future Work

This paper presents a non-additive distortion design method by using the block-
ing artifact deduction to adjust the embedding costs. First, the effects of the
changes of DCT coefficients on the blocking artifacts are evaluated. Then the
DCT coefficients are modified in the direction of reducing blocking artifacts in
the spatial domain. Finally, the payload is embedded by decomposing the image
into sub-images. The proposed blocking artifact reduction (BAR) method con-
siders the interactions of modifications between and within the blocks in the
spatial domain, and the experiments demonstrate that the principle of BAR can
significantly increase the undetectability of existing steganographic algorithms.
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Abstract. For halftone image data hiding, it is difficult to achieve good
visual quality and statistical security when high embedding capacity is
demanded. In this paper, a secure steganographic scheme for halftone
image is proposed, which aims to minimize the embedding distortion
on structural similarity. Structural distortions are the ones that affect
the most the perception of degradation of a halftone image. To evalu-
ate the structural distortions caused by flipping pixels, halftone image
structural similarity (HSSIM) is introduced based on a human visual
filter, which is trained by Least-Mean-Square (LMS) approach. Utiliz-
ing the HSSIM, a distortion measurement is proposed to evaluate the
embedding distortions on both vision and statistics. To minimize the
embedding distortions, syndrome-trellis code (STC) is employed in the
embedding process. The experimental results have demonstrated that
the proposed steganographic scheme can achieve high statistical security
with good visual quality without degrading the embedding capacity.

Keywords: Halftone image steganography · Distortion measurement ·
Halftone image structural similarity (HSSIM) · Syndrome-trellis code
(STC)

1 Introduction

Steganography aims to transmit secret messages under digital media in pub-
lic channels, which is a practice of covert communication using hiding messages.
With the development of digital multimedia technology, the security of multime-
dia information has received much attention [4,22–26,31]. As a type of the host
media, halftone image is a special kind of binary image, which can be resembled
as a grayscale image when viewed from a distance with the low-pass nature of the
human visual system (HVS). There are several kinds of digital halftoning meth-
ods being developed, including ordered dithering [2], error diffusion [7,17], dot
diffusion [19,28] and least squares [12,15,18,33]. In recent years, many data hid-
ing methods have been developed for halftone images [8–11,13,14,20,21,29,30],
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which can be used for printing security documents such as ID card, currency, as
well as confidential documents. In a general way, there are two categories of data
hiding schemes on halftone images according to whether the data hiding oper-
ation is in the halftoning process or not. The first category is to embed secret
messages during the process of halftoning [14,21,29], so the original multi-tone
images are required. In this situation, the embedded capacity can be fairly large
and the visual distortion of halftone images is negligible. The second category
is to embed secret messages directly into the halftone images without the origi-
nal multi-tone images and the method of halftoning is unknown [8,9,13,20,30].
In most cases, the original multi-tone images are unavailable and we can only
embed secret messages into the generated halftone images. Therefore, our work
focuses on the second category considering the versatility of steganography.

Many state-of-the-art data hiding schemes on halftone images have been pro-
posed in recent years [8,10,13,16,30]. In the early work, Fu and Au [10] proposed
a method named Data Hiding Self Toggling (DHST) which directly toggles the
pixel value according to the embedded data. However, the random selections
of pixels degrade the quality of stego image. To improve the visual quality, Fu
and Au [10] proposed a data-hiding method named Data Hiding Pair Toggling
(DHPT) which randomly chooses a pair of pixels to be toggled in order to pre-
serve the local intensity. Furthermore, Fu and Au [8] proposed a modified tech-
nique, Data Hiding by Smart Pair Toggling (DHSPT), which achieves the best
quality by choosing the minimum connection toggled pixels after data embed-
ding. In [13], Guo further improved the pair toggling method and proposed a
method named Pair Toggling with Human Visual System (PTHVS) which can
determine the optimum toggled pixel. To improve the embedded capacity, Guo
and Zhang [16] proposed a block-based method which employs the Grouping
Index Matrix (GIM) to embed secret messages by changing pixels in pairs. The
previous halftone image data hiding schemes only focus on improving the visual
imperceptibility and embedding capacity.

However, these methods ignore the statistical security against steganalyzers.
With the development of the steganalysis techniques, the statistical security is
also an important criterion for data hiding schemes. The high undetectability of
the secret messages can reduce the suspicion from attackers and thus enhance
the security. To this end, Xue et al. [30] proposed a halftone image steganogra-
phy based on minimizing the distortion of texture structure. They introduced
the concept of dispersion degree (DD) which can measure the complexity of
the region texture in halftone images. Although the previous DD method can
improve the statistical security, the stego halftone images still can be detected
easily with the state-of-the-art steganalysis techniques.

In this paper, we proposed a secure halftone image steganographic scheme
focusing on both visual quality and the statistical security of anti-steganalysis.
As a specific kind of binary image, halftone image has its own unique charac-
teristics. In halftone images, the structural correlation between the local regions
is more significant than the value of a single pixel and the textures smooth-
ness and connectivity are less important than ordinary binary images. To this
end, we first introduced an objective halftone image quality evaluation named
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halftone structural similarity (HSSIM) based on a human visual system obtained
by Least-Mean-Square (LMS) methods [13,14,29]. Visual distortions caused by
embedding messages include structural distortions and non-structural distor-
tions. Structural distortions are the ones that affect the most the perception
of degradation of an halftone image, whereas non-structural distortions only
slightly affect the perception of degradation. Utilizing the HSSIM, we can dis-
tinguish structural distortions from non-structural distortions and assign differ-
ent distortion scores to different kinds of distortions. In this way, we design a
novel distortion measurement based on halftone image structural similarity. To
play the advantage of the distortion measurement, syndrome-trellis code (STC)
is employed in the embedding process. The experimental results have demon-
strated that the proposed steganographic scheme can achieve high statistical
security with good visual quality without degrading the embedding capacity.

The rest of this paper is organized as follows. Section 2 introduces the def-
inition of halftone image structural similarity (HSSIM) which is based on a
human visual system and develops the construction of distortion map for STC.
In Sect. 3, the proposed steganographic scheme is presented. In Sect. 4, exper-
imental results about visual quality and the statistical security are presented.
Finally, the conclusion of this paper is given in Sect. 5.

2 The Proposed Method

In this section, halftone structural similarity (HSSIM) is introduced based on a
human visual system obtained by Least-Mean-Square (LMS) approach. Utilizing
the HSSIM, a distortion measurement is proposed to evaluate the embedding
distortions on both vision and statistics. To realize the high embedding capacity
and minimize the visual distortion, syndrome-trellis code (STC) is employed in
embedding process.

2.1 Halftone Image Structural Similarity

To evaluate the visual quality of halftone images, we define the halftone image
structural similarity (HSSIM) in this paper. For a cover halftone image C and
a stego halftone image S with size P × Q, the corresponding inverse halftone
image X and Y can be obtained by utilizing the human visual filter ω, which
are defined as:

xi,j =
∑M/2

m=−M/2

∑N/2

n=−N/2
ωm,nci+m,j+n (1)

yi,j =
∑M/2

m=−M/2

∑N/2

n=−N/2
ωm,nsi+m,j+n (2)

where the variables ci,j ∈ C and si,j ∈ S denote the values of the cover halftone
image and the stego halftone image, the variables xi,j ∈ X and yi,j ∈ Y denote
the values of the corresponding inverse halftone images and ωm,n denotes the
coefficient of the human visual filter with size M × N .
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In this way, HSSIM between the cover halftone image C and the stego
halftone image S can be defined as follows:

HSSIM(C,S) = SSIM(X,Y) = (l(X,Y ))α(c(X,Y ))β(s(X,Y ))γ (3)

where l(X,Y ), c(X,Y ) and s(X,Y ) denote the luminance function, contrast
function and structure function of inverse halftone image X and Y , respectively,
which are defined as follows:

l(X,Y ) =
2μxμy + C1

μ2
x + μ2

y + C1
(4)

c(X,Y ) =
2σxσy + C2

σ2
x + σ2

y + C2
(5)

s(X,Y ) =
σxy + C3

σxσy + C3
(6)

where μx and μy are the mean intensity of X and Y , σx and σy are the standard
deviation of X and Y , σxy is the covariance between X and Y , and Ci is included
to avoid instability in the measurements.

When the constant C3 is set as C2/2, as well as α = β = γ = 1, then HSSIM
between C and S can be simplified as:

HSSIM(C,S) = SSIM(X,Y) =
(2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
(7)

The human visual filter ω can be obtained by psychophysical experiments
[27]. The other way to derive uses training set of both pairs of gray-level images
and good halftone results of them, such as using error diffusion or ordered
dithering to produce the set [13,14,29]. In this paper, we employ the Least-
Mean-Square (LMS) approach proposed by Guo et al. [13,14,29]. The LMS is
described as follows:

ĝi,j =
∑M/2

m=−M/2

∑N/2

n=−N/2
ωm,nhi+m,j+n (8)

e2i,j = (gi,j − ĝi,j)2 (9)

∂e2i,j
∂ωm,n

= −2ei,jhi+m,j+n (10)

ω(k+1)
m,n = ωk

m,n +

⎧
⎨

⎩
μei+m,j+nhi+m,j+n, if ∂e2

i,j

∂ωm,n
< 0

−μei+m,j+nhi+m,j+n, if ∂e2
i,j

∂ωm,n
> 0

(11)

where gi,j and hi,j are the values of the original gray image and the corresponding
halftone image, ei,j is the MSE between gi,j and ĝi,j , μ is the adjusting parameter
used to control the convergent speed of the LMS optimum procedure, which is set
to be 10−5 in our experiments. In [13,14,29], Guo et al. only used several gray
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images and the corresponding halftone images in the training process, which
are not sufficient to train an accurate human visual filter. In this paper, to
train a more suitable LMS-trained filter for human visual system, we utilize the
grayscale images in BossBased-1.01 [1] and the corresponding halftone images
generated by Floyd error diffusion [7]. For reducing the overall computational
complexity, the LMS-trained filter of size 7 × 7 is employed, which is shown as
Fig. 1. With the LMS-trained filter, the structural similarity between the cover
halftone image and the stego halftone image can be evaluated by HSSIM which
is an objective halftone image quality evaluation method.
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Fig. 1. LMS-trained human visual filter (7 × 7).

2.2 Distortion Measurement for STC

In this section, based on the HSSIM introduced in Sect. 2.1, we propose a distor-
tion measurement to evaluate the embedding distortions. Different from multi-
tone images, halftone images require only 1 bit per pixel compared with 8 bits
per gray pixel or 24 bits per color pixel. Therefore, halftone image data hiding
can only embed data by flipping pixels from black to white and vice versa. Com-
pared with the common ±1 embedding operation in grayscale images, flipping
pixels arbitrarily in halftone images destroys the texture structure, which leads
to significant visual distortions without considering the image content. Thus, dis-
tortion measurement is indispensable to evaluate the influence caused by flipping
pixels.

In halftone images, the structural correlation between the local regions is
more significant than the value of a single pixel. Embedding messages into
halftone images will caused different kinds of distortion including structural dis-
tortions and non-structural distortions. Structural distortions are the ones that
affect the most the perception of degradation of an halftone image, whereas
non-structural distortions only slightly affect the perception of degradation.
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To minimize the visual distortion and improve the statistical security, the original
texture structure should be maintained as much as possible. HSSIM can evaluate
the structural similarity between cover halftone image and stego halftone image,
based on which, we can minimize the destruction of the association between local
regions. Higher structural similarity means less embedding distortion and more
the original texture structure can be maintained. It should be noticed that the
value of HSSIM is in range of [0, 1]. The higher the value of HSSIM, the more
similar the structure between two halftone images and when the two images are
exactly the same, the value of HSSIM is equal to 1. To this end, given a cover
halftone image C, one pixel (denoted as pixel k) is flipped to embed one bit data
and a stego halftone image S is obtained. Then, the structural distortion of pixel
k is defined as follow:

D(k) = 1 − HSSIM(C,S) (12)

The distortion score represents the distortions caused by flipping one pixel
individually in a halftone image, which is applied in the embedding procedures.
The higher the distortion score of pixel k, the more texture structure is destroyed
after flipping the pixel.

With the given payload and designed distortion measurement, matrix embed-
ding is usually employed to minimize the total embedding distortion. In [6], Filler
et al. proposed the Syndrome-trellis code (STC) which utilizes the redundancy of
cover carrier to embed message with toggling pixels as few as possible. Based on
STC, many steganographic scheme on gray or color images [6] and on ordinary
binary images [4,31,32] have been proposed and achieved good performances. In
the proposed scheme, we also employ the STC-based embedding method and a
single pixel in halftone image is used as STC’s carrier.

3 General Framework of Embedding and Extraction

Based on the proposed distortion measurement and STC-based embedding, the
steganographic scheme is constructed in this Section. The embedding and extrac-
tion procedures are shown in Figs. 2 and 3, respectively.

3.1 Embedding Procedure

For a given cover halftone image C with size P × Q and the secret message m,
the embedding procedure contains the following steps:

1. Calculate the structural distortion D for each pixel in C by using Eq. (12);
2. Reshape C into an one-dimensional vectors with a random scrambling,

donated as VC ;
3. Reshape D into an one-dimensional vectors with a same random scrambling,

donated as VD, which can preserve the mapping relationships between pixels
and distortion scores;

4. Employ the STC encoder with VC , VD and secret message m, then obtain a
one-dimensional stego vector VS ;

5. Descramble and reshape VS into the size P × Q. In this way, the stego image
S is obtained.
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Fig. 2. The framework of embedding procedure.

Fig. 3. The framework of extraction procedure.

3.2 Extraction Procedure

In the extraction procedure, the length of the secret message lm and the random
scrambling seed used in the embedding procedure are needed. Given a stego
halftone image S of size P × Q, the extraction of secret message m is detailed
as follows:

1. Reshape S into an one-dimensional vector with a scrambling via the same
seed using in embedding, denoted as VS .

2. Employ the STC decoder with VS and lm. The secret message m is obtained.

4 Experiments and Results

It should be noticed that there is no commonly used halftone image dataset.
To construct a suitable halftone image dataset, we convert the grayscale images
in BossBase-1.01 [1] to halftone images by Floyd error diffusion method [7]. To
demonstrate the high performance and effectiveness of the proposed scheme,
some experiments have been conducted, including objective visual impercepti-
bility comparison and the statistical security comparison. Some classical halftone
image data hiding schemes including DHSPT [9], PTHVS [13], GIM [16] and DD
[30] are employed for comparison. The DHSPT chooses the minimum connec-
tion toggled pixels after data embedding for better visual quality. The PTHVS
improves DHSPT by employing a visual distortion measurement to evaluate the
candidate slave pixels in a local region. The GIM is a matrix embedding method
based on group index matrix to enlarge the embedding capacity. The DD intro-
duces the concept of dispersion degree to measure the complexity of the region
texture in halftone images.
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4.1 Objective Vision Imperceptibility

The objective vision imperceptibility is evaluated by some distortion measure-
ment approaches proposed in [9] based on the human visual perception. The
distortions of halftone images are mainly in the form of salt-and-pepper arti-
facts due to local clusters of pixels. Large clusters are visually more disturbing
than small ones. Thus Fu and Au [9] measure the amount and the size of the
salt-and-pepper clusters to evaluate the visual quality of halftone images and
they define the following five scores:

S1 =
4∑

i=0

Ni (13)

S2 =
4∑

i=0

(i + 1)Ni (14)

S3 =
S2

S1
(15)

S4 =
4∑

i=2

Ni (16)

S5 =
4∑

i=0

iNi = S2 − S1 (17)

where the Ni is the total number of the flipping pixels having i neighbors with
same pixel values in the 4-neighborhood. The S1 is the total number of the
flipping pixels which are the black pixels in bright region (denoted as class A)
and the white pixels in dark region (denoted as class B). The S2 is the total area
covered by the clusters with class A and class B. The S3 is the average area per
cluster. The S4 is the number of flipping pixels associated with clusters of size
3 or more. The S5 is a perceptual measure with a linear penalty model, which
gives a zero penalty score to isolated black or white pixels which look visually
pleasing.

In general, the smaller scores of S1, S2, S3, S4, S5 are, the better visual quality
the halftone image is. As shown in Table 1, the average scores except S3 are the
smallest among various schemes on the constructed halftone images dataset. The
S3 gives the average area per cluster, which can evaluate the size of salt-and-
pepper artifacts because the distortion in halftone image is always exhibited in
the form of salt-and-pepper artifacts due to local clusters of pixels. However,
pixel clusters also represent texture content in halftone images. Therefore, the
experimental result still can demonstrate that the proposed scheme has good
performance on objective vision imperceptibility.
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Table 1. Average scores (S1 to S5) of various schemes on the halftone images dataset
with 1024 bits embedded.

S1 S2 S3 S4 S5

Proposed 126.7 420.1 3.315 106.16 245.9

DD [30] 385.3 1160.9 3.013 269.6 803.2

PTHVS [13] 676.5 2371.5 3.441 533.7 1695.0

DHSPT [9] 786.9 2432.8 3.107 468.2 1645.9

GIM [16] 683.6 2198.5 3.216 398.3 1514.9
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Fig. 4. The statistical security comparison of different steganographic schemes. The
utilized steganalyzers are (a) PMMTM-320D [5], (b) RLCM-100D [3].

4.2 Statistical Security Comparisons

The undetectability of stego images indicates the statistical security of corre-
sponding steganographic schemes. There have been a number of papers dis-
cussing binary image steganalysis [3,5]. Since halftone image is a special kind of
binary image, we can employ these binary image steganalysis methods to evalu-
ate the performance of our steganographic scheme. The PMMTM-320D features
[5] capture the dependence on texture structures to describe the embedding dis-
tortions. The RLCM-100D features [3] employ high-order difference images and
extract the run length and co-occurrence matrices as features. The number fol-
lowing each feature name is the dimension of the corresponded feature. These
features are sent into soft-margin SVMs with an optimized Gaussian kernel to
construct the steganalyzers. The detection performance is measured by the deci-
sion error rate PE defined as follow:

PE =
1
2
(PFp

+ PFn
) (18)

where PFp
is the probabilities of false positive (detecting cover as stego) and PFn

is the probabilities of false negative (detecting stego as cover).
Figure 4 illustrates the statistical security comparisons averaged over 50 ran-

dom training/testing divisions (half for training and a half for testing) of the
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constructed halftone image dataset. It can be observed that the statistical secu-
rity of the proposed scheme is higher than the others, which intuitively demon-
strates that the proposed scheme is effective, and the statistical security is signifi-
cantly improved. The features of PMMTM focus on the correlations between pat-
terns in different shapes and sizes and the features of RLCM focus on the changes
of run-length and co-occurrence in local regions. To improve the statistical secu-
rity, the proposed steganography scheme minimizes the structural distortions
and maintains the structural correlations between texture regions. Therefore,
the proposed steganographic scheme has the better performance in statistical
security. It is worth mentioning that as the embedding payload increases, the
proposed scheme still maintains the high statistical security.

5 Conclusions

In this paper, we have introduced an objective halftone image quality evaluation
HSSIM to evaluate the structural similarity between halftone images and pro-
posed a secure halftone image steganographic scheme based on minimizing the
embedding distortion measured by the HSSIM. In halftone images, the struc-
tural correlation between the local regions is more significant than the value of
a single pixel. Thus the structural distortions are the ones that affect the most
the perception of degradation of a halftone image. HSSIM can help us evalu-
ate the structural similarity between cover halftone image and stego halftone
image. Based on HSSIM, we proposed a novel distortion measurement, which
can help us minimize the structural distortions after embedding messages. To
play the advantage of the distortion measurement, syndrome-trellis code (STC)
is employed in the embedding process. The experimental results have demon-
strated that the proposed steganographic scheme can achieve high statistical
security with good visual quality without degrading the embedding capacity.

In the further research, we will further focus on the visual quality and sta-
tistical security in halftone image steganography. Our aim is to reveal the deep
relationship between them to design a better steganographic scheme and improve
the performance.
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Abstract. Video is considered an ideal hidden communication cover
because of its ample signal space and widespread propagation. In this
paper, a novel motion vector-based video steganography algorithm is
proposed under the HEVC standard. First, the motion trend of each
frame is counted and described by creating a Top-list. According to the
motion trend, the Motion Trend Based (MTB) mapping strategy is estab-
lished between motion vectors and binary bitstream. Finally, the cover is
embedded using STC to minimize additional distortion. Experiments are
carried out on six original YUV sequences. Performance results demon-
strate that our algorithm outperforms previous works in general.

Keywords: Video steganography · Motion vector · HEVC · MTB
mapping strategy

1 Introduction

Steganography stems from modern information hiding technology. The video
steganography technology has considerable theoretical and practical significance,
due to the large signal space of the video cover and common in network trans-
mission.

The existing video steganography methods can be divided into two parts:
spatial domain steganography and coding domain steganography. The steganog-
raphy algorithm in the coding domain can be further divided into prediction
mode, motion vector, entropy coding, transformation coefficient, and block mode
according to the different types of covers. Due to its high concealment and mod-
erate hiding capacity, motion vector-based hiding has attracted much attention
among them. Jing [1] proposed a motion vector concealment algorithm for anti-
hiding analysis, which makes the statistical properties of the motion vector pop-
ulation unchanged. Aly [2] proposed to select the motion vector according to the
corresponding compression residual size, which can further reduce the distortion.
Shanableh et al. [3–7] combined encryption, coding and other technologies to
enhance algorithm security. Authors such as Cao [8] used wet paper coding and
c© Springer Nature Switzerland AG 2020
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STC (Syndrome trellis codes) coding for steganography and resisted analysis by
maintaining the local optimality of the modified motion vector. Steganography
algorithms for H.264/AVC video are now quite mature. However, these methods
cannot accommodate the development of High Definition (HD) video.

HEVC (High Efficiency Video Coding) has become a new trend in video cov-
ers due to its excellent support for high-definition video in terms of compressed
video quality. Although motion vector steganography has many great achieve-
ments in the field of H 264, little research has been done in the field of HEVC.
Tew [9,10] and Dong et al. [11] studied the intra-pattern steganography algo-
rithm based on HEVC. Chang [12] and Van [13] proposed the DST coefficient
concealment algorithm for HEVC standard video earlier. Jiang [14] proposed a
CABAC-based video steganography algorithm for HEVC video. Yang [15] and
other authors first proposed the information hiding method based on the motion
vector for HEVC. These methods extend the scope of video steganography to the
HEVC domain. However, some issues are not fully solved in this newly researched
region as follows:

(1) Few steganographic algorithms are combined with HEVC, especially using
motion vectors as cover.

(2) There are few studies on the steganographic framework in the HEVC
field, resulting in insufficient security analysis and performance analysis for
steganography.

(3) Both the traditional steganography field and HEVC video steganography
have security issues that need to be studied.

In order to solve the issues above, this paper proposes a novel motion vector-
based video steganography algorithm for HEVC video, which is mainly used
to improve the embedding capacity and video quality. This paper proposes a
new MTB mapping strategy, which can maintain the video motion trend con-
stant. The algorithm combines the steganography module with the HEVC coding
structure to form an HEVC steganography framework. Besides, the algorithm
uses STC for encoding, which guarantees minimum additional distortion and
steganography security to some extent. Results of experiments have demon-
strated that the proposed algorithm for HEVC video steganography has bet-
ter performance in embedding capacity and bit rate changing than the method
in [15].

2 Proposed Steganographic Strategy

The Steganography algorithm proposed in this paper uses HEVC motion vector
as the cover. To ensure the trend of video motion, this paper proposes a new
MTB mapping strategy. In this paper, the motion vectors of all PUs in non-merge
mode are selected as candidate covers, and the STC method is introduced for
minimum distortion, which can further improve the security of the algorithm
and reduce the additional distortion.
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2.1 Motion Trend Top-List

Video always has a trend of motion between its adjacent frames, and this trend
of motion directly represents the change of motion vector in video coding. The
motion of video frames is often divided into two types. One is the change of the
entire frame, which is usually caused by the relative displacement of the camera
and the picture. The other is the change of the small connected area of the frame.
Generally, there are many small areas, and the changing trend in each area is
also different. The motion trends are shown in Fig. 1.

(a) Entire frame movement

(b) Local area movement

Fig. 1. Motion trends of different type

A Top-list of statistical motion vectors is thus constructed to describe the
overall distribution trend of the motion vectors. The method for establishing the
list is as follows:

step 1: The value and frequency of all horizontal and vertical components of
the motion vector in a frame are counted (excluding the component with a
value of 0).
step 2: The overall distribution direction of all components is counted as a
full-frame trend. Since subsequent embedding only binary embeds the motion
vector, the value of this trend Topxall and Topyall maybe 1, or −1 for each
component to represent the direction of motion. Where xn and yn are the
horizontal and vertical components of the nth motion vector of a frame.

TOPxall =
{

+1, · · · · · · ∑
(x1 + x2 + ... + xn) � 0

−1, · · · · · · ∑
(x1 + x2 + ... + xn) < 0 (1)
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TOPyall =
{

+1, · · · · · · ∑
(y1 + y2 + ... + yn) � 0

−1, · · · · · · ∑
(y1 + y2 + ... + yn) < 0 (2)

step 3: Select Top5 of each component as the regional trend and fill in the
Top-list.

2.2 MTB Mapping Strategy

For the motion vector in the same frame picture, the mapping strategy and
the modification of the candidate motion vector in this frame are determined
according to the Top-list of overall motion trend.

The motion vector will be modified according to the following rules:
If the horizontal and vertical components of MV (xy) are both in the Top-list:

MV (x′, y′)=

⎧⎪⎪⎨
⎪⎪⎩

MV (x + 1, y) |TOPx < TOPy, TOPx � MVx

MV (x − 1, y) |TOPx < TOPy, TOPx < MVx

MV (x, y + 1) |TOPx � TOPy, TOPy � MVy

MV (x, y − 1) |TOPx � TOPy, TOPy < MVy

(3)

If the horizontal and vertical components of MV (xy) are both not in the
Top-list:

MV (x′, y′)=

⎧
⎪⎪⎨

⎪⎪⎩

MV (x + 1, y) ||TOPx −MVx|� |TOPy −MVy|, TOPx �MVx

MV (x− 1, y) ||TOPx −MVx|� |TOPy −MVy|, TOPx<MVx

MV (x, y + 1) ||TOPx −MVx|< |TOPy −MVy|, TOPy �MVy

MV (x, y − 1) ||TOPx −MVx|< |TOPy −MVy|, TOPy<MVy

(4)

If only the vertical component of MV (xy) is in the Top-list:

MV (x′, y′)=
{

MV (x + 1, y) ||TOPx � MVx

MV (x − 1, y) ||TOPx < MVx
(5)

If only the horizontal components of MV (x, y) is in the Top-list:

MV (x′, y′)=
{

MV (x, y + 1) ||TOPy � MVy

MV (x, y − 1) ||TOPy < MVy
(6)

Where MV x and MV y are the horizontal and vertical components of the
original motion vector, f(MVx) and f(MVy) is the position of this component in
the Top-list, MV (x′, y′) is modified alternative embedded motion vector. TOPx

and TOPyare the value in the Top-list that is closest to the original motion
vector.

Figure 2 shows an example of embedding a motion vector. It shows the Top-
list of one frame and four motion vector embedding examples that conform to
the modification rules. Taking the motion vector (0, 0) as an example, both
horizontal component 0 and vertical component 0 are not in the Top-list, but
the horizontal component 0 is closer to the horizontal component element −1
in the Top-list. Therefore, the value of the horizontal component 0 is shifted
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Fig. 2. An example of embedding motion vector

from −1 to one unit and changed to −1 to obtain the final motion vector (−1, 0).
For motion vector (1, 0), because only the horizontal component is in the Top-
list, the modified vertical component 0 is closer to the nearest element −15, and
the final motion vector (1,−1) is obtained.

Only motion vectors that are not in the merge mode are mapped as alterna-
tive motion vectors. It is assumed that the Least Significant Bit (LSB) of cover
MV is X = (x1, x2, · · · , xn) ∈ {

0, 1
}n, the LSB of corresponding embedded MV

is Y = (y1, y2, · · · , yn) ∈ {
0, 1

}n. And n represent the length of the cover. If
C = (xn ⊕ yn) = 1, it can be judged that the motion vector of the position n
is embedded. Then the motion vector MV (xn, yn) will use the motion vector
MV (x′

n, y′
n) that matches the motion trend change.

2.3 Minimize Distortion Strategy

In the H.264 field, Syndrome-Trellis Codes has become an important way to
minimize additive distortion. For defined distortion and a given message length,
the STC code minimizes the embedding distortion and allows the receiver to
extract the message without synchronizing the distortion information. STC can
be expressed as follows:

Hx
T

= m (7)

Where H denotes the parity check matrix generated by the STC algorithm,
m is the secret message sequence, and x is the modified cover sequence. Since
the MTB mapping strategy in this paper only produces one way of change, this
is a binary STC problem. After determining the motion vector that maintains
the motion trend, the following equation is used to map them into a binary
sequence:

ci = mi mod 2 (8)

Where ci denotes the binary cover and mi means the original cover.

D(X,Y ) =
n∑

i=1

ρi|xi − yi| (9)
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Assuming that the embedding operations are independent of each other, the
total distortion function is D(x, y). The cost ρi is the cost of changing the i th
cover element xi to yi (i = 1, 2,..., n). As is mentioned above, the main distortion
caused for this steganography is DSATD. SATD (Sum of Absolute Transformed
Difference) is an image matching algorithm.

DSATD =
∑
xy

|T (P (x, y) − Ppe(x, y))| (10)

where T (.) represents an orthogonal transform, here a Hadamard transform. P (.)
represents the original pixel value, Ppe(.) represents the predicted pixel value.

For each motion vector element, the SATD values before and after the change
need to be calculated separately. The difference in SATD will be the cost of the
motion vector embedding, which will be used in STC coding.

2.4 Security Strategy

At present, the common video motion vector steganalysis algorithms are mainly
based on motion vector spatiotemporal correlation statistical property detec-
tion and local optimality analysis, etc. The statistical feature detection mainly
detects the temporal and spatial correlation of the embedded motion vector and
the disturbance caused by the neighborhood correlation. The local optimality
analysis uses SAD (Sum Of Absolute Difference) and SATD as distortion met-
rics to detect local optimal features of the motion vector.

In the proposed algorithm, the MTB mapping strategy can ensure that the
temporal and spatial correlation of motion vectors tends to be minimal, thus
resisting the detection of spatiotemporal correlation statistics. In addition, since
the STC algorithm uses SATD as a parameter to minimize distortion, it is guar-
anteed that the modification of the embedded sequence minimizes additional
SATD distortion. Therefore, the proposed algorithm can resist the stegano-
graphic analysis of motion vectors to a certain extent, ensuring the security
of steganography.

The motion trend is maintained as much as possible during the mapping and
encoding process, and the additional distortion is minimized. Thus the steganog-
raphy algorithm can minimize the visibility of motion vector variations.

In the STC embedding process and extraction process, the H matrix in Eq. (7)
is an essential element, and consistency must be guaranteed in both processes to
restore the embedded information. Therefore, the H matrix is equivalent to the
key of the encryption process, and the STC process is similar to the symmetric
encryption method. This further guarantees the security of steganography.

3 A New Steganography Framework in HEVC

3.1 HEVC Embedding and Coding Integration Framework

Since video is essentially a series of highly correlated frames, inter-frame predic-
tion can effectively utilize temporal correlation to reduce redundancy in video
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coding, thereby efficiently storing and transmitting video. HEVC eliminates tem-
poral redundancy through ME (Motion Estimation) and MC (Motion Compen-
sation) techniques. The interframe coding structure in HEVC video is shown in
the upper part of Fig. 3.

Input video

Split into 
CTUs

Mo on 
Compensa on

Mo on 
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Deblocking& 
SAO Filters

General Coder
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General Control 
Data

Coded
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Fig. 3. Integrated steganographic coding framework

The motion vector is a product obtained in the ME phase. ME quickly
and efficiently obtains sufficiently accurate motion vectors. Since the proposed
steganography algorithm uses motion vector as the cover, we need to fuse the
steganography module with the HEVC coding structure and introduce a new
integrated steganographic coding framework.

This is an abstract and abbreviated framework of the proposed stegano-
graphic algorithm, as shown in Fig. 3. The acquisition of motion vector, SATD
Cost, and the replacement of Embedded motion vector occur respectively in dif-
ferent stages of the coding framework. Two motion vector prediction techniques
are used in HEVC: merge and AMVP (Advanced Motion Vector Prediction).
The merge creates a motion vector candidate list for the current PU, traverses
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the motion vectors in the list and selects the one with the lowest rate-distortion
as the optimal MV. The motion vectors of the merge mode PU will be the same
as the motion vector of its neighbor and are not suitable for embedding. There-
fore, the proposed method selects the motion vector of the non-merge mode as
stego candidate.

Before the entropy coding phase, the value of the motion vector as well
as the CTU Data, merge information, etc. are first acquired. Using the above
information, the SATD Cost of motion vectors can be further obtained in the
ME process. Then the motion vector of one frame is counted, and a Top-list
is established. The motion vectors are mapped to a binary stream using MTB
mapping strategy. After that, the same method is used to calculate the SATD
Cost of changed motion vectors. The STC is used to make the final minimum
distortion coding. Finally, the video will be re-encoded based on the embedded
motion vector.

3.2 Steganographic Embedding and Extracting Process

The process of the proposed algorithm is shown in Fig. 4. The proposed algorithm
can be implemented as follows.

Information Embedding: The embedding process is mainly a process of
extracting a motion vector from a video and re-encoding the video after modifi-
cation. Specific steps are as follows:

step 1: Encoding the original video to obtain information such as motion vector,
block mode, merge mode, SATD, etc. of the PU

step 2: Counting the motion information of a frame, and create a motion vector
Top-list with the strategy in Sect. 2.1. The modification of the motion vector
is determined according to the Top-list. By re-encoding with the modified
motion vector, the corresponding SATD cost is obtained.

step 3: Filter out motion vectors in the non-merge mode of one frame. Map the
original candidate motion vector to a binary sequence as the cover with the
MTB mapping strategy in Sect. 2.2.

step 4: Carry out the STC operation to get the embedded bitstream, and fur-
ther obtain the embedded motion vector sequence. The distortion function is
as the minimize distortion strategy in Sect. 2.3.

step 5: Re-encode the video based on the embedded motion vector sequence.
Replace the best motion vector and motion vector candidate list in the ME
process with the embedded motion vector.
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Fig. 4. Process of proposed algorithm

Information Extracting: The extraction process is the opposite of the embed-
ding process, and the ciphertext needs to be extracted from the binary sequence
into which the motion vector is mapped. The extracting algorithm can be imple-
mented as follows.

step 1: Decode the steganographic video and obtain the motion vector and
block mode, merge mode, etc. according to the same filtering rules as to
when it was embedded.

step 2: Map motion vectors in one frame to binary sequences using the LSB of
horizontal and vertical components.

step 3: Extract the message from the binary sequence using the STC extraction
tool. Make sure that the H matrix used in the STC extraction is consistent
with the embedding process.

4 Experiments and Analysis

4.1 Experiment Setting

The experiment of the proposed algorithm is based on the X265 encoder and
HEVC reference software decoder. In order to reflect the superior compres-
sion characteristics of HEVC on HD video, six YUV sequences with resolution
1920 × 1080 (BasketballDrive, BQTerrace, Cactus, Kimono1, ParkScene, and
Tennis) used in [15] are selected in this experiment. The shortest video has 240
frames, and the longest video has 600 frames. The video frame encoding sequence
structure is IPP..., the GOP is 10, and the QP is 20. Syndrome-Trellis Codes
Toolbox is used as the STC embedder. Experiment and comparative experiment



302 M. Guo et al.

are performed on the same QP and GOP parameters. Details of parameters in
sequences and videos, together with parameters in experiments could be seen in
Table 1.

Table 1. Experimental paramenter

Encoder X265-2.9

Decoder HM-16.2

Frame structure IPP...

Video format 4:2:0 YUV

Video size HD (1920 × 1080)

GOP 10

QP 20

Payload 0.5

The experiments compare the effects of steganography on video quality and
embedding efficiency. This paper tested the performance of multiple payloads
and ultimately decided to use the payload of 0.5, which can achieve a better
result. Similarly, Yang’s method uses the payload of 1, that is, all the motion
vector satisfying the conditions in [15] are chosen.

4.2 Embedded Capacity Comparison

This paper calculates the total number of bits of secret messages embedded in
each video and compares them with Yang’s method [15].

Table 2 presents a comparison of the embedded capacity of six test video
sequences. It can be seen that the embedding capacity of the proposed algo-
rithm is directly proportional to the payload. The proposed algorithm has a
higher embedding capacity than Yang’s for all three payloads. Yang’s method
has an average video embedding capacity of 193,071 and an average frame embed-
ding capacity of 485. The proposed algorithm has an average video embedding
capacity of 667,910, which is 245.94% higher than Yang’s method. The average
frame embedding capacity is 1,599 bits, which is 229.69% higher than Yang’s.

Overall, the proposed algorithm is much higher than Yang’s method in the
total embedding bits and average frame embedding bits, which proves that the
proposed algorithm is effective in improving the embedding capacity.
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Table 2. Embedding capacity (bits) of six video sequences

Video sequences Yang’s [15] AFECa Proposed AFEC

Tennis 89530 373.04 216662 902.76

Kimono1 114084 475.35 293594 1223.31

ParkScene 119227 496.78 418884 1745.35

Cactus 251347 502.69 871195 1742.39

BQTerrace 325998 543.33 1300984 2168.31

BasketballDrive 258238 516.48 906144 1812.29

Average 193071 485 667910 1599
aAFEC is an abbreviation for Average Frame Embedding
Capacity.

4.3 Video Bit Changing Rate Comparison

The video bit changing rate is defined as the ratio of the difference between the
number of video bits after steganography and the number of original video bits
to the original video size per embedded 100,000 bits.

For a steganography method, which embeds m (100,000) bits, the size of
the video before embedding is x, and the size after embedding is y. The bit
changing rate C = (y − x)/mx. The smaller the result, the smaller the effect of
steganography on the size of the video file.

In Table 3, it presents a comparison of the video bit changing rate of six test
video sequences with Yang’s method.

Table 3. Video bit changing rate (%) of six video sequences

Video sequences Yang’s [15] Proposed

Tennis 3.10 0.75

Kimono1 2.81 0.75

ParkScene 2.73 0.79

Cactus 0.46 0.17

BQTerrace 0.38 0.11

BasketballDrive 0.0076 0.0019

Average 1.58 0.43

It can be seen that all the six video sequences have lower video bit changing
rate than Yang’s method. The average video bit changing rate of the proposed
algorithm is 0.43%, which is 72.78% lower than Yang’s method with the number
of 1.58%.

Therefore, it shows that the proposed algorithm can make minor changes to
the video file with the same embedding capacity, and it has better performance
in reducing the bit changing rate.
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4.4 Video Quality Performance

Commonly used video quality assessment criteria can be divided into subjective
and objective tests. First, subjective judgments are launched on video sequences.
Figure 5 shows a visual comparison of the original and video frames at different
embedding payloads of this algorithm for Tennis and Kimono1. It can be seen
that none of three embedding payloads adversely affects the subjective visual
effects of the frame. Therefore, the proposed algorithm does not have a visual
impact on the video quality in subjective judgment.

Fig. 5. Visual comparison of the original and hidden frame

Then the PSNR and SSIM metrics of the video are statistically evaluated.
Table 4 shows the averages PSNR and SSIM for all frames of the six video
sequences. The value of SSIM is approximately close to 1, indicating that the
distortion of the frame is smaller. The larger the PSNR value, the smaller the
distortion. Moreover, the PSNR higher than 40 dB indicates that the frame
quality is excellent, that is, very close to the original frame.

It can be seen that for all video sequences tested experimentally, the PSNR
of the proposed algorithm is much higher than 40 dB, although slightly lower
than Yang’s. The SSIM value exceeds 0.98, which is the same as Yang’s method.
This indicates that the quality of the video is not significantly affected after
embedding using the steganographic algorithm in this paper. The video frame



Motion Vector-Based Steganographic Algorithm for HEVC 305

Table 4. Analysis of video quality

Video sequence Yang’s [15] Proposed

PSNR (dB) SSIM PSNR (dB) SSIM

Tennis 48.71 0.99 47.98 0.99

Kimono1 48.17 0.99 47.67 0.99

ParkScene 46.73 0.99 45.75 0.99

Cactus 45.53 0.98 44.47 0.98

BQTerrace 44.85 0.98 44.39 0.98

BasketballDrive 45.61 0.98 45.21 0.98

Average 46.6 0.985 45.91 0.985

has almost no distortion. Therefore, in terms of video quality, the proposed
algorithm performs as well as Yang’s method.

5 Conclusion

This paper proposes a steganography method based on motion vector for HEVC
video. This paper establishes a Top-list of motion vectors to represent the motion
trend and proposes a new motion vector to the binary sequence MTB mapping
strategy to reduce the impact of embedding on motion trends. In the embedding
phase of the motion vector, STC is used to ensure minimum distortion. The
proposed algorithm improves the embedding capacity and bit changing rate on
the basis of ensuring that the video quality and video files are not greatly affected.

In future work, there is still room for improvement in the selection and map-
ping methods of motion vectors, as well as the definition of distortion functions.

Acknowledgment. This work is funded by National Natural Science Founda-
tion of China (Grant No. 61771270, 61572320 & 61572321). It is also supported
by National Key Research and Development Projects of China (2018YFC0830700,
2018YFC0831405) and Zhejiang Provincial Natural Science Foundation of China
(LR20F020001).

References

1. Jing, H., He, X., Han, Q., Niu, X.: Motion vector based information hiding algo-
rithm for H.264/AVC against motion vector steganalysis. In: Pan, J.-S., Chen,
S.-M., Nguyen, N.T. (eds.) ACIIDS 2012. LNCS (LNAI), vol. 7197, pp. 91–98.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28490-8 10

2. Aly, H.A.: Data hiding in motion vectors of compressed video based on their asso-
ciated prediction error. IEEE Trans. Inf. Forensics Secur. 6(1), 14–18 (2011)

3. Shanableh, T.: Matrix encoding for data hiding using multilayer video coding and
transcoding solutions. Signal Process. Commun. 27(9), 1025–1034 (2012)

https://doi.org/10.1007/978-3-642-28490-8_10


306 M. Guo et al.

4. Xu, D., Wang, R., Shi, Y.Q.: Data hiding in encrypted H.264/AVC video streams
by codeword substitution. IEEE Trans. Inf. Forensics Secur. 9(4), 596–606 (2014)

5. Yao, Y., Zhang, W., Yu, N., Zhao, X.: Defining embedding distortion for motion
vector-based video steganography. Multimedia Tools Appl. 74(24), 11163–11186
(2014). https://doi.org/10.1007/s11042-014-2223-8

6. Zhang, Y., Zhang, M., Yang, X., Guo, D., Liu, L.: Novel video steganography algo-
rithm based on secret sharing and error-correcting code for H.264/AVC. Tsinghua
ScienceTechnol. 22(2), 198–209 (2017)

7. Niu, K., Yang, X., Zhang, Y.: A novel video reversible data hiding algorithm using
motion vector for H264/AVC. Tsinghua Sci. Technol. 22(5), 489–498 (2017)

8. Zhang, H., Cao, Y., Zhao, X.: Motion vector-based video steganography with
preserved local optimality. Multimedia Tools Appl. 75(21), 13503–13519 (2015).
https://doi.org/10.1007/s11042-015-2743-x

9. Tew, Y., Wong, K.S.: Information hiding in HEVC standard using adaptive coding
block size decision. In: 2014 IEEE International Conference on Image Processing
(ICIP), France, Paris, pp. 5502–5506 (2014)

10. Tew, Y., Wong, K.S., Phan, C.W.: HEVC video authentication using data embed-
ding technique. In: IEEE International Conference on Image Processing, Quebec
City, Canada, pp. 1265–1269 (2015)

11. Dong, Y., Jiang, X., Sun, T., Xu, D.: Coding efficiency preserving steganogra-
phy based on HEVC steganographic channel model. In: Kraetzer, C., Shi, Y.-
Q., Dittmann, J., Kim, H.J. (eds.) IWDW 2017. LNCS, vol. 10431, pp. 149–162.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64185-0 12

12. Chang, P.C., Chung, K.L., Chen, J.J., Lin, C.H., Lin, T.J.: An error propagation
free data hiding algorithm in HEVC intra-coded frames. In: Signal and Informa-
tion Processing Association Summit and Conference, Kaohsiung, Taiwan, pp. 1–9
(2013)

13. Van, L.P., De Praeter, J., Van Wallendael, G., Cock, J.D., Walle, R.V.D.: Out-of-
the-loop information hiding for HEVC video. In: IEEE International Conference
on Image Processing, Quebec City, Canada, pp. 3610–3614 (2015)

14. Jiang, B., Yang, G., Chen, W.: A CABAC based HEVC video steganography algo-
rithm without bitrate increase. J. Comput. Inf. Syst. 11(6), 2121–2130 (2015)

15. Yang, J., Li, S.: An efficient information hiding method based on motion vector
space encoding for HEVC. Multimedia Tools Appl. 77(10), 11979–12001 (2017).
https://doi.org/10.1007/s11042-017-4844-1

https://doi.org/10.1007/s11042-014-2223-8
https://doi.org/10.1007/s11042-015-2743-x
https://doi.org/10.1007/978-3-319-64185-0_12
https://doi.org/10.1007/s11042-017-4844-1


New Steganalytic Approach for AMR
Steganography Based on Block-Wise

of Pulse Position Distribution
and Neighboring Joint Density

Chen Gong1,2 and Xianfeng Zhao1,2(B)

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

{gongchen,zhaoxianfeng}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100049, China

Abstract. Adaptive multi-rate (AMR) is a popular audio compression
standard, various AMR FCB (Fixed Codebook) steganographic algo-
rithms have been developed and more readily available for the popular-
ity of AMR in mobile communication and mobile Internet, an effective
steganalysis techniques are called for cyber security. In this paper, we
propose a well-designed steganalytic scheme to effectively detect FCB
steganography. For this purpose, we first elaborately to model the pulse
position 2-D arrays formed on the pulses positions. Neighboring joint
density features are constructed based on the intra-block and inter-block
from multi scales and multi directions extracted. Experimental results
show that, our method prominently outperforms the existing FCB based
steganalysis, especially in detecting the STC-based steganographic sys-
tems at low embedding rate.

1 Introduction

Steganography is the technology to conceal the very existence of hidden messages
into digital covers such as image, video, audio, speech and document. Steganal-
ysis is the countermeasure technology of steganography used to detect presence
of hidden data in a cover object.

AMR is an ideal carrier that has recently gained increasing attention in the
information hiding community. Due to its extensive usage in mobile communi-
cation and considerable coding redundancy. AMR audio codec is a worldwide
speech compression standard for wireless communication transmission, including
3G and 4G. Besides that, such codec is also an audio file format standard with
extension AMR for storing spoken audio recordings, which is the used by vari-
ous mobile phones as the default audio storage. In addition, most popular social
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softwares also adopt AMR as the speech compression format, such as WeChat
and QQ. Especially, the frequent interchange of digital speech nowadays makes
AMR steganography very promising.

So far research in the field of FCB steganography has become a research
hotspot. Many steganographic techniques operating on FCB have been pub-
lished. In general, AMR is based on algebraic code excited line prediction
(ACELP) coding, so there are three feasible embedding domains in AMR codec,
including FCB [6,13,17], Liner Prediction Coefficient (LPC) [11,12,19] and
Adaptive CodeBook (ACB) [7,9,15]. FCB gained more attention recently for
the maximum hidden capacity and good imperceptibility compared with other
embedding domains. First, AMR performed on each frame of 20 ms and produces
244 bits code stream at 12.2 kb/s mode, while FCB takes up 140 bits which is a
significant proportion (140/244 = 57.38%) of the total bits. Furthermore, FCB
is the residual of the speech signal after long-term prediction and short-term,
and the search procedure of FCB is the depth-first tree, it means modification
of the FCB parameters will introduce slightly degradation of the perceptible.
Based on this, several steganographic methods on FCB have emerged.

The existing effective hand-crafted features are extracted from paired
pulses [14,16]. These steganalytic features are constructed by the paired pulses
in the same track. Miao et al. [14] designed a set of features, including Markov
transition probabilities, joint entropy and conditional entropy. Ren et al. [16]
extracted the correlation characteristics based on the probability of the pulse
position being the same in the same track (SPP).

Recently, deep learning attracted attentions of the steganalysis research com-
munity [8,10,18]. The first deep learning based FCB steganalytic algorithm using
RNN combined with CNN (SRCNet) was proposed in [8]. However, the study of
deep-learned features still have much room for improvement. First, the perfor-
mance of in detecting STC-based [5] adaptive FCB steganography [17] (AFA) at
low embedding rate is not perfect [8], it indicated that the steganalytic feature
cannot be effectively learned by deep networks. Since SRCNet is a fully connected
recurrent neural network, the training and testing process of the model will be
slowed down with the time length increased. The size of model is dependent
on the length of input speech, so that it would directly influences the model’s
practicability. Moreover, deep learning tools are essentially a black box method
since it is not easy to mathematically formulate the features that are learned
within its different layers of representation. At the same time, hand-crafted fea-
tures [14,16] does not consider specific time sequence existing in pulse position,
which has been proven in work [8]. Obviously, the advantage of pulse position
may not be fully exploited. Therefore, it is still necessary to study and improve
hand-crafted steganalytic features. Please remind that, the most successful col-
laborations is to learn from the each other.

To study this issue, a new set of steganalytic features that not only consider
steganography specific FCB artifacts in characteristics of the codewords but
also in the property of time serials. We first to model the PP 2-D arrays to
formulate features for steganalysis. FCB 2-D arrays which utilize intrablock and
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interblock correlation among pulses positions are then used to generally enhance
changes caused by FCB steganography. Neighboring joint distribution is applied
to model all these FCB 2-D arrays for steganalysis. The experimental works are
presented to demonstrate that the proposed scheme has outperformed the state-
of-the-arts in attacking AFA, Geiser and Miao. The proposed 2-D pulse position
model has the characteristic of clear mathematic description, easily calculation
and convenient to analysis, which may be useful for further relevant studies.
The 2-D mode array may be extended to other embedding domain, such as LPC
and ACB.

The rest of paper is organized as follows. In Sect. 2, we briefly introduces
the basic knowledge, including the AMR codec, FCB steganography, FCB ste-
ganalysis and the analysis of the neighboring joint statistical model on the pulses
position distribution caused by information-hiding. The feature construction pro-
cedure is presented in Sect. 3. The results of experiments are presented in Sect. 4.
Finally, the conclusions and future work are given in Sect. 5.

2 Preliminaries

Fixed codebook

gp

gc

v(n)

c(n)

LPC 
synthesis 

Filter

Pre-
processing
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Analysis
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Pulse position
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Original
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Fig. 1. Block diagram of the AMR encoding.

2.1 AMR Codec

The AMR coder [1] is based on the Algebraic Code Excited Linear Prediction
(ACELP). The encoding diagram of ACELP is presented in Fig. 1. The speech
codec operates on each speech frames of 20 ms corresponding to 160 samples at
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a sampling rate of 8000 samples per second. The input speech are represented
using 16 bit linear Pulse Code Modulation (PCM). For every 20 ms frame, the
input speech is analyzed to extract the parameters of the ACELP, including lin-
ear prediction coefficient, adaptive codebook, fixed codebook, gain quantization
and so on. In order to determine the optimal synthesized speech signal, a lin-
ear prediction synthesis filter is used to synthesize the output signal by filtering
the output of the sum of the two excitation vectors from adaptive and fixed
codebook. The optimum excitation sequence in a codebook is chosen by mini-
mizing the weighted error which between the original speech and the synthesized
speech using a so-called analysis-by-synthesis (ABS) search approach. Finally,
the encoded parameters are obtained and transmitted through a public channel.

Table 1. The structure of FCB for AMR at mode 12.2 kbps. it and it+5 represent the
two pulses in the same track t(0 ≤ t ≤ 4) respectively.

Track Pulse Sign Position

0 i0, i5 ±1 0, 5, 10, 15, 20, 25, 30, 35

1 i1, i6 ±1 1, 6, 11, 16, 21, 26, 31, 36

2 i2, i7 ±1 2, 7, 12, 17, 22, 27, 32, 37

3 i3, i8 ±1 3, 8, 13, 18, 23, 28, 33, 38

4 i4, i9 ±1 4, 9, 14, 19, 24, 29, 34, 39

The fixed-codebook search adopts the depth-first tree search method, it
means only a subset of the non-zero pulse positions are chosen. There are five
levels and two pulses are searched together in each level. At level 1, i0 do not
need search, its position is fixed on the position which is the global maximum
of the reference signals in all tracks. The position of i1 can then be followed
by the four iterations. In each iterations, i1 is tentatively assigned to the local
maximum of the reference signals in one of the four tracks. Next, the other 8
pulses are searched in four levels within a pair: (i2, i3), (i4, i5), (i6, i7), (i8, i9). At
level 2, pulse i2 and i3 are searched in their respective tracks. Pulse i2 with all
8 candidate positions is tested together with all 8 candidate positions of pulse
i3. The position of i2 and i3 are determined once the current target signal was
the maximum in all 8 × 8 = 64 test combinations. The next of the three levels
is the same as level 2. After having determined the pulses positions, FCB is
constructed on the interleaved single pulse permutation (ISPP) design. 2 pulses
are placed in one track, each pulse has 8 different positions, so there are 10 pulse
positions are encoded in a sub-frame. The goal of FCB search is to search 10
pulses’ optimal position in 40 candidate position, all 40 positions are divided
into 5 tracks of interleaved positions, as shown in Table 1.
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Fig. 2. The embedding process of FCB to embed a binary bit into a track. Here,
we embed binary 1 into track 3. The embedding process has 2 mainly steps. First,
determine the positions of the last position i8 in track3 from 40 positions. Second,
control the search range to find the suboptimal position from 8 positions.

2.2 FCB Steganography

The principle of the existing schemes of AMR FCB steganography [6,13,17] is
to limit the search scope of the last pulse position in each track. As illustrated
by the Fig. 2.

Geiser et al. [6] designed a steganographic FCB rule for AMR-NB 12.2 kbit/s
mode. Assuming that it and it+5 respectively represent the first pulse position
and the second pulse position in the same track t (0 ≤ t ≤ 4). (m)2k,2k+1,
(k ∈ [0, 4]) is a binary 2 bit message to be embedded into the track t. The two
candidates positions for it+5 are calculated by Eq. 1, where gray and gray−1

respectively represent the gray encoding and the gray decoding, ⊕ is the bitwise
exclusive operation of two binary strings, �x� = max{n ∈ Z | n ≤ x} rounds
down x, � it

5 � calculates the 3 bit pulse position index in the track t.

it =

{
gray−1(gray(� it+5

5 �) ⊕ (m)0,1) · 5 + t

gray−1(gray(� it+5
5 �) ⊕ (m)0,1 + 4) · 5 + t

(1)

The embedded 2 bit hidden message (m)2k,2k+1, (k ∈ [0, 4]) is extracted by
Eq. 2.

(m)2k,2k+1 = (gray(� it
5

� ⊕ gray(� it+5

5
�)%4 (2)

Miao et al. [13] extended Geiser’s FCB steganographic scheme for AMR-WB
speech codec. The author implemented message embedding during the FCB
search by controlling the pulse positions. Different from [6], Miao introduced an
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adaptive suboptimal pulse combination constrained (ASOPP) strategy using an
embedding factor η to balance speech quality and embedding capacity. For the
second pulse positions it+5 in the track t, its search space is restricted by Eq. 3,
where N represents the number of tracks. η is the embedding factor. t denotes
the track index. Pti is the i-th pulse position in track t. The number of pulses in
the track t is Pt. mt specifies the secret data to be embedded. The embedding
schemes is to restrict the second pulse position search space. The extraction of
message are calculated by Eq. 3 as well [13].

mt = (
Pt∑
i=0

gray(�Pti

N
�) ⊕ η (3)

Ren et al. [17] first introduced STCs [5] into AMR FCB steganography. The
author designed an cost function and the additive distortion function in the
FCB embedding domain. The optimal probability and the correlation of pulse
were introduced into the cost function to improve the speech quality and the
statistical security.

3 Feature Construction

Track1

i0 i1 i2 i3 i4 i5 i6 i7 i8 i9

Encoded
bit stream

Decode

Track2

Track3
Track4

Track5

One 
subframe

Reorder

i1 i6

i0 i5

i2 i7

i3 i8

i4 i9

Fig. 3. A sketch of pulses positions 2-D array. A mode (4 × 5) pulses positions 2-D
array in a block, which is denoted with the dotted box. One row for each sub-frame.
One sub-frame has 5 tracks, and each frame are divided into 4 sub-frames.

Feature construction is a key step in the steganalysis. As mentioned above,
conventional steganorgraphic methods deeply affect distributions of the pulses
positions, while the adaptive algorithm AFA have made great efforts to keep
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the changes on the distributions of the pulses positions caused by information
hiding as less as possible. So that, current steganalytic method [3,4,14,16] are
not effective in detecting AFA especially at low embedding rate.

In this section, we first define the block-based pulses positions 2-D array,
followed by introducing the pulses positions. We then propose to model the
pulses positions 2-D array using neighbor joint matrix. Our proposed features
are derived from the neighbor joint matrix.

3.1 Pulses Positions 2-D Array

In this part, we first study the property of pulses positions. For a given speech,
consider the 2-D array consisting of all the pulses positions. That is, this 2-D
array is filled up with the first five pulses in a track, so do the last five pulses,
resulting in a 2-D array as shown in Fig. 3. We name this 2-D array as pulses
positions 2-D array in this paper. The features proposed in this scheme are
formed from the pulses positions 2-D array.

Fig. 4. The generation of intrablock and interblock pulses position 2-D arrays.

3.2 Neighboring Joint Density and Block-Based FCB Feature

We have shown that speech signals have long-term and short-term correlations.
To fully exploit this time series correlation, here we construct multi scales and
multi directions pulses positions based on neighboring joint density of pulses
positions between intrablock and interblock (NJPB). These pulse positions
2-D arrays are shown in Fig. 4. We propose to use both the intrablock and the
interblock correlations for steganalysis. The feature extraction procedure can be
summarized in Fig. 5.
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Fig. 5. The block diagram of the feature constructing based on intrablock and
interblock correlations.

A. Neighboring Joint Density on Intra-block. Let P denote the pulses
positions array consisting of M ×N blocks Pij , (i = 1, 2, . . . ,M ; j = 1, 2, . . . , N).
The neighboring joint density matrix of horizontal, vertical, main diagonal, and
minor diagonal based on the intra-block 2-D are denoted as NJh

intra, NJv
intra,

NJm
intra, and NJd

intra respectively. These formulaes are given by:

NJh
intra(x, y) =

∑M
i=1

∑N
j=1

∑9
m=1

∑10
n=1 δ

(
Qijmn = x,Qij(m+1)n = y

)
90MN

(4)

NJv
intra(x, y) =

∑M
i=1

∑N
j=1

∑9
m=1

∑10
n=1 δ

(
Qijmn = x,Qijm(n+1) = y

)
90MN

(5)

NJm
intra(x, y) =

∑M
i=1

∑N
j=1

∑9
m=1

∑9
n=1 δ

(
Qijmn = x,Qij(m+1)(n+1) = y

)
90MN

(6)

NJd
intra(x, y) =

∑M
i=1

∑N
j=1

∑9
m=1

∑9
n=1 δ

(
Qij(m+1)n = x,Qijm(n+1) = y

)
90MN

(7)
where Qijmn is the pulse position located at the mth row and the nth column
in the block Pij ; δ = 1 if its arguments are satisfied, otherwise δ = 0; x and y
are integers. In our prior detection, the values of x and y are in the range [0, 7],
and each NJintra consists of 64 features. For computational efficiency, we define
NJintra(x, y) as the neighboring joint density features on intra-block, calculated
as follows:

NJintra(x, y) = {NJh
intra(x, y)+NJv

intra(x, y)+NJm
intra(x, y)+NJd

intra(x, y)}/4
(8)
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B. Neighboring Joint Density on Inter-block. Similarly, the inter-block
neighboring joint density matrix on horizontal direction NJh

inter, the matrix on
vertical direction NJv

inter, the matrix on main diagonal NJm
inter, and the matrix

on minor diagonal NJd
inter are constructed as follows:

NJh
inter(x, y) =

∑4
m=1

∑5
n=1

∑M
i=1

∑N−1
j=1 δ

(
Qijmn = x,Q(i+1)jmn = y

)
25M(N − 1)

(9)

NJv
inter(x, y) =

∑4
m=1

∑5
n=1

∑M−1
i=1

∑N
j=1 δ

(
Qijmn = x,Qi(j+1)mn = y

)
25(M − 1)N

(10)

NJm
inter(x, y) =

∑4
m=1

∑4
n=1

∑M−1
i=1

∑N
j=1 δ

(
Qijmn = x,Q(i+1)(j+1)mn = y

)
16(M − 1)(N − 1)

(11)

NJd
inter(x, y) =

∑4
m=1

∑4
n=1

∑M−1
i=1

∑N
j=1 δ

(
Q(i+1)jmn = x,Qi(j+1)mn = y

)
16(M − 1)(N − 1)

(12)
Similarly, the values of x and y are in [0, 7] and each NJinter has 64 features.

We define NJinter(x, y) as the neighboring joint density features on inter-block,
calculated as follows:

NJinter(x, y) = {NJh
inter(x, y)+NJv

inter(x, y)+NJm
inter(x, y)+NJd

inter(x, y)}/4
(13)

4 Experiments and Results

To evaluate the detection performance of the proposed NJPB steganalysis
method, several experiments are conducted, the results are compared with some
state of the art FCB steganalysis method to verify the validity of the proposed
model. This section starts with an introduction of the data-set used in this work,
followed by the structure and the training details of the model. Then, we eval-
uate the importance of four kinds of FCB correlations. Finally, we compare the
performance of the proposed model and other state of the art FCB steganalysis
models under different conditions, including different embedding rates, different
durations and so on.

4.1 Setup

The proposed NJPB was primarily evaluated and contrasted on the speech data-
set published by Lin et al. [10]. This data-set contains 41 h of Chinese speech,
72 h of English speech and different gender. The speech data-set includes different
male and female speakers. The origin speech samples have been cut into 100 ms
segments. The same length segments are successive and non-overlapped. All the
segments are converted from their origin WAV format to PCM format with mono,
8 kHz, 16 bits quantization by FFmpeg. Those segments are used to generate the
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Fig. 6. Neighboring joint densities of the pulses positions 2-D arrays and the absolute
differences arrays between intrablock and interblock respectively. The samples in this
experiment are generated by Geiser method using 300,000 sub-frames, at 12.2 kbit/s
mode and 100% embedding rate from 300,000 sub-frames.
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cover segment data-set and stego segment data-set respectively. There are three
methods involved in the steganographic experiments, Geiser [6], Miao [13] at
the modes of η =1, 2 and 3 respectively, one adaptive steganography AFA [17]
(with constraint height h = 7 in the STCs). In the experiments, we use the RBR
(Relative embedding rate) to denote the embedding ratio, which represents the
ratio of length of message m to the length of cover audio n. 20%, 40%, . . . , 100%
RBR are used to generate the corresponding stego.

The classification accuracy PA is used to measure the detection performance,
which is defined as the proportion of the tested AMR audio correctly classified
for each of the categories. The calculation of PA is shown in (14)

PA =
PTP + PTN

2
(14)

where PTP is the probability of the true positives correctly distinguished, that is
the stego samples correctly distinguished, PTN is the probability of the true neg-
atives correctly distinguished, that is the cover samples correctly distinguished.
PA shows the accuracy rate of the steganalysis scheme which is used to detect
the tested steganography schemes. Larger values of PA correspond to better
steganalysis and thus more effective detectability but lower security.

For each experiment, randomly chosen 2000 of the samples for training, the
remaining 2000 of the samples were used for testing, and we applied those param-
eters to all later experiments. The number of cover samples and the number of
stego are in pair, that is the ratio of cover and stego in all experiments is half
and half. Besides that, each experiment picked up the cover and stego samples
respectively according to the required language, embedding rate and sample
length. In order to compare with other methods, we also conducted the compar-
ison tasks on the two state of the art FCB steganalysis methods: Fast-SPP [16]
and MTJCE [14]. We used the soft-margin support vector machines (C-SVM) [2]
with Gaussian kernel and default parameters as the classifiers.

4.2 Embedding Effect on Pulses Positions Distributions

In this part, we explored the statistical property of pulses positions and found
that, most FCB steganographic systems modify the pulses positions and hence
change the correlation of neighboring pulses positions. Specifically, embedding of
the message modify the neighboring joint distribution, so that, Markov transition
probabilities are affected. Our study also shows that, that Markov approach does
not completely represent the neighboring joint relation, that is, it falls short of
fully exploring the modification caused by information-hiding. The steganalysis
method described in this paper exploits the independence of the stego noise
as well. An example of the modification of the joint density is illustrated by
Fig. 6. Figure 6(a) and (b) show the cover between intrablock and interblock
of the neighboring joint density probability, respectively. (c) and (d) show the
stego respectively. Figure 6(e) and (f) are the difference of the intrablock and
interblock neighboring joint features respectively. Although Fig. 6(c) and (d) look
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Table 2. Detection accuracy (%) of 100ms samples under different embedding rate
for English language at 12.2 kb/s mode. The number in the parentheses indicates a
corresponding dimension of the steganalytic feature.

Steganalysis
scheme

Steganography
scheme

Embedding rate (RBR)

0.2 0.4 0.6 0.8 1.0

Fast-SPP (7-D) [16] AFA [17] 52.90 56.10 60.48 65.19 71.09

Geiser [6] 77.82 89.82 95.91 98.40 99.62

Miao (η = 1) [13] 60.58 67.44 71.66 76.78 81.92

Miao (η = 2) [13] 58.55 65.62 71.77 77.48 81.60

Miao (η = 3) [13] 58.78 65.24 72.24 76.71 80.74

MTJCE (66-D) [14] AFA 52.74 56.08 60.97 70.05 78.19

Geiser 87.82 97.94 99.84 100.00 100.00

Miao (η = 1) 60.95 72.35 81.94 89.24 94.43

Miao (η = 2) 58.58 66.40 73.73 80.79 86.00

Miao (η = 3) 58.55 66.32 73.66 80.08 85.25

NJPB (128-D) AFA 52.75 57.41 63.20 74.12 84.27

Geiser 96.34 99.84 99.99 100.00 100.00

Miao (η = 1) 64.47 78.74 88.85 95.03 98.03

Miao (η = 2) 58.73 68.27 76.00 83.41 89.02

Miao (η = 3) 59.05 67.79 76.54 83.43 89.17

identical, the neighboring joint densities are different. The differences are given
in Fig. 6(c) and (f), indicating that information hiding modifies the neighboring
joint density. Figures 6(a) and (c) also demonstrate that the intrablock-based
feature is a effective feature to detect FCB steganography.

4.3 Results and Discussion

We use two most related steganalytic feature sets for comparison, Fast-SPP [16]
with 7-D features and MTJCE [14] with 66-D features. As the Table 2 shows,
the proposed NJBP scheme always achieves the best detection accuracy than
Fast-SPP and MTJCE. These experiments results is in accordance with the
theoretical analysis. Beside the paired pulse, the intricate correlation which exist
among pulse and its neighbouring pulse at different direction is useful.

Since deep learning is different machine learning method such as SVM, we
would like to investigate the method utilization and efficiency. On one hand, we
compare the detection accuracy of NJBP to deep learning method, SRCNet [8].
On the other hand, we compare the model efficiency. Table 3 shows the perfor-
mance of each model for different FCB steganography. We can observe that when
the payload rate is low, SRCNet is better than NJPB. When the payload rate
is high, the advantage in SRCNet is not prominent for AFA, Geiser, and Miao.
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Table 3. Detection accuracy (%) of NJPB vs. SRCNet [8] with 100ms samples under
different embedding rate for English language at 12.2 kb/s mode.

Steganalysis
scheme

Steganography
scheme

RBR

0.2 0.4 0.6 0.8 1.0

SRCNet [8] AFA 52.85 56.95 62.58 74.18 82.13

Geiser 99.92 100.00 100.00 100.00 100.00

Miao (η = 1) 80.80 89.55 93.89 97.06 98.25

Miao (η = 2) 68.80 76.08 82.41 85.83 88.29

Miao (η = 3) 71.08 75.38 83.16 85.29 89.48

NJPB AFA 52.75 57.41 63.20 74.12 84.27

Geiser 96.34 99.84 99.99 100.00 100.00

Miao (η = 1) 64.47 78.74 88.85 95.03 98.03

Miao (η = 2) 58.73 68.27 76.00 83.41 89.02

Miao (η = 3) 59.05 67.79 76.54 83.43 89.17

It is interesting to observe NJPB performs slightly better SRCNet for AFA. The
features learned by SRCNet is the speech content itself not the feature caused
by information hiding. It also indicate that no matter how powerful a learning
tool, the primary issue in steganalytic schemes is to design a efficient features.
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Fig. 7. Training samples comparison.

We also tested the detection efficiency of these two models. The results
are shown in Fig. 7. Significant different order of magnitude between the two
schemes. The training samples in SRCNet is far more than in the NJPB. How-
ever, the collection of training samples is both time consuming and quite costly.
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The quantity and quality of enough training samples are important for SRCNet
to obtain an accurate classification. For training a deep network, a appropri-
ate training data set has become more important than that of SVM. Detection
accuracy is important, but efficiency is equally important. So NJPB is more
practical.

5 Conclusion

In this paper, we propose a novel block-based steganalysis method for the FCB
steganography. We conducted extensive experimental results to compare the
performance of NJPB as well that of two state-of-the-art steganalysis methods
known as the Markov method and the Fast-SPP method. Three two stegano-
graphic methods under consideration were Geiser, Miao and AFA. The train-
ing samples is only one-tenth of SRCNet. These results demonstrate that the
proposed NJPB method offers a effective and practical performance for both
steganographic methods. In particular, NJPB achieves the significant improve-
ments for detecting the STC-based adaptive AMR steganography at low embed-
ding rate.
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Abstract. Image steganalysis is a very important research topic in the
field of information security. The existing feature based image steganaly-
sis methods have achieved the appealing performance. The performance
of them greatly depends on the quality of the hand-crafted steganaly-
sis feature vectors, such as Cartesian Calibration PEV (CC-PEV), DCT
Residuals (DCTR), and so on. However, these feature vectors may con-
tain some redundant elements that will reduce the discrimination power
and increase the computation cost. In this paper, a novel feature selec-
tion model is proposed for JPEG image steganalysis. Specifically, the
proposed model imposes an l2,1-structural constraint on the projection
matrix for feature selection. Further, to make the model insensitive to
noises and outliers, a capped l2-norm based loss function is adopted.
Moreover, a graph-based manifold regularization term which exploits the
intrinsic local geometric structure of the data is added into the objec-
tive function to select the effective feature elements. Finally, an alter-
nately iterative optimization algorithm with proven convergence is given
to solve the proposed model. The extensive experiments on three state-
of-the-art JPEG steganographic algorithms with 0.1 and 0.2 embedding
rates and two JPEG quality factors show that the proposed model can
effectively remove some irrelevant and redundant elements meanwhile
retaining high detection accuracy.

Keywords: Steganalysis · Feature selection · JPEG image ·
Dimensionality reduction · Sparsity

1 Introduction

Steganography is the science of hiding secret messages within the innocent cover
media, such as text, image, audio, video, and so on. Among these embedding
covers, image is considered to be one of the most appropriate ones due to its wide-
use for information storage and transmission in modern society. Thus, image
steganography has attracted great attention over the past few decades [1,2].

As the counter-measure of steganography, steganalysis is the technology of
detecting the presence of hidden data. In recent years, numerous image ste-
ganalysis methods based on the hand-crafted features have been proposed.
c© Springer Nature Switzerland AG 2020
H. Wang et al. (Eds.): IWDW 2019, LNCS 12022, pp. 322–336, 2020.
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The detection performance usually depends on these features. Thus, many stud-
ies are devoted to design good feature extractors, such as CC-PEV [3], Cartesian-
Calibrated JPEG Rich Model (CC-JRM) [4], DCTR [5], Gabor Filter Residuals
(GFR) [6] and GFR-Gabor Symmetric Merging (GFR-GSM) [7]. However, the
extracted steganalysis features might contain some redundant elements due to
the small difference between the cover and stego images. The performance and
computational efficiency are disturbed by the redundant features. To tackle this
problem, feature selection technique is introduced to image steganalysis tasks,
and it shows the promising effects. For example, Mohammadi and Abadeh [8] pre-
sented a novel feature-based blind JPEG image steganalysis method by employ-
ing an artificial bee colony based feature selection strategy. Based on the parti-
cle swarm optimization (PSO) algorithm, Chhikara et al. [9] proposed a feature
selection method by combining the filter algorithm and a novel wrapper algo-
rithm. Adeli and Broumandnia [10] developed an adaptive PSO based feature
selection method, in which the inertia weight of PSO is adaptively adjusted.
Pathak et al. [11] introduced a novel levy flight-based grey wolf optimization
method to select the prominent features from a set of original features. Ma et al.
[12] put forward a universal steganalysis feature selection approach based on
the decision rough set α-positive region reduction to measure the importance of
feature components and select the ones with high attribute separability.

It is noteworthy that feature selection technique is also extensively used in
other fields, such as machine learning. With the arrival of the era of big data, the
amount of the data increases rapidly. This brings some problems: over-fitting,
dimension curse, high complexity and low efficiency. Therefore, dimensionality
reduction is important and necessary. Recently, more and more scholars con-
centrate on feature selection which is an effective dimension reduction way. For
example, Du et al. [13] proposed a feature learning model through the matrix fac-
torization. Lan et al. [14] proposed a new feature selection approach by combin-
ing the capped l2-norm loss and l2,p-norm regularizer. Chang et al. [15] proposed
an unsupervised feature selection method to select the discriminative features
by using dual self-representation and manifold regularization. Zheng et al. [16]
proposed a feature selection learning method from the view of sparse subspace
learning. Nie et al. [17] developed an adaptive-weighting feature learning method
by introducing a discriminative regression-based structure.

Inspired by these feature selection methods in machine learning, a novel fea-
ture selection model for image steganalysis is proposed in this paper. Specifically,
on the one hand, the structurally sparse projection matrix W constrained by the
l2,1-norm is adopted to achieve the purpose of feature selection. On the other
hand, the capped l2-norm based loss function is introduced to make the model
insensitive to outliers and noises. In addition, a graph-based manifold regular-
ization term is incorporated into the objective function to make full use of the
geometric structure information of the data. In this way, the possibly redun-
dant feature elements can be removed, and the most prominent ones can be
selected from the original feature vector. Subsequently, these selected feature ele-
ments are fed into a classifier for classification. The extensive comparison exper-
iments demonstrate the effectiveness of the proposed model for JPEG image
steganalysis.
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In sum, the paper makes the following contributions:

• A new feature selection model is proposed for image steganalysis, by which
the discriminative power of the data can be maintained or enhanced. Thus,
it can promote the detection performance of image steganalysis.

• By adopting a capped l2-norm based loss function, the proposed feature selec-
tion model can both remove the outliers and alleviate the negative impact of
noises.

• By imposing a structurally sparse constraint on the projection matrix, the
rows corresponding to the inessential features can be enforced to become zeros
or close to zeros.

• By introducing a manifold regularization term based on the geometric graph
to the objective function, the proposed method can preserve the local struc-
ture of the data.

• The effectiveness of the proposed method is demonstrated through extensive
comparison experiments on three commonly used steganographic algorithms
with two different embedding rates.

In the rest of this paper, we first describe the different phases of image
steganalysis method: feature selection and classification. In the feature selection
step, we formulate the optimization problem and its corresponding solution of
the proposed model. And then, extensive experiments are conducted in Sect. 3.
At last, Sect. 4 is the conclusion.

2 Proposed Method

Let X = [x1,x2, . . . ,xn] ∈ R
d×n be the training data, where d is the number

of features and n is the number of samples, respectively. The corresponding
labels are represented by Y = [y1, · · · ,yn] ∈ R

c×n with one-hot encoding, where
yi = [y1

i , · · · , yc
i ]

T ∈ R
c is the label vector related to the i-th sample xi, and c is

the number of the classes. Let W = [w1;w2; . . . ;wd] ∈ R
d×c be the projection

matrix with wi ∈ R
1×c being the projection vector corresponding to the i-th

feature.

2.1 Feature Selection Step

In practice, least square regression is one of the most commonly used losses in
virtue of its smoothness. However, it is sensitive to noises and outliers. Inspired
by [14], we utilize the capped l2-norm based loss:

min
W

n∑

i=1

min(‖WTxi − yi‖2, ε) (1)

where ε is the thresholding parameter. According to Eq. (1), when the i-th sample
xi is an outlier, the value of ‖WTxi − yi‖2 will be larger than ε accordingly,
and thus, the loss of xi will be capped as ε. This reduces the impact of outliers.
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Besides, the residual ‖WTxi − yi‖2 is not squared and thus noises have less
importance than the squared one. Thus, the capped l2-norm loss is insensitive
to noises.

For better solving Eq. (1), we usually cap the residual of outliers as zero.
Thus, Eq. (1) can be further rewritten as

min
W

n∑

i=1

ui‖WTxi − yi‖2 (2)

where ui is defined as

ui =
{

1, if ‖WTxi − yi‖2 ≤ ε
0, otherwise (3)

To preserve the intrinsic geometrical structure of the data, the graph-based
manifold regularizer is introduced. Conventionally, the manifold regularization
is usually applied to the unsupervised or semi-supervised settings so as to make
use of abundant unlabeled samples. While we apply it to the supervised feature
selection with all labels available, and consider that if the true labels of xi and
xj are the same, their corresponding predicted labels ŷi and ŷj should also be
identical. So the geometry structure of the data in the feature space can be
preserved by minimizing the following function

R(Ŷ ) =
1
2

n∑

i,j=1

‖ŷi − ŷj‖22Sij = tr(Ŷ LŶ T ) = tr[(WTX)L(WTX)T ] (4)

where Sij is denoted as the pair-wise similarity between two data points xi and
xj , and it is measured as

Sij =
{

1, if yi = yj

0, otherwise (5)

L is the graph Laplacian matrix:

L = Ŝ − S (6)

where Ŝ is a diagonal matrix with diagonal elements Ŝii =
∑n

j=1 Sij , and S =
[Sij ]n×n is the graph adjacency matrix.

In order to fulfill feature selection, we insert an l2,1-norm regularization given
by ‖W‖2,1 =

∑d
j=1 ‖wj‖2 into the objective function. The l2,1-norm regularizer

has the effects of enforcing row sparseness of the projection matrix W , thus is
particularly suitable for feature selection. As a result, the proposed objective
function is

min
W

n∑

i=1

ui‖WTxi − yi‖2 + λ1tr[(WTX)L(WTX)T ] + λ2‖W‖2,1 (7)

where λ1 > 0 and λ2 > 0 are two regularization parameters to balance the
importance of each quantity.
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Optimization Algorithm. In this part, an efficiently iterative algorithm is
proposed to solve the problem (7). Firstly, define a diagonal matrix M ∈ R

n×n

with the i-th diagonal element

Mii = ui‖WTxi − yi‖−1
2 (8)

Then the objective function (7) can be converted into

min
W,M

n∑

i=1

Mii‖WTxi − yi‖22 + λ1tr[(WTX)L(WTX)T ] + λ2‖W‖2,1 (9)

Since
n∑

i=1

Mii‖WTxi − yi‖22

=
n∑

i=1

Mii(WTxi − yi)T (WTxi − yi)

= tr[(WTX − Y )M(WTX − Y )T ] (10)

and

‖W‖2,1 = tr(WTDW ) (11)

where D ∈ R
d×d is a diagonal matrix

D =

⎡

⎢⎣

1
2‖w1‖2

. . .
1

2‖wd‖2

⎤

⎥⎦ (12)

with wi being the i-th row of W , Eq. (9) can be transformed into the following
matrix form:

min
W,D,M

tr[(WTX − Y )M(WTX − Y )T ] + λ1tr[(WTX)L(WTX)T ]

+λ2tr(WTDW ) (13)

By setting derivative of (13) with respect to W to zero, we have

W = (XMXT + λ1XLXT + λ2D)−1XMY T (14)

The proposed algorithm is shown in Algorithm 1, where Obj(t) is denoted as
the value of the objective function (7) at the t-th iteration

Obj(t) =
n∑

i=1

ui‖WT
(t)xi − yi‖2 + λ1tr[(WT

(t)X)L(WT
(t)X)T ] + λ2‖W(t)‖2,1 (15)
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Algorithm 1. Solving problem (7)

Input: Data matrix X, label matrix Y , regularizer parameters λ1 and λ2, thresh-
olding parameter ε
Initialization: Set t = 0, D0 = [1]d×d, M0 = [1]d×d

Compute the graph Laplacian matrix L by Eq. (6)
While not converged do
1. Update W(t+1) by Eq. (14)
2. Update M(t+1) by Eq. (8)
3. Update D(t+1) by Eq. (12)
4. Compute er = |Obj(t + 1) − Obj(t)|
5. t = t + 1
End while
Output: Projection matrix W

Convergence Analysis. Before analyzing the convergence of the proposed
optimization algorithm, a lemma provided in [18] is given firstly.

Lemma 1. For any two positive values a and b, the following inequality holds

√
a − a

2
√

b
≤

√
b − b

2
√

b
(16)

By referring to [19,20], the following theorem guarantees the convergence
property of the proposed optimization algorithm.

Theorem 1. In Algorithm 1, the objective values monotonically decrease until
convergence.

Proof. Please refer to the Appendix for the detailed proof of Theorem1.

2.2 Classification Step

Through the above feature selection step, we obtain the projection matrix W
calculated by Algorithm 1. According to the learned W , we can select the
most discriminant feature elements. After selecting, we perform the last step
of the proposed method. That is, constructing a steganography detector based
on the selected prominent feature elements to distinguish stego images from
cover images. Steganalysis detection is usually cast as a supervised classification
problem implemented using machine learning, and it is required to train a clas-
sification model. As we all know, the ensemble classifier is a favorable and fast
tool for classification. Thus, we employ the Fisher Linear Discriminant (FLD)
ensemble classifier [21] which is built by fusing decisions of weak and unstable
base learners implemented as the FLD.
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3 Experiments

3.1 Experimental Data and Setup

In the experiments, 10,000 gray-scale images with size of 512 × 512 coming from
the Bossbase 1.01 database are converted into JPEG images with quality factors
(QFs) 75 and 95 as experimental cover images. The stego images are generated
by hiding messages using three popular embedding algorithms nsF5 [22], UED
[23] and J-UNIWARD [24] with payloads of 0.1 and 0.2 bits per nonzero AC
DCT coefficient (bpnzac). The experiments are tested on data sets generated by
extracting two sets of features: CC-PEV [3] and DCTR [5] from these cover and
stego images, where the lengths of the two feature vectors are 548 and 8,000,
respectively.

To evaluate the effectiveness of the proposed method, the original features
(548-D or 8,000-D) without feature selection (denoted by Allfea) is taken as the
baseline and two state-of-the-art feature selection methods proposed in [14] and
[17] are selected as the compared algorithms. We arrange all the features in a
descending sort based on the values of ‖wi‖2, i = 1, 2, . . . , d, where wi is the
i-th row of W . And then we respectively select the top-K features as the inputs
of subsequent classifier. Here, K = �ratio × d�, where ratio varies from 10% to
90%. In the experiments, the classification error is quantified using the minimal
total error under equal priors PE = minPFA

1
2 (PFA + PMD), where PFA and

PMD represent the false alarm and missed-detection probabilities, respectively.
We consider the median value of PE over 5 random tests (denoted by PE) as the
performance evaluation metric. For fair comparison, all algorithms are evaluated
using the FLD ensemble classifier [21].

3.2 Experimental Results and Analysis

The experimental results are shown in Tables 1, 2, 3, 4, 5, 6, 7 and 8, where the
results with best performance are presented in bold.

Table 1. Detection results (PE) with payload of 0.1 bpnzac for QF 75 when stegana-
lyzed with CC-PEV feature vector.

Selected
ratio

nsF5 UED J-UNIWARD

[14] [17] Proposed [14] [17] Proposed [14] [17] Proposed

10% 0.3124 0.3058 0.2906 0.4622 0.4382 0.4220 0.4942 0.4858 0.4776

30% 0.3008 0.2886 0.2778 0.4508 0.4272 0.4202 0.4862 0.4720 0.4718

50% 0.2926 0.2842 0.2852 0.4534 0.4252 0.4186 0.4830 0.4798 0.4704

70% 0.2832 0.2874 0.2870 0.4272 0.4274 0.4118 0.4796 0.4752 0.4716

90% 0.2916 0.2922 0.2874 0.4332 0.4284 0.4188 0.4780 0.4784 0.4708

Allfea 0.2908 0.4300 0.4850
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Table 2. Detection results (PE) with payload of 0.1 bpnzac for QF 95 when stegana-
lyzed with CC-PEV feature vector.

Selected
ratio

nsF5 UED J-UNIWARD

[14] [17] Proposed [14] [17] Proposed [14] [17] Proposed

10% 0.2642 0.2542 0.2456 0.4864 0.4828 0.4816 0.4932 0.4904 0.4800

30% 0.2330 0.2262 0.2214 0.4930 0.4936 0.4796 0.4890 0.4888 0.4846

50% 0.2228 0.2190 0.2150 0.4862 0.4856 0.4792 0.4856 0.4872 0.4812

70% 0.2230 0.2240 0.2182 0.4868 0.4876 0.4810 0.4878 0.4866 0.4770

90% 0.2230 0.2288 0.2226 0.4908 0.4902 0.4834 0.4850 0.4812 0.4776

Allfea 0.2336 0.4872 0.4838

Table 3. Detection results (PE) with payload of 0.2 bpnzac for QF 75 when stegana-
lyzed with CC-PEV feature vector.

Selected
ratio

nsF5 UED J-UNIWARD

[14] [17] Proposed [14] [17] Proposed [14] [17] Proposed

10% 0.1054 0.1058 0.0798 0.3978 0.3586 0.3538 0.4596 0.4316 0.4160

30% 0.0860 0.0668 0.0592 0.3756 0.3426 0.3322 0.4478 0.4300 0.4170

50% 0.0774 0.0662 0.0602 0.3576 0.3460 0.3328 0.4288 0.4258 0.4172

70% 0.0670 0.0656 0.0614 0.3568 0.3488 0.3338 0.4304 0.4306 0.4272

90% 0.0672 0.0628 0.0636 0.3516 0.3442 0.3396 0.4324 0.4310 0.4334

Allfea 0.0684 0.3516 0.4380

Table 4. Detection results (PE) with payload of 0.2 bpnzac for QF 95 when stegana-
lyzed with CC-PEV feature vector.

Selected
ratio

nsF5 UED J-UNIWARD

[14] [17] Proposed [14] [17] Proposed [14] [17] Proposed

10% 0.0444 0.0386 0.0282 0.4750 0.4724 0.4572 0.4738 0.4722 0.4604

30% 0.0204 0.0146 0.0168 0.4652 0.4588 0.4546 0.4668 0.4724 0.4610

50% 0.0204 0.0148 0.0146 0.4628 0.4608 0.4446 0.4664 0.4674 0.4534

70% 0.0150 0.0124 0.0118 0.4586 0.4656 0.4554 0.4662 0.4714 0.4588

90% 0.0140 0.0124 0.0118 0.4628 0.4554 0.4558 0.4704 0.4692 0.4642

Allfea 0.0128 0.4610 0.4746
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Table 5. Detection results (PE) with payload of 0.1 bpnzac for QF 75 when stegana-
lyzed with DCTR feature vector.

Selected
ratio

nsF5 UED J-UNIWARD

[14] [17] Proposed [14] [17] Proposed [14] [17] Proposed

10% 0.2198 0.2390 0.2168 0.3442 0.3354 0.3368 0.4680 0.4600 0.4520

30% 0.2122 0.2218 0.2150 0.3294 0.3304 0.3288 0.4494 0.4454 0.4466

50% 0.2194 0.2246 0.2124 0.3272 0.3292 0.3220 0.4462 0.4436 0.4450

70% 0.2212 0.2250 0.2174 0.3222 0.3276 0.3212 0.4482 0.4424 0.4440

90% 0.2276 0.2274 0.2222 0.3306 0.3278 0.3278 0.4486 0.4442 0.4436

Allfea 0.2328 0.3370 0.4500

Table 6. Detection results (PE) with payload of 0.1 bpnzac for QF 95 when stegana-
lyzed with DCTR feature vector.

Selected
ratio

nsF5 UED J-UNIWARD

[14] [17] Proposed [14] [17] Proposed [14] [17] Proposed

10% 0.2160 0.2296 0.1784 0.4748 0.4762 0.4644 0.4956 0.4828 0.4874

30% 0.1750 0.1818 0.1612 0.4674 0.4704 0.4636 0.4852 0.4868 0.4824

50% 0.1710 0.1684 0.1560 0.4660 0.4644 0.4628 0.4852 0.4868 0.4830

70% 0.1612 0.1612 0.1546 0.4664 0.4656 0.4626 0.4898 0.4842 0.4804

90% 0.1560 0.1570 0.1496 0.4706 0.4710 0.4638 0.4882 0.4868 0.4810

Allfea 0.1584 0.4772 0.4940

Table 7. Detection results (PE) with payload of 0.2 bpnzac for QF 75 when stegana-
lyzed with DCTR feature vector.

Selected
ratio

nsF5 UED J-UNIWARD

[14] [17] Proposed [14] [17] Proposed [14] [17] Proposed

10% 0.0476 0.0572 0.0457 0.1892 0.1946 0.1852 0.3960 0.3854 0.3828

30% 0.0456 0.0476 0.0430 0.1712 0.1744 0.1660 0.3800 0.3736 0.3748

50% 0.0496 0.0520 0.0478 0.1650 0.1680 0.1602 0.3746 0.3648 0.3652

70% 0.0516 0.0570 0.0494 0.1694 0.1702 0.1658 0.3698 0.3650 0.3654

90% 0.0578 0.0568 0.0540 0.1660 0.1720 0.1668 0.3660 0.3690 0.3646

Allfea 0.0600 0.1708 0.3728



A Novel Feature Selection Model for JPEG Image Steganalysis 331

Table 8. Detection results (PE) with payload of 0.2 bpnzac for QF 95 when stegana-
lyzed with DCTR feature vector.

Selected
ratio

nsF5 UED J-UNIWARD

[14] [17] Proposed [14] [17] Proposed [14] [17] Proposed

10% 0.0356 0.0216 0.0124 0.4204 0.4240 0.4204 0.4672 0.4588 0.4546

30% 0.0154 0.0140 0.0096 0.4142 0.4138 0.4054 0.4672 0.4542 0.4510

50% 0.0102 0.0102 0.0074 0.4062 0.4070 0.3964 0.4608 0.4606 0.4546

70% 0.0106 0.0114 0.0080 0.4026 0.4046 0.3968 0.4612 0.4580 0.4538

90% 0.0108 0.0096 0.0072 0.3994 0.4036 0.3968 0.4626 0.4570 0.4534

Allfea 0.0090 0.4066 0.4636

From these experimental results, the following findings can be given.

(1) The performance of the different number of the selected feature elements
(10%, 30%, 50%, 70%, 90%) is generally better than that of the Allfea,
which shows that there are redundant elements in the original steganalysis
feature vectors.

(2) The detection errors are not always decreased with the increase of the num-
ber of the selected features, which indicates that the detection performance
is not always improved by selecting more features.

(3) The proposed method achieves the lowest detection errors on most cases
by only selecting not more than 70% of features. Specifically, the proposed
method obtains the best detection performance on 21 out of 24 steganalysis
tasks.

To sum up, the proposed feature selection model is superior to the other
feature selection ones on steganalysis applications, which implies that it is a
powerful algorithm for the dimension reduction on JPEG image steganalysis
tasks.

3.3 Parameter Sensitivity Analysis

In this part, we discuss the influence of the different parameters involved in
the proposed feature selection model. The model includes a thresholding param-
eter ε as well as two regularization parameters λ1 and λ2. Taking UED and
J-UNIWARD steganographic algorithms for examples, the detection perfor-
mance of the proposed model with respect of ε as well as λ1 and λ2 under different
values is shown in Figs. 1 and 2, where ε is tuned within {0, 0.2, 0.4, 0.6, 0.8, 1}
as well as λ1 and λ2 are tuned within {0.001, 0.01, 0.1, 1, 10, 100, 1000}. From
Fig. 1, it can be seen that the detection performance is almost invariable when
the values of ε is controlled in [0.2, 1], which means that the performance of the
proposed algorithm is insensitive to the parameter ε provided that its value in a
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reasonable range. From Fig. 2, it can be observed that the proposed model can
obtain roughly consistent detection performance. In other words, the proposed
model is insensitive to the regularization parameters λ1 and λ2.
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Fig. 1. The sensitivity of the proposed model with respect to the choice of ε.
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Fig. 2. The sensitivity of the proposed model with respect to the choice of λ1 and λ2.
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4 Conclusion

In many image steganalysis tasks, there are some correlations and redundan-
cies in the hand-crafted feature vector due to the small distribution difference
between the cover and stego images. This will result in low detection perfor-
mance and large computational costs. To this end, this paper proposes a novel
feature selection model for JPEG image steganalysis. Specifically, a structurally
sparse projection matrix imposed by an l2,1-norm is adopted to exploit the cor-
relation information among features. It is able to select the most significant and
influential feature elements. Meanwhile, a capped l2-norm based loss function is
introduced to remove the outliers and reduce the impact of noises. A graph-based
manifold regularization term is inserted into the objective function to preserve
the geometric structure information of the data. It is helpful to select the signif-
icant and influential feature elements. In this way, the most discriminant ones
are selected, and so, the performance of steganalysis is improved. Finally, an
iterative algorithm is proposed to optimize the problem, whose computational
complexity and convergence are discussed. A series of experiments are conducted
on two kinds of typical feature vectors (548-D CC-PEV and 8,000-D DCTR).
The experimental results show that the performance of our method is supe-
rior to the baseline and state-of-the-art methods, which verifies the validity of
the proposed method. In the future, the experiments will be further extended,
and higher dimensional steganalysis features, such as CC-JRM [4], GFR [6] and
GFR-GSM [7], will be explored to examine the effectiveness of the model.

Acknowledgements. The work is supported by the National Natural Science Foun-
dation of China (Grant No. 61872368). The authors gratefully acknowledge the helpful
comments and suggestions of the reviewers, which have improved the presentation.

Appendix

Proof of Theorem 1. According to the step 1 of Algorithm 1 in the t-th
iteration and Eq. (11), we have

W(t+1) = arg min
W

n∑

i=1

ui‖WTxi − yi‖2 + λ1tr[(WTX)L(WTX)T ] + λ2‖W‖2,1

= arg min
W

n∑

i=1

ui‖WTxi − yi‖2 + λ1tr[(WTX)L(WTX)T ]

+λ2tr(WTD(t)W ) (17)

which indicates that
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n∑

i=1

ui‖WT
(t+1)xi − yi‖2 + λ1tr[(WT

(t+1)X)L(WT
(t+1)X)T ]

+λ2tr(WT
(t+1)D(t)W(t+1))

≤
n∑

i=1

ui‖WT
(t)xi − yi‖2 + λ1tr[(WT

(t)X)L(WT
(t)X)T ]

+λ2tr(WT
(t)D(t)W(t)) (18)

According to Eq. (12), the following equations hold:

tr(WT
(t+1)D(t)W(t+1)) =

d∑

i=1

‖wi
(t+1)‖22

2‖wi
(t)‖2

(19)

tr(WT
(t)D(t)W(t)) =

d∑

i=1

‖wi
(t)‖22

2‖wi
(t)‖2

(20)

Thus, Eq. (18) can be transformed into the following form:

n∑

i=1

ui‖WT
(t+1)xi − yi‖2 + λ1tr[(WT

(t+1)X)L(WT
(t+1)X)T ] + λ2

d∑

i=1

‖wi
(t+1)‖22

2‖wi
(t)‖2

≤
n∑

i=1

ui‖WT
(t)xi − yi‖2 + λ1tr[(WT

(t)X)L(WT
(t)X)T ] + λ2

d∑

i=1

‖wi
(t)‖22

2‖wi
(t)‖2

(21)

Further, the above inequality can be rewritten as

n∑

i=1

ui‖WT
(t+1)xi − yi‖2 + λ1tr[(WT

(t+1)X)L(WT
(t+1)X)T ]

+λ2

d∑

i=1

(‖wi
(t+1)‖22

2‖wi
(t)‖2

+ ‖wi
(t+1)‖2 − ‖wi

(t+1)‖2
)

≤
n∑

i=1

ui‖WT
(t)xi − yi‖2 + λ1tr[(WT

(t)X)L(WT
(t)X)T ]

+λ2

d∑

i=1

( ‖wi
(t)‖22

2‖wi
(t)‖2

+ ‖wi
(t)‖2 − ‖wi

(t)‖2
)

(22)

By replacing a and b in Lemma 1 with ‖wi
(t+1)‖22 and ‖wi

(t)‖22, we get

‖wi
(t+1)‖2 −

‖wi
(t+1)‖22

2‖wi
(t)‖2

≤ ‖wi
(t)‖2 −

‖wi
(t)‖22

2‖wi
(t)‖2

(23)
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By adding Eqs. (22) and (23) on both sides (note that Eq. (23) is repeated for
1 ≤ i ≤ d), we have

n∑

i=1

ui‖WT
(t+1)xi − yi‖2 + λ1tr[(WT

(t+1)X)L(WT
(t+1)X)T ] + λ2

d∑

i=1

‖wi
(t+1)‖2

≤
n∑

i=1

ui‖WT
(t)xi − yi‖2 + λ1tr[(WT

(t)X)L(WT
(t)X)T ] + λ2

d∑

i=1

‖wi
(t)‖2 (24)

That is to say,

Obj(t + 1) ≤ Obj(t) (25)

Since the values of objective function (7) decrease monotonously and are greater
than zeros, so Algorithm 1 is convergent. Theorem 1 is proven.
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Abstract. The traditional steganalysis feature extraction method can
be mainly divided into two steps. First, the residual image is calculated
by convolution filtering, and then the co-occurrence matrix of residual
image is calculated to obtain the final feature. Previous work calculates
the residual image usually through a set of fixed high-pass filter or a man-
ually designed residual sub-model, and does not utilize the consistency
between pixels in the local area of the natural image. In this paper, we
propose the Non-negative Matrix Factorization (NMF) based steganal-
ysis feature extraction method for spatial image. Considering the num-
ber of pixels used by NMF for prediction and its positional relationship
with the predicted pixels, a plurality of sets of residual sub-models for
acquiring residual images are designed; and then, a new residual com-
bination method is proposed, combining Local Binary Pattern (LBP),
co-occurrence matrix and other statistical information, and the param-
eters in feature extraction is optimized. Finally, we compare the perfor-
mance of the designed features with existing steganalysis features and
analyze the validity of the designed features. In addition, we combine
the existing artificially designed spatial steganalysis features with the
designed features and analyze the validity and complementarity of each
type of features, such as Spatial Rich Model (SRM) and Threshold LBP
(TLBP).

Keywords: Steganalysis · Non-negative Matrix Factorization ·
Pixel-wise mutual prediction · Information hiding

1 Introduction

Steganography refers to concealing secret information in multimedia data with-
out causing suspicion during steganalysis [8,13]. As the opposite art of steganog-
raphy, steganalysis analyses the statistical properties of an image, detecting
whether the image contains secret information.
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The traditional steganalysis is to extract the high-dimensional features of
an image, and then use machine-learning classifiers [2,5] to detect whether the
image contains secret information. The features can be designed in an ad hoc or
empirical manner relying on the designer’s ability, or as the recently new trend
of being automatically learned via convolutional neural networks (CNNs). The
most popular hand-crafted features are extracted from the rich models, in which
the Spatial Rich Model (SRM) [4] is a standard approach for evaluating the secu-
rity of spatial image steganography. In the SRM feature extraction framework,
the features are extracted from an image by a set of high-pass filters to obtain
residual images. Then, steganalytic features are generated by computing and
merging the fourth order co-occurrence matrices of quantized residuals. The dif-
ferent shapes and orientations of linear and non-linear high-pass filters, together
with several residual quantization steps, contribute the diversity of the model.
The steganalytic features modeled the intricate high-order relationships between
pixels and have the powerful ability of detecting (adaptive) steganography. And
the feature of maxSRM [3], which consider selection-channel side information,
further improve the detection ability. Li et al. [7] presented a set of derivative fil-
ters to obtain residual images, the residual images were then fed to an extended
version of Local Binary Pattern (LBP) [11] to generate the steganalytic features
with a non-linear mapping.

Though the recently rapidly development deep learning attracted attentions
of the steganalysis research community [14,16–19], traditional hand-crafted ste-
ganalytic features still have significance in the research community. For example,
though some operations such as forming histogram can be simulated by specially
designed network layers, recent studies also suggest that some important opera-
tions from the SRM framework, such as truncation and quantization, cannot be
effectively learned by deep networks.

In this paper, we propose a new set of steganalytic features based on Non-
negative Matrix Factorization (NMF) [6]. As shown in Fig. 1, with parallel com-
parison to SRM and the Threshold LBP (TLBP) proposed in [7], the new fea-
ture extraction method contains three phases. First, in order to capture intricate
relationships among pixels, NMF with different decomposition ranks and sizes is
designed to generate residual images. This stage resembles the high-pass filtering
and derivative filters used in SRM and method proposed in [7], respectively. Sec-
ond, we use TLBP to capture the deviation caused by steganography in residual
images. Third, we calculate the features from second-order co-occurrence matrix
of the TLBP images, and then aggregate second-order features and utilize non-
linearly mapping to improve feature effectiveness.

The contributions of this work are summarized as follows.

1. Compared with a large number of unsystematically designed high-pass fil-
ters and mathematical derivative filter, the proposed method utilize NMF to
design a set of nonlinear features, which can use the complex relationships
between neighboring pixels to evaluate target pixels.

2. Under different conditions, the proposed NMF features achieve good steganal-
ysis performance. When analyzing the effectiveness of features with different
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experiments, the proposed features achieve the comparable detection ability,
especially in the cover source mismatch cases.

3. When combining with SRM and TLBP features, more powerful detection
ability can be achieved, and even in some cases exceed the maxSRM feature
based on the selected channel, which proves the three features come from
different feature extraction methods are mutually supplementary.

Fig. 1. The feature extraction flows for SRM, TLBP, and the proposed NMF scheme.

The rest of this paper is organized as follows. Section 2 describes the
TLBP riu2

P,R,T for obtaining TLBP images. Section 3 describes the NMF for obtain-
ing residual images, and Sect. 4 explains the detailed feature extraction steps.
Experimental results are demonstrated in Sect. 5. Finally, we conclude the paper
in Sect. 6.

2 Fundamentals of Threshold Local Binary Pattern

In this section we review the LBP riu2
8,1 of Ri proposed in [7].

2.1 Definition of TLBP

LBP [11] is proposed to model the statistics of a texture unit defined within
its neighboring pixels in given distance. Each of neighboring pixels Ip (p ∈
{0, . . . , P − 1}) in given distance R (R > 0) is thresholded by the gray value
of its central pixel Ic to form an P -bit binary pattern. And the P pixels in
the neighborhood can be selected in a clockwise manner. The LBP operator is
defined as

LBPP,R =
P−1∑

p=0

s(Ip − Ic) · 2p, (1)

where s(·) is the binarization function defined as

s(x) =

{
1, x � 0,

0, x < 0.
(2)
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A popular extension is called rotation invariant uniform LBP (LBP riu2

P,R ) [12].

LBP riu2
P,R =

⎧
⎨

⎩

P−1∑
p=0

s(Ip − Ic), if U(LBPP,R � 2),

P + 1, otherwise.
(3)

U(LBPP,R) = |s(Ip−1 − Ic) − s(I0 − Ic)|

+
P−1∑

p=1

|s(Ip − Ic) − s(Ip−1 − Ic)|.
(4)

The Threshold LBP (TLBP) operator is defined as

TLBPP,R,T =
P−1∑

p=0

sT (Ip − Ic) · 2p, (5)

where sT (·) is the binarization function defined as

sT (x) =
{

1, |x| � T
0, |x| < T.

(6)

2.2 TLBP Features for Steganalysis

In order to model pixel relationship in different scales, several values of radius
R are used in the operator defined in Eq. (5). The checkerboard distance (D8
distance) is used to define the spatial distance R between Ip and Ic. When R
is set to 1, 2, and 3, respectively, P equals to 8, 16, and 24. To reduce the
number of LBP codes, neighboring pixels of Ic with a distance of R are divided
into R subsets. Therefore, six neighboring pixel sets are formed, each one with
P = 8, and six resultant TLBP images are generated for each residual image.
The details of the process please see [7].

In our scheme, the LBP riu2
8,1 of Ri operator is used to obtain TLBP images.

Therefore, the value of TLBP image elements ranges from 0 to 9.

3 Obtaining Residual Images with Non-negative Matrix
Factorization

3.1 Definition of Non-negative Matrix Factorization

NMF is developed as a matrix factorization technique, which decomposes non-
negative matrices into physically meaningful data in two dimensional signal
analysis, and has been used for image representation, document analysis and
clustering for its parts-based representation property. In spatial image steganal-
ysis, an image is represented by a two-dimensional matrix whose elements are
non-negative. Thus, NMF can be applied to images. We predict the value of a
central pixel based on its neighboring pixels via NMF and then calculate the
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residuals between the original and predicted values. In this paper, because the
residuals between the original and predicted values satisfy a normal distribution,
we use the Euclidean distance and iterative addition operations to obtain the
NMF solution. Based on the Euclidean distance, we can express the objective
function for NMF as follows:

e2ij =
m∑

i=1

n∑

j=1

(Rij −
K∑

k=1

(Pik · Qkj))2 +
β

2
(||Pik||2 + ||Qkj ||2), (7)

where β is a regularization coefficient that is introduced to avoid over-fitting, Rij

represent the pixel value of original image at location (i, j), Pik and Qkj represent
the corresponding pixel value in the sub-matrix. By using this objective function,
we can find the partial derivatives of Pik and Qkj :

∂e2ij
∂Pik

=
m∑

i=1

n∑

j=1

[
2
(
Rij −

K∑

k=1

(Pik · Qkj)
) · (−Qkj)

]
+ β · Pik

= −2
[
(RQT )ik − (PQQT )ik

]
+ β · Pik,

(8)

∂e2ij
∂Qkj

=
m∑

i=1

n∑

j=1

[
2
(
Rij −

K∑

k=1

(Pik · Qkj)
) · (−Pik)

]
+ β · Qkj

= −2
[
(PTR)kj − (PTPQ)kj

]
+ β · Qkj .

(9)

Then, we can iteratively use the gradient descent method to obtain the solutions
for Pik and Qkj :

Pik = Pik + α · [
(RQT )ik − (PQQT )ik − β

2
· Pik

]
, (10)

Qkj = Qkj + α · [
(PTR)kj − (PTPQ)kj − β

2
· Qkj

]
, (11)

where α denotes the learning step. The larger α and the smaller β, the faster the
speed of convergence. However, if the speed of convergence is too fast, it may
suddenly exceed the extreme point, resulting in over-fitting. And if the speed of
convergence is too slow, it may require very high time costs to iterate. Therefore,
it is important to choose suitable α and β. In this paper, we choose 0.001 and
0.02 for α and β by multiple experiments, respectively. The prediction errors
under different αs and βs are show in Fig. 2.

3.2 Application of NMF in Obtaining Residuals

This paper uses NMF and correlation between pixels to predict central pixel
values and design steganalysis features. According to redundant information in
the natural image, the central pixel value usually maintains a strong correlation
with its neighboring pixels. By using the consistency relationship between neigh-
boring pixels in the image, the central pixel can be obtained based on NMF with
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Fig. 2. The prediction errors under different αs and βs.

multiple neighboring pixels. And then we can calculate the difference between
the predicted pixel and the original pixel to obtain the residuals. Figure 3 illus-
trates the process of using NMF to predict the target pixel. For an image block
of 3×3, we select the central (target) pixel r22 as the target pixel to be predicted,
the directly neighboring 8 pixels (with the value of the central pixel set to 0)
form the matrix R3×3 to be decomposed. Through the NMF solution, we can
obtain the central pixel prediction value r̂22 and its residual d = r22 − r̂22.

Fig. 3. The illustration of using NMF to predict the target pixel.

In order to obtain more versatile steganalysis features, Non-negative Matrix
Factorization Features (NMFF) will be composed of multiple residual sub-
models, which corresponding to different orders of magnitude and different posi-
tional relationships, or matrix decomposition of different degrees, etc. The spe-
cific residual sub-models are shown in Figs. 4 and 5. The dots in the figure
represent the pixels to be predicted (we call target pixel in this paper), and the
squares represent the pixels to be decomposed. We use the pixel values and NMF
to calculate the predicted values of the target pixels. For example, the sub-model
1a) predict the target pixel located (1,1) by the other three pixels located (1,2),
(2,1) and (2,2). For different sub-models, the naming rule is {“size”, “nmff”,
“the position of target pixel”}. There are five sizes as 2 × 2, 2 × 3, 3 × 2, 3 × 3
and 5 × 5. Since the different sizes and shapes of sub-matrix contain different
pixels to be decomposed, this enhance the diversity of final prediction results
(and finally enhance the diversity of predicted residuals and effectiveness of the
generated features).
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Fig. 4. The different matrix size in NMF.

In addition, considering that the selection of the decomposition rank in the
matrix decomposition process will also affect the final decomposition result, we
subdivide the decomposition of four cases as K = 2,K = 3,K = 4 and K = 5.

Fig. 5. The different decomposition rank of NMF with matrix size 2 × 2.

3.3 Non-linear Filtering

We introduce non-linearity by “max” and “min” operators. The “max” (or
“min”) operator computes the maximum (or minimum) values among the resid-
uals obtained aforementioned NMF based process with different decomposition
ranks. The output residual is designated as RDmax (or RDmin). For example,

RDmax
2×2

= max
{

RDk=2
2×2

, RDk=3
2×2

, RDk=4
2×2

, RDk=5
2×2

}
, (12)

RDmin
2×2

= min
{

RDk=2
2×2

, RDk=3
2×2

, RDk=4
2×2

, RDk=5
2×2

}
. (13)
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As studied in [4], pixel dependencies decrease with increasing distance
between pixels. We use NMF to design the residuals, which will be further pro-
cessed by TLBP operation or co-occurrence matrix operation in the later feature
extraction stages, relation among more pixels can be taken into consideration.
Totally 30 types of residual sub-models, divided into five classes, are adopted as
basic filters and enumerated as follows:

– C#1 : RDk=2
2×2

, RDk=3
2×2

, RDk=4
2×2

, RDk=5
2×2

, RDmax
2×2

, RDmin
2×2

.

– C#2 : RDk=2
2×3

, RDk=3
2×3

, RDk=4
2×3

, RDk=5
2×3

, RDmax
2×3

, RDmin
2×3

.

– C#3 : RDk=2
3×2

, RDk=3
3×2

, RDk=4
3×2

, RDk=5
3×2

, RDmax
3×2

, RDmin
3×2

.

– C#4 : RDk=2
3×3

, RDk=3
3×3

, RDk=4
3×3

, RDk=5
3×3

, RDmax
3×3

, RDmin
3×3

.

– C#5 : RDk=2
5×5

, RDk=3
5×5

, RDk=4
5×5

, RDk=5
5×5

, RDmax
5×5

, RDmin
5×5

.

3.4 Residual Quantization and Truncation

We use quantization and truncation to increase feature effectiveness, which forms
as

[RD]q,M = truncM

(
round(

RD

q
)
)
, (14)

where the quantization step q takes the maximum element of the filter D that is
used to generate the residual image RD. The truncation operation is defined as

truncM (x) =

{
x, |x| � M ;
sign(x) · M, |x| > M,

(15)

where the truncation threshold is set to M = 2. In our scheme, both unquan-
tized residual images and quantized-and-truncated residual images are used for
generating features, as described in the following subsections.

4 Feature Extraction

4.1 Co-occurrence Matrix Formation

For the residuals calculated in Sect. 3, we compute the LBP riu2
8,1 of Ri proposed

in [7]. Let B(i, j) (0 � i � U − 1, 0 � j � V − 1) be a pixel of a TLBP image at
location (i, j). Standard second-order co-occurrence matrices are formed along
horizontal, vertical, diagonal, and anti-diagonal directions as:

C0◦
(k, l) =

U−1∑
i=0

V −2∑
j=0

δ(B(i, j) − k,B(i, j + 1) − l)

U · (V − 1)
, (16)

C90◦
(k, l) =

U−2∑
i=0

V −1∑
j=0

δ(B(i, j) − k,B(i + 1, j) − l)

(U − 1) · V
, (17)
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C45◦
(k, l) =

U−2∑
i=0

V −2∑
j=0

δ(B(i, j) − k,B(i + 1, j + 1) − l)

(U − 1) · (V − 1)
, (18)

C135◦
(k, l) =

U−2∑
i=1

V −1∑
j=0

δ(B(i + 1, j) − k,B(i, j + 1) − l)

(U − 1) · (V − 1)
, (19)

where k, l ∈ {0, 1, · · · , 9}, and

δ(m,n) =
{

1, m = n = 0,
0, otherwise. (20)

4.2 Feature Aggregation

In order to minimize the dimensions of statistical features, we need to add and
compress the co-occurrence matrices in different directions. In SRM [4], it is
found that the closer the distance among pixels, the stronger the correlation
among them. Therefore, the correlation between a pixel and its horizontal (or
vertical) neighboring pixels is stronger than the correlation between the pixel
and its diagonal (or anti-diagonal) neighboring pixels. Therefore, for the second-
order co-occurrence matrices of 0◦, 90◦, 45◦ and 135◦ generated by the same
image, they are merged as follows:

C+(k, l) =
1
2

(C0◦
(k, l) + C90◦

(k, l)), (21)

C×(k, l) =
1
2

(C45◦
(k, l) + C135◦

(k, l)). (22)

In steganalysis, when counting the pixel values of the co-occurrence matrix,
the order between the pixel values has little effect on the final statistical
results. Therefore, we can perform some fold operations when calculating the co-
occurrence matrix. The operation embodied in the co-occurrence matrix is to fold
the diagonal line between the upper left and the lower right of the co-occurrence
matrix. The corresponding position values are directly added, the values at the
diagonal position remain unchanged, and finally the folded co-occurrence matrix
is converted into one dimension vector, the calculation process is as follows:

c+(9k − k(k − 1)
2

+ l) =
{

C+(k, l), k = l,
C+(k, l) + C+(l, k), k < l.

(23)

c×(9k − k(k − 1)
2

+ l) =
{

C×(k, l), k = l,
C×(k, l) + C×(l, k), k < l.

(24)

c = c+ ∪ c×. (25)
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4.3 Non-linear Mapping

The dynamic range of non-zero elements of the aggregated features is large. For
instance, the range is from 10−6 (i.e., 1

(U−1)×V when U = V = 512) to 10−1.
This is due to the nature of co-occurrence matrix in which the diagonal elements
are often large, while off-diagonal elements are often small. Large feature values
might dominate the classification performance. In order to increase the efficiency
of small features, we take the logarithm of features as:

f ′ = log10(f+ �), (26)

where f represents the original co-occurrence matrix, and f ′ represents new
co-occurrence matrix obtained by nonlinear mapping. In order to prevent math-
ematical calculation errors when value of f is 0, we add a constant � (�=
1/[(U − 1) × V ]) to f .

5 Performance Analysis

5.1 Experimental Settings

This section presents and analyses the experimental results of the proposed
NMFF steganalysis features. All experiments in this paper were performed in
the BOSSbase ver.1.01 [1], which contains 10,000 grayscale images of 512 × 512
size. The detected steganographic algorithms are HILL [9], MiPOD [15] and
CMD HILL [10], and the average error rate of random ten experiments is used
as the evaluation metric of steganalysis. Among them, each experiment randomly
selected 5000 images from the BOSSBase1.01 as the training set, and another
5000 images as the test set. For the steganalysis performance comparison exper-
iment, this section selects the 29040-dimensional TLBP [7] steganalysis features,
the 34671-dimensional SRM [4] steganalysis features, and the 34671-dimensional
maxSRM [3] steganalysis features based on the selection channel. Fisher linear
discriminant (FLD) based ensemble classifier [5] was applied for classification.

5.2 Performance of Each Feature Subset

In this subsection, we evaluate the performance of the NMF residual sub-models
designed in Sect. 3. NMF based features with different types of residual sub-
models and post process are compared with the experimental results shown in
Table 1. From the table we can see, in the residual sub-model category, when
the size of the sub-matrix is 3 × 3 (C#4), the final feature performance is the
best; when the size of the sub-matrix is 2 × 2 (C#1) and 5 × 5 (C#5), the
performance is good; while the performance of other categories of residual sub-
models are relative poor. We can also find that, when only use the linear features,
their performance is better than that of only use nonlinear features. For the
quantization truncation operation, we can see that the performance of features
processed by quantization truncation operation are significantly better than that
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do not use quantization truncation operation. Finally, we combine linear and
nonlinear features, quantized truncation and non-quantized truncation features
to obtain all features based on NMF, and the detection effect is optimal compared
to the single model or single operation sub-features.

Table 1. Detection performance under different sets of features.

Grouping

criterion

Feature

subset

Feature

dimension

HILL MiPOD CMD-HILL

Filter class C#1 7920-D .3547± .0039 .3663± .0018 .4174± .0018

C#2 7920-D .4371± .0030 .4342± .0034 .4533± .0048

C#3 7920-D .4470± .0018 .4327± .0057 .4584± .0022

C#4 7920-D .3159± .0029 .3130± .0048 .3626± .0021

C#5 7920-D .3912± .0050 .3956± .0048 .4140± .0044

Residual type Linear 26400-D .3125± .0026 .3107± .0061 .3600± .0019

Nonlinear 13200-D .3206± .0048 .3145± .0024 .3649± .0021

Quantization

operation

Quantized-and-

Truncated

19800-D .3104± .0028 .3052± .0028 .3594± .0027

Unquantized 19800-D .3326± .0024 .3249± .0034 .3804± .0019

All feature 39600-D .3052± .0034 .2984± .0061 .3554± .0046

5.3 Comparison with Prior Arts

In order to verify the validity of the proposed steganalysis feature NMFF, we
compare NMFF with the existing steganalysis features SRM and TLBP when
detecting HILL [9], MiPOD [15] and CMD HILL [10] at embedding rates of
0.1 bpp to 0.5 bpp. The detailed experimental results are shown in Table 2. We
can see from the table that the proposed feature has certain effectiveness in
detecting the above three steganographic algorithms, but it does not achieve bet-
ter detection performance than the existing steganalysis features such as SRM.

5.4 Performance of Cover Source Mismatch

To further analyze the effectiveness of the proposed NMFF, we also compare
the performance of NMFF with SRM and TLBP in the cover source mismatch
(CSM) scenarios, where the source (i.e., camera brand) of the test image are
different from that of the training images. HILL with an embedding rate of
0.4 bpp is used as the example. We use BOSSbase ver.1.01 database [1] from a
full-resolution color images in RAW format (CR2 or DNG). We first converted
this images to grayscale, and eventually cropped to 512 × 512 pixels. Crossover
experiments of 1000 images as the training set and 500 images as the test in
CSM cases were conducted. The experimental results are shown in Table 3.
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Table 2. Average detection error PE for three embedding algorithms with three ste-
ganalysis feature.

Algorithms Features 0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp 0.5 bpp

HILL TLBP .4102± .0020 .3402± .0044 .2808± .0042 .2295± .0032 .1888± .0021

SRM .4360± .0033 .3632± .0024 .2996± .0020 .2482± .0032 .2038± .0021

NMFF .4450± .0014 .3795± .0028 .3052± .0034 .2653± .0038 .2219± .0055

MiPOD TLBP .4075± .0043 .3361± .0025 .2768± .0034 .2271± .0044 .1872± .0024

SRM .4150± .0047 .3442± .0032 .2893± .0055 .2398± .0023 .1969± .0032

NMFF .4297± .0027 .3539± .0029 .2984± .0061 .2527± .0037 .2107± .0025

CMD-HILL TLBP .4408± .0029 .3838± .0024 .3350± .0043 .2881± .0030 .2489± .0027

SRM .4529± .0036 .3945± .0033 .3424± .0029 .2987± .0036 .2542± .0018

NMFF .4642± .0057 .4069± .0053 .3554± .0046 .3123± .0032 .2674± .0025

Table 3. The comparison experiment with single training set under the case of cover-
source mismatch

Training
sets

Features Test sets from different cover sources

Canon Eos 7D Canon Eos 400D Nikon D70 Pentax K20D Canon Eos
Digital
Rebel XSi

Laica M9

Canon Eos
7D

SRM .3219 ± .0055 .4156 ± .0040 .2978 ± .0071 .4166 ± .0057 .2718 ± .0129

TLBP .2817 ± .0080 .3310 ± .0076 .2828 ± .0098 .3730 ± .0065 .3090 ± .0144

NMFF .2890 ± .0086 .3930 ± .0050 .2747 ± .0045 .3750 ± .0010 .2540 ± .0056

Canon Eos
400D

SRM .4057 ± .0046 .3120 ± .0053 .2187 ± .0042 .3436 ± .0058 .2219 ± .0038

TLBP .3552 ± .0153 .3208 ± .0064 .2158 ± .0048 .3154 ± .0081 .2452 ± .0114

NMFF .3900 ± .0020 .3393 ± .0059 .2433 ± .0110 .3267 ± .0068 .2543 ± .0040

Nikon D70 SRM .4405 ± .0076 .3117 ± .0044 .3113 ± .0066 .3715 ± .0062 .2615 ± .0078

TLBP .3590 ± .0104 .2476 ± .0117 .2522 ± .0138 .3410 ± .0127 .2466 ± .0191

NMFF .4220 ± .0054 .2837 ± .0015 .2693 ± .0040 .3807 ± .0103 .2737 ± .0042

Pentax
K20D

SRM .4085 ± .0069 .2446 ± .0033 .3324 ± .0078 .3535 ± .0071 .2045 ± .0051

TLBP .3764 ± .0056 .2194 ± .0038 .3246 ± .0049 .3296 ± .0062 .2090 ± .0037

NMFF .3833 ± .0038 .2513 ± .0086 .3317 ± .0046 .3507 ± .0086 .2313 ± .0031

Canon Eos
Digital
Rebel XSi

SRM .4102 ± .0059 .2561 ± .0077 .3059 ± .0042 .2401 ± .0070 .2249 ± .0104

TLBP .3936 ± .0056 .2228 ± .0060 .2878 ± .0066 .2180 ± .0045 .2464 ± .0204

NMFF .4040 ± .0010 .2483 ± .0051 .3110 ± .0010 .2430 ± .0046 .2497 ± .0031

Laica M9 SRM .4074 ± .0079 .2501 ± .0036 .3227 ± .0042 .2348 ± .0044 .3625 ± .0051

TLBP .3732 ± .0060 .2328 ± .0043 .3544 ± .0058 .2202 ± .0050 .3304 ± .0047

NMFF .3730 ± .0096 .2513 ± .0042 .3700 ± .0066 .2543 ± .0050 .3613 ± .0067

From Table 3 we can see that the NMFF features designed in this paper do
not achieve the same effects as the existing SRM and TLBP features in CSM
cases. The sensitivity of different steganalysis features to different camera images
is not the same. The TLBP feature is better than the SRM features in many
CSM cases and the NMFF feature is better than the SRM and TLBP features
in some CSM cases. Compared with TLBP and SRM features, the CSM has less
influence on the NMFF features, this may because that the residuals of NMFF
are calculated with dynamic filters that derived from the image itself, whereas
the filters of SRM and TLBP used are relative constant.
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5.5 Performance of Combined Feature Set

The steganalysis features NMFF designed in this paper are basically different
from the existing SRM and TLBP features in calculating the residual image.
Therefore, the above three features are supplementary. We conducted experi-
ments to test the effectiveness of combining the three features together.

As shown in Fig. 6, we directly combine NMFF with SRM and TLBP to form
high-dimensional features. The experimental results show that the combined
feature sets are improved to some extent compared to each of the single feature
set NMFF, SRM or TLBP, and even in some cases, exceed the maxSRM feature
based on the selected channel.

(a) 0.1bpp (b) 0.2bpp

(c) 0.3bpp (d) 0.4bpp

Fig. 6. Detection performance of TLBP, SRM, NMFF, the combination of NMFF and
SRM, and the combination of TLBP and NMFF. (a)–(d) are steganographic algorithm
embedding rates of 0.1 bpp, 0.2 bpp, 0.3 bpp, and 0.4 bpp, respectively.

6 Conclusion

This paper has designed a set of linear and nonlinear residual sub-models based
on NMF to calculate the image residuals, and combined the local binary model
and the co-occurrence matrix to extract the residual image to obtain the final
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feature NMFF for steganalysis. Based on the theoretical analysis of NMF, we
choose the appropriate matrix decomposition size and decomposition rank in
designing the sub-model. We choose the sub-model according to the results of
experiments and the nature of NMF, and finally obtain 20 linear and 10 nonlinear
sub-models used to calculate the residual image; through the residual sub-model
of NMF design, the sub-models of different matrix decomposition ranks and dif-
ferent sizes of decomposed sub-matrixes, resulting in the variety of the residuals.
Finally, the coded map of the residual image and the co-occurrence matrix in
different directions are obtained to generate the final steganalysis feature NMFF.
Compared with the existing steganalysis features, the NMFF feature proposed
in this paper completely depends on the mutual relationship between image pix-
els to calculate the residual and obtain the final features. The most effective
residual sub-model (3 × 3) based on the decomposition matrix design has good
steganalysis performance, which even exceeds the performance of SRM feature
optimal sub-models, but the other residual sub-models of NMFF are less effec-
tive. By comparison, the overall SRM and TLBP feature distributions are more
uniform, whereas the NMFF distribution is very concentrated. The final detec-
tion performance is weaker than that of the SRM and TLBP features. In some
the cover source mismatch cases, experimental results show NMFF outperformed
SRM and TLBP. And because the NMFF is distinct from the existing SRM and
TLBP features in designing the residual image, we also can combine the feature
sets together to improve the steganalysis ability in the real-world applications.

The NMFF features designed in this paper have achieved comparable per-
formance with SRM and TLBP features in some cases, however, there is still
much room for improvement in the feature extraction process, including design-
ing more optimal NMF method to obtain the valid residual images, and designing
more effective feature extraction and combination method based on the residual
images.
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13. Pevný, T., Fridrich, J.: Benchmarking for steganography. In: Solanki, K., Sullivan,
K., Madhow, U. (eds.) IH 2008. LNCS, vol. 5284, pp. 251–267. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-88961-8 18

14. Qian, Y., Dong, J., Wang, W., Tan, T.: Deep learning for steganalysis via convo-
lutional neural networks. In: Proceedings of SPIE - The International Society for
Optical Engineering, vol. 9409, pp. 94090J-1–94090J-10 (2015)

15. Sedighi, V., Cogranne, R., Fridrich, J.: Content-adaptive steganography by mini-
mizing statistical detectability. IEEE Trans. Inf. Forensics Secur. 11(2), 221–234
(2015)

16. Tan, S., Li, B.: Stacked convolutional auto-encoders for steganalysis of digital
images. In: Signal and Information Processing Association Summit and Confer-
ence, pp. 1–4 (2014)

17. Xu, G., Wu, H.Z., Shi, Y.Q.: Ensemble of CNNs for steganalysis: an empirical
study. In: ACM Workshop on Information Hiding and Multimedia Security, pp.
103–107 (2016)

18. Xu, G., Wu, H.Z., Shi, Y.Q.: Structural design of convolutional neural networks
for steganalysis. IEEE Signal Process. Lett. 23(5), 708–712 (2016)

19. Zeng, J., Tan, S., Li, B., Huang, J.: Large-scale JPEG image steganalysis using
hybrid deep-learning framework. IEEE Trans. Inf. Forensics Secur. 13(5), 1200–
1214 (2018)

https://doi.org/10.1007/978-3-540-88961-8_18


IStego100K: Large-Scale Image
Steganalysis Dataset

Zhongliang Yang1(B), Ke Wang1, Sai Ma2, Yongfeng Huang1, Xiangui Kang3,
and Xianfeng Zhao2

1 Beijing National Research Center for Information Science and Technology,
Tsinghua University, Beijing 100084, China

{yangzl15,k-w17}@mails.tsinghua.edu.cn, yfhuang@tsinghua.edu.cn
2 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing 100093, China
{masai,zhaoxianfeng}@iie.ac.cn

3 Guangdong Key Lab of Information Security, Sun Yat-sen University,
Guangzhou, China

isskxg@mail.sysu.edu.cn

Abstract. In order to promote the rapid development of image ste-
ganalysis technology, in this paper, we construct and release a multivari-
able large-scale image steganalysis dataset called IStego100K. It contains
208,104 images with the same size of 1024*1024. Among them, 200,000
images (100,000 cover-stego image pairs) are divided as the training
set and the remaining 8,104 as testing set. In addition, we hope that
IStego100K can help researchers further explore the development of uni-
versal image steganalysis algorithms, so we try to reduce limits on the
images in IStego100K. For each image in IStego100K, the quality fac-
tors is randomly set in the range of 75–95, the steganographic algorithm
is randomly selected from three well-known steganographic algorithms,
which are J-uniward, nsF5 and UERD, and the embedding rate is also
randomly set to be a value of 0.1–0.4. In addition, considering the possi-
ble mismatch between training samples and test samples in real environ-
ment, we add a test set (DS-Test) whose source of samples are different
from the training set. We hope that this test set can help to evaluate the
robustness of steganalysis algorithms. We tested the performance of some
latest steganalysis algorithms on IStego100K, with specific results and
analysis details in the experimental part. We hope that the IStego100K
dataset will further promote the development of universal image ste-
ganalysis technology (The description of IStego100K and instructions for
use can be found here: https://github.com/YangzlTHU/IStego100K).

Keywords: IStego100K · Image steganalysis · Dataset

1 Introduction

Concealment system, together with encryption system and privacy system,
is classified into three basic information security systems by Shannon [1].
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Among them, the latter two security systems mainly guarantee the security
of information content, but they may expose the existence and importance of
information while protecting it. But for concealment system, it mainly protects
the information from the perspective of behavioral security, hiding the exis-
tence of information and communication behavior, thus ensuring the security of
important information. Due to its powerful information hiding ability, conceal-
ment system plays an important role in protecting the privacy and security in
cyberspace.

There are various media forms of carrier that can be used for information
hiding, including image [2,3], audio [4,5], text [6–8] and so on [9]. Among them,
image has the characteristics of large information capacity, which has become a
widely studied and used steganographic carrier in recent years. However, while
protecting the security of information, these concealment systems may also be
used by criminals and transmit some malicious information, thus bringing poten-
tial risks to cyberspace security [10]. Therefore, studying and developing effective
steganalysis techniques becomes an increasingly promising and challenging task.

For a concealment system, we can usually model it as follows. Suppose there
is a carrier space C, a key space K, and a secret information space M. Alice
chooses a secret information m from the secret space M, under the guidance of
the secret key k ∈ K, uses the steganographic algorithm f() to embed m into a
carrier c ∈ C and form the steganographic carrier s, that is:

Emb : C × K × M → S, f(c, k,m) = s. (1)

Generally speaking, once we insert additional information into the carrier, it will
inevitably lead to changes in the distribution of some features of the carriers. In
order to ensure the security of the steganographic system, the steganographic
algorithm f() chosen by Alice should minimize the statistical differences between
the carriers before and after steganography, that is:

df (PC , PS) ≤ ε. (2)

Steganalysis technology is the countermeasure technology of steganography.
Its main purpose is to detect whether covert information is contained in the
information carrier being transmitted in cyberspace. It can help identify poten-
tial network attacks in cyberspace and maintain cyberspace security. Any ste-
ganalysis can be described by a map F : Rd → {0, 1}, where F = 0 means that
x is detected as cover, while F = 1 means that x is detected as stego. Therefore,
steganalysis researchers usually construct a variety of corresponding statistical
features, and based on these features to find the differences in the statistical
distribution between cover and stego carriers [11–13,13–18].

This paper is motivated in three aspects. Firstly, in order to achieve higher
performance steganalysis technology, researchers usually need to analyze the sta-
tistical distribution differences between a large number of normal samples and
steganographic samples [11–13]. Especially with the development of deep learn-
ing technology, some image steganalysis methods based on deep neural network
have a growing demand for data [13–15]. However, existing steganalysis datasets,
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such as the widely used BOSS dataset [19], are small in scale (10,000 images for
training and 1,000 for testing), it may cause the model to ignore potential subtle
differences in statistical feature distributions. Secondly, at present, many image
steganalysis methods have strong pertinence. They are usually aimed at one
specific steganalysis algorithm. This may lead to some steganalysis algorithms
giving very good results in detecting a particular steganalysis algorithm, but
might fail in detecting other steganography techniques. In order to help realize
the universal steganalysis algorithm and make it more practical, we need a more
diverse and universal steganalysis dataset. Thirdly, current steganalysis models
are usually trained and tested on images from the same source. But in reality, it
is difficult to have such perfect condition. We want to know whether the existing
steganalysis models can still maintain good performance when training samples
and test samples come from different image sources.

In order to promote the development of image steganalysis technology, espe-
cially the progress of universal image steganalysis technology, in this paper, we
construct and release a large-scale image steganalysis dataset called IStego100K.
For the first motivation, we collected 100,000 cover-stego image pairs with the
same size of 1024*1024 to construct the training set. For the second motivation,
each steganographic image in IStego100K is randomly embedded with three
widely used image steganography (J-uniward [20], nsF5 [21] and UERD [22])
with a random embedding rate (bit per non-zero AC-DCT coefficient (bpnzac):
0.1–0.4). For the third motivation, we constructed two test sets. The first test
set (SS-Test) contains 8,104 images from the same source as the training set.
The second test set (DS-Test) contains 11,809 images from different sources
of the training set. We also choose some of the latest and widely used image
steganalysis models to train and test their performance on IStego100K. The
experimental results are shown in details in the experimental section. We hope
that IStego100K will further advance the development of image steganalysis.

In the remainder of this paper, Sect. 2 introduces related image steganal-
ysis datasets. Section 3 introduces the detailed information of the IStego100K
dataset, including data collection and preprocessing, information embedding
algorithms. The Following part, Sect. 4, describes the steganalysis benchmarks
we use and their performance on IStego100K dataset. Finally, conclusions are
drawn in Sect. 5.

2 Related Dataset

BOSS dataset [19] is currently the most widely used image steganalysis dataset.
It contains two databases of images, which are BOSSBase for training and BOSS-
Rank for testing. BOSS dataset has greatly promoted the development of image
steganalysis in previous years. However, with the advancement of technology,
this dataset currently shows increasingly limitations.

Firstly, on the scale of the dataset, BOSSBase contains 10,000 grayscale
images with the same size of 512*512, and BOSSRank database contains 1,000
512*512 grayscale images. However, IStego100K contains 200,000 images for
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Table 1. The main characteristics of BOSS and IStego100K.

Dataset BOSS IStego100K

BOSSBase BOSSRank Train SS-Test DS-Test

Number 10,000 1,000 200,000 8,104 11,809

Size 512*512 1024*1024

Image style grayscale color

bpnzac 0.4 0.1–0.4

Steganography HUGO J-uniward, nsF5, UERD

training (100,000 cover-stego image pairs), each of which is a 1024*1024 color
image. The core of the stegaalysis is to find the statistical distribution differ-
ence between normal carriers and steganographic carriers through the analysis
model. In general, the more samples, the more helpful for the model to discover
the statistical distribution differences between the carrier features.

Secondly, steganographic images in BOSS datasets are embedded using a
single steganographic algorithm HUGO [19], which hides messages into least
significant bits of grayscale images represented in the spatial domain. However,
a single steganographic algorithm can only bring differences in the statistical
distribution of samples in a limited way. In complex real-world environments,
the steganography algorithms used by Alice may be varied. It is often difficult for
the detector to know which steganographic algorithm is used for a sample that
may contain covert information. We hope to further promote the development of
universal image steganalysis technology, so that the steganalysis model can have
certain detection capabilities for a variety of steganographic methods. Therefore,
we set up a variety of randomness settings for the steganographic samples in
IStego100K. For example, image quality factor, image steganography algorithm
and embedding rate are all set in a certain dynamic range for steganographic
images in IStego100K.

Thirdly, in the real environment, the source-mismatch of training samples
and test samples is a very important problem. In reality, it is a very realistic and
challenging problem to train and detect sample source inconsistencies. Because
in reality, it’s hard for Eve to know the source of the steganographic samples
Alice and Bob are transmitting, and it’s equally difficult to get a large number
of training samples from the same source. In fact, this requires that image ste-
ganalysis algorithms have strong robustness and can still have high steganalysis
ability for different source image samples. We believe that in order to achieve
more practical and general steganalysis algorithm, the problem of sample source
mismatch is worth considering. Therefore, different from the BOSS dataset, we
present two test sets from different sources, one from the same source as the
training sample (SS-Test) and the other from different sources (DS-Test).

In order to compare the IStego100K and BOSS more intuitively, we present
the main characteristics of the two datasets in Table 1.
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3 The Construction of IStego100K

In this section, we will introduce in details of the construction process of
IStego100K, including source image collection, image preprocessing and infor-
mation hiding. Finally, we give the overall distribution characteristics of
IStego100K.

3.1 Source Image Collection

All of the training images in IStego100K were crawled from Unsplash1, a
copyright-free photography website2. We first used the API provided by
Unsplash website to randomly crawl a large number of high quality photo-
graphic images. From these original images, we then selected pictures whose
shortest edge is greater than 1024 and whose quality factor is higher than 95.
At the same time, we also filter some images with similar content and single
scene artificially. Finally, we obtained 108,104 original images. In addition, in
order to explore the problem of image source mismatch, we have built another
test set. We collected daily photos taken by more than 30 people using their
mobile phones (without private information and they all agreed to make them
public for research). After manually deleting some images that did not meet the
requirements, we collected a total of 11,809 images.

3.2 Image Preprocessing

For image steganalysis, there are many factors that can affect the final detection
results, such as steganographic algorithm, image size, image quality factor (QF),
steganography embedding rate, etc. To construct a universal dataset for image
steganalysis, in IStego100K, we only unified the image size to be 1024*1024, and
the other three factors are randomly set within a certain range. For image size, we
firstly cut images into square according to the length of the short edge. Secondly,
we resized the clipped images into 1024*1024. For image quality factor, we ran-
domly adjusted the quality factor (QF) for the images obtained from Unsplash to
be {75, 80, 85, 90, 95}. And we maintain the QF distribution of images obtained
from the phone unchanged.

3.3 Information Embedding

In order to construct a general and practical dataset for image steganaly-
sis, we choose a variety of widely used steganographic algorithms, which are
J-uniward [20], nsF5 [21] and UERD [22], to embed covert information into sam-
ples of IStego100K. We first randomly selected 100,000 images from the original
images in IStego100K as the training set, and the remaining 8,104 images as
the test set. In the information embedding process, we randomly selected one
1 https://unsplash.com/.
2 https://unsplash.com/license.

https://unsplash.com/
https://unsplash.com/license
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of the three steganographic algorithms and used them to embed the random
bits stream into all the images in the training set and the random half of the
test set (both SS-Test set and DS-Test set). For each steganographic image, the
embedding rate was randomly set to be 0.1, 0.2, 0.3, and 0.4.

(a) Original Image (b) J-uniward (ER = 0.2)

(c) nsF5 (ER = 0.2) (d) UERD (ER = 0.2)

Fig. 1. Pictures that are embedded random bitstream by different steganographic algo-
rithms at the same payload (bpnzac = 0.2).

3.4 Overall Details of IStego100K

After these above operations, the overall characteristics of IStego100K are shown
in Table 2. Figure 1 shows the case when the same image is embedded by different
steganographic algorithms at the same payload (bpnzac = 0.2). From the
examples in Fig. 1, we find that it is very difficult to distinguish the normal
image from the steganographic images visually.
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Table 2. The overall characteristics of IStego100K.

IStego100K Training set SS-Test set DS-Test set

Image Number(Cover:Stego) 100,000:100,000 4,052:4,052 5,904:5,905

Number for different

steganography

(Uerd:nsf5:j-uniward)

33,416:33,404:33,180 1,347:1,325:1,380 1,969:1,981:1,955

Number for different

payloads (0.1:0.2:0.3:0.4)

25,077:24,878:25,251:24,794 1,047:984:1,045:976 1,484:1,500:1,451:1,470

Steganographic images of

different QF (75:80:85:90:95)

10,058:9,925:9,979:10,032:10,006 803:806:820:798:825 95.369±1.664

4 Experimental

4.1 Benchmark Methods and Evaluation Metrics

To evaluate the difficulty of IStego100K and provide benchmark results for
researchers who subsequently use this dataset, we tested four latest and widely
used image steganalysis methods on this proposed dataset, which are DCTR
[11], GFR [12], XuNet [23] and SRNet [13]. DCTR [11] extracts the first-order
statistics of quantized noise residuals obtained from the inputted image using
64 kernels of the discrete cosine transform (DCT) as features for steganalysis.
GFR [12] extracts features based on 2-dimensional (2D) Gabor filters, which
have certain optimal joint localization properties in the spatial domain and in
the spatial frequency domain and can describe the image texture features from
different scales and orientations, therefore it can detect the changes of statisti-
cal feature distribution before and after steganography. XuNet [23] and SRNet
[13] and based on convolutional neural networks (CNN), for which, XuNet [23]
contains a 20-layer CNN and SRNet [13] designed a deep residual architecture
to minimize the use of heuristics and extract features, finally these features are
sent to classifiers for steganlysis.

We use several evaluation indicators commonly used in classification tasks
to evaluate the performance of our model, which are precision (P), recall (R),
F1-score (F1) and accuracy (Acc). The conceptions and formulas are described
as follows:

– Accuracy measures the proportion of true results (both true positives and
true negatives) among the total number of cases examined

Accuracy =
TP + TN

TP + FN + FP + TN
. (3)

– Precision measures the proportion of positive samples in the classified sam-
ples.

Precision =
TP

TP + FP
. (4)

– Recall measures the proportion of positives that are correctly identified as
such.

Recall =
TP

TP + FN
. (5)
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– F1-score is a measure of a test’s accuracy. It considers both the precision and
the recall of the test. The F1 score is the harmonic average of the precision
and recall, where an F1 score reaches its best value at 1 and worst at 0.

F1 − score =
2 × Precision × Recall

Precision + Recall
. (6)

TP (True Positive) represents the number of positive samples that are predicted
to be positive by the model, FP (False Positive) indicates the number of negative
samples predicted to be positive, FN (False Negative) illustrates the number of
positive samples predicted to be negative and TN (True Negative) represents
the number of negative samples predicted to be negative. All these indicators
are the higher the better.

4.2 Detection Results of Benchmark Methods

We first used the training set in IStego100K to train various steganalysis models
and then used both SS-Test set and DS-Test set for testing. Table 3 records the
test performance of each steganalysis model on both test set. In the process of
model training, we are surprised to find that the two steganalysis methods based
on neural network, which are XuNet [23] and SRNet [13], are hardly to converge
on IStego100K. This may be caused by various reasons. To run these two mod-
els, we downloaded their training codes from https://github.com/GuanshuoXu/
caffe deep learning for steganalysis and http://dde.binghamton.edu/download/
respectively. We adopted the default training parameters, and then trained them
in the environment of GTX1080TI and CUDA8.0. The small GPU memory
(about 11G) may limited the performance of the model. Another main reason we
thought is the diversity of samples in IStego100K, including multi-steganography,
multi-quality factors, multi-embedding rates. These results at least indicate that
although neural network technology and neural network-based image steganaly-
sis models [13,23] have developed rapidly in recent years, they still face enormous
challenges in the face of more complex real-world environments. Although the
neural network-based image steganalysis model can achieve better results than
the manual feature-based steganalysis model [11,12] in some specific scenarios,
there is still much room for improvement in the practicality and generality of
the model.

In addition, Table 3 also compares the detection performance of DCTR [11]
and GFR [11] on the two test sets. Firstly, we noticed that the detection results
of both DCTR and GFR on SS-Test is better than that on DS-Test. This result
is in line with our expectations, since after all, the samples in DS-Test do not
come from the same source as those in the training set. But we are also glad
to see that these two steganalysis algorithms still have certain detection ability
even in the case of source mis-match. This results reflect the robustness of these
two steganalysis algorithms to some extent.

https://github.com/GuanshuoXu/caffe_deep_learning_for_steganalysis
https://github.com/GuanshuoXu/caffe_deep_learning_for_steganalysis
http://dde.binghamton.edu/download/
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Table 3. The overall performance of each benchmark methods.

Dataset Methods Acc(%) P(%) R(%) F1(%)

SS-Test DCTR [11] 71.34 79.72 57.23 66.63

GFR [12] 66.26 69.58 57.97 63.25

XuNet [23] Not Convergent

SRNet [13] Not Convergent

DS-Test DCTR [11] 56.95 55.50 70.11 61.95

GFR [12] 59.12 61.61 48.42 54.22

XuNet [23] Not Convergent

SRNet [13] Not Convergent

Table 4. The detection performance of each benchmark methods for different steganog-
raphy algorithms in IStego100K.

Test Set Steganalysis Steganography Acc(%) P(%) R(%) F1(%)

SS-Test DCTR [11] UERD [22] 71.77 79.75 58.36 67.40

nsF5 [21] 84.44 85.10 83.51 84.30

J-uniward [20] 57.73 67.58 29.71 41.27

GFR [12] UERD [22] 68.47 71.34 61.75 66.20

nsF5 [21] 71.61 72.72 69.18 70.91

J-uniward [20] 58.81 62.91 42.92 51.02

DS-Test DCTR [11] UERD [22] 53.96 53.35 63.06 57.80

nsF5 [21] 62.28 60.56 87.59 71.61

J-uniward [20] 51.67 51.43 59.83 55.31

GFR [12] UERD [22] 56.05 58.40 42.09 48.92

nsF5 [21] 67.24 68.21 64.58 66.35

J-uniward [20] 54.59 56.62 39.26 46.37

On the basis of Table 3, we have made a more detailed analysis of the detec-
tion results on test sets. We analyzed the impact of different steganographic
algorithms on the detection results. We calculated the test results of different
steganalysis methods on the test set for each steganographic algorithm. The
results are shown in Table 4.

From the results in Table 4, we can find that, firstly, when these three stegano-
graphic algorithms are mixed together, whether using DCTR or GFR for ste-
ganalysis, J-uniward [20] seems to be the most difficult to detect, and nsF5 [21] is
relatively easier to detect. To some extent, it proves that the concealment of the
three steganography algorithms from strong to weak seems to be J-uniward [20],
UERD [22] and nsF5 [21]. Secondly, when we compare the detection accuracy
of two steganalysis algorithms on the two test sets, we find a very interesting
phenomenon: the detection accuracy of DCTR on SS-Test seems to be better
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than that of GFR, but on DS-Test, GFR’s detection accuracy seems to be better
than DCTR’s. This seems to indicate that the robustness of the GFR model is
better than the robustness of the DCTR.

Table 5. The detection performance of each benchmark methods for different embed-
ding rates in IStego100K.

Test Set SS-Test DS-Test

Steganalysis Payload Acc(%) P(%) R(%) F1(%) Acc(%) P(%) R(%) F1(%)

DCTR [11] 0.1 58.55 67.84 32.51 43.96 52.86 52.42 61.90 56.77

0.2 71.43 80.19 56.90 66.57 56.21 54.99 68.40 60.97

0.3 76.30 82.22 67.11 73.90 58.56 56.53 74.11 64.13

0.4 79.55 83.74 73.35 78.20 60.17 57.72 76.05 65.63

GFR [12] 0.1 55.87 59.40 37.10 45.67 52.29 53.42 35.79 42.86

0.2 63.51 67.98 51.08 58.33 56.66 58.87 44.19 50.49

0.3 70.83 72.04 67.89 69.95 62.15 64.65 53.65 58.63

0.4 75.71 74.89 76.75 72.05 65.40 67.18 60.22 63.51

We further analyzed the impact of different embedding rates on the test
results. We calculate the detection performance of each steganalysis method for
images with different embedding rates in the test set. The results are shown in
Table 5. From the results in Table 5, we can easily find a very obvious change
rule, that is, as the embedding rate increases, the detection performance of each
detection model is gradually improved. For example, for the DCTR algorithm
[11], when the embedding rate is 0.1, the detection accuracy is only 58.55%.
When the embedding rate is increased to 0.4, the detection is also improved
to 79.55%. This trend can be explained by Formula (2). Embedding additional
information in the original image carrier is equivalent to introducing noise into
the original signal, which will inevitably change the statistical distribution char-
acteristics of the original signal carrier. The higher the embedding rate, the more
extra information is embedded, which will cause this statistical distribution to
become larger and therefore easier to be detected. In Table 5, we found the same
phenomenon as in Table 4. That is to say, from the detection accuracy, the detec-
tion accuracy of DCTR on SS-Test is higher than that of GFR, but it turns to
the opposite on DS-Test.

Further more, we also want to know how the image quality factors affect ste-
ganalysis performance. Therefore, we also calculated the detection accuracy of
different detection algorithms for different quality factor images in the test sets.
The results are shown in Table 6. From the results in Table 6, we can see that
as the image quality factor increases, the detection accuracy of various detec-
tion algorithms gradually decreases. This seems to indicate that the higher the
image quality factor within a certain range, the harder it is to detect a stegano-
graphic image. Finally, Fig. 2 shows the ROC curves of these two steganography
algorithms on IStego100K in different situations.
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Table 6. The detection performance of each benchmark methods for different quality
factors in IStego100K.

Test Set SS-Test

Steganalysis QF Acc(%) P(%) R(%) F1(%)

DCTR [11] 75 75.23 85.63 60.64 71.00

80 71.50 86.48 61.56 71.82

85 74.09 84.34 59.18 69.55

90 69.04 76.09 55.54 64.21

95 62.12 66.41 49.05 56.43

GFR [12] 75 70.08 75.06 60.15 66.78

80 69.91 74.98 59.75 66.50

85 68.42 71.54 61.17 65.95

90 64.67 67.02 57.75 62.04

95 58.30 59.76 50.82 54.93

SS
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(a) Final Results (b) Results for different steganography (c) Results for different Embedding Rates (d) Results for different Quailty Factors

(e) Final Results (f) Results for different steganography (g) Results for different Embedding Rates

Fig. 2. The ROC curves of these two steganography algorithms on IStego100K in
different situations.

5 Conclusion

In this paper, we construct and release a large-scale image steganalysis dataset
called IStego100K. It contains 208,104 images with the same size of 1024*1024,
of which 200,000 images (100,000 cover-stego image pairs) construct the training
set and the remaining 8,104 are as testing sets. Each steganographic image is
randomly steganized with three widely used image steganography (J-uniward
[20], NSF5 [21] and UERD [22]) with a random embedding rate (0.1-0.4). At the
same time, we also choose some latest steganalysis algorithms to test IStego100K
dataset. These results show some interesting phenomena. Firstly, although image
analysis techniques based on convolutional neural networks have been greatly
developed in recent years, and there have also appeared more and more image
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steganalysis techniques based on CNN. However, our detection results show that
when facing with more general detection scenarios, these methods seem to still
have great limitations. Secondly, the results of Tables 3, 4 and 5 show that the
detection performance of existing steganalysis methods will be greatly affected
when facing different source detection samples from training samples. This fur-
ther encourages researchers to explore more general steganalysis models for more
realistic scenarios. Thirdly, the results of Tables 5 and 6 show that the image
quality factor and embedding rate can significantly affect the detection per-
formance. Generally speaking, increasing the embedding rate and reducing the
quality factor in a certain range will be more helpful for steganalysis. We hope
that this paper will serve as a reference guide for researchers to facilitate the
design and implementation of better image steganalysis method.
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Abstract. There still exists the difficulties in the feature extraction and
few approaches can detect multiple network steganographic algorithms
currently in the IPv6 network. A unified network steganalysis model
based on convolutional neural network, abbreviated as BNS-CNN, is
proposed to detect multiple network storage steganographic algorithms.
After preprocessing the network traffic, the model divides them by field
to preserve the integrality of traffic feature to the maximum extent to
build a matrix. Multiple convolution kernels and the K-max pooling are
effectively combined to perform the feature extraction to speed up the
model convergence; the full connection layer is designed to improve the
ability of feature integration and boosts up the robustness of the model.
Compared with the traditional network steganalysis method, the model
can automatically extract data features and identify multiple storage
covert channels at the same time. The experimental results show that
the detection accuracy of BNS-CNN model is as high as 99.98% with
low time complexity and favorable generalization performance.

Keywords: Network steganalysis · Network steganography ·
Convolutional neural network · Deep learning

1 Introduction

Compared with other carriers, network steganography either uses redundant
fields and loopholes in protocol rules or leverages the protocol timing to transmit
a secret message. Both of them have the same distinct feature that the carriers,
i.e., the network traffic, are dynamic, this makes it more covert than the static
covers, such as an image. But the existing IPv6 security mechanism has no
measures in resisting network steganography.

This paper analyzes the IPv6 network protocols and the existing network
steganography and steganalysis. A blind network steganalysis model based on
convolutional neural Network, i.e. BNS-CNN is proposed to detect the storage
channels in the IPv6 headers.
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2 Related Work

2.1 Network Steganography

The network steganography refers to all information hiding methods used in
communication networks for secret information exchange, mainly by construct-
ing covert channels. Usually, it is mainly divided into storage covert channels
and timing covert channels.

The covert storage channel modifies the network protocol header [10] and the
payload for steganography, which is currently the main way to construct covert
channels on network. Graf [5] implemented embedding secret information into
IPv6 destination options. Miller et al. [6] encoded the source address field of
the IPv6 packet header by means of MAC address and forged packet, and used
64-bit interface identifier to implement secret information transmission. Lucena
et al. [3] demonstrated the embedding of information in the IPv6 hop limit field.

The covert timing channel encodes secret information in the timing of pro-
tocol messages for steganography, such as changing the order of the packets,
adding delay. Li [2] described a timing channel where a covert sender affects the
performance of a switch to change the throughput of a packet flow from a third
party to a covert receiver. Zander et al. [14] encoded the covert information only
in the least significant part of the interpacket gaps of existing traffic.

2.2 Network Steganalysis

Network steganalysis is the inverse of network steganography. The existing net-
work steganalysis techniques are mainly divided into two categories: statistical
steganalysis and machine learning steganalysis.

Statistical steganalysis mainly uses mathematical and statistical techniques
to establish statistical models to describe the probability distribution of stegano-
graphic systems or vectors. Pack et al. [8] presented a system to detect HTTP
covert channels. Berk et al. [1] studied the channel capacity of Internet-based
timing channels and proposed a methodology for detecting covert timing chan-
nels based on the proximity of the signal source and the capacity of channel.

Although the statistical steganalysis methods have higher accuracy, their
analysis is time-consuming, which makes the steganalysis analysis less efficient.
But machine learning technology has great advantages in data analysis and
feature selection. The machine learning steganalysis method can automatically
select features from the steganographic carrier, and use the machine learning
method to train the classifier to implement steganalysis [13].

Sohn et al. [11] demonstrated that high-precision detection is performed using
the support vector machine in the IP ID field the TCP ISN field. The authors
evaluated the set of different features to achieve a classification accuracy rate
higher than 99%. Similarly for the IP ID field and the TCP ISN field, Apurva
et al. [4] proposed method is based on Naive Bayes classifier for network ste-
ganalysis, which achieved good detection results and greatly reduced computa-
tional complexity. Qian et al. [9] used deep learning techniques to replace the
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traditional statistical analysis methods for steganalysis, and proposed a five-layer
CNN model. The model test works well and shows the great potential of neu-
ral networks in the field of steganalysis. Oplatkova et al. [7] discussed a neural
network model that detects the secret information embedded in normal packets
by the program OutGuess. Tumoian et al. [12] evaluated the accuracy of using
the neural network to detect Rutkowska’s TCP ISN covert channel. The study
found that the correct rate for continuous ISNs monitoring can reach 99%, and
the accuracy of steganalysis is high.

3 The Unified Network Steganalysis Model Based
on Convolutional Neural Network (BNS-CNN)

This paper mainly detect the steganography using headers of IP, TCP and UDP
protocols. We construct a model BNS-CNN that includes input layer, convolu-
tional layer, two fully connected layers, and a softmax layer to detect the covert
channel in these protocols’ headers. The network structure of the BNS-CNN
model is shown in Fig. 1.

Fig. 1. BNS-CNN network structure (a denotes the type of different size filters)

3.1 Constructing Input Matrix

In order to preserve the data characteristics to the greatest extent and ensure
the filters’ feature extraction effective, the input layer extracts the IP, TCP and
UDP headers of the IPv6 packet into a two-dimensional matrix, whose size is
T*d. The total number of fields is T and the length of the longest field is d.
The fields that the package does not contain or the fields whose length is shorter
than the longest field are padded with 0. Thus, all packets can be converted to
a unified fixed size vector.
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According to RFC2460, RFC793 and RFC768, we comprehensively consider
the nature and size of each field, combine the IP, TCP, and UDP protocol headers
in the IPv6 network with the BNS-CNN unified input unit of 54 fields. They are
arranged in the order of the packets, with the TCP header placed after the UDP
header. Algorithm 1 describes the method in detail, and the matrix x(i) is figured
out and illustrated in Eq. (1).

X(i) =

⎡
⎢⎢⎢⎣

field(1)

field(2)

...
field(T )

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x(1,1) x(1,2) . . . x(1,d)

x(2,1) x(2,2) . . . x(2,d)

...
...

...
x(T,1) x(T,2) . . . x(T,d)

⎤
⎥⎥⎥⎦ (1)

3.2 Convolutional Layer

The BNS-CNN model uses different sizes of filters for feature extraction. Its
filters’ size can be n(j) ∗ d, where j ∈ {1, 2, ..., s}, n(j) ∈ T , s < T + 2. The filter
width d is the same as the column width of the matrix, this can ensure that the
feature is recognized by a field unit. For the filter height h ∈ n(j), a filter w can
produce a new feature cp on a window of size h*d starting from p line.

cp = f
(
W ∗ X

(i)
p:p+h−1 + b

)
(2)
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where b is a bias term and f is a non-linear function. Our model chooses the
ReLU function as f , that is, f (x) = max (0, x). The filter slides up and down
on the matrix X(i). A series of extracted feature values form a feature map C.

C = [c1, c2, ..., cT−h+1] (3)
Each filter in the model repeats the same operation to form different feature
map. The specific process of the convolution operation is shown in Fig. 2.

field(1)
field(2)
field(3)

.

.

.

.
field(T)

filter Wj (h=2)

filter Wq (h=3)

filter Wf (h=4)

X(i) (h=2)

X(i) (h=3)

X(i) (h=4)

feature map CJ

feature map Cq

feature map Cf

Fig. 2. Specific example of BNS-CNN convolution operation

The network steganography algorithm makes the steganographic embedding
rate generally low in order to ensure concealment, the steganographic noise is
usually small. The traditional max pooling and average pooling are prone to
oversampling, which is not conducive to model convergence. Therefore, the BNS-
CNN model uses K-max pooling to aggregate statistics on features.

In addition, the model uses the K-max pooling to reduce data size, increase
computational speed and improve feature robustness. The output of the convo-
lution is pooled, taking the largest K values of all feature values, and retain-
ing the original order of these feature values. K-max pooling can reflect the
strength of certain types of features and retain some location information. K-
max pooling can achieve the connection between fields that are further away in
the matrix, and provide more feature information for feature integration of the
full-connection layer and improve the effect of model classification.

3.3 Softmax Function and Loss Function

The output by the convolution layer are put into the fully connected layer,
which can enhance the ability to integrate model features. Finally, the softmax
function is used to determine the possible final classification. We assume that
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the training set is {(x(1), y(1)), . . . ,(x(m), y(m))}, where m represents the number
of samples; label y(i) ∈ {1, 2, . . . , k}, i ∈ m. For input x, We use the softmax
prediction function to estimate the probability value p (y = j|x)for each category
j ∈ {1, 2, . . . , k}, and adjusting the model output between [0, 1]. The prediction
function hθ

(
x(i)

)
is as follows:

hθ

(
x(i)

)
=

⎡
⎢⎢⎢⎣

p
(
y(i) = 1|x(i); θ

)
p

(
y(i) = 2|x(i); θ

)
...

p
(
y(i) = k|x(i); θ

)

⎤
⎥⎥⎥⎦ =

1∑k
j=1 eθT

j x(i)

⎡
⎢⎢⎢⎢⎣

eθT
1 x(i)

eθT
2 x(i)

...
eθT

k x(i)

⎤
⎥⎥⎥⎥⎦

(4)

Among the prediction function, θ1, θ2, ..., θk are related parameters of the
neural network model. To avoid overfitting, the BNS-CNN model employ
dropout on the penultimate layer with a constraint on L2-norms of the weight
vectors. Dropout prevents co-adaptation of hidden units by randomly dropping
out.

For the back propagation phase of model training, we use cross entropy as
the loss function.

loss (θ) = − 1
m

m∑
i=1

y(i)log
(
hθ

(
x(i)

))
+

(
1 − y(i)

)
log

(
1 − hθ

(
x(i)

))
(5)

4 Experiment

4.1 Data Set and Experimental Setup

A network steganographic dataset is built with a total of 24,000 packets. The
network steganographic packet is generated by embedding covert data in the
carrier’s IPv6 source address field [6], hop limit field [3], and TCP ISN [10]. The
specific division of the data set is shown in Table 1.

The batch size is set to 100. A epoch, i.e. 180 iterations, is performed. Exper-
iments show that the detection accuracy is no longer improved when the model
is trained for 10 epochs. We choose a filter with 2, 3, 4 height respectively, and
128 filters for each size, and a k value of 3 is set in the K-max pooling layer to
generate 1152 values into the fully connected layer. The first full connection layer
contains 512 neurons, and the second full connection layer contains 84 neurons,
all of which apply the ReLU non-linear function.

Table 1. Number of samples in the training set and test set.

Training set Test set

Steganographic packet 6000 2000

Non-steganographic packet 12000 4000
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Loss Optimizer. The experiment compares two optimization methods com-
monly used in machine learning algorithms: stochastic gradient descent and
Adam optimizer. We evaluate the degree of convergence of the loss value and
the accuracy of the model in the model training process. As can be seen from
Fig. 3, the Adam optimizer performs better in both loss and accuracy.

Reduce the Convolutional Layer. Experiments show that, since the BNS-
CNN model considers the characteristics of the packet header, the field is the
minimum unit of feature extraction to retain the data feature. The convolutional
method with filter size n*n will destroy the field features. And the stegano-
graphic information accounts for a small proportion of all data. Too many con-
volutional layers can also lead to loss of steganographic information, and the
accuracy of model detection decreases, shown in Fig. 4. Therefore, the BNS-
CNN model reduces the number of convolutional layers, uses the filters of size
n*d and increases the number of filters to improve feature extraction.

Fig. 3. Effect of SGD and Adam optimizer on loss value and detection accuracy

Fig. 4. Model accuracy changes after increasing the convolutional layer
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4.2 Experimental Results and Analysis

The BNS-CNN model is compared with other common shallow convolutional
neural network models in three dimensions, i.e. the false alarm (FPR), the miss-
ing alarm (FNR) and the accuracy (ACC). As show in Table 2, its detection
rate can reach 99.98% and its execution time is low. This shows that this model
works well for detecting multiple network steganography algorithms, the model
detection efficiency is high and it has strong generalization ability.

Table 2. Comparing the performance of each model.

Model FPR/% FNR/% ACC/% Testing time/m

LeNet 17.25 15.13 83.33 43.31

AlexNet 2.58 3.17 97.34 338.23

BNS-CNN 0.037 0.021 99.98 52.50

5 Summary

A BNS-CNN model is proposed to carry out the IPv6 network steganaly-
sis method based on convolutional neural network. It preprocesses the packet
header, and every field is taken as the minimum unit to perform the feature
extraction. For the storage covert channel based on IPv6 source address field [6],
hop limit field [3], and TCP ISN [10], the model detection accuracy is 99.98%,
which proves that the model has good detection effect and generalization per-
formance.
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Abstract. The purpose of the covert communication system is to imple-
ment the communication process without causing third party perception.
In order to achieve complete covert communication, two aspects of secu-
rity issues need to be considered. The first one is to cover up the existence
of information, that is, to ensure the content security of information; the
second one is to cover up the behavior of transmitting information, that
is, to ensure the behavioral security of communication. However, most
of the existing information hiding models are based on the “Prisoners’
Model”, which only considers the content security of carriers, while ignor-
ing the behavioral security of the sender and receiver. We think that this
is incomplete for the security of covert communication. In this paper, we
propose a new covert communication framework, which considers both
content security and behavioral security in the process of information
transmission. In the experimental part, we analyzed a large amount of
collected real Twitter data to illustrate the security risks that may be
brought to covert communication if we only consider content security
and neglect behavioral security. Finally, we designed a toy experiment,
pointing out that in addition to most of the existing content steganog-
raphy, under the proposed new framework of covert communication, we
can also use user’s behavior to implement behavioral steganography. We
hope this new proposed framework will help researchers to design better
covert communication systems.

Keywords: Covert communication · Content security · Behavioral
security · Behavioral steganography

1 Introduction

Covert communication system, encryption system and privacy system are three
basic information security systems which have been summarized by Shannon
[1]. These three types of information security systems protect people’s informa-
tion security and privacy in cyberspace from different aspects. Among them,
c© Springer Nature Switzerland AG 2020
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the encryption system mainly encrypts important information, makes the unau-
thorized people cannot decode and read normally, so as to ensure information
security [2]. The privacy system mainly controls the access to important infor-
mation and thus ensures the security of information [3]. These two systems can
only guarantee the security of information content, but can not cover up the
behavior of transmitting secret information. The most important characteristic
of a covert communication system is that it can conceal the fact of transmit-
ting secret information, that is, to complete the communication process without
causing suspicion from third parties.

In order to achieve truly effective covert communication and avoid being
perceived by third parties, there are two aspects of security issues that need
to be considered: the concealment of information content and the concealment
of information transmission behavior, which correspond to content security and
behavioral security, respectively. For a covert communication process, these two
issues are indispensable, and they together ensure the concealment and security
of the communication process.

Currently, most covert communication systems are under the framework of
“Prisoners’ Model” [4], which is described in detail as follows. Alice and Bob
are two prisoners locked in different cells in the prison. They are planning a
jailbreak. They are allowed to communicate with each other, but all communi-
cate information must be reviewed by guard Eve. Once Eve finds that they are
transmitting secret information, they will be handed over to a cell with the high-
est security level where they will never be able to escape from. Therefore, they
intend to use covert communication methods to embed secret information into
common carriers, such as images [5], voices [6], texts [7], and then communicat-
ing with each other. Such information hiding technology is called steganography.
Eve’s task is to determine as accurately as possible whether the information they
are transmitting contains secret information. The technology she uses is called
steganalysis.

In the past few decades, with the development of technology, the steganog-
raphy and steganalysis methods under the framework of the “Prisoners’ Model”
have achieved rapid development and progress on various carriers [5–13]. How-
ever, with the development of these steganography and steganalysis techniques,
we have noticed the limitations of “Prisoners’ Model” which only focus on con-
tent security.

A typical communication system consists of three important components: an
information sender, a communication channel and an information receiver [1].
The task of the sender is to generate and send information, which can be in the
form of images, voices, texts and so on. The communication channel is to pass
the signal generated by the sender to the receiver. The receiver is to receive the
information carrier transmitted from the channel and obtain the information
therein. Simmons’ “Prisoners’ Model” only emphasizes content security in the
process of information transmission, but ignores the behavioral security of the
sender and the receiver. In the scenario it assumes, it even has a very strong
assumption that Alice and Bob are allowed to communicate point-to-point.
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However, in reality, it might be that Alice and Bob’s behavior of establish-
ing such point-to-point communication alone is enough to arouse suspicion from
others, thus failing to achieve truly covert communication. Therefore, if we want
to realize the truly concealment of transmitting secret information, in addition
to ensuring the content security in the communication channel, we should also
conside the behavioral security of both sender and receiver of the communication
system.

In this paper, we propose a new security framework of covert communication
system, which considers both content security and behavioral security in the
process of information transmission. We collected and analyzed the behavioral of
a large number of active Twitter users, trying to illustrate the security risks that
may be brought to covert communication if we only consider content security
and neglect behavioral security. Finally, we designed a toy experiment, pointing
out that in addition to most of the existing content steganography, under the
proposed new framework of covert communication, we can even only rely on user
behavior to achieve behavioral steganography, which may bring new ideas and
methods to the future covert communication.

In the remainder of this paper, Sect. 2 introduces several related works.
Section 3 describes the proposed framework in detail. In Sect. 4, we analyzed
the behavioral of a large number of active Twitter users and conducted a series
of analytical experiments. Finally, conclusions are drawn in Sect. 5.

2 Related Works

2.1 Steganography and Steganalysis Under the “Prisoners’ Model”

Previous information hiding methods which under the framework of the “Prison-
ers’ Model” [4] mainly focuse on content security, they try to find the best way
to hide secret information into common carriers. These steganographic meth-
ods can be divided into different types according to different kinds of carrier,
like image steganography [5], text steganography [7], audio steganography [6]
and so on. In addition, according to different steganography means, they can
also be classified to modification-based steganography [5] and generation-based
steganography [6,7].

Figure 1 shows the overall framework of the “Prisoners’ Model” and we can
model it in the following mathematical form. Assuming that there are three
spaces: carrier space C, key space K, and secret message space M. The process
of information hiding can be represented by the function f(). If Alice adopts a
steganographic method based on the modification mode, she selects a common
carrier c from the carrier space C, which can be an image, voice or text. Then,
under the control of the secret key kA from the key space K, Alice embeds the
secret information m into the carrier c by modifying it, that is:

Emb : C × K × M → S, fmod(c, kA,m) = s. (1)

Correspondingly, if Alice adopts the steganographic method based on the car-
rier automatic generation, she does not need to be given a carrier in advance.
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Fig. 1. Steganography and steganalysis within the framework of “Prisoners’ Model”.

She can automatically generate a steganographic carrier s according to the secret
information m that needs to be transmitted, that is:

Emb : K × M → S, fgen(kA,m) = s. (2)

When Bob receives the carrier s containing secret information from Alice,
under the control of the decoding key kB , he can extract the embedded secret
message m from the steganographic carrier s by using the corresponding extrac-
tion function g(), that is:

Ext : S × K → M, g(s, kB) = m. (3)

In order not to arouse suspicion of Eve and ensure the security of secret
information, according to Cachin’s analysis of steganographic security [14], Alice
and Bob should try their best to reduce the statistical distribution differences
between normal carriers and steganographic carriers, that is:

df (PC , PS) ≤ εf . (4)

Among them, PC and PS represent the statistical distribution of normal carriers
and steganographic carriers respectively. εf is a number greater than 0, which can
be used to measure the concealment of steganographic algorithm f(). For Eve,
her job is to analyze and judge whether the information carrier being transmitted
has deviated from the statistical distribution of the normal carriers, and then
determine whether the carrier contains secret information.

The limitation of “Prisoners’ Model” is that it only considers the content
security in the communication process and ignores the behavioral security of the
communication ends, which we think is incomplete for achieving truly effective
covert communication.
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2.2 Behavioral Concealment and Behavioral Analysis

At present, most covert communication models mainly focus on the content
security of the information transmitted in the intermediate channel, but in fact,
both ends of the communication system can also participate in the entire covert
communication process. For example, during World War II, some people used
several specific behaviors agreed in advance to convey covert information [15].
In recent years, some researchers have begun to study how to use specific online
behaviors to convey covert information. For example, Pantic et al. [16] proposed
a steganographic method that represents different secret information by control-
ling the length of Twitter published. Zhang [17] suggested that different secret
messages could be conveyed by giving “love” marks to the information on social
media. Li et al. [15] defined a “bits to activities” mapping algorithm and tried
to use different online behaviors to convey secret message.

These covert communication methods can be implemented smoothly because
they utilize the blind area of current steganalysis methods under the “Prisoners’
Model” framework, that is, the lack of modeling and analysis of user’s behavior.
However, it is noteworthy that in recent years, with the development of technol-
ogy, more and more methods for detecting abnormal behaviors on the Internet
have emerged [18–21]. In this case, if we still only consider the content security
in the covert communication process, without considering the behavior security,
it will bring a great security risk to the entire covert communication system no
matter how concealment the secret information is embedded.

3 The Proposed Framework

In order to describe the proposed framework more conveniently, we first describe
a virtual scene. We assume that Alice and Bob are two intelligence personnel dis-
guised as ordinary people. Their job is to gather intelligence. They have sneaked
into two different target hostile areas and each of them have collected some intel-
ligence information. Now they need to communicate with each other, exchange
the information they have acquired and verify them with each other in order to
make the best decisions. However, due to previous actions, these two areas have
been suspected by the enemy, which can be collectively refered as Eve. Eve sus-
pects that Alice and Bob have infiltrated these two areas, but she is not sure who
they are. She was authorized to review all the communications between these two
regions in the hope of finding Alice and Bob. According to Kerckhoffs’s principle
[1], we can expand Eve’s capabilities as much as possible. We assume that Eve
can get the content of each communication between any two people in these two
regions, so she can perform steganalysis by analyzing the statistical distribution
characteristics of the communication content. In addition, she can also know the
communication behavior between any two people in these two regions, so she can
also perform steganalysis by analyzing the communication behavior. We should
also assume that Eve is familiar with all kinds of steganographic algorithms that
Alice and Bob may adopt, and only does not know the specific steganography
parameters (i.e. the secret key) that Alice and Bob adopt.
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Fig. 2. Covert communication in public cyberspace.

For Alice and Bob, in order to successfully accomplish the task and ensure
their own safety, they need to consider two aspects of security. Firstly, they
need to ensure that the information they transmit is well concealed and not
easily to be detected; secondly, they should behave as normal as possible and
thus not expose themselves. They first ruled out the use of encryption meth-
ods to transmit information, because the transmission of encrypted information
in the public channel will likely arouse suspicions. They eventually choose to
use steganographic methods for covert communication. But only assurance the
content concealment of each point-to-point communication as required by the
“Prisoners’ Model” is obviously not enough. They need to disguise themselves
as normal people in a public communication network, cover up their behavior of
exchanging secret information, and ensure the content security of each commu-
nication at the same time, thus they can achieve real covert communication.

The framework of the whole scenario is shown in Fig. 2 and the mathematical
descriptions for this scenario and task are as follows. We define the entire public
communication network as a graph series G = {Gt}Tt=1, where Gt denotes the
graph at the t-th moment. Graph Gt of time step t is composed of vertices set
Vt and edges set Et, that is:

G = {Gt}Tt=1. s.t. ∀t ∈ [1, T ], Gt = {Vt, Et ⊆ (Vt × Vt)}. (5)

The vertices in Gt represent the users in the social network and edges represent
the connections between users:

∀i, j ∈ [1, N ],∀t ∈ [1, T ],

Vt = ∪N
n=1{vi

t}, Et = ∪{ei,jt }|i,j∈[1,N ], ei,jt : vi
t → vj

t .
(6)

We can represent Alice and Bob in this public network as vA and vB . Without
affecting the nature of this problem, for the convenience of the following discus-
sion, we assume that all the secret information is sent by Alice and extracted
by Bob. According to the previous description, in order to achieve real covert
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communication, we need to consider both content security and behavioral secu-
rity in the communication process. At the same time, we notice from Fig. 2 that
the content and behavior of each user in the network have instantaneous and
temporal characteristics. Next we will discuss and model them separately.

– Instantaneous Content Security
In order to ensure instantaneous content security, Alice and Bob only need to
ensure that at each time, the difference in the statistical distribution charac-
teristics of the carrier they are transmitting and the normal carriers is small
enough. This is very similar to formula (1)–(4). We assume that at time step
t, Alice needs to pass a covert message mt to Bob. Alice selects a carrier ct
from the carrier space C, uses a steganographic function ft() to embed the
secret information mt into common carrier ct under the guidance of the secret
key kA

t ∈ K, and gets the steganographic carrier st. To minimize the impact
on the statistical features distributions of carriers, so as to avoid arousing
suspicion of other people about the transmission content, the steganographic
function ft() needs to satisfy the following constraints:

∀t ∈ [1, T ],

⎧
⎨

⎩

ft(ct, kA
t ,mt) = st,

gt(st, kB
t ) = mt,

d1(PC , PS) ≤ ε1.
(7)

Where gt() and kB
t are the extraction function and the extraction key cor-

responding to ft() and kA
t , respectively. PC and PS represent the statisti-

cal distribution characteristics of the normal carriers and the steganographic
carriers, respectively, and d1() is a measurement function for measuring the
statistical distribution difference between the normal carriers and the stegano-
graphic carriers. ε1 is a value greater than 0 and it measures the security of
the steganographic function ft(). The smaller the value of ε1, the stronger
the concealment of ft().

– Temporal Content Security
However, it is not enough to only guarantee the content security of a single
communication. For users in social networks, according to their own inter-
ests and characteristics, usually the contents they publish or pay attention
to have a certain relevance. Therefore, for Alice and Bob, the content they
upload and download should also have a certain temporal correlation. For
example, if a person is a big fan of basketball and his social media content
in the past short term is sports-related, then we have reason to guess that
the next content may also be sports-related. Or if a person always publishes
negative content on social media for a long time, we can also estimate that
the emotions contained in the following content may be negative. Conversely,
if a social account publishes multiple messages in a short period of time (e.g.
within an hour) and the topic changes frequently, or emotional switching fre-
quently, we can at least suspect that the account is unusually. We use cit1:t2
to represent the sequence of information published or downloaded by user vi

during the period from t1 to t2. Suppose H() is a function which can measure
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the temporal relevance of sequence information. Therefore, in order to achieve
temporal content security, Alice and Bob should ensure:

∀t1, t2 ∈ [1, T ], t1 < t2,

{
d2(H(sAt1:t2),H(ct1:t2)) ≤ ε2.

d2(H(sBt1:t2),H(ct1:t2)) ≤ ε2.
(8)

where H(ct1:t2) represents the average score of a large number of sequence
social information published by normal users. d2() reflects the difference
between temporal relevance score of sequence social information published
by Alice and normal users. ε2 is a value greater than 0, the smaller it is, the
stronger the concealment.

– Instantaneous Behavioral Security
For each moment t ∈ [1, T ], the behavioral security of each user vi

t in
cyberspace can be divided into two aspects: one is the behavioral security
of himself, the other is the contacts with the people around him, that is,
the behavioral security of a single vertex and the edges around it. Extreme
examples such like Bob only downloads information published by Alice, or
Alice publishs an unusually large amount of content in a very short time (for
example, 100 images in one minute), may bring risks of suspicion. Here, we
define two behavior scoring functions I() and J() to analyze the behavior
of vertexes and edges in the public network, respectively. Then to achieve
instantaneous behavioral security, Alice and Bob’s behavior at each moment
needs to meet the following constraints:

⎧
⎨

⎩

∀t ∈ [1, T ],
d3(I(vA

t ), I(vt)) ≤ ε3, d3(I(vB
t ), I(vt)) ≤ ε3,

d4(J(EA
t ), J(Et)) ≤ ε4, d4(J(EB

t ), J(Et)) ≤ ε4.

(9)

Where EA
t and EB

t represents all the edge sets associated with Alice and Bob
at t-th time step, and I(vt) and J(Et) represent the average behavior score
of the normal users and their connections, respectively. For instantaneous
behavioral security, the statistical distribution difference between Alice’s and
Bob’s online behavior and that of normal users’ behavior should be less than
a threshold ε3 and ε4.

– Temporal Behavioral Security
Costa et al. [18] and Daniel et al. [19] have found that for many ordinary
users, when logging in and using these social media, their behavioral records
have a significant time distribution. This shows that users may have their own
habits of using these social media and these behavior on social media is likely
to have a temporal correlation. For example, some people are accustomed
to watching a video on social media before going to bed, or browsing their
friends’ information and commenting on social media after getting up every
day. From the perspective of behavioral security, it would be much less likely
for Alice and Bob to expose themselves if they found a large number of
normal users’ usage habits and statistical characteristics and then imitated
their usage habits. The temporal characteristics of users’ online behavior can
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Fig. 3. The overall framework for covert communication in public networks.

also be divided into two aspects: vertex behavior and edge behavior, then the
constraints should be:

⎧
⎨

⎩

∀t1, t2 ∈ [1, T ], t1 < t2,

d5(H(vA
t1:t2),H(vt1:t2)) ≤ ε5, d5(H(vB

t1:t2),H(vt1:t2)) ≤ ε5.

d6(H(EA
t1:t2),H(Et1:t2)) ≤ ε6, d6(H(EB

t1:t2),H(Et1:t2)) ≤ ε6.

(10)

Where H(vA
t1:t2), H(vB

t1:t2) and H(EA
t1:t2), H(EB

t1:t2) represent the temporal rele-
vance of their sequential behavior of Alice and Bob themselves and their interac-
tion with the people around them, respectively. H(vt1:t2) and H(Et1:t2) represent
the corresponding distribution characteristics of ordinary users. To ensure tem-
poral behavioral security, the difference of their distribution should be less than
the threshold ε5 and ε6.

Based on the above analysis, the overall framework for covert communication
in public networks has been summarised in Fig. 3, and in order to achieve real
covert communication, the security constraints that Alice and Bob need to meet
are shown in Table 1.

Table 1. Steganographic security constraints for covert communication systems.
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4 Experiments and Analysis

In this section, we first analyzed the crawled Twitter user behavior and content
characteristics from some aspects. And then we analyze the possible risks if we
only consider content security without considering behavior security. Finally, we
designed a toy experiment, pointing out that in addition to most of the existing
content steganography, in the proposed new framework of covert communication,
we can even only rely on user behavior to achieve behavioral steganography.

4.1 Data Collection and Analysis

According to the previous section, in order to achieve truly effective covert com-
munication, Alice and Bob need to cover up themselves from both content and
behavior aspects. To achieve this goal, we first need to analyze the content and
behavioral characteristics of a large number of normal users on public networks.
In this work, we crawled 317,375 tweets from 1,147 active Twitter users (defined
as publish Twitter messages more than 90 in a month) for the period from 2019-
06-15 00:00:00 to 2019-07-15 23:59:59. Some detail information about these users
and tweets can be found in Table 2.

Table 2. Some detail information about the crawled twitter users and tweets

User number Tweet number Rate of retweet Average forwarding

1,147 317,375 34.55% 151.0

Average comments Average follower Average following

1871.7 23,036 8761.2

We made some statistical analyses of these crawled Tweets, and the results
are shown in Fig. 4. From these results, we can at least see that when these
unrelated users publish content on social networks, their behavior will show a
regular distribution on the whole, rather than disorder. For example, Fig. 4(b)
reflects the relationship between the total number of Twitters and the rate of
original Twitters published by these active users in a month. It forms a very
regular fan-shaped distribution. If Alice ignores these statistical rules, Twitter
publishing falls outside the sector. Even if the content she publishes is normal, it
may be recognized as abnormal behavior and expose herself. Figure 4(d) shows
the statistical distribution of the average number of Twitters posted by users
within 24 h a day. They also form a very regular distribution. If the time when
Alice publishes information does not coincide with that of most people, such as
always publishing information at the lowest point of normal people’s probability
of republishingleasing information, it may also be considered abnormal.
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(a) (b)

(c) (d)

Fig. 4. Some statistical distribution characteristics of online behaviors of active twitter
users.

In addition, from the perspective of content security, we analyzed in Sect. 3
that social information published by users (especially active users) is likely to
have temporal content relevance. We use the VADER model proposed in [22] to
analyze the sentiment of crawling Twitters. The sentiment score of each Twitter
is distributed between [−1, 1]. The closer the value is to 1, the more positive it
is, and the closer it is to −1, the more negative it is. Then, we use permutation
entropy [23] to calculate the random degree of Twitter sentiment values of these
active users within a month. As a measure, permutation entropy (PE) is widely
used in the analysis, prediction and detection tasks of time series. The value of
PE (in a range of [0, 1]) represents the degree of randomness or predictability of
the time series, the closer to 0, the more regular the sequence is.

In contrast, we have also constructed 100 virtual users and used recently
appeared steganographic text generation algorithm [7] to generate 100 stegano-
graphic twitters for each virtual user. Then we use the same method to calculate
the sentiment value of each steganographic Twitter and then use permutation
entropy to calculate its random degree. We use different embedding rates (bits
per word) to generate multiple sets of Twitters, and the final test results are
shown in Fig. 5.
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Fig. 5. The permutation entropy distribution of sentiment values of Twitter published
by normal users within one month and steganographic Twitter generated by model
proposed in [7].

As can be seen from Fig. 5, the PE distribution of steganographic Twitter
(regardless of embedding rate) generated is very close to 1, which means that
the sentiment values of these Twitters are almost random sequences. In contrast,
the PE distribution of real Twitter published by normal active users is closer
to 0, indicating that the real user generated Twitter sequence has a certain
predictability of sentiment state. This further validates our previous analysis
that no matter how concealment the steganographic samples generated by Alice
each time, once the temporal correlation is ignored, it is very likely to expose
itself.

These analyses show that a large number of normal users’ online content and
behavior have certain statistical characteristics, and neglecting any aspect of
them will bring security risks, so that effective covert communication cannot be
realized. Therefore, in order to achieve real covert communication, whether single
communication or continuous communication, we need to consider both content
security and behavioral security to ensure the concealment of communication.

4.2 Behavioral Steganography Based on Posting Time

In fact, by effectively expanding the “Prisoners’ Model”, on the one hand, it
brings greater challenges to Alice and Bob, but on the other hand, it also brings
them new ideas of steganography. They may even not need to modify the con-
tent of the original carrier, only use the online behavior to transmit secret infor-
mation, which can be called behavioral steganography. In this section, we will
present a very simple but effective method, to illustrate how can we conduct
behavioral steganography.

The steganography models based on the “Prisoners’ Model” usually need
to analyze the statistical distribution characteristics of the normal carrier, and
then modify the insensitive features of it and thus to embed secret information.
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This kind of methods can be called content steganography. Similarly, in order
to implement behavioral steganography, we first need to analyze the statistical
distribution characteristics of a large number of normal users’ behaviors.

Figure 4(d) shows the statistical distribution of the posting time within 24 h
a day. Therefore, we can consider using the behavior of posting time to transmit
secret information. For example, if Alice divides each day into hours, she can
get 24 time periods for sending information and also the probability of sending
information in each time hour according to Fig. 4(d), that is:

{{h1, h2, ..., h24},
{P (h1), P (h2), ..., P (h24)}.

(11)

Then Alice can construct a Huffman tree and encode each time period accord-
ing to the corresponding probability. Each leaf node represents a period of time,
and the encoding rule can be 0 on the left and 1 on the right. The Huffman
coding for each time period can be find in Table 3.

Table 3. Huffman code table for each posting time during one day.

O’clock Code O’clock Code O’clock Code O’clock Code O’clock Code O’clock Code

0–1 11001 1–2 11011 2–3 11000 3–4 10110 4–5 10011 5–6 01010

6–7 01011 7–8 10010 8–9 10100 9–10 10101 10–11 10111 11–12 11100

12–13 11111 13–14 0100 14–15 1000 15–16 0111 16–17 0110 17–18 0011

18–19 0010 19–20 0000 20–21 0001 21–22 11110 22–23 11101 23–24 11010

Then each time according to the secret bit stream, Alice searches from the
root node of Huffman tree until the corresponding leaf node is found, indicating
that the steganographic information should be sent out in the corresponding
time. We simulated Alice to transmit secret information at a specified time
using the above method and embed random bit streams into the sending time.
We simulated Alice sending 5,000 messages, and then we counted the distribution
of these sending times, results have been shown in Fig. 6. From Fig. 6, we can
see that for this steganographic method, while transmitting hidden information,
Alice can still obey the statistical characteristics of normal users’ behavior, so
it can achieve a certain degree of behavioral security. At the same time, it is
worth noting that Alice has not made any changes to the carrier content, so the
content security can also be guaranteed.

Although this is just a simple example of using network behavior to carry
covert information. But it proves that we can jump out of the scope of content
security, and only use the behavior to achieve covert communication. We think
that this may inspire more new types of covert communication technologies and
methods in the future.
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Fig. 6. The statistical distribution difference between the steganographic behavior and
the real behavior after carrying the covert information with the transmission time.

5 Conclusion

In this paper, we propose a new covert communication framework, which consid-
ers both content security and behavioral security in the process of information
transmission. We give a complete security constraint under the proposed new
framework of covert communication. In the experimental part, we use a large
amount of collected real Twitter data to illustrate the security risks that may
be brought to covert communication if we only consider content security and
neglect behavioral security. Finally, we designed a toy experiment, pointing out
that in addition to most of the existing content steganography, in the proposed
new framework of covert communication, we can even only rely on user behav-
ior to achieve behavioral steganography. We think this new proposed framework
is an important development to the current covert communication system. We
hope that this paper will serve as a reference guide for researchers to facilitate
the design and implementation of better covert communication systems.
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Abstract. Secret and private image security storage and fast transmission are a
relatively concerned issue in the field of information security. In existed image
encryption schemes, plain image is transformed to meaningless random noise
signal which is vulnerable to attack with suspicion. Image visually meaningful
cryptography (IVMC) based on information hiding is difficult to hide large size
images because of limited hiding capacity. To solve this problem,a new IVMC
based on Julia set images (JSI) generating and information hiding was proposed.In
this solution, firstly, JSI are generated by utilizing Julia set generating parameters
(JSGP) and specific pixel coloring scheme (SPCS), as keys, escape-time algo-
rithm (ETA). Then the secret image or the encrypted secret image is embedded
into JSI’s detail-rich small areas to form a beautiful stego-JSI, so as to achieve the
purpose of IVMC. The receiver can use the same JSGP and SPCS keys to gener-
ate the same cover-JSI, which greatly facilitates the extraction and decryption of
the encrypted image. Theoretical analysis and experimental results show that the
proposed method has good artistic beauty, high hiding capacity, good impercepti-
bility, strong anti-compression performance and good anti-steganalysis ability, as
well as large key space and good key sensitivity.

Keywords: Image encryption · Image visually meaningful cryptography
(IVMC) · Information hiding · Julia set

1 Introduction

1.1 The Difference Between VC and IVMC

Traditional visual cryptography (VC) method is based on image sharing. It is a powerful
technique in which a secret image can be divided into two or more shares and the
decryption can be done using human visual system [1]. As the name suggests, visual
cryptography has relationship with the human visual system. The decoding is carried
out by the human eyes, if k shares are stacked together. This qualifies everyone to use
the system, regardless of their information about cryptography and any computations.
These methods have the disadvantages of reducing contrast and increasing image size.
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In this paper, we propose an image visuallymeaningful cryptography (IVMC),which
is different from visual cryptography (VC). It encrypts plain images into visually mean-
ingful images, i.e. Julia set images (JSI), so as to reduce the suspicion of the enemy and
reduce the possibility of being attacked.

1.2 Related Work

In steganography, different fractal images of Julia set are generated in [2] by embed-
ding the secret data in the fractal creation process. The secret data are regarded as the
parameters which are necessary for the generation of fractal images. This method does
not hide image data directly, but hides bit information 0 and 1, resulting in low hiding
capacity and imperceptibility. In addition, the beauty, complexity and controllability of
the Julia sets images (JSI) are poor because of the randomness of generation. In 2018,
Mohammed pointed out the weakness and limitations of using fractal images in [3],
especially Julia sets images (JSI), as a cover in steganography system that may con-
tribute in detect the hidden information within these images. Therefore, from the point
of view of information hiding, using JSI as a cover and using information hiding only for
IVMC is easy to be steganlyzed. Although the key space of using JSI as a key of image
encryption is very large [4], the result of encryption is similar to random noise, which
exposes the importance of image and is easily attacked by the adversary. Therefore, we
try to combine information hiding and JSI generating to construct IVMC to overcome
the low hiding capacity, poor imperceptibility and controllability.

The rest of this paper is organized as follows. After introducing the framework of
JSI generating method in Sect. 2, we show how to generate JSI by controlling various
parameters. In Sect. 3, the proposed IVMC encryption scheme and decryption scheme
are presented. In Sect. 4, We demonstrate the experimental results and analyze the
performance of the proposed algorithm. We draw conclusions in Sect. 5.

2 Julia Sets ImageGeneratingBased on ImprovedNewton-Raphson
Method

2.1 Improved Newton-Raphson Method

Julia set is a type of algebraic fractal image which yield chaotic or unpredictable image.
Each Julia set creates a unique image, which is called the Julia set image (JSI). Julia
set is the maximal set of points that gets mapped onto itself under the function f (z) =
zm + c(m ∈ C, c ∈ C), and is usually created with the escape-time algorithm.

For simplicity, in this study, we adopted quadratic polynomials of Julia set to create
fractal images. The quadratic polynomials can be expressed as F(Z) = z2 + c, where
z = x + yi, c = p + qi , and i = √−1. The c value controls on the shape of JSI.
To produce an image, the process of all points must repeat. Julia set use the parameters
z and c, as a key, to generate images. Image color and shape change as input parameter
c. The value of c is constant in creation of each image.

Su et al. proposed an improved Newton-Raphson method for JSI generation [5].
Zhang et al. also used this escape-time algorithm (ETA) to generate JSI [2], which is
described as follows.
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Algorithm 1. Escape-time algorithm (ETA)
Step 1. Assume that the size of fractal image is a × b. Given c = p + qi (initial

parameter, saved as the embedded key), the escape radius threshold R, and the escape
time threshold T. Set xmin = −α, ymin = −β, xmax = α, ymax = β.

Let

�x = (xmax − xmin)/(a − 1) (1)

�y = (ymax − ymin)/(b − 1) (2)

Complete Step 2–4 for all points (nx , ny), where nx = 0, 1, 2, · · · , a − 1, and
ny = 0, 1, 2, · · · , b − 1.

Step 2. Given starting values Z0 = x0 + y0i , where x0 = xmin + nx × �x , and
y0 = ymin + ny × �y. Set t = 0.

Step 3. Set xt+1 = x2t − y2t + p, yt+1 = 2xt yt + q, and t = t + 1
Step 4. Set r = x2t + y2t .
If r > R, draw points (nx , ny) with coloring mode K = (Cr ,Cg,Cb) and compute

the next point. Then go to Step 3. If t = T, draw points (nx , ny)with fixed color 0 (black)
and compute the next point. Then go to Step 3. If r ≤ R and t < T, turn to Step 3 and
continue the iteration.

In this algorithm, we add the definition of coloring mode, which is defined as K =
(Cr ,Cg,Cb), in which Cr , Cg and Cb are arbitrary natural numbers. This corresponds
to the RGB color of drawing (nx , ny) points, and its calculation method is as follows:
Rt = mod(t × Cr , 256), Gt = mod(t × Cg, 256), Bt = mod(t × Cb, 256).

2.2 Julia Set Images Generating

Next, we will examine the influence of each parameter in Algorithm 1 on JSI, and give
some results. The values of p and q have great influence on the shape and aesthetic
feeling of JSI. The smaller the α and β are, the more details of JSI are displayed, as
shown in Figs. 1 and 2. In Figs. 1 and 2, the coloring mode K = (13, 21, 17).

The modification of parameters a and b can change the size of JSI, which are not
discussed here. Now we discuss the impact of the modification of the coloring mode on
JSI. Through theoretical analysis of Algorithm 1, the modification of the coloring mode

(a) = =1.5α β (b) = =0.5α β

Fig. 1. Julia set images with a = 1200, b = 1000, p = −0.835, q = −0.2321
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(a) = =1.5α β (b) = =0.5α β

Fig. 2. Julia set images with a = 1200, b = 1000, p = 0.45, q = −0.1428

(a) p=-0.835, q=-0.2321 (b) p=0.45, q=-0.1428

Fig. 3. The influence of coloring mode on JSI (with a = 1200, b = 1000, α = β = 0.5)

don’t change the shape of JSI, but can only change the color of each region of JSI, as
shown in Fig. 3, where the coloring mode is K = (113, 211, 117). The coloring mode
will be used in the IVMC algorithm proposed in next section.

3 Image Visually Meaningful Cryptosystem Based on JSI
and Information Hiding

3.1 Diagram of the Cryptosystem

There are some areas which include very rich details showed in the JSI of Figs. 1 and
3(a), and the color of these areas is very close to the encrypted image after pixel position
scrambling and gray value diffusion. Therefore, we propose an IVMC algorithm based
on information hiding and JSI. The basic idea is to replace the details of the JSI with
the encrypted secret image, so as to obtain an image which is similar to the original JSI,
and form the image which hides the secret image and is visually meaningful, thus it can
reduce the possibility of being suspected and attacked.
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The diagram of the algorithm is shown in Fig. 4.

Encryted image

Adjust  parameter values And coloring mode

Visually meaningful 
encrypted images

Fill the encrypted image 
into its white pixel region

Plain image
The number of 

pixels equals N

Calculate the number of 
pixels of each color in 

detail area, note n

GIven JSI 
generating
parameters

a,b, , ,p,q,K

Selected details small area 
binarization(if n N)

pixel positions 
Confusing and 

gray value 
diffusing using 

chaos

n N

Yes

No

Fig. 4. The diagram of the image visually meaningful cryptography based on IH and JSI

3.2 Encryption and Decryption Algorithm Steps

3.2.1 Encryption Algorithm

Suppose that the plain image to be encrypted is S = [ai j ]h×w, then according to the
diagram of visually meaningful image cryptosystem in Fig. 4, the encryption steps are
as follows.

Algorithm 2. Visually meaningful image cryptosystem
Step 1 (Pre-encrypt plain image): a plain image S is encrypted by a commonmethods

of pixel position confusion and gray scale diffusion, then an encrypted image S′ is
obtained. Initialize parameters a, b, α, β, p, q and coloring mode K = (Cr ,Cg,Cb),
counter = 0.

Step 2 (Generate JSI). update a, b, α, β according to a = a − 5 × counter, b = b
− 5 × counter, α = α − 0.1 × counter , β = β − 0.1 × counter , and modify the
coloring mode K to generate RGB JSI according to Sect. 2 Algorithm 1. Note that the
generated JSI is J. Here the parameters a, b, α, β, p, q and K = (Cr ,Cg,Cb) can be
used as keys. counter = counter + 1.

Step 3 (Select the small color areas to be replaced). Using the following formula (3)
to transform generated RGB image J into the gray image J′. For l = 0, 1, 2, · · · , 255,
calculate the number of pixels Cl in J′. Let V = { l|Cl/(a × b) ≤ γ }, if

∑

l∈V
Cl ≥ N =

h × w, then go to Step 4. Here γ is the proportion of small area pixels to the whole
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image J′ pixels, usually less than 0.02, which can also be used as a key. Otherwise, go
back to the Step 2.

Gray = R × 0.299 + G × 0.587 + B × 0.144 (3)

Step 4 (Mark the selected detail areas). The selected detail areas are marked white
(those are the areas with gray value l ∈ V) and the other areas are marked black to get
the binary image. Step 4 is not necessary, just to show the selected detail areas clearly.

Step 5 (Fill in the selected detail area). The pixels in S′ are taken out in sequence
according to Zigzag scanning mode and filled into the detail area selected in image J′ to
obtain a visually meaningful encrypted image, i.e. stego-JSI.

The greatest advantage of this encryption algorithm based on information hiding and
JSI is that it can generate exactly the same cover-JSI to facilitate the extraction of secret
information as long as the receiver has the correct key.

3.2.2 Decryption Algorithm

The decryption process of encrypted image is the inverse process of encryption, which
is carried out according to the steps of algorithm 3 below.

Algorithm 3. Decryption of visually meaningful image cryptosystem
Step 1 (Get the key and generate the cover-JSI). In order to decrypt, cover-JSI

generation keys a, b, α, β, p, q, Cr ,Cg,Cb and γ need to be obtained. Then, use these
keys to generate cover-JSI, note that the generated JSI is J. Using the formula (3),
transform generated RGB image J into the gray image J′. Here J and J′ are exactly the
same as J and J′ generated in encryption Algorithm 2, which is the greatest advantage
of this algorithm and the guarantee of correctly decrypting the encrypted secret image.

Step 2 (Select small color areas that have been replaced). This step is similar to the
Step 3 in encryption Algorithm 2.

Step 3 (Extract encrypted secret image from selected areas). In Stego-JSI, we find
the regions corresponding to the small areas selected in step 2, extract the pixel values
from them by Zigzag scanning, and combine them into size h×w image to get encrypted
secret image S′.

Step 4 (Decrypt encrypted image to get plain image). The original plain image S
is obtained by de-confusion and de-diffusion with the encryption method in Step 1 of
Algorithm 2.

4 Experiment Results and Safety Analysis

4.1 Experiment Results of the Algorithm

In this study, secrete image were embedded with the Algorithm 2 described previously.
Set a= 1000, b= 600,α = β = 0.5, p=−0.835, q=−0.2321 and K = (13, 21, 17),
and useAlgorithm 1 to get the cover-JSI as shown in Fig. 5(a). Using Step 3 of Algorithm
2, the selected detail area (white) is shown in Fig. 5(b), where γ = 0.0167. The original
256 × 256 plain image Lena and its chaotic encrypted image are shown in Fig. 5(c) and
(d), respectively. In the absence of the original JSI, it is difficult to see the encrypted
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image hidden in Fig. 5(e). Therefore, the proposed algorithm has good imperceptibility
from the perspective of information hiding, and achieves image encryption with visual
significance from the perspective of encryption.

(a) Cover-JSI                     (b) Selected details small areas (white)

(c)Original Lena (d) Encrypted Lena   (e) Stego-JSI after (d) is embedded in JSI

Fig. 5. The effect of Lena image encryption using the proposed algorithm

When decrypting, the same JSI can be generated by using the same key parameters,
and the location and size of the small areas embedded in secret information can also
be determined. Then J′ can be extracted from it. Then, the inverse process of chaotic
encryption is used to de-confuse the position of the pixels and de-diffuse the gray value.
The decrypted image consistent with the Lena of Fig. 5(c) can be obtained.

4.2 Algorithm Performance Analysis

The IVMC algorithm proposed in this paper is based on information hiding and JSI gen-
eration. Therefore, its performance includes two aspects: the performance in the field
of information hiding and the performance in the field of encryption. However, IVMC
as a new encryption and hiding paradigm, we think that it is not suitable to copy the
performance of these two fields completely, and there should be new performance indi-
cators to measure the performance of IVMC. From the point of view of encryption, the
key space size, key sensitivity and the correlation of the encrypted image pixels are very
important performance indicators. Considering from the angle of information hiding, its
imperceptibility, hiding capacity and anti-steganalysis ability are very important perfor-
mance indicators. In view of the particularity of JSI image and the new encryption and
hiding paradigm, we choose the artistic aesthetics and hiding capacity of JSI, the imper-
ceptibility, anti-compression and anti-steganalysis performance of Stego-JSI, the size of
key space and key sensitivity to discuss the performance of the proposed algorithm. The
presentation and discussion of other performance indicators will be our future research
work.
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4.2.1 JSI Art Aesthetics and Hidden Capacity Analysis

The IVMC proposed in this paper requires that cover-JSI not only have a sense of
aesthetics, but also have high hiding capacity. From Figs. 1, 2 and 3, we can see that
the aesthetics of cover-JSI is related not only to the values of p and q, but also to the
coloring mode K. The hiding capacity of cover-JSI is related to the number of its detail
areas. Generally, the smaller the values of α and β, the more detail areas it displays, and
the larger the hiding capacity. This can be seen in Figs. 1(a) and (b).

Through a lot of experiments,wefind thatwhena=1000,b=600, K = (13, 21, 17),
p and q satisfy formula (4). Cover-JSI generated by ETA can have a better sense of
aesthetics and higher hiding capacity at the same time, as shown in Fig. 6. As can be
seen from Fig. 6, only from the aesthetic point of view, Fig. 6 (c) and (d) show that
image’s artistry is better because they are similar to marbling art works [6, 7]. In fact,
JSI images satisfying good aesthetics and high hiding capacity are far more than those
limited by formula (4) as long as appropriate α, β and K are selected.

⎧
⎨

⎩

−0.9 ≤ p ≤ −0.7
−0.5 ≤ q ≤ −0.3

|p + q| < 1.2
or

⎧
⎨

⎩

0 ≤ p ≤ 0.4
−0.5 ≤ q ≤ 0.8
|p| + |q| < 1.2

(4)

(a) p=-0.9123,q=-0.26, = =0.5α β (b) p=-0.7,q=-0.25999, = =0.5α β

(c) p=-0.835,q=-0.22321, =0.1, =0.5α β (d) p=-0.7,q=-0.25999, =0.5, =0.1α β

(e) p=0.355,q=0.355, =0.5, =0.5α β (f) p=-0.4,q=0.59, =0.5, =0.1α β

Fig. 6. The cover-JSI generated given different parameters
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When the cover-JSI is generated, the main factor affecting the hiding capacity and
imperceptibility is γ , which is the proportion of pixels in each detail small area to the
whole image pixels. The relationship between the generating parameters p, q and the
hidden capacity (the total number of pixels in all small detail areas) is shown in Table 1.
As can be seen from Table 1, except for p = −0.7 and q = −0.455, the hidden capacity
is larger than that in reference [2, 9, 10], and increases with the increase of γ , which is
consistent with the theoretical analysis. However, with the increase of hiding capacity,
the aesthetics of stego-JSI is also damaged to a certain extent. The underlined Bold Italic
numbers in Table 1 represent the corresponding images, and some of the steganographic
images are shown in Fig. 7. Comparing the cover-JSI of Fig. 6(c) with the stego-JSIs of
Fig. 7, we can find that there is a certain loss of artistic aesthetics.

Table 1. The relation between hidden capacity and JSI generation parameters p and q

q
capacity

p capacity

p −0.9123 −0.9 −0.835 −0.7456 −0.7234 −0.7 −0.7

q −0.26 −0.25 −0.2321 −0.2345 −0.2345 −0.455 −0.2599

Hidden
pixel
number

γ =
0.005

76899 62878 25896 42136 85430 14489 165045

γ =
0.010

121302 80075 57311 78122 221560 24248 209823

γ =
0.017

216517 153449 85164 107331 388478 71979 267086

Bit/pixel 0.5 in [2]
<0.1 in
[9]
1 in [10]

>3.0759 >2.5152 >1.0358 >1.6854 >3.4172 >0.5795 >6.6018

(a) p=-0.7,q=-0.25999, = =0.5, 0.017α β γ = (b) p=-0.7,q=-0.25999, = =0.5, 0.005α β γ =

Fig. 7. The stego-JSI with artistic aesthetic loss
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4.2.2 Imperceptibility Analysis

Because the JSI generated by ETA has very detail-rich small areas (DSA), the color of
these DSA has very high similarity with the color of color image after chaotic encryption
visually, and the Algorithm 2 proposed by us is to hide the encrypted image in these
DSA, so it has very good imperceptibility. This can be seen from Fig. 5(a) and (e). Even
in less beautiful Fig. 7(a) and (b), without the original cover-image, it is difficult to
distinguish whether their color differences are due to different coloring mode or other
reasons.

On the other hand, it should be noted that although we borrow the concept of infor-
mation hiding here, encryption is the main purpose. Moreover, even the imperceptibility
of information hiding cannot be measured by peak signal-to-noise ratio (PSNR) in each
case. Therefore, we do not use PSNR to measure imperceptibility here.

4.2.3 Anti-compression Analysis

When stego-JSI (for example, Fig. 5(e)) is lossless compressed, the secret image J′
hidden in stego-JSI can be extracted correctly. But when Fig. 5(e) is compressed by
lossy JPEG, the original plain image can’t be decrypted at all, as shown in Fig. 8(a).
This is because stego-JSI is compressed to change its gray value, and a gray value change
based on position scrambling and gray value diffusion will lead to incorrect decryption.
However, if the plain image Lena is embedded directly into JSI according to the Step
2 to Step 5 of Algorithm 2, it can be also decrypted and extracted after compression as
shown in Fig. 8(b) and (c), except that the color of the image is different from original
image, so our algorithm has a certain compression resistance.

(b) Lena is embedded directly into JSI (c) Extracted from (b)

(d) Calculate details areas (white) from (b)         (e) Extracted without cover-JSI

(a)Compressed stego-JSI 
extracting and decrypted

Fig. 8. The encrypted image is compressed with JPGE and decrypted image
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Further theoretical and experimental analysis shows that the advantage of compres-
sion resistance is brought by the new information hiding paradigmproposed in this paper.
If the key parameters are not used to generate the cover-JSI, the small information hiding
area determined from Stego-JSI is wrong as shown in Fig. 8(d), this leads to extraction
and decryption errors as shown in Fig. 8(e).

4.2.4 Key Space

The key space is a vital index to evaluate the performance of the encryption system.
Only a large key space can defend against exhaustive attack. In our proposed IVMC
algorithm, the size of the key space is mainly affected by two parts: (1) Chaotic pre-
encrypted key space for plain image, which has been discussed in other literature, and
we will not discuss it; (2) The parameters of JSI generation, which is the focus of our
discussion.

According to Sect. 3.2.1, the key of the encryption algorithm proposed in this paper
includes a, b, α, β, p, q,Cr ,Cg,Cb and γ . Since the size of JSI a, b is exposed in stego-
JSI, they are not be considered as keys. γ as a control parameter of hidden capacity, we
do not use them as keys for the time being. Here, we will only discuss the number of
keys using α, β, p, q, Cr ,Cg and Cb as keys. Considering the beauty and detail richness
of JSI images, set the range of values of α and β is [−3, 3]. Assuming that the precision
of α and β is 10−8, there are 7× 108 values of α and β, respectively. From formula (4),
we can get 3 × 104 values of p and q, respectively. Cr ,Cg and Cb determine the total
number of color patterns, there are 256 × 256 × 256. Note that the absolute values of
xmin, xmax, ymin and ymax in formula (1) and (2) can be different, so the key space is

7 × 108 × 7 × 108 × 7 × 108 × 7 × 108 × 3 × 104 × 3 × 104 × 2563 > 2171 (5)

Formula (5) shows that although the key space is smaller than that in reference [8],
there is no statistical key space for plain image pre-encrypted.

4.2.5 Key Sensitivity Analysis

A secure encryption system should have a strong key sensitivity. Because the IVMC
proposed in this paper is different from the encryption method which encrypts the image
into random noise, it cannot bemeasured by the usual NPCR (Number of Pixel Changing
Rate) and UACI (Unified Average Changing Intensity) [4]. Here we use the extremely
small change of the key to examine the effect of extracting and decrypting the hidden
image, thus demonstrating the sensitivity of the key of the proposed algorithm in this
paper.

Let a= 1000, b= 600,α = β = 0.5, p=−0.7234 and q=−0.2345, and the cover-
JSI generated by Algorithm 1 is shown in Fig. 9(a). In order to display conveniently,
the plain image Peppers (Fig. 9(b)) of 256 × 256 is directly hidden into cover-JSI, and
a visually meaningful stego-JSI is obtained, as shown in Fig. 9(c). When all keys are
correct, Peppers can be correctly retrieved from Fig. 9(c), as shown in Fig. 9(d). If only
0.0001 is added to the key p, Peppers cannot be extracted correctly, as shown in Fig. 9(e)
and (f). Keeping a = 1000, b = 600, p = −0.7234 and q = −0.2345 unchanged, only
adding 0.0001 to α or subtracting 0.0001 from β, the JSI generated by Algorithm 1 has
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no visual difference (Fig. 9(g) (h)), but the Peppers images cannot be extracted correctly,
as shown in Fig. 9(i) and (j). These results show that our proposed encryption scheme
has good key sensitivity.

(a) Cover-JSI,p=-0.7234,q=-0.2345 (b) Peppers (c) Stego-JSI p=-0.7234,q=-0.2345 

(d)Extracted-Peppers (e) Cover-JSI,p=-0.7235,q=-0.2345  (f) Extraction error

(g) Cover-JSI =0.5001α (h) Cover-JSI 0.4999β = (i) From (g)        (j) From (h)

Fig. 9. Key sensitivity testing

4.2.6 Analysis of Anti-steganalysis Ability

The IVMC algorithm proposed in this paper is based on information hiding. As an
important performance of information hiding, it has the ability of anti-covert analysis.

Reference [3] focuses on the weak points and limitations of using fractal images,
especially Julia sets images, as a cover in steganography system that may contribute in
detect the hidden information within these images. These weak points and limitations
mainly include: (I) The effect of the reflective or rotational symmetry in Julia set images;
(II) JSIs have the properties of self-similarity; (III) The effect of changing the parameters
values. (IV) Embedding in the JSI after decomposed into R, G, B colors. (V) Background
of JSI: There are a large number of points from JSI containing only the information of
background which are the non-chaotic points; there is a big similarity between pixel
values. (VI) Amount of data can be hidden in JSI.

In fact, as long as the values of xmin, xmax, ymin and ymax in formula (1) and
(2) are as different as possible, the shortcomings mentioned above (I) and (II) can be
avoided. Similarly, it is difficult to guess the value of parameters p and q by adjusting
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these parameters to a relatively small range and displaying only the local and beautiful
details of JSI images. Therefore, the weak point of (III) pointed out in reference [3] can
be overcome. Our steganography does not decompose the cover-JSI color into R, G, B,
so there is no weakness mentioned above (IV). In addition, our steganography is to hide
the secret image directly in the detail-rich area of JSI without any change in the large
background area, which will not provide a good detection opportunity for attackers. That
is to say, disadvantage (V) does not exist in our method. As for the deficiency of (VI),
it is a challenging problem to increase the hiding capacity and reduce the possibility
of being breached by steganalysit, which needs to be further studied and solved. The
plain image should be pre-encrypted first in the algorithm 2 proposed in this paper. So
its security is guaranteed. The steganography of this paper is to add another layer of
protection to the secret image.

5 Conclusion

In this paper, we proposed an image encryption scheme based on the Julia set Images
and steganography. We embedded the secret image into JSI’s detail-rich small areas to
form a beautiful JSI image with high hiding capacity and good imperceptibility, and
can overcome many shortcomings of existing JSI-based information hiding schemes.
Simulation results show that our encryption scheme has more excellent performance
and is a new paradigm in the field of visual cryptography and secret image sharing.
Therefore, our IVMC scheme is safe, and the Julia set is an excellent set for visual
cryptography.
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Abstract. Perceptual hashing for image authentication has been inten-
sively investigated owing to the speed and memory efficiency. How to
determine the reference hashing code, which is used for similarity mea-
sures between the distorted hashes and reference hashes, is important
but less considered for image hashing design. In this paper, we present a
Multi-Attack Reference Hashing (MRH) method based on hashing clus-
ter for image authentication, which is expected to use prior information,
i.e. the supervised content-preserving images and multiple attacks for
feature generation and final reference hashing code generation. Exten-
sive experiments on benchmark datasets have validated the effectiveness
of our proposed method.

Keywords: Reference hashing · Multi-attack · Image authentication

1 Introduction

With the rapid development of internet and multimedia, image content authen-
tication [1] becomes the research hotspots of multimedia information security.
Different from digital watermarking [2] and digital signature [3], perceptual hash-
ing [4] is used for multimedia content identification and authentication through
perception digests based on the understanding of multimedia content. It pro-
vides a more convenient way for solving the management problems associated
with multimedia authentication.

Currently the majority of image perceptual hashing algorithms can roughly
be divided into five categories: statistic based schemes, relation based schemes,
coarse representation based schemes, low level feature based schemes and learn-
ing based schemes [5,6]. Statistic based schemes generate reference hashing by
calculating image statistics in the spatial domain, such as mean, variance, and
histograms of image blocks [7–10]. Relation based schemes take the advantage
c© Springer Nature Switzerland AG 2020
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https://doi.org/10.1007/978-3-030-43575-2_33
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Fig. 1. A generic framework of perceptual image hashing.

of some invariant relations of discrete cosine transform (DCT) coefficients or
wavelet transform (DWT) coefficients to generate reference hashes [11–13]. In
coarse representation based category of methods, the reference hashes are gener-
ated by utilizing the coarse information of the original image. For example, the
spatial distribution of significant wavelet coefficients, the low-frequency coeffi-
cients of Fourier transform, etc [14–17]. Local feature points based hashes are
generated by extracting the striking image feature points [18–21]. These meth-
ods typically perform the DCT or SIFT transform on the original image, and
then generate reference hashes using different algorithms [22–24]. In category
of learning based schemes, efficient learning can be incorporated into the image
hash generation process by taking advantages of the training data at the owner
side. The hashing codes were obtained based on the existing learned parameters
[25–27].

The well-established paradigm of perceptual hashing consists of three major
steps, i.e., extract robust features, feature compression, and hash comparison
as shown in Fig. 1. The first stage is to extract robust features from the image
sets and conduct compression, quantification, coding and other operations on
the perceptual features. This procedure is known as perceptual hash process F .
These original reference hashes are generated and transmitted through a secure
channel. In the second stage, the same perceptual hash process F will apply
to the queried image to be authenticated, so as to obtain the hashing codes of
the query image. In the third stage, the reference hashes will be compared with
image hashes in the test database for content authentication.

For the total framework of perceptual hashing based image authentication,
only few studies have been devoted to the reference hashing generation. Lv et al.
[29] proposed obtaining an optimal estimate of the hash centroid using kernel
density estimation (KDE). In this method, the centroid was obtained as the value
which yields the maximum estimated distribution. Its major drawbacks are that
the binary codes are obtained by using a data independent method. Moreover,
in the current literature of image hashing, prior information, i.e. the distorted
copies by image processing attacks of original images are generally less explored
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(a) multiple hash clusters (b) a single hash cluster

Fig. 2. The examples of hash clusters

in image hashing generation. Therefore, how to put on efforts of exploring prior
information and efficiently learn reference hashing code for solving multimedia
security problems is an important topic for current research.

In this paper, we propose a Multi-Attack Reference Hashing (MRH) method
based on cluster for image authentication. According to the requirement of
authentication application, we propose to build the prior information set based
on the help of multiple virtual prior attacks, which is produced by applying
virtual prior distortions and attacks on the original images. An extensive set of
experiments on two image datasets for four current baseline hashing algorithms
demonstrate the advantages of the proposed method.

2 Proposed Method

2.1 Prior Information Set

Perceptual hashing for image content authentication is expected to be able to sur-
vive on acceptable content-preserving manipulations. For given original images
and its various distorted copies, image hashing for image authentication is actu-
ally an infinite clustering problem. However, the image hashes arising from the
original image may not the hash centroid of the distorted copies. As shown in
Fig. 2(a), where we apply 15 classes of attacks on 5 original images and repre-
sent their hashes in 2-dimensional space for both the original images and their
distorted copies. From Fig. 2(a), we can observe 5 clusters in the hashing space.
From Fig. 2(b) by zooming into one hash cluster, we note a observation that the
hashes of the original image actually may not be the centroid of its cluster.

How to determine the hashing centroid (Reference Hashing), which is used
for similarity measures between the distorted hashes and reference hashes, is
important for image hashing design. In this paper, the original images and their
distorted copies compose the so-called prior information set. We take the ref-
erence hashing generation as a multi-attack based cluster problem in the prior
information set. The goal of our algorithm is to infer the cluster centroid and
the corresponding central image.
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2.2 Problem Setup

For l original images in the dataset, we apply V types of content preserving attack
with different types of parameter settings to generate simulated distorted copies.
Let Θ represents the original image set, fv(·) represent v-th content-preserving
attacks, we have the distorted copy set after virtual attacks:

Ψv = f(Θ, fv(·)), v = 1, 2, ..., V. (1)

Let us denote the feature matrix of attacked instances in set Ψv as Xv ∈ R
m×t.

Here, v = 1, 2, ..., V , m is the dimensionality of data feature, t is the number
of instances for attack v. Finally, we get the feature matrices for the total n
instance as X = {X1, ...,XV }, and here n = tV . Note that, the feature matrices
are normalized to zero-centered.

For certain original image set and its various distorted copies, image hashing
for image authentication is actually an infinite clustering problem. Therefore, we
take the prior image set as training data. We aim to infer the clustering centroids
for reference hashing generation, which is used for similarity measure.

2.3 Multi-attack Reference Hashing

We now elaborate the formulation of our proposed multi-attack based hashing
method, which jointly exploits the information from various content preserving
multi-attack data.

By considering the total reconstruction errors of all the training objects, we
have the following minimization problem in a matrix form:

J1(Ũ, X̃) = α(||X̃ − ŨX||2F + β||Ũ||2F ), (2)

where X̃ is shared latent multi-attack feature representations. The matrix Ũ can
be viewed as the basis matrix, which mapping the input multi-attack features
into the corresponding latent features. Parameter α, β is a nonnegative weighting
vector to balance the significance.

From the information-theoretic point of view, the variance over all data is
measured, and taken as a regularization term:

J2(Ũ) = γ||ŨX||2F , (3)

where γ is a nonnegative constant parameter.
As shown in Fig. 2, image hashing for image authentication is actually an

infinite clustering problem. The reference hashing code is generated based on the
cluster centroid image. Therefore, we also consider keeping the cluster structures.
We formulate this objective function as:

J3(C,G) = λ||X̃ − CG||2F , (4)

where C ∈ R
k×l and G ∈ {0, 1}l×n are the clustering centroid and indicator.
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Finally, the formulation of our proposed MRH algorithm can be written as:

min
Ũ,X̃,C,G

α||X̃ − ŨX||2F + β||Ũ||2F − γ||ŨX||2F + λ||X̃ − CG||2F . (5)

Our objective function simultaneously learns the feature representations X̃
and finds the mapping matrix Ũ, the cluster centroid C and indicator G. The
iterative optimization algorithm is as follows.

Fixing all variables but optimize Ũ: The optimization problem Eq. (5)
reduces to:

minJ(Ũv) = α||X̃ − ŨX||2F + β||Ũ||2F − γtr(ŨXXTŨT), (6)

By setting the derivation ∂J(Ũ)

∂Ũ
= 0, we have:

Ũ = X̃XT((α − γ)XXT + βI)−1 (7)

Fixing all variables but optimize X̃: Similarly, we solve the following opti-
mization problem:

minF (X̃) = α||X̃ − ŨX||2F + λ||X̃ − CG||2F , (8)

which has a closed-form optimal solution:

X̃ = αŨX + λCG. (9)

Fixing all variables but C and G: For the cluster centroid C and indicator
G, we obtain the following problem:

min
C,G

||X̃ − CG||2F . (10)

Inspired by the optimization algorithm ADPLM (Adaptive Discrete Proximal
Linear Method) [30], we initialize C = X̃GT and update C as follows:

Cp+1 = Cp − 1
μ

� Γ (Cp), (11)

where Γ (Cp) = ||B − CG||2F + ρ||CT1||, ρ = 0.001, p = 1, 2, ...5 denote the p-th
iteration.

The indicator matrix G at indices (i, j) is obtained by:

gp+1
i,j =

{
1 j = arg m

s
inH(bi, c

p+1
s )

0 otherwise
, (12)

where H(bi, cs) is the distance between the i-th feature codes xi and the s-th
cluster centroid cs.

After we infer the cluster centroid C and the multi-attack feature represen-
tations X̃, the corresponding l reference hashing code is generated. The basic
idea is to compare the hashing distance among the nearest content preserving
attacked neighbors of each original image and corresponding cluster centroid.
The complete algorithm is shown in Algorithm 1.
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Algorithm 1. Optimization Algorithm for MRH
1: Input: Multi-attack matrices: X = {X1, ...,XV }, parameter α, β, γ, λ, and the

dimension k of latent multi-attack feature representations X̃.
2: Initialize: α = 1.000, β = 0.003, γ = 0.001, λ = 0.00001; Initialize Ũ and X̃ with

random values.
3: while not converged do
4: Update the variables Ũ and X̃ according to Eq. (7) and
5: Eq. (9).
6: Update parameter C and G according to Eq. (11) and Eq. (12).
7: Check the convergence for Eq. (5).
8: end
9: Output: Ũ, X̃, C and G

3 Experiments

3.1 Experiment Setting

We compare our multi-attack reference hashing approach with a number of base-
lines. In particular, we compare with:

Wavelet-based image hashing [31]: It is an invariant feature transform based
method, which develop an image hash from the various sub-bands in a wavelet
decomposition of the image and makes it convenient to transform from the space-
time domain to the frequency.

SVD-based image hashing [16]: It belongs to dimension reduction based
hashing and it use spectral matrix invariants as embodied by singular value
decomposition. The invariant features based on matrix decomposition show good
robustness against noise addition, blurring and compressing attacks.

RPIVD-based image hashing [32]: It incorporates ring partition and invari-
ant vector distance to image hashing by calculating the images statistics. The
statistic information of the images includes: mean, variance, standard deviation
and kurtosis, etc.

Quaternion-based image hashing [33]: This method considers the multi-
ple features, and constructs quaternion image to implement quaternion Fourier
transform for hashing generation.

In this paper, the involved experiments are carried out on two real-world
datasets. The first comes from the CASIA [34], which contains 918 image pairs,
including 384 × 256 real images and corresponding distorted images with differ-
ent texture characteristics. The other one is RTD [35,36], which contains 220
real images and corresponding distorted images with resolution 1920 × 1080.
For performance evaluation, we report F1 and Precision, Recall and Area Under
Receiver Operating Curve (AUC) as the metrics for hash performance.

3.2 Perceptual Robustness

To validate our perceptual robustness, we apply the content preserving opera-
tions. Twelve types of content-preserving attacks are tested: (a) Gaussian noise
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Table 1. Hashing distances under different content-preserving manipulations.

Method Manipulation ORH MRH

Max Min Mean Max Min Mean

Wavelet Gaussian noise 0.02828 0.00015 0.00197 0.02847 0.00014 0.00196

Salt & Pepper 0.01918 0.00021 0.00252 0.01918 0.00024 0.00251

Gaussian blurring 0.00038 0.00005 0.00017 0.00067 0.00006 0.00019

Circular blurring 0.00048 0.00006 0.00022 0.00069 0.00006 0.00021

Motion blurring 0.00034 0.00006 0.00015 0.00065 0.00005 0.00016

Average filtering 0.00071 0.00007 0.00033 0.00071 0.00009 0.00030

Median filtering 0.00704 0.00006 0.00099 0.00753 0.00007 0.00099

Wiener filtering 0.00101 0.00008 0.00028 0.00087 0.00008 0.00028

Image sharpening 0.00906 0.00009 0.00115 0.00906 0.00010 0.00114

Image scaling 0.00039 0.00005 0.00013 0.00064 0.00006 0.00018

Illumination correction 0.08458 0.00447 0.02759 0.08458 0.00443 0.02757

JPEG compression 0.00143 0.00009 0.00026 0.00275 0.00013 0.00051

SVD Gaussian noise 0.00616 0.00007 0.00031 0.00616 0.00007 0.00030

Salt & Pepper 0.00339 0.00008 0.00034 0.00338 0.00007 0.00033

Gaussian blurring 0.00017 0.00007 0.00010 0.00113 0.00007 0.00011

Circular blurring 0.00018 0.00006 0.00010 0.00114 0.00006 0.00011

Motion blurring 0.00017 0.00007 0.00010 0.00113 0.00006 0.00011

Average filtering 0.00025 0.00007 0.00011 0.00111 0.00006 0.00012

Median filtering 0.00166 0.00007 0.00015 0.00190 0.00007 0.00016

Wiener filtering 0.00035 0.00005 0.00011 0.00113 0.00007 0.00012

Image sharpening 0.00104 0.00007 0.00018 0.00099 0.00007 0.00018

Image scaling 0.00016 0.00007 0.00010 0.00114 0.00007 0.00011

Illumination correction 0.00662 0.00014 0.00149 0.00674 0.00014 0.00150

JPEG compression 0.00031 0.00007 0.00010 0.00053 0.00008 0.00012

RPIVD Gaussian noise 0.25827 0.00864 0.03086 0.29081 0.01115 0.03234

Salt & Pepper 0.22855 0.01131 0.02993 0.25789 0.01191 0.03033

Gaussian blurring 0.03560 0.00411 0.01471 0.14023 0.00545 0.01786

Circular blurring 0.06126 0.00447 0.01713 0.13469 0.00565 0.01924

Motion blurring 0.03570 0.00362 0.01432 0.18510 0.00473 0.01825

Average filtering 0.07037 0.00543 0.02109 0.20190 0.00591 0.02237

Median filtering 0.06126 0.00512 0.02234 0.18360 0.00625 0.02465

Wiener filtering 0.07156 0.00421 0.01803 0.20421 0.00581 0.02041

Image sharpening 0.06324 0.00609 0.02442 0.18283 0.00706 0.02765

Image scaling 0.03311 0.00275 0.01154 0.18233 0.00381 0.01761

Illumination correction 0.11616 0.00769 0.02864 0.20944 0.01047 0.02920

JPEG compression 0.07037 0.00543 0.02109 0.06180 0.00707 0.02155

QFT Gaussian noise 6.97151 0.13508 0.73563 6.30302 0.11636 0.60460

Salt & Pepper 7.63719 0.16998 0.66200 7.50644 0.15073 0.63441

Gaussian blurring 0.26237 0.00513 0.02519 0.10820 0.00318 0.01449

Circular blurring 0.26529 0.00712 0.03163 0.17937 0.00460 0.02075

Motion blurring 0.26408 0.00465 0.02286 0.10729 0.00300 0.01318

Average filtering 0.30154 0.00976 0.04403 0.30719 0.00760 0.03263

Median filtering 0.95120 0.03084 0.19822 0.87149 0.02706 0.19345

Wiener filtering 0.64373 0.01746 0.08046 0.68851 0.01551 0.07616

Image sharpening 6.55606 0.05188 1.52398 6.55596 0.05189 1.52398

Image scaling 0.51083 0.04031 0.10067 0.52404 0.02800 0.09827

Illumination correction 4.37001 0.27357 0.84280 4.36692 0.27348 0.84170

JPEG compression 7.55523 0.13752 1.29158 13.1816 0.13585 1.46682
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Fig. 3. Image authentication performances with varying thresholds.

addition with the variance of 0.005; (b) Salt & Pepper noise addition with den-
sity as 0.005; (c) Gaussian blurring with the standard deviation of the filter as
10; (d) Circular blurring with radius of 2; (e) Motion blurring with the amount
of the linear motion as 3 and the angle of the motion blurring filter as 45; (f)
Average filtering with filter size as 5; (g) Median filtering with filter size as 5;
(h) Wiener filtering with filter size as 5; (i) Image sharpening with the parame-
ter alpha as 0.49; (j) Image scaling with the percentage as 1.2; (k) Illumination
correction with parameter gamma as 1.18; (l) JPEG compression with quality
factor as 20.

We extract the reference hashing code based on original image (ORH) and our
proposed multi-attack reference hashing (MRH). For the content-preserving dis-
torted images, we calculate the corresponding distance between reference hash-
ing codes and content-preserving images’s hashing codes. The statistical results
under different attacks are presented in Table 1. Just as shown, the hashing
distance for the four baseline methods are small enough. For threshold deter-
mination, the precision distribution of the authentication results with varying
threshold are shown in Fig. 3. The results shown by the solid line and dashed
line indicate the performance of similar images and tampered images under dif-
ferent content preserving manipulations on CASIA dataset for RPIVD method.
It can be easily seen that the results are approximately intersected at thresh-
old τ = 0.12. Therefore, in our experiments, we set to τ = 0.12 distinguish the
similar images and forgery images on CASIA dataset for PRIVD method. Simi-
larly, for the other three methods, we set the threshold as 1.2, 0.0012 and 0.008
correspondingly.

3.3 Discriminative Capability

Discriminative capability of image hashing means that visually distinct images
should have significantly different hashes [37]. In other words, two images that
visually distinct should have a very low probability of generating similar hashes.
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Fig. 4. Distribution of hashing distances between hashing pairs with varying thresh-
olds.

Here, RTD Dataset consisting of 220 different uncompressed color images is
adopted to validate discriminative capability of our proposed multi-attack ref-
erence hashing algorithm. We first extracted reference hashing codes for all 220
images in RTD and then calculated the hashing distance for each image with the
other 219 images. Thus, we can finally obtain 220 × (220−1)/2 = 24090 hash-
ing distances. Figure 4 shows the distribution of these 24090 hashing distances
between hashing pairs with varying thresholds, where the abscissa is the hashing
distance and the ordinate represents the frequency of hashing distance. It can
be seen clearly from the histogram that the methods proposed by us has good
discriminative capability. For instance, we set to τ = 0.12 as threshold on CASIA
dataset when extract the reference hashing by RPIVD method. The minimum
value for hashing distance is 0.1389 which above the threshold. The results show
that the multi-attack reference hashing can replace the original image based
reference hashing with good discrimination.
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3.4 Authentication Results

In this subsection, we compare the performance of the reference hashing based on
original image (ORH) and our proposed multi-attack reference hashing (MRH)
on four state-of-the-art image hashing methods, i.e., Wavelet-based image hash-
ing, SVD-based image hashing, RPIVD-based image hashing and QFT-based
image hashing, with twelve content-preserving operations.

The results are shown in Tables 2 and 3. Note that, higher values indicate
better performance for all metrics. It is observed that, the proposed MRH algo-
rithm outperform the ORH algorithm by a clear margin, irrespective of the
content preserving operation and image datasets (RTD and CASIA). This is
particularly evident for illumination correction. For instance, in contrast to orig-
inal image based reference hashing, the multi-attack reference hashing increase
the AUC of illumination correction by 21.98% on the RTD image dataset when
get the reference hashing by wavelet as shown in Table 2. For the QFT approach,
the multi-attack reference hashing we proposed are more stable and outstand-
ing than other corresponding reference hashings. Since the QFT robust image
hashing technique is used to process the three channels of the color image, the
chrominance information of the color image can be prevented from being lost and
image features are more obvious. Therefore, the robustness of generated multi-
attack reference hashing is more prominent in resisting geometric attack and
content preserving operations. For instance, the multi-attack reference hashing
increase the precision of gaussian noise by 3.28% on the RTD image.

3.5 Conclusions

In this paper, we have proposed a Multi-Attack Reference Hashing (MRH)
method based on cluster for image authentication. We effectively exploited simul-
taneously the supervised content-preserving images and multiple attacks for fea-
ture generation and the hashing learning. We performed extensive experiments
on two image datasets and compared with the reference hashing based on orig-
inal image (ORH) on state-of-the-art hashing baselines. Experimental results
demonstrated that the proposed method yields superior performance. The cur-
rent work can be extended with the design of co-regularized hashing for multiple
features, which is expected to show even better performance.
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Abstract. Secret image sharing will inevitably be threatened by various types of
attacks in practical applications, of which cheating behavior is the most prone.
In this paper, in order to prevent deceivers from threatening the security of secret
image transmission process, a polynomial based cheating detection scheme is
proposed. The (k, n) secret image sharing scheme must ensure that any k or more
participants can restore the secret image, and less than k participants cannot get
any information of the secret image. In our scheme, only one honest shareholder
can detect the collusion from other k − 1 deceivers. Furthermore, our scheme
reduces the size of shadow images thus saving storage space and transmission
time. Theory and experiments show that our scheme is effective and feasible in
cheating detection.

Keywords: Secret image sharing · Cheating detection · Shadow image · Secret
sharing

1 Introduction

Shamir [1] and Blakley [2] introduced the idea of secret sharing in 1979. In a (k, n)
threshold secret sharing scheme, the dealer encrypts the secret into n shares and assigns
them to n participants. Only k or more participants can recover the secret, less than k
shares cannot get any information of the secret. Therefore, the system is secure even
when a small number of participants (<k) have their shares filched.

Secret sharing will inevitably be threatened by cheating in practical applications.
Therefore, many scholars have carried out extensive research on anti-cheating secret
sharing scheme. Tompa and Woll [3] proposed the problem of cheating in the secret
sharing scheme firstly. One of the cases is that the deceiver seizes the true secret alone
by submitting the bogus share to recover the false secret. There’s another case, external
deceivers impersonate authorized participants to participate in secret reconstruction to
filch secret. Schemes for preventing cheating are mainly divided into two categories:
cheating detection [4–6] and deceiver identification [7–9]. The former can only detect
the existence of cheating, while the latter can identify who the deceiver is.

Pieprzyk and Zhang [6] considered the cheating detection in linear secret sharing,
their model extended the Tompa-Woll attack. Liu [4] proposed a linear (k, n) secret
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sharing scheme against cheating which is based on Shamir’s scheme and the size of
share almost reaches its theoretic lower bound in (k, n) secret sharing scheme with
cheating detection. In Liu et al.’s work [7], two cheating identification algorithms based
on bivariate polynomial was proposed. The scheme given by Carpentieri [8] is similar
to the scheme of Rabin and Ben-Or [11], both of which are prefect and unconditionally
secure secret sharing scheme that the honest participants can identify the deceivers.
The advantage of the former scheme is the information distributed to each participant
is smaller. Pasailă et al. [9] analyzed the cheating detection and deceiver identification
problems for schemes [14, 15] which based on Chinese remainder theorem and proved
that themajority of the solutions for Shamir’s scheme can be translated to these schemes.

Thien-Lin’s scheme [10] is derived from the (k, n) threshold scheme, the secret
image is divided into several blocks. k pixels of each block are taken as coefficients of
a polynomial of degree k − 1 to calculate sub-shadows, thereby reducing the size of
the shadow image. On this basis, Liu’s scheme [5] considered the cheating detection
problem. In this paper, further discussion is made to make the proposed scheme not only
have the performance of cheating detection, but also reduce the size of shadows.

The rest of this paper is organized as follows. Predecessor’s schemes are formulated in
Sect. 2.We describe the proposed scheme in Sect. 3. Section 4 illustrates the experiments
and comparisons with previous schemes. We conclude in Sect. 5.

2 Preliminary

2.1 Thien-Lin’s Secret Image Sharing Scheme

Thien and Lin proposed a (k, n) secret image sharing scheme based on Shamir’s scheme
such that every k pixels in the image are grouped together and taken as the coefficients
of k − 1th degree polynomial, rather than randomly selected like the Shamir’s scheme.
The size of shadow is smaller than secret image.

Share Generation Phase: Input secret image I, output n shadow images.

Step 1 The dealer decomposes the secret image I into t non-overlapping blocks
B1, B2, . . . , Bt , and each block contains k pixels.

Step 2 For block Bj , the dealer takes k pixels a j,0, a j,1, . . . , a j,k−1 ∈ GF(251) as
coefficients and generates a polynomial f j (x) ∈ GF(251)[X ] of degree k − 1.

Step 3 Dealer computes n shares v j,1 = f j (1), v j,2 = f j (2), . . . , v j,n = f j (n), j ∈
[1, t].

Step 4 Output n shadow images Vi = v1,i ||v2,i || · · · ||vt,i , i = 1, 2, …, n.

Secret image Reconstruction Phase: Input k shadows. Output the secret image I.

Step 1 Extract the sub-share v1, j , v2, j , . . . , vk, j of block Bj from V1, V2, . . . , Vk .
Step 2 Reconstruct the polynomial of degree k − 1 according to Lagrange interpolation

formula. Then block Bj is recovered such that Bj = a j,0||a j,1|| · · · ||a j,k−1.
Step 3 Output the secret image I = B1||B2|| · · · ||Bt .
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2.2 Liu-Sun-Yang’s Scheme

On the basis of Thien-Lin’s scheme, Liu-Sun-Yang’s scheme considers the problem of
cheating detection in polynomial-based (k, n) secret image sharing scheme.

Shadow Generation Phase: Input the secret image I, output n shadow images.

Step 1 The dealer divides image I into t non-overlapping blocks B1, B2, . . . , Bt .
Step 2 There are 2k − 2 pixels ai,0, . . . , ai,k−1, bi,2, . . . , bi,k−1 ∈ GF(251) in Bi .

Take the first k pixels as coefficients to generate a polynomial of degree k − 1
fi (x).

Step 3 A value ri ∈ GF(251) is selected randomly by the dealer and bi,0, bi,1 are
computed via ri ai,0 + bi,0 = 0, ri ai,1 + bi,1 = 0. Then another polynomial
gi (x) = bi,0 + bi,1x + · · · + bi,k−1xk−1 is constructed.

Step 4 For Bi , the shadow for each participant Pj is Vj = v1, j ||v2, j ||, · · · , ||vt, j .
where vi, j = {mi, j , di, j }, mi, j = fi ( j), di, j = gi ( j), j = 1, 2, …, n.

Image Reconstruction Phase: Input k shadows. Let k shadows are V1, V2, . . . , Vk .

Step 1 Extract vi, j = {mi, j , di, j }, i = 1, 2,…, t, j = 1, 2,…, k from V1, V2, . . . , Vk .
Step 2 Lagrange interpolation is used to reconstruct fi (x) and gi (x) respectively.
Step 3 If there is a common constant ri ∈ GF(251) that satisfies verification infor-

mation, reconstruct Bi , then get the secret image I = B1||B2||, · · · , ||Bt .
Otherwise, cheating behavior is detected with the output ⊥.

3 The Proposed Scheme

In order to prevent deceivers from threatening the security of secret transmission process,
we propose a (k, n) secret image sharing scheme with the performance of cheating
detection in this part. Our proposed scheme to detect cheating is based on Thien-Lin’s
scheme and Liu-Sun-Yang’s scheme and reduces the size of shadow images. Just one
honest shareholder can detect the collusion of k − 1 deceivers. The specific algorithm
is as follows:

Shadow Generation Phase: Input the secret image I, output n shadows V1, V2, . . . , Vn
of I.

Step 1 Scramble secret image with Arnold transformation.
Step 2 Decompose the scrambled image I ′ into t non-overlapping blocks

B1, B2, . . . , Bt each block contains 2k − 1 pixels.
Step 3 For each block Bi , i ∈ [1, t], there are 2k − 1 secret pixels, denoted by

ai,0, ai,1, . . . , ai,k−1, bi,1, bi,2, . . . , bi,k−1 ∈ GF(251). The dealer generates a
k − 1 order polynomial fi (x) = ai,0+ai,1x+· · ·+ai,k−1xk−1 ∈ GF(251)[X ]
using the first k pixel values as the coefficients.
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Step 4 The dealer chooses a value ri ∈ GF(251) randomly and gets bi,0 via ri ai,0 +
bi,0 = 0. Where ri is public information. Then another polynomial which
takes bi,0 as the constant terms and remaining k − 1 pixels as coefficients is
constructed gi (x) = bi,0 + bi,1x + · · · + bi,k−1xk−1.

Step 5 The dealer calculates sub-shadows vi, j = {mi, j , di, j }, mi, j = fi ( j), di, j =
gi ( j), j = 1, 2, …, n of each block Bi , i ∈ [1, t] for each participant Pj . The
shadow that participant Pj gets is Vj = v1, j ||v2, j ||, · · · , ||vt, j .

Image Reconstruction Phase: Input k shadows. Without loss of generality, the k
shadows are V1, V2, . . . , Vk . Output the secret image I or cheating signal ⊥.

Step 1 Extract vi, j = {mi, j , di, j }, i = 1, 2,…, t, j = 1, 2,…, k from V1, V2, . . . , Vk .
Step 2 For k points (1, vi,1), (2, vi,2), . . . , (k, vi,k), i ∈ [1, t], Lagrange interpolation

is used to reconstruct fi (x) and gi (x) respectively.
Step 3 Let ai,0 and bi,0 be constant terms of fi (x) and gi (x) respectively.

– If there is a constant r ′
i = ri ∈ GF(251) that satisfies ri ai,0 + bi,0 = 0, reconstruct

Bi = {ai,0, ai,1, · · · , ai,k−1, bi,1, bi,2, · · · , bi,k−1}, then get the scrambled image
I ′ = B1||B2||, · · · , ||Bt . Finally, recover the secret image I with the Arnold inverse
transformation.

– Else, there are bogus shadows in the process of image reconstruction. Cheating
behavior is detected with the output ⊥.

Theorem 1. The proposed scheme is a perfect (k, n) secret image sharing scheme, that
is to say, any k ormore than k shareholders can recover the secret image taking advantage
of their shadows. Nevertheless, less than k shareholders can’t get any information about
the secret.

Proof. Firstly, we prove that k or more than k shareholders can recover the secret. Next,
prove that k − 1 shareholders can’t get any information about the secret. Since each
block is processed the same way, we only need to analyze one block.

(1) For Bi , we hide 2k − 1 pixels as the coefficients of two polynomials fi (x), gi (x)
and generate shares according to Shamir’s scheme which satisfies the property of
(k, n) threshold. Apparently, in our scheme, k or more than k shareholders can
reconstruct fi (x) and gi (x), then we can get Bi , scrambled image I ′, secret image
I in turn.

(2) For Bi , suppose the first k − 1 shareholders want to get secret privately, they only
have k − 1 correct shares. Therefore, a value needs to be randomly selected on
GF (251) as the share of the kth shareholder. Assuming that the selected value is
m∗

k , a polynomial f ′
i (x) of order k − 1 can be obtained by using the correct share

(1,m1), (2,m2), . . . , (k − 1,mk−1) and (k,m∗
k). Let a

′
0 be the constant term of

f ′
i (x). Deceivers can take the coefficients b

′
0, b

′
1, . . . , b

′
k−1 as unknowns of k linear

equations: g′(1) = d1, g′(2) = d2,…, g′(k−1) = dk−1, ri a′
0+b′

0 = 0, k unknowns
can be solved, then g′

i (x) can be obtained. Although ri is known, the share of the kth
shareholder is selected randomly, the calculated polynomial f ′

i (x) is not necessarily
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correct, i.e. a′
0, b

′
0, b

′
1, . . . , b

′
k−1 is not necessarily the real values given by dealer,

which means that regardless of which value of theGF(251) the deceivers choose as
the share of the kth shareholder, they will get the corresponding b′

0, b
′
1, . . . , b

′
k−1,

that is they will think that each value is valid. In general, deceivers don’t get any
secret information. �

In order to explain the proof process more clearly, we give an example.

Example 1. When k = 5, a0 = 1, a1 = 5, a2 = 2, a3 = 2, a4 = 1, b1 = 6,
b2 = 1, b3 = 3, b4 = 2 over GF(7) is known, so f (x) = 1 + 5x + 2x2 + 2x3 + x4.
Assuming r chosen by dealer is 5, b0 = 2 is calculated from ra0 + b0 = 0, then
g(x) = 2 + 6x + x2 + 3x3 + 2x4. Let P1, P2, P3, P4, P5 be the five shareholders, and
shares for them are P1: (m1 = 4, d1 = 0), P2: (m2 = 2, d2 = 4), P3: (m3 = 1, d3 = 6),
P4: (m4 = 3, d4 = 4), P5: (m5 = 6, d5 = 2). Suppose P1, P2, P3, P4 are deceivers.
As described in the previous proof, they can randomly choose m∗

5 = 0 as the share
of P5 and obtain f ′(x) = 2 + 2x2 + x3 + 6x4 according to Lagrange interpolation.
Then they set up the following equations: ra′

0 + b′
0 = 0, b′

0 + b′
1 + b′

2 + b′
3 + b′

4 = 0,
b′
0+2b′

1+4b′
2+b′

3+2b′
4 = 4, b′

0+3b′
1+2b′

2+6b′
3+4b′

4 = 6, b′
0+4b′

1+2b′
2+b′

3+4b′
4 =

4, Get g′(x) = 4+ 3x + x2 + x3 + 5x4 by solving the above equations, which satisfies
5a′

0 + b′
0 = 0. They were misled into thinking that the result is correct. Actually, the

secret they have been got is wrong.

Next, we discuss the performance of our scheme for detecting cheating.

Theorem 2. Our scheme has the capability that only one honest shareholder can detect
the cheating behavior from k − 1 deceivers.

Proof. For each block Bi , suppose k shareholders P1, P2, . . . , Pk participate in the secret
reconstruction and P1, P2, . . . , Pk−1 are deceivers. Let v∗

i = (m∗
i , d

∗
i ), i = 1, 2,…, k

− 1 denotes the k − 1 bogus shares and (mk, dk) be the share of the kth shareholders.
Two polynomials obtained by interpolation according to v∗

i = (m∗
i , d

∗
i ), i = 1, 2, …,

k − 1 and (mk, dk) are f ∗(x) and g∗(x). There must exist a number r∗ which satisfy
r∗a∗

0 + b∗
0 = 0. Distinctly, the cheating is successful only when r∗ is equal to ri that

determined by the dealer. Since all the pixels are in GF(251), according to the proof
analysis of theorem 1, the probability of successful cheating is ε = 1

251 , which means
that our proposed scheme is effective in detecting cheating. �

4 Experiments and Comparisons

4.1 An Example for Cheating Detection

In this part, we use an example to simulate the process of cheating detection. A (5, 7)
threshold secret sharing scheme is adopt in the example. Suppose 2k − 1 = 9 pixels are
37, 249, 154, 78, 59, 182, 94, 68, 167 in Bi and r selected by dealer is 7, then generate
two k − 1 = 4th degree polynomials f (x) = 37 + 249x + 154x2 + 78x3 + 59x4 and
g(x) = 243+182x+94x2+68x3+167x4 which satisfy 7 * 37+ 243= 0(mod 251). The
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n = 7 shares for 7 shareholders of Bi are v1= (75, 1), v2 = (209, 183), v3 = (19, 181),
v4 = (250, 132), v5 = (51, 165), v6 = (238, 150), v7 = (31, 200), Without loss of
generality, 5 shareholders P1, P2, P3, P4, P5 participate in the secret reconstruction and
P1, P2, P3, P4 are deceivers. Assuming that the 4 bogus shares provided by deceivers are
v∗
1 = (92, 40), v∗

2 = (136, 112), v∗
3 = (35, 75), v∗

4 = (128, 20), and the correct share of
P5 is v5 = (51, 165). They get two polynomials f ∗(x) = 116+235x+17x2+203x3+
23x4 and g∗(x) = 146 + 75x + 92x2 + 25x3 + 204x4 using Lagrange interpolation.
Obviously, 55 * 116 + 146 = 0(mod 251), r∗= 55 �= r = 7, so P5 detects cheating
from k − 1 deceivers.

4.2 Share and Recover a Secret Image Utilize the Proposed Scheme

In this section, we apply the famous image “Lena” as the secret image I to our scheme.
Let (k, n) = (5, 7), then each block contains 2k − 1 = 9 pixels. In order to avoid
the occurrence of overflow, we use an image with the size of 510 × 510. For the sake
of improving the security of the scheme and prevent secret image information from
appearing in shadow image, Arnold transform is firstly used to scramble the original
image. The scrambled image I ′ will be divided into 28900 blocks and we can get 7
shadow images whose size are 2/9 of I. The experimental results are depicted in Fig. 1.
Obviously, the recovered image is distortion free.

Fig. 1. Experimental results: (a) a 510× 510 secret image; (b) the image recovered from5 shadow
images; (c)–(i): the shadow images whose size are 340 × 170.
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4.3 Comparison

There are k pixels in each block in Thien-Lin’s scheme, each shadow only receives one
value as the sub-share, the size of shadow is 1/k of the secret image. In Liu-Sun-Yang’s
scheme, the share vi j = (mi j , di j ) is generated from each 2k − 2 pixels, so the size of
image shadow is 1/(k − 1) of the original image. Similarly, the size of image shadow
in our scheme is 2/(2k − 1) of the secret image which is smaller than Liu-Sun-Yang’s
scheme. The small size of shadow image is a great feature in practice especially in saving
storage space and transmission time. Table 1 depicts the comparisons between cheating
detection schemes, where P is for the number of pixels in the secret image, |S| represents
the size of the secret image.

Table 1. Comparisons between cheating detection schemes.

Scheme Probability of cheating success Cheating detection Size of shadow

Scheme [10] (1/251)P/k No 1/k|S|
Scheme [5] (1/251)P/k Yes 1/(k − 1)|S|
Scheme [12] (1/251)P/k Yes 1/k|S|
Scheme [13] (1/251)P/k No 1/k|S|
Scheme [14] (1/256)P/k No 1/k|S|
Scheme [15] (1/128)P/k No |S|
Scheme [16] (1/256)P/k Yes (�k/4� + 1)/k|S|
Our scheme (1/251)P/k Yes 2/(2k − 1)|S|

5 Conclusion

In this paper, we propose a cheating detection algorithm based on Thien-Lin’s scheme
and Liu-Sun-Yang’s scheme. Our scheme can detect the cheating of the collusion of k −
1 cheaters by only one honest shareholder who participates in secret image reconstruc-
tion. Furthermore, the shadow image size of our scheme is smaller than Liu-Sun-Yang’s
scheme that reduce storage space and transmission time for shares. The cheating detec-
tion in our scheme only involves the interpolation of linear polynomials, and does not
contain any redundant information in the shares. Therefore, the proposed scheme is fea-
sible and effective in detecting cheating and can be adopted in other polynomial based
secret image sharing schemes.
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