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a b s t r a c t 

Neural network ensemble (NNE) exhibits improved performance when compared with a single neural 

network (NN) in most cases. Traditionally, each base network in an NNE is trained individually, which 

may result in network redundancy and expensive training overhead. This paper proposes a new adaptive 

niching evolutionary algorithm, which possesses promising performance in finding multiple optima in 

terms of good accuracy and diversity. By means of this algorithm, all NNs in an NNE can be trained simul- 

taneously. In particular, the proposed algorithm is named adaptive niching differential evolution (ANDE), 

which is characterized by a heuristic clustering method to enable iteratively cluster subpopulations that 

track and locate multiple optima, a parameter adaptation strategy to adaptively adjust parameters accord- 

ing to the subpopulation states, and an auxiliary movement scheme to promote the equilibrium between 

exploration and exploitation. Experimental results validate the efficiency and effectiveness of the pro- 

posed ANDE on the benchmark test suite of multimodal optimization. Furthermore, ANDE is extended to 

concurrently train multiple base NNs for ensemble and the experiments show a promising performance 

of ANDE-NNE. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

As one of the most common methods in machine learning,

neural networks (NNs) have been extensively researched and em-

ployed in various fields [1] . Subsequently, neural network ensem-

ble (NNE), proposed by Hansen and Salamon [2] , improves the gen-

eralization performance of NNs by combining the training results

of multiple NNs. In general, NNE is more competitive than a single

NN. Recently, NNE has found wide applications in wide real-world

fields, including data mining [3] , medical diagnosis [4] , protein-

protein interactions [5] , face recognition [6] , energy forecasting [7] ,

taffic scheduling [8] , and crime prevention [9,10] . 
� This work was supported in part by the National Natural Science Foundation 

of China under Grants. 61873095 , 61873097 , 61971383 , and U1701267 , in part by 

the Guangdong Natural Science Foundation Research Team Project under Grant 

2018B030312003 , and in part by the Guangdong-Hong Kong Joint Innovation Plat- 

form Project under Grant 2018B050502006. 
∗ Corresponding author. 
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The performance of NNE greatly depends on the accuracy

nd diversity of the base NNs [11,12] . Evolutionary algorithms

EAs) [13–20] , a branch of population-based metaheuristic algo-

ithms, have exhibited promising performance in the searching ac-

uracy and diversity. Considering this, the EAs provide a potential

ay to train the NNE effectively. There are several studies in the

elated area. Kwon et al. [21] proposed a parallel genetic algorithm

o optimize the weight values of NNs. In [22] , three different EAs

ere adopted to optimize three different NNs for ensemble. Sheng

t al. [23] utilized a fitness sharing method to preserve the popula-

ion diversity and designed a penalty coefficient to balance the di-

ersity and accuracy. However, there remain some open questions

n this area, such as how to differentiate the training of different

ase NNs and how to control the number of NNs to ensemble.

eanwhile, the previous studies empirically set the parameters of

As for different problem instances, which may not be efficient all

he time. 

In this study, we model the training of NNE as a multimodal

ptimization problem (MMOP). MMOP has multiple global optima

n the problem space and requires the optimizer to obtain multiple

igh-quality and diverse solutions simultaneously. In the MMOP-

ased NNE training, each optimal solution of MMOP corresponds

https://doi.org/10.1016/j.neucom.2020.02.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.02.020&domain=pdf
https://doi.org/10.13039/501100001809
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o the weight parameters of one base NN, and the solutions share

he common objective of maximizing the classification accuracy.

he advantages of this method are: (1) The MMOP solver explicitly

nds a diverse set of promising solutions, which guarantees the di-

ersity of base NNs and hence promises the generalization ability

f NNE; (2) The MMOP solver can automatically identify the solu-

ion number and hence enables the self-adaptation of number of

Ns used in the NNE, which ensures that the NNs to be assem-

led are suitable for specific case; and (3) it supports the concur-

ent optimization of multiple NNs in a single run, which is more

ime-efficient than the previous methods that repeat EAs for each

ndividual NN. 

According to the above, how to design a well-performed EA to

eal with the MMOP becomes an important issue to be addressed

n this study. Commonly, the niching techniques inspired from bi-

logy are incorporated into EAs to obtain niching EAs for tackling

MOPs. In biology, the organization consisting of individuals pos-

essing the same characteristics is called species, and the environ-

ent where species reside is called niche. The niching techniques

re designed to locate and preserve potential niches, maintain mul-

iple promising solutions, and avoid the convergence to a single

ptimum. A number of niching methods have been introduced to

olve MMOPs. Representatively, crowding [24] , fitness sharing [25] ,

peciation [26] , clearing [27] , clustering [28] , and restricted tour-

ament selection [29] . However, the niche identification is still a

hallenging task, as the size and distribution of niches depend on

he specific optimization situation. 

In order to develop an MMOP optimizer to find NNs in terms

f accuracy and diversity, it is essential to identify niches self-

daptively and to set the EA parameters appropriately. To locate

he niches, we develop a heuristic clustering method that forms

he candidate niches depending on the population distribution in

he specific problem landscape. The baseline EA adopted in the

aper is differential evolution (DE) algorithm, owing to its advan-

ages of having a few control parameter, high computational effi-

iency, and easy implementation [24,26,30–36] . DE, like other EAs,

s very sensitive to the control parameters, i.e., population size NP ,

he scaling factor F , and the crossover rate CR . In the literature,

ost researchers focus on the adaptation of the flat parameters

uch as F and CR [30,35,37–39] , while the research on adaptive

P has rarely been seen. The adaptation of NP is more challeng-

ng because it needs to vary the population structure. We design

 parameter adaptation mechanism that is able to adapt the popu-

ation size during the evolution. Moreover, an auxiliary movement

cheme is developed to enhance the performance of the proposed

ethod. 

To summarize, in this paper, we model the NNE training as

MOP to realize the concurrent and efficient optimization of mul-

iple base learners. A novel algorithm named adaptive niching DE

ANDE) is developed to accomplish the optimization task. The nov-

lties of ANDE are summed up as follows: 

1) Heuristic Clustering Method : We develop a clustering-based

niching method to heuristically cluster the subpopulation,

avoiding to set a difficult niche/cluster size. The subpopu-

lations dominate different subregions and track multiple op-

timal solutions on different peaks simultaneously. 

2) Parameter Adaptation Mechanism : The control parameters

( NP, F , and CR ) of the niching DE are adaptively adjusted

at the same time. The parameter NP is dynamically adapted

depending on the population state with a population ex-

clusion technique and a population augmentation technique.

Besides, the parameters F and CR of each individual are dy-

namically adjusted according to their success update distri-

butions at each generation. 
3) Auxiliary Movement Scheme : To further enhance the perfor-

mance of the algorithm, two movement schemes are de-

signed: a) the uniform random motion helps the stagnat-

ing subpopulation to jump out of the basin of a peak and

turns the subpopulation into a converging one, and b) the

Brownian movement guides the converging subpopulation to

a more promising area. 

Experiments demonstrate that the algorithm under discussion

erforms more prominently than the state-of-the-art niching algo-

ithms on the 20 well-known multimodal optimization problems

f the CEC2013 test suite. Moreover, we propose an extended ANDE

or NNE training on the classification datasets. The experiments

how the effectiveness and competitiveness of the ANDE-NNE. 

The rest of this paper is presented as follows. Section 2 pro-

ides a brief overview of the DE algorithm and its recent develop-

ent, the niching techniques for MMOPs, and researches of NNE.

ection 3 introduces the implementation of ANDE. Experimental

esults on MMOPs are reported and analyzed in Section 4 . Further,

n Section 5 , ANDE is applied to optimize NNE. Last, in Section 6 ,

onclusions are reached. 

. Background and related work 

.1. Differential evolution 

DE is a real-number EA suggested by Storn and Price in 1995

or solving Chebyshev polynomial problems [40] . The following de-

cription demonstrates the basic procedures of DE. First, a random

nitial population is created and the search range of the solution is

et within [ X min , X max ], for the j th dimension of the individual � x i , 

 i, j = x min j + rand(0 , 1) ·
(
x max j − x min j 

)
(1) 

here x min j and x max j are the lower limit and upper limit of x i,j ,

nd rand (0, 1) is a uniformly distributed random number rang-

ng from 0 to 1. After the initialization, three operators: mutation,

rossover, and selection are employed in DE generations until the

ermination condition is met. 

Mutation : DE generates mutation vectors by adding scalable dif-

erences between other individuals to basis individuals of the pop-

lation. Three mutation strategies that are most frequently used

re as follows: 

1) DE/rand/1 

�
 v i = 

�
 x r1 + F · ( � x r2 − �

 x r3 ) (2) 

2) DE/best/1 

�
 v i = 

�
 x best + F · ( � x r1 − �

 x r2 ) (3) 

3) DE/current-to-best/1 

�
 v i = 

�
 x i + F · ( � x best − �

 x i ) + F · ( � x r1 − �
 x r2 ) (4)

where � v i is the mutant vector of current individual; � x r1 , � x r2 ,

and 

�
 x r3 are random samples (the indices of i, r 1 , r 2 , and r 3 

are distinct); the control parameter F is the scaling factor in

[0, 2]; and 

�
 x best is the best individual. 

Crossover : After mutation, the trail vector � u i is formed by carry-

ng out binomial crossover operation on the current vector � x i and

utant vector � v i with 

 i, j = 

{v i, j , if rand(0 , 1) ≤ CR, or j = I 

x i, j , otherwise 
(5) 

here CR is the crossover rate in [0, 1]; I denotes a random integer

enerated from [1, dim ] (note that dim is the problem dimension),

hich ensures that at least one dimension derives � u from 

�
 v . 
i i 
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Selection : The individual with better fitness value between the

trail vector � u i and the current vector � x i will be selected for the next

generation. For instance, if the objective optimization function is a

maximization problem, the selected vector will be given by: 

 x i = 

{
�
 u i , if f ( � u i ) > f ( � x i ) 

�
 x i , otherwise 

(6)

where f ( � x ) is the objective function to be maximized. 

DE, like other EAs, suffers from the sensitive control parame-

ter settings (i.e., NP, F , and CR ). In recent years, many researchers

have dedicated to adapt the control parameters, such as F and CR

in [30,35,37–39] . Civicioglu et al. [41] proposed a topology-free

and parameter-free DE. Besides, various techniques are incorpo-

rated into DE for a powerful capability. Xu et al. [42] strength-

ened DE by introducing a cooperative ranking-based mutation to

solve a constrained optimization problem. In [43] , Peng et al. en-

hanced DE with a long short-term memory to predict electricity

price. Wu et al. [44] assembled various DE variants to enable coop-

erative search. Due to the promising search ability, DE is also used

to handle the practical problems, such as the electricity energy

consumption forecasting [45] , the congestion management in the

presence of wind turbine generators [46] , and the reactive power

management [47] . 

2.2. Niching methods for multimodal optimization 

Multimodal optimization is designed to locate multiple optimal

solutions (global and/or local) to the maximum in a single run. For

solving MMOPs, numerous niching methods have been blended in

EAs [32,4 8,4 9] . 

To the best of our knowledge, since Thomsen [24] firstly inte-

grated crowding technique into DE algorithm to tackle MMOPs, a

large number of niching based DE algorithms have emerged and

developed rapidly. In crowding DE (CDE), each offspring individ-

ual is compared with its closest parent individual computed by

Euclidean distance from a crowd consisting of randomly selected

CF individuals. The parent individual is to be substituted if the off-

spring is superior in the next generation. 

Later, a species-based DE algorithm (SDE) [26] was pro-

posed, where the population is zoned as multiple subpopulations

(species). Each subpopulation is constituted by individuals within

the species radius centered on a species seed. However, neither of

these two techniques is ideal in handling with complex optimiza-

tion problems, and the performance greatly depends on the nich-

ing parameters. 

Recently, a neighborhood-based method is proposed and is pre-

vailing in the niching method design. Qu et al. [33] and Gao et al.

[35] incorporated the neighborhood strategy into the population

partition, which are known as the neighborhood-based DE (i.e.,

NCDE, NSDE, and NShDE) [33] and self-adaptive clustering-based

DE (i.e., Self-CSDE and Self-CCDE) [35] , respectively. Further stud-

ies reveal that after several generations of evolution, individuals

would cluster around global or local individuals. Inspired by this, Li

brought up fitness Euclidean-distance ratio PSO (FERPSO) [50] and

ring topology PSO (R2PSO and R3PSO) [51] , which are free from

introducing any niching parameter. Besides, two emerging muta-

tion strategies (DE/nrand/1 and DE/nrand/2) [52] were introduced

to produce niching effect. Based on DE/nrand/1 strategy, a dy-

namic archive niching DE (dADE/nrand/1) was proposed in [34] .

Two mechanisms are incorporated to this algorithm: the control

parameter adaptation scheme in JADE [53] and the re-initialization

scheme to achieve efficiently search. The DE/nrand family is very

simple to implement. Besides, to alleviate the high computational

cost in calculating the distance, an index-based neighborhood

(DE/inrand/1R) [54] was designed based on a predefined topol-

ogy. Then, Biswas et al. [36] conceived a novel parent-centric nor-
alized mutation strategy in niching DE (PNPCDE), which uti-

izes neighborhood information while performing mutation, track-

ng and locating optimal solutions without loss of niches. Fur-

her, an improved locally informative niching DE (LoINDE) [31] was

resented for relaxing the selection pressure. Similarly, Qu et al.

55] put forward a distance-based locally informed PSO (LIPS),

hich enhances the search ability with the information obtained

rom local best particles neighborhoods. Recently, the local search

trategy and the dynamic cluster sizing strategy are integrated into

he estimation of distribution algorithm (EDA) for crowding and

peciation methods, which are named as LMCEDA and LMSEDA

56] . 

.3. Neural network ensemble 

NNE was formally proposed by Hansen and Salamon in 1990

2] . They proved that they can perfect the generalization power of

eural network system by training a certain number of individual

Ns and synthesizing their outputs. The implementation of NNE

asically focuses on two aspects, (a) how to generate a set of indi-

idual NNs and (b) how to combine the predicted outputs of NNs. 

In generating individual NNs, two most typical techniques

re Boosting and Bagging (Bootstrap Aggregating). The Boosting

ethod was first proposed by Schapire [57] , and later improved

y Freund in 1995 [58] . This method creates a serial sequence of

Ns, in which the training sample distribution of each NN is ad-

usted according to the performance of the network generated be-

ore it. Specifically, the training samples with errors in the current

N will have a greater probability of appearing in the next round

f training sample set. At present, the most popular algorithm of

oosting family is AdaBoost algorithm put forward by Freund and

chapire in 1997 [59] . The Bagging is a parallel method based on

ootstrap sampling [60,61] . The training samples of each individ-

al NN are randomly taken out from the initial training set. There-

ore, the training sets of each individual NN are independent of

ach other. That is, in an individual training set, there may be zero

r many identical samples. Generally, the sample size of the indi-

idual NN is the same as the initial training set. The final output

esults of NNE are obtained by combining the results of multiple

ndividual NNs. For regression analysis, the most commonly used

ombination strategy of NNE is the averaging strategy. For classi-

cation problem, the majority voting is the most frequently used

trategy. Fig. 1 demonstrates the framework of NNE classification

erived from the Bagging algorithm. 

Actually, training the individual NNs in NNE is a parameter op-

imization problem: how to find the appropriate parameters (e.g.,

he connection weights of NNs) to minimize the error between

he expectation and the actual output values is the goal of the

eural network optimization. The back propagation algorithm (BP)

62] originated from the gradient descent strategy is the most

ell-known neural network training algorithms. The role of the

radient descent strategy is to seek the optimal solution along the

irection of negative gradient. A set of parameters will not be up-

ated if the gradient is equal to zero. That is, a local optimum is

ound, but it is not necessarily global optimum. The possibility of

alling into local optimum limits the performance of using BP to

rain individual NNs. So far, EAs have been widely adopted to train

ndividual NNs of NNE [63–65] mainly because of the following

wo advantages. First, EAs optimize the solution of the problem in

he form of group collaboration, rather than giving the strict math-

matical derivation for the problem. Second, EAs provide opportu-

ities of jumping out of local optimum and have good robustness

n locating global optimum. 

In spite of the effort s put into employing BP/EAs to train NNE,

here are still certain disadvantages of the universal NNE methods

s follows: (1) The traditional NNE cannot guarantee the diversity
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Fig. 1. The flowchart of NNE for classification problems based on bagging method. 

o  

o  

p  

a  

a  

u  

d  

t  

m

 

M  

o  

b  

N  

N  

N  

p  

t  

t  

n  

G  

s  

a  

h  

s  

t

3

3

i  

t  

A  

c  

C  

o  

n  

r  

l  

u  

Algorithm 1 ANDE 

1: t = 0 ; // t is the current evolutionary generation. 

2: Randomly initialize a population P 0 ; 

3: P ← Cluster( P 0 ); //cluster P 0 according to Algorithm 2 

4: while stopping criterion is not satisfied do 

5: for each subpopulation P k do 

6: for each individual � x i do 

7: Update F and CR according to Eqs. (11) and (12); 

8: Generate a mutate vector � v i by: 

�
 v i = 

�
 x best + F · ( � x r1 − �

 x r2 ) ; 

9: Generate a trial vector � u i according to Eq. (5); 

10: Perform selection according to Eq. (6); 

11: end for 

12: if P k is identified as a stagnating subpopulation then 

13: Apply uniform random movement using Eq. (13); 

14: else if P k is identified as converging then 

15: Apply Brownian movement using Eq. (14); 

16: else if P k is identified as a converged subpopulation then 

17: Insert � x 
P k 
best 

to the archive; 

18: Reinitialize the individuals P k in and evaluate them; 

19: end if 

20: end for 

21: Exclusion( P); // according to Algorithm 3 

22: Augmentation( P);// according to Algorithm 4 

23: t ← t + 1 ; 

24: end while 

Algorithm 2 Heuristic Clustering 

1: for k = 1 → | P 0 | do 

2: P k ← P 0 [ k ] ; 

3: end for 

4: Calculate d inter and d intra of P; // P = { P 1 , P 2 , · · ·P n } 
5: while d inter > d intra do 

6: Merge P k and P s where D ( P k , P s ) = min 
k � = s 

D ( P k , P s ) ; 

7: Update d inter and d intra ; 

8: end while 

Algorithm 3 Population Exclusion 

1: Select P k and P s ,where D ( P k , P s ) = min 
k � = s 

D ( P k , P s ) ; 

2: f min = min ( f ( � p k ) , f ( � p s ) ) ; 

3: if d( � p k , � p s ) ≤ d overlapping and f ( � m ) ≥ f min then 

4: if f ( � x 
P k 
best 

) > f ( � x P s 
best 

) then 

5: remove P s ; 

6: else 

7: remove P k ; 

8: end if 

9: end if 
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f individual NNs, since different NNs may converge to the same

ptimal solution in independent evolutionary process. (2) It is a

redicament to set an appropriate number of individual NNs. A rel-

tive minority of NNs may lead to the lack of diversity, while a rel-

tively large number of NNs may cause redundancy. (3) Whether

sing the traditional BP or EAs method, each training only pro-

uces one NN. In order to obtain enough NNs in NNE, multiple

raining of a single NN needs to be performed repeatedly, which

akes NNE compute at a price. 

Along with the emergence of niching-based EAs, to tackle

MOPs, it is now feasible to explore and maintain different global

ptimal solutions simultaneously. At present, few attempts have

een made to the development of niching-based EAs for training

NE, although they contribute to generate all diverse individual

Ns that possess good diversity and accuracy in a single run for

NE. In [65] , a niching-based PSO method (NichePSO) [66] was

roposed to evolve NNE, each subpopulation is utilized to optimize

he parameters that are included in each individual NN. However,

his approach has limitation that the number of individual NNs

eeds to be appropriately adjusted based on different problems.

ong et al. proposed a Bare-Bones niching DE (BNDE) [30] , which

elf-adapts the number of NNs, thus possessing good diversity and

ccuracy. It is worth noting that the parameter NP of BNDE simply

inges on problem dimension. Therefore, making efforts to breed a

elf-adaptive strategy so as to adjust NP over the course of evolu-

ion process is a question worth pondering. 

. The proposed niching method 

.1. Workflow of the ANDE 

The proposed ANDE is realized in Algorithm 1 . A population P 0 

s randomly initialized and partitioned into a set of subpopulations

hrough the heuristic clustering method introduced in Algorithm 2 .

t each generation, each subpopulation performs the mutation,

rossover, and selection independently, while using adaptive F and

R values. Here we choose DE/best/1 as the mutation strategy. The

btained subpopulations are classified into three categories: stag-

ating, converging, and converged, and subsequently perform the

espective operation. The best individual in a stagnating subpopu-

ation undergoes uniform random movement, and the best individ-

al in a converging subpopulation undergoes Brownian movement,
or the purpose of striking a potential equilibrium between explo-

ation and exploitation. For a converged subpopulation, its best in-

ividual will be inserted in the external archive, and all individuals

n this subpopulation will be reinitialized. Afterwards, the entire

opulation is adjusted, by eliminating inefficient individuals (the

opulation exclusion in Algorithm 3 ) and adding new individuals

population augmentation in Algorithm 4 ). The above process is re-

eated until the stopping criterion is satisfied. 

It can be observed from the above procedure that, in addition

o the baseline DE algorithm, the basic components introduced by

NDE are: heuristic clustering, population adaptation, parameter

daptation of F and CR , auxiliary movement, and archiving. In the

ext of this section, we describe these basic components one by

ne. Note that, throughout the following descriptions, a population

or subpopulation) is recognized as converging if the number of

est-so-far solutions increases or the fitness of the best-so-far so-

ution is updated. A population (or subpopulation) is recognized as

onverged if its radius is under a threshold value. A population (or

ubpopulation) is recognized as stagnating if it shows no improve-

ent for successive St generations. 
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Algorithm 4 Population Augmentation 

1: G t = 0 

2: if f ( � x P 
best 

) == f ( � x P 
best 

) t−1 then 

3: for j = 1 → | P | do 

4: if f ( � x 
P j 
best 

) > f ( � x P 
best 

) − θ then 

5: G t + + ; 

6: end if 

7: end for 

8: end if 

9: if G t == G t−1 then 

10: δ + + ; 

11: else 

12: δ = 0 ; 

13: end if 

14: if δ == St then 

15: create a random subpopulation P ′ ; // | P ′ | = 

1 
M 

∑ M 
k =1 | P k | 

16: P = P ∪ P ′ ; 
17: δ = 0 ; 

18: end if 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Illustration of the overlapping identification method. (a) Non-overlapping 

subpopulations: the fitness of the midpoint � m is worse than the centers of the sub- 

populations P 1 and P 2 . (b) Overlapping subpopulations: the fitness of the midpoint 

�
 m is better than one or both of the centers of the subpopulations P 1 and P 2 . 
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3.2. Heuristic clustering method 

In existing cluster-based niching algorithms, when partitioning

the whole population into a set of subpopulations, the size of each

subpopulation is mostly equal to a given cluster size. Neverthe-

less, the performance of these algorithms is really susceptible to

the effect of the cluster size, which is hard to appropriately set

as the cluster size is problem-dependent. To solve this problem,

a heuristic clustering method is developed that it produces non-

overlapping subpopulations without introducing any niching pa-

rameters. 

In details, before the clustering, each individual in the popula-

tion is regarded as a subpopulation. Next, the subpopulations are

iteratively clustered according to the distance between subpopu-

lations (denoted as d inter ) and the distance within subpopulations

(denoted as d intra ). When the condition d inter > d intra is satisfied,

the closest pair of subpopulations will be merged into one subpop-

ulation. In this way, a group of subpopulations without overlapping

regions between each other is obtained without a difficult cluster

size. Algorithm 2 presents the workflow of the heuristic clustering

method to form the clustered subpopulations. 

Note that the d inter is the sum of inter-subpopulation distances

between each pair of subpopulations, while d intra is the sum of

intra-subpopulation distances between each pair of individuals

within the same subpopulation. 

d inter = 

∑ 

P k , P s ∈ P 
D ( P k , P s ) (7)

d intra = 

∑ 

�
 x i , � x r ∈ P k 

d( � x i , � x r ) (8)

where d( � x i , � x r ) is the Euclidean distance between individuals � x i 
and 

�
 x r , k is the figure of the subpopulations of the current pop-

ulation P . D ( P k , P s ) is the distance between two subpopulations. 

D ( P k , P s ) = min 

�
 x i ∈ P k , � x r ∈ P s 

d( � x i , � x r ) (9)

In addition, as DE must contain at least four individuals, the

subpopulation with less than four individuals will be eliminated. 

3.3. Population adaptation strategy 

As a main control parameter of DE, the population size NP has a

crucial influence on the performance of the algorithm. Besides, for

ensemble learning, the parameter NP affects the number of NNs

provided by the algorithm to some extent. Accordingly, the insuf-

ficient or excessive number of the provided NNs may cause poor

ensemble performance or redundancy of NNE. Inspired by this, we
uggest a dynamic adaptive NP strategy, which can effectively deal

ith different MMOPs through a fixed initial NP . 

To be specific, the value of NP is adaptively adjusted (increase,

ecrease, and maintain) at different phases of evolution. In this

ay, the algorithm can efficiently locate and track multiple optima

ccording to the current problem landscape. 

(1) Population exclusion 

In our proposed algorithm, if two subpopulations are over-

apped on the same peak, the redundant subpopulation will be

emoved so as to save fitness evaluations (FEs) and to perform

urther exploration. In order to detect the overlapping, we utilize

 topology-based method namely Hill-Valley that is proposed by

rsem [67,68] to examine the landscape topography. As shown in

ig. 2 (a), P 1 and P 2 are two subpopulations, and 

�
 p 1 and 

�
 p 2 are their

enters, which are marked with blue and yellow dots, respectively.

he midpoint of � p 1 and 

�
 p 2 , denoted as � m , is marked with a green

ot. Mathematically, the center � p k of the subpopulation P k is cal-

ulated by 

�
 p k = 

∑ 

�
 x i ∈ P k 

�
 x i 

| P k | . (10)

In the case of Fig. 2 (a), the fitness value of � m 1 is worse than

hat of both 

�
 p 1 and 

�
 p 2 . Therefore, the two subpopulations, P 1 and

 2 are not overlapping as they explore on different peaks. Fig. 2 (b)

hows the overlapping subpopulations in two occasions: the fitness

alue of the midpoint � m 2 is between that of � p 3 and 

�
 p 4 ; the fitness

alue of the midpoint � m is better than that of both 

�
 p and 

�
 p .
3 5 6 
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n this way, we can identify the overlapping subpopulations that

earch on the same peaks. 

The overlapping subpopulations waste unnecessary search ef-

orts on the same peak, and therefore we perform the popula-

ion exclusion strategy to avoid the redundant search, which is

resented as follows. At each generation, a pair of subpopula-

ions with the nearest distance is selected. Note that the distance

etween the two subpopulations is smaller than the threshold

istance d overlapping = 0 . 01 , the overlapping identification method

ill be conducted. If they are identified as overlapping, the sub-

opulation with worse best fitness value will be removed from

 . Algorithms 3 shows the pseudocode of population exclusion,

here the f ( � x 
P k 
best 

) is the fitness value of the best individual of P k . 

(2) Population augmentation 

The population augmentation method adds a new subpopula-

ion to diversify the stagnating population. First, we test whether

he fitness value of the best-so-far solution of the entire population

t the current generation (denoted as f ( � x P 
best 

) ) is the same as that

t the last generation (denoted as f ( � x P 
best 

) t−1 ). If the condition is

rue, we use a variable G t to count the total number of the optima

ound by all the subpopulations. The best solution of a subpopu-

ation is identified as an “optimum” when its values is equal to

he f ( � x P 
best 

) or the difference between the solution and f ( � x P 
best 

) is

maller than a threshold value θ . If the value of G t is the same as

 t−1 , we increase the counter δ by one. The current population P is

egarded as a stagnating population when the value of G t remains

nchanged over St successive generations. To increase the diversity

f the population, an extra subpopulation P ′ is created and added

o the population P . The size of P ′ is equal to the average subpopu-

ation size of all subpopulations in current generation. We choose a

elatively small number 0.001 for θ and set St to 3 in this strategy.

he population augmentation is shown in Algorithm 4 . 

.4. Parameter adaption of F and CR 

The other two control parameters of DE, F and CR , are fairly

ensitive to the performance of the algorithm. Traditional DE al-

orithms set fixed values of F and CR . For the purposes of mak-

ng the selection of these parameters independent of the opti-

ization problem, we adopt the method in [53] to self-adjust the

arameters. We associate each individual with an F i and a CR i .

he parameters are updated according to different distributions:

 i ~ Cauthy ( μF , 0.1) and CR i ~ N ( μCR , 0.1). The corresponding mean

alues μF and μCR are both initialized as 0.5 and updated at each

eneration by 

F = (1 − b) · μF + b · mea n L ( S F ) (11)

CR = (1 − b) · μCR + b · mea n A ( S CR ) (12)

here b is a constant that is usually set to 0.1; S F and S CR are the

ets of all F i and CR i that successfully improve the trial vectors,

espectively; mean L ( · ) and mean A ( · ) denote the Lehmer mean

nd arithmetic mean, respectively. 

.5. Auxiliary movement scheme 

For a stagnating subpopulation P k , whose best individual stops

mproving for St successive generations, we try to turn the P k into

 converging subpopulation by performing a uniform random mo-

ion on the best individual of P j 

 

x ′ P k 
best 

= U [ � x min , � x max ] (13) 

here U [ a, b ] is an equiprobability distribution within the interval

 a, b ]. 
Simultaneously, for a converging subpopulation P k , to reduce

he possibility of premature convergence of the algorithm and to

ncrease subpopulation diversity, the best individual in P k is se-

ected to perform a Brownian movement 

 

x ′ P k 
best 

= N( � x 
P k 
best 

, R ( P k )) (14)

here � x 
P k 
best 

is the best individual of P k , and R ( P k ) is the radius of

 k , i.e., the average distance of the centroid individual p k and other

ndividuals in the subpopulation. 

After the movements, the 
−→ 

x ′ P k 
best 

will replace � x 
P k 
best 

if f ( 
−→ 

x ′ P k 
best 

) is

etter than f ( � x 
P k 
best 

) . The uniform random motion makes it possible

or the subpopulation which is falling into the basin of an explored

eak to jump to a more promising area. The Brownian movement

ay lead the best individual of the subpopulation to a better po-

ition. It is worth noting that, after performing movements, if the

enerated individuals are outside the predefined variable bound-

ries, they are reset to the feasible boundary. 

.6. Archiving technique 

During the evolution, the population to be reinitialized or ex-

luded will be archived. Particularly, for a converged subpopula-

ion, the individuals have totally gathered at the summit of a peak.

t is unnecessary to continue exploiting on the peak that would re-

ult in waste of FEs. To avoid the unnecessary search on such sub-

opulation, the best individual of the converged subpopulation will

e stored in an external archive. The converged subpopulation will

e reinitialized to increase the population diversity and search for

nexplored regions of the problem space. We adopt the archiving

echniques in [34] to determine the qualification of the candidate

olutions and selectively collect those promising solutions. 

.7. Complexity analysis 

As niching EAs involve the fitness evaluation and distance mea-

ure, we consider these two operations as unit operations with

 (1) complexity for simplicity. In the following, we discuss the

omputational complexity of each major component of ANDE in

ach generation. Note that, as the subpopulation size and the sub-

opulation number vary along the evolution, we take the expected

alue to conduct the calculation. The expected subpopulation size

nd the expected subpopulation number are denoted as NP and

 , and the problem dimension is denoted as dim . The heuristic

lustering in Algorithm 2 consumes O ( NP 2 ) to calculate the dis-

ance measures, i.e., d inter and d intra . For the population exclusion

ethod in Algorithm 3 , the most costly operation is to select two

earest subpopulation with O ( NP 2 ) complexity. Algorithm 4 takes

 (M × dim ) complexity to reinitialize the stagnating subpopula-

ion if necessary. Then, the adaptive mutation and crossover op-

rations cost O ( NP × dim ) . The auxiliary movement scheme takes

 (M × dim ) to conduct the movement on the best solutions of

he stagnating and converging subpopulations. The archiving tech-

ique consumes O ( AN ) to add a solution, where AN is the solu-

ion number of the archive. Ideally, the most costly complexity is

 ( NP 2 ) . Therefore, the overall computational complexity of ANDE

s O ( NP 2 ) , which is consistent with the complexity of most nich-

ng EAs. 

. Numerical studies for MMOPs 

The key to developing an NNE with good generalization perfor-

ance is to choose or design a competitive niching-based EA for

he training of individual NNs in NNE. That is, the niching-based
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Table 1 

Charcteristics of the 20 benchmark functions and parameter settings. 

Function Dimension No.global optima NP MaxFEs 

F 1 1 2 100 5.00E + 04 

F 2 1 5 100 5.00E + 04 

F 3 1 1 100 5.00E + 04 

F 4 2 4 100 5.00E + 04 

F 5 2 2 100 5.00E + 04 

F 6 2 18 100 2.00E + 05 

F 7 2 36 300 2.00E + 05 

F 8 3 81 300 4.00E + 05 

F 9 3 216 300 4.00E + 05 

F 10 2 12 100 2.00E + 05 

F 11 2 6 200 2.00E + 05 

F 12 2 8 200 2.00E + 05 

F 13 2 6 200 2.00E + 05 

F 14 3 6 200 4.00E + 05 

F 15 3 8 200 4.00E + 05 

F 16 5 6 200 4.00E + 05 

F 17 5 8 200 4.00E + 05 

F 18 10 6 200 4.00E + 05 

F 19 10 8 200 4.00E + 05 

F 20 20 8 200 4.00E + 05 
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EA used in NNE should be good at (1) seeking for more global op-

timal solutions, (2) upgrading the accuracy of global optimal solu-

tions, and (3) speeding up the convergence. Therefore, the experi-

ments in this section are conducted to verify the above advantages

of the proposed algorithm. 

4.1. Experimental setup and evaluation protocols 

In this section, we verify the performance of the proposed

algorithm through 20 multimodal test functions of the CEC2013
Table 2 

PR and SR of ANDE on 20 benchmark functions. 

F 1 F 2 F

Accuracy Level ε PR SR PR SR P

1.0E-01 1.000 1.000 1.000 1.000 1

1.0E-02 1.000 1.000 1.000 1.000 1

1.0E-03 1.000 1.000 1.000 1.000 1

1.0E-04 1.000 1.000 1.000 1.000 1

1.0E-05 1.000 1.000 1.000 1.000 1

F 6 F 7 F

Accuracy level ε PR SR PR SR P

1.0E-01 1.000 1.000 1.000 1.000 1

1.0E-02 1.000 1.000 1.000 1.000 1

1.0E-03 1.000 1.000 0.994 0.800 1

1.0E-04 1.000 1.000 0.950 0.200 1

1.0E-05 1.000 1.000 0.928 0.050 1

F 11 F 12 

Accuracy level ε PR SR PR SR P

1.0E-01 1.000 1.000 0.775 0.000 1

1.0E-02 0.787 0.000 0.750 0.000 0

1.0E-03 0.667 0.000 0.750 0.000 0

1.0E-04 0.667 0.000 0.750 0.000 0

1.0E-05 0.667 0.000 0.750 0.000 0

F 16 F 17 

Accuracy level ε PR SR PR SR P

1.0E-01 1.000 1.000 1.000 1.000 1

1.0E-02 0.667 0.000 0.425 0.000 0

1.0E-03 0.667 0.000 0.425 0.000 0

1.0E-04 0.667 0.000 0.425 0.000 0

1.0E-05 0.667 0.000 0.350 0.000 0
enchmark test suite [69] . The employed functions are of three

ategories. The first ten functions belong to well-known low-

imensional fundamental functions. The next five functions are

ow-dimensional composition functions with many local optimal

olutions. The last five functions are high-dimensional composition

unctions. The dimension and the number of global optimal solu-

ions of these functions are described in Table 1 . For more detailed

nformation about this test suite, please refer to [69] . 

Then the experimental results of ANDE are compared with

hose of the following 13 commonly compared or the latest multi-

odal optimization algorithms: 

1) CDE [24] : crowding-based DE; 

2) SDE [26] : species-based DE; 

3) NCDE [33] : neighborhood-based CDE; 

4) NSDE [33] : neighborhood-based SDE; 

5) dADE/nrand/1 [34] : a dynamic archive niching DE with pa-

rameter adaptation technique; 

6) DE/inrand/1R [54] : DE with index-based ring neighborhood; 

7) PNPCDE [36] : a proximity-based CDE with parent-centric

normalized mutation; 

8) LoISDE [31] : a local information sharing DE; 

9) FERPSO [50] : a fitness euclidean-distance PSO; 

10) R3PSO [51] : an lbest PSO with a ring-3 topology neighbor-

hood; 

11) LIPS [55] : a distance-based locally informed PSO; 

12) LMCEDA [56] : local search-based multimodal EDA, adopting

selection operation in CDE; 

13) LMSEDA [56] : local search-based multimodal EDA, adopting

selection operation with niches; 

All the algorithms are terminated when the maximum number

f FEs (MaxFEs) are exhausted. The specific MaxFEs and the popu-
 3 F 4 F 5 

R SR PR SR PR SR 

.000 1.000 1.000 1.000 1.000 1.000 

.000 1.000 1.000 1.000 1.000 1.000 

.000 1.000 1.000 1.000 1.000 1.000 

.000 1.000 1.000 1.000 1.000 1.000 

.000 1.000 1.000 1.000 1.000 1.000 

 8 F 9 F 10 

R SR PR SR PR SR 

.000 1.000 1.000 1.000 1.000 1.000 

.000 1.000 0.790 0.000 1.000 1.000 

.000 1.000 0.712 0.000 1.000 1.000 

.000 1.000 0.642 0.000 1.000 1.000 

.000 1.000 0.613 0.000 1.000 1.000 

F 13 F 14 F 15 

R SR PR SR PR SR 

.000 1.000 1.000 1.000 1.000 1.000 

.667 0.000 0.667 0.000 0.650 0.000 

.667 0.000 0.667 0.000 0.650 0.000 

.667 0.000 0.667 0.000 0.635 0.000 

.667 0.000 0.667 0.000 0.625 0.000 

F 18 F 19 F 20 

R SR PR SR PR SR 

.000 1.000 1.000 1.000 0.475 0.400 

.700 0.000 0.825 0.000 0.305 0.000 

.667 0.000 0.400 0.000 0.275 0.000 

.667 0.000 0.350 0.000 0.250 0.000 

.633 0.000 0.273 0.000 0.050 0.000 
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Table 3 

PR and SR on 20 benchmark functions at accuracy level ε = 1.0E-04. 

ANDE CDE SDE NCDE NSDE dADE/nrand/1 DE/inrand/1R 

Func PR SR PR SR PR SR PR SR PR SR PR SR PR SR 

F 1 1.0 0 0 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 

F 2 1.0 0 0 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 0.920( + ) 0.800 1.0 0 0( ≈ ) 1.0 0 0 0.856( + ) 0.544 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 

F 3 1.0 0 0 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 

F 4 1.0 0 0 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 0.366( + ) 0.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 0.822( + ) 0.436 1.0 0 0( ≈ ) 1.0 0 0 0.980( ≈ ) 0.920 

F 5 1.0 0 0 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 0.910( + ) 0.824 1.0 0 0( ≈ ) 1.0 0 0 0.865( + ) 0.632 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 

F 6 1.0 0 0 1.0 0 0 0.988( ≈ ) 0.920 0.129( + ) 0.0 0 0 0.455( + ) 0.0 0 0 0.176( + ) 0.0 0 0 0.976( ≈ ) 0.760 0.900( + ) 0.260 

F 7 0.950 0.200 0.754( + ) 0.0 0 0 0.122( + ) 0.0 0 0 0.882( + ) 0.0 0 0 0.238( + ) 0.0 0 0 0.827( + ) 0.0 0 0 0.320( + ) 0.0 0 0 

F 8 1.0 0 0 1.0 0 0 0.010( + ) 0.0 0 0 0.176( + ) 0.0 0 0 0.020( + ) 0.0 0 0 0.204( + ) 0.0 0 0 0.962( + ) 0.360 0.294( + ) 0.0 0 0 

F 9 0.642 0.0 0 0 0.467( + ) 0.0 0 0 0.231( + ) 0.0 0 0 0.539( + ) 0.0 0 0 0.166( + ) 0.0 0 0 0.422( + ) 0.0 0 0 0.088( + ) 0.0 0 0 

F 10 1.0 0 0 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 0.158( + ) 0.0 0 0 0.856( + ) 0.720 0.357( + ) 0.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 0.995( ≈ ) 0.0 0 0 

F 11 0.667 0.0 0 0 0.322( + ) 0.0 0 0 0.334( + ) 0.0 0 0 0.788( −) 0.045 0.482( + ) 0.0 0 0 0.667( ≈ ) 0.0 0 0 0.667( ≈ ) 0.940 

F 12 0.750 0.0 0 0 0.060( + ) 0.0 0 0 0.306( + ) 0.0 0 0 0.179( + ) 0.0 0 0 0.364( + ) 0.0 0 0 0.700( + ) 0.0 0 0 0.678( + ) 0.0 0 0 

F 13 0.667 0.0 0 0 0.134( + ) 0.0 0 0 0.312( + ) 0.0 0 0 0.667( ≈ ) 0.0 0 0 0.276( + ) 0.0 0 0 0.667( ≈ ) 0.0 0 0 0.663( ≈ ) 0.020 

F 14 0.667 0.0 0 0 0.018( + ) 0.0 0 0 0.233( + ) 0.0 0 0 0.667( ≈ ) 0.0 0 0 0.258( + ) 0.0 0 0 0.667( ≈ ) 0.0 0 0 0.637( + ) 0.0 0 0 

F 15 0.635 0.0 0 0 0.007( + ) 0.0 0 0 0.025( + ) 0.0 0 0 0.325( + ) 0.0 0 0 0.189( + ) 0.0 0 0 0.619( + ) 0.0 0 0 0.453( + ) 0.0 0 0 

F 16 0.667 0.0 0 0 0.0 0 0( + ) 0.0 0 0 0.124( + ) 0.0 0 0 0.667( ≈ ) 0.0 0 0 0.184( + ) 0.0 0 0 0.667( ≈ ) 0.0 0 0 0.587( + ) 0.0 0 0 

F 17 0.425 0.0 0 0 0.0 0 0( + ) 0.0 0 0 0.128( + ) 0.0 0 0 0.187( + ) 0.0 0 0 0.176( + ) 0.0 0 0 0.370( + ) 0.0 0 0 0.275( + ) 0.0 0 0 

F 18 0.667 0.0 0 0 0.189( + ) 0.0 0 0 0.057( + ) 0.0 0 0 0.503( + ) 0.0 0 0 0.377( + ) 0.0 0 0 0.623( + ) 0.0 0 0 0.423( + ) 0.0 0 0 

F 19 0.350 0.0 0 0 0.0 0 0( + ) 0.0 0 0 0.209( + ) 0.0 0 0 0.346( ≈ ) 0.0 0 0 0.089( + ) 0.0 0 0 0.029( + ) 0.0 0 0 0.135( + ) 0.0 0 0 

F 20 0.250 0.0 0 0 0.0 0 0( + ) 0.0 0 0 0.0 0 0( + ) 0.0 0 0 0.220( + ) 0.0 0 0 0.139( + ) 0.0 0 0 0.002( + ) 0.0 0 0 0.152( + ) 0.0 0 0 

+ (ANDE is significantly better) 13 18 10 18 9 12 

− (ANDE is significantly worse) 0 0 1 0 0 0 

≈ (There is no significant difference) 7 2 9 2 11 8 

PNPCDE LoISDE FERPSO R3PSO LIPS LMCEDA LMSEDA 

Func PR SR PR SR PR SR PR SR PR SR PR SR PR SR 

F 1 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 

F 2 1.0 0 0( ≈ ) 1.0 0 0 0.467( + ) 0.250 0.793( + ) 0.231 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 

F 3 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 

F 4 1.0 0 0( ≈ ) 1.0 0 0 0.560( + ) 0.0 0 0 0.241( + ) 0.020 0.952( + ) 0.870 0.984( ≈ ) 0.960 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 

F 5 1.0 0 0( ≈ ) 1.0 0 0 0.705( + ) 0.137 0.673( + ) 0.380 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 

F 6 0.659( + ) 0.0 0 0 0.087( + ) 0.0 0 0 0.503( + ) 0.0 0 0 0.716( + ) 0.0 0 0 0.672( + ) 0.0 0 0 0.899( + ) 0.830 0.966( + ) 0.720 

F 7 0.874( + ) 0.0 0 0 0.067( + ) 0.0 0 0 0.243( + ) 0.0 0 0 0.452( + ) 0.0 0 0 0.375( + ) 0.0 0 0 0.727( + ) 0.0 0 0 0.611( + ) 0.0 0 0 

F 8 0.260( + ) 0.0 0 0 0.135( + ) 0.0 0 0 0.265( + ) 0.0 0 0 0.417( + ) 0.0 0 0 0.064( + ) 0.0 0 0 0.379( + ) 0.0 0 0 0.626( + ) 0.0 0 0 

F 9 0.463( + ) 0.0 0 0 0.082( + ) 0.0 0 0 0.074( + ) 0.0 0 0 0.210( + ) 0.0 0 0 0.206( + ) 0.0 0 0 0.267( + ) 0.0 0 0 0.227( + ) 0.0 0 0 

F 10 1.0 0 0( ≈ ) 1.0 0 0 0.097( + ) 0.0 0 0 0.078( + ) 0.0 0 0 0.870( + ) 0.162 0.820( + ) 0.0 0 0 1.0 0 0( ≈ ) 1.0 0 0 0.990( + ) 0.940 

F 11 0.660( ≈ ) 0.0 0 0 0.231( + ) 0.0 0 0 0.306( + ) 0.0 0 0 0.722( −) 0.0 0 0 0.956( −) 0.832 0.667( ≈ ) 0.0 0 0 0.902( −) 0.448 

F 12 0.0 0 0( + ) 0.0 0 0 0.265( + ) 0.0 0 0 0.275( + ) 0.0 0 0 0.520( + ) 0.0 0 0 0.603( + ) 0.0 0 0 0.750( ≈ ) 0.0 0 0 0.890( −) 0.980 

F 13 0.503( + ) 0.0 0 0 0.173( + ) 0.0 0 0 0.147( + ) 0.0 0 0 0.641( + ) 0.0 0 0 0.712( −) 0.167 0.667( ≈ ) 0.0 0 0 0.667( ≈ ) 0.0 0 0 

F 14 0.617( + ) 0.0 0 0 0.165( + ) 0.0 0 0 0.179( + ) 0.0 0 0 0.657( + ) 0.0 0 0 0.621( + ) 0.0 0 0 0.667( ≈ ) 0.0 0 0 0.667( ≈ ) 0.0 0 0 

F 15 0.237( + ) 0.0 0 0 0.167( + ) 0.0 0 0 0.216( + ) 0.0 0 0 0.224( + ) 0.0 0 0 0.322( + ) 0.0 0 0 0.692( −) 0.0 0 0 0.657( ≈ ) 0.0 0 0 

F 16 0.0 0 0( + ) 0.0 0 0 0.143( + ) 0.0 0 0 0.050( + ) 0.0 0 0 0.623( + ) 0.0 0 0 0.280( + ) 0.0 0 0 0.667( ≈ ) 0.0 0 0 0.667( ≈ ) 0.0 0 0 

F 17 0.0 0 0( + ) 0.0 0 0 0.167( + ) 0.0 0 0 0.042( + ) 0.0 0 0 0.088( + ) 0.0 0 0 0.142( + ) 0.0 0 0 0.412( ≈ ) 0.0 0 0 0.463( ≈ ) 0.0 0 0 

F 18 0.229( + ) 0.0 0 0 0.072( + ) 0.0 0 0 0.063( + ) 0.0 0 0 0.096( + ) 0.0 0 0 0.108( + ) 0.0 0 0 0.648( + ) 0.0 0 0 0.650( ≈ ) 0.0 0 0 

F 19 0.0 0 0( + ) 0.0 0 0 0.047( + ) 0.0 0 0 0.055( + ) 0.0 0 0 0.043( + ) 0.0 0 0 0.0 0 0( + ) 0.0 0 0 0.421( −) 0.0 0 0 0.452( −) 0.0 0 0 

F 20 0.0 0 0( + ) 0.0 0 0 0.066( + ) 0.0 0 0 0.0 0 0( + ) 0.0 0 0 0.075( + ) 0.0 0 0 0.0 0 0( + ) 0.0 0 0 0.082( + ) 0.0 0 0 0.246( ≈ ) 0.0 0 0 

+ 13 18 18 15 13 6 5 

− 0 0 0 1 2 2 3 
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ation size NP for each test function are presented in Table 1 . Other

arameters are set according to their publications. The proposed

NDE employs the initial population NP = 100. Furthermore, ow-

ng to the stochastic characteristic of the algorithms, we run the

lgorithms independently for 50 times. 

Three popular evaluation protocols in [69] , i.e., peak ratio (PR),

uccess rate (SR), and convergence speed (CS), are selected to make

omparisons with ANDE and other niching algorithms. Given a

xed MaxFEs and a specific accuracy level ε, PR denotes the av-

rage percentage of the number of global optimal solutions found

ut of the number of known global optimal solutions. SR is de-

ned as the percentage of successful runs out of overall runs.
ere, a successful run refers to the situation that all known global

ptimal solutions are found. Besides, CS is the average num-

er of FEs needed to be a successful run. Note that supposing

he algorithm is unable to find out all the global optimal solu-

ions until the MaxFEs exhausted, then the MaxFEs is used to

alculate CS. 

In the experiments, the five accuracy levels, i.e., ε = 1 . 0 E − 01 ,

 = 1 . 0 E − 02 , ε = 1 . 0 E − 03 , ε = 1 . 0 E − 04 , and ε = 1 . 0 E − 05 , are

sed to estimate the power of a niching algorithm to find multiple

lobal optimal solutions. Due to the space limitation, in this paper,

nless otherwise stated, we mainly give notice to the results at

 = 1 . 0 E − 04 , which is common in [33,35,51,70,71] . 
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Table 4 

CS on functions F 1- F 5 at all five accuracy levels 

Func ANDE CDE SDE NCDE NSDE dADE/nrand/1 DE/inrand/1R 

F 1 1.59E + 02 1.61E + 02( −) 3.66E + 02( + ) 5.98E + 02( + ) 5.72E + 02( + ) 1.76E + 02( + ) 1.85E + 02( + ) 

F 2 6.32E + 02 3.56E + 03( + ) 1.47E + 04( + ) 1.36E + 03( + ) 2.21E + 05( + ) 1.87E + 03( + ) 1.94E + 03( + ) 

F 3 7.58E + 02 3.71E + 03( + ) 1.16E + 03( + ) 9.73E + 02( + ) 1.03E + 03( + ) 1.17E + 03( + ) 

7.60E+03( ≈ ) 

F 4 8.43E + 03 2.75E + 04( + ) 5.00E + 04( + ) 5.57E + 03 ( −) 2.37E + 04( + ) 1.39E + 04( + ) 1.68E + 04( + ) 

F 5 3.12E + 03 1.43E + 04( + ) 1.51E + 04( + ) 

3.14E+03( ≈ ) 

1.93E + 04( + ) 4.96E + 03( + ) 3.45E + 03( + ) 

+ (ANDE is significantly better) 4 5 3 5 5 4 

− (ANDE is significantly worse) 0 0 1 0 0 0 

≈ (There is no significant 

difference) 

1 0 1 0 0 1 

Func PNPCDE LoISDE FERPSO R3PSO LIPS LMCEDA LMSEDA 

F 1 1.60E + 02( −) 1.70E + 02( + ) 4.78E + 02( + ) 3.04E + 02( + ) 1.87E + 02( + ) 3.21E + 02( + ) 3.54E + 02( + ) 

F 2 2.65E + 03( + ) 2.30E + 04( + ) 3.97E + 04( + ) 2.76E + 03( + ) 1.93E + 03( + ) 1.43E + 03( + ) 1.20E + 03( + ) 

F 3 2.34E + 03( + ) 1.49E + 03( + ) 2.77E + 03( + ) 3.47E + 03( + ) 8.62E + 02( + ) 6.92E + 02 ( −) 

7.63E+02( ≈ ) 

F 4 3.76E + 04( + ) 5.00E + 04( + ) 3.53E + 04( + ) 2.45E + 04( + ) 1.77E + 04( + ) 1.32E + 04( + ) 7.82E + 03( −) 

F 5 8.79E + 03( + ) 3.16E + 04( + ) 4.45E + 04( + ) 1.02E + 04( + ) 4.01E + 03( + ) 6.21E + 03( + ) 3.72E + 03( + ) 

+ 4 5 5 5 5 4 3 

− 0 0 0 0 0 1 1 
≈ 1 0 0 0 0 0 1 
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Table 5 

Significance test results of ANDE and its variants. 

w/o augment w/o exclusion w/o FCRadapt w/o move 

+ 6 3 9 8 

− 0 0 0 0 

≈ 14 17 11 12 
4.2. Experimental results and comparisons 

The results of ANDE on F 1- F 20 in terms of PR and SR at all five

accuracy levels are displayed in Table 2 . The PR that equal to 1 are

emphasized in boldface . In the table, ANDE can successfully find

out all the optimal solutions at the low-dimensional test functions

(i.e., F 1 - F 10) except for F 9 at five accuracy levels. Specially, F 9 is

a difficult problem with 216 optima. As to the composite test func-

tions (i.e., F 11 - F 20), ANDE can locate the whole optimal solution

set at the accuracy level ε = 1 . 0 E − 01 except for F 20. The exper-

imental result implies the effectiveness of ANDE on the CEC2013

benchmark test suite. 

To further compare the performance of ANDE with other mul-

timodal optimization algorithms, Table 3 presents the comparison

outcomes in regard to PR, SR at the accuracy level ε = 1 . 0 E − 04 .

For clarity, we mark the PRs that exhibit the best performance in

boldface . Meanwhile, the Wilcoxon rank-sum test [72] at α = 0 . 05

in relation to PR is conducted to reveal the statistical significance

between ANDE and other niching algorithms. The symbols repre-

sent that ANDE gains significantly better ( + ), significantly worse

( −) or similar ( ≈ ) results than or to the comparison algorithms.

As shown in Table 3 , the proposed ANDE algorithm can obtain

the best PRs for 15 out of 20 test functions and successfully lo-

cate all the known optima for 8 out of 20 test functions. More-

over, ANDE performs significantly better than or achieves a sim-

ilar performance with the comparison algorithms on a fair num-

ber of test functions (at least 8 out of 20). It is worth to men-

tion that F 9 possesses 216 optimal solutions. For the most nich-

ing EAs with a fixed population size NP , they can only locate a

small portion of optima set. However, ANDE adopts the popula-

tion adaptation mechanism with an archiving technique, which en-

ables to find out optima whose size is more than the fixed ini-

tial NP (ANDE with initial NP = 100 can averagely find 138 optima

on F 9). 

For comparison on CS, the simple functions F 1- F 5 are carried

out as the experiment subject. As we can see in Table 4 , ANDE

is significantly superior to all the comparison algorithms on test

functions 3 out of 5. Therefore, ANDE has a fast convergence speed

for tracking and locating multiple optima. 

Further, we give a more straightforward perspective on ANDE.

Fig. 3 visualizes the fitness landscape of ten test functions and the

final distribution of the found global optimal individuals at the ac-
uracy level ε = 1 . 0 E − 04 . We can see that ANDE can conduct ef-

ective search on the fitness landscape with different characteris-

ics (uneven, rugged, complex, with many local optima). 

Furthermore, the boxplot of the average execution time of

NDE and comparison algorithms on 20 test functions are drawn

n Fig. 4 , where the average overall running time of ANDE is sim-

lar to that of most of the comparison algorithms that they con-

ume around 17 seconds. The outliers of the algorithms are on F 20,

hich has a relative expensive fitness calculation. Although ANDE

mplements an adaptive parameter method, its time cost is nearly

he same as other niching EAs’, which is consistent with the time

omplexity discussion in Section 3.7 . 

In summary, a conclusion can be reached that ANDE surpasses

he most compared niching algorithms in evaluation protocols (PR,

R, and CS) with nearly the same time expense. 

.3. Effectiveness of the components of ANDE 

Different com ponents play different roles in the proposed

NDE: the parameter adaptation mechanism to adapt the con-

rol parameters to the environment and the auxiliary movement

cheme to handle stagnation/converging situation for performance

nhancement. We investigate the effectiveness of each component

ith a Wilcoxon rank-sum test at α = 0 . 05 . Four ANDE variants

re conducted the significance test with ANDE. To be specific, “w/o

ugment” denotes the ANDE variant without population augmenta-

ion, “w/o exclusion” denotes the ANDE variant without population

xclusion, “w/o FCRadapt” denotes the ANDE variant with fixed

 and CR parameters, and “w/o move” denotes the ANDE variant

ithout auxiliary movement scheme. The significance test results

re tabulated in Table 5 . From the table, we can see that ANDE

ignificantly outperforms its variants 6, 3, 9, and 8, out of 20. The

omponents of ANDE together contribute a powerful optimization

bility. 
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Fig. 3. Visualization of the final distribution of the found global optimal solutions in the fitness landscape at the accuracy level ε = 1 . 0 E − 04 . 
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Fig. 4. The boxplot of the average execution time of the algorithms on 20 test func- 

tions of CEC2013 benchmark (figures in the horizontal axis demonstrate the differ- 

ent algorithms: 1- ANDE, 2- CDE, 3- SDE, 4- NCDE, 5- NSDE, 6- dADE/nrand/1, 7- 

DE/inrand/1R, 8- PNPCDE, 9- LoISDE, 10- FERPSO, 11- R3PSO, 12- LIPS, 13 - LM- 

CEDA, 14 - LMSEDA). From the figure, we can observe that most of the algorithms 

have similar average running time. 
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. ANDE for training neural network ensemble 

From all the experiment results above, ANDE shows a stable

nd efficient search performance for MMOPs. In this section, ANDE

s applied for training the NNE (namely, ANDE-NNE). We first in-

roduce ANDE-NNE. Then, we investigate the effect of ANDE-NNE

y providing comparative experimental results with other neural

etwork training methods. Finally, further analysis of ANDE-NNE is

aken. 

.1. The ANDE-NNE method 

The proposed ANDE ensures the diversity of NNs to enhance the

eneralization performance of NNE. Besides, ANDE optimizes NN

ith adaptive control parameters to promise the accuracy of NN.

oreover, ANDE enables parallel optimization of multiple NNs to

mprove the training efficiency of NNE and adaptively obtains NNs

or a specific problem to avoid redundant or excessive individual

Ns. 

In ANDE, an individual is represented as a floating-point num-

er vector. Accordingly, the weight parameters of an NN are

reated as the variables of the individual of ANDE. Given an ex-

mple of a three-layer NN illustrated in Fig. 5 , the NN is com-

osed with three layers: an input layer with two neurons and a

ias, a hidden layer with two neurons and a bias, and an output

ayer with two neurons (note that the output neurons are one-

ot encoding). The twelve connection weights of the NN are tab-

lated under the NN structure in Fig. 5 . To utilize ANDE for NN
ptimization, the twelve weights are sequentially encoded into the

ector of twelve dimensions. Besides, the classification accuracy is

egarded as the objective function of ANDE. Generally, the number

f weights (denoted as dim ) of NN is formulated as 

im = 

L −1 ∑ 

l=1 

(nh l−1 + 1) × nh l (15)

here L denotes the number of layers and nh l denotes the num-

er of weights in the l th layer (note that index of layer starts from

ero). In the paper, we adopt a three-layer NN with a hidden layer

f five neurons, and specify the number of neurons of the input

nd output layers with a specific dataset. Consequently, the weight

umbers varies from 32 (on Haberman dataset) to 187 (on Iono-

phere dataset). 

Most classification scenario can adopt ANDE-NNE to handle. For

xample, the Diabetes dataset (introduced in the next part) is de-

ived from the diabetes patient records in the real world. The attri-

utions of the patients are recorded and utilized as the input data

or ANDE-NNE training. The optimized ANDE-NNE can be adopted

s a classifier to predict whether a patient is at the risk of diabetes.
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Table 6 

Charcteristics of the 12 classification datasets. 

Datasets No. samples No. features No. classes 

Haberman 306 3 2 

Heart 270 13 2 

Diabetes 768 8 2 

Ionosphere 351 34 2 

Wisconsin 683 9 2 

Wine 178 13 3 

Balance 625 4 3 

Hayes-roth 132 5 3 

Iris 150 4 3 

Seeds 210 7 3 

Car 1768 6 4 

Zoo 101 17 7 
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5.2. Experimental setup 

To weigh up the effectiveness of ANDE-NNE, twelve commonly

used classification instances from the UCI machine learning repos-

itory [73] are examined. The characteristics of these datasets are

described in Table 6 . In the period of data preprocessing, all fea-

tures are normalized to [0, 1] utilizing min-max normalization

method. 

We compare the results obtained by ANDE-NNE with those ob-

tained by five neural network training methods, i.e., DE-NN, DE-

NNE, BP-NN, BP-NNE, and MCCS (multi-population co-evolution

chaotic searching algorithm). To clarify, DE-NN is short for using

classic DE to train single NN, while DE-NNE is the ensemble of

DE-NNs. BP-NN is short for using back propagation to train sin-

gle NN, while BP-NNE is the ensemble of BP-NNs. MCCS [22] is an

NNE optimization algorithm that utilizes three EAs (i.e., differential

evolution, particle swarm optimization, and artificial bee colony

algorithm) to conduct three heterogeneous subpopulation searches.

Their parameters are set according to the publications. All the op-

timizers adopt the same NN model, i.e., three layers with one hid-

den layer of five neurons. The comparison algorithms give 20 in-

dividual NNs, while ANDE provides a maximum individual NNs of

20. Then, the final classification results of NNs are synthesized via

the majority voting, except for MCCS that votes with different vote

weights. Ten-fold cross validation method is adopted to test the

performance of the algorithms. In the ten-fold cross validation, the

dataset is randomly partitioned into ten equal size sub-datasets.

Nine sub-datasets are reserved for model training and the rest one

sub-dataset for validation. Then, the cross-validation is repeated

ten times, with each sub-dataset being used exactly once as the

validation data. The ten results are averaged to yield an estimation

of validation accuracy. In this way, we are capable of measuring

the performance of NNE methods. 

5.3. Comparison experiments 

Table 7 exhibits the mean values and standard deviations of the

validation accuracy on datasets. Particularly, the Wilcoxon rank-

sum test results with α = 0.05 on each dataset are presented,

where the symbol “+ ” denotes that ANDE-NNE significantly out-

performs the comparison algorithm, the symbol “ ≈ ” indicates no

significant difference between them, and “−” implies that ANDE

is significantly worse than the rival. Besides, the best values are

marked in boldface. We can see from the table that ANDE-NNE

performs the best on the most datasets, 10 out of 12. ANDE-NNE

obtains small standard deviations that is averaged at 5.87, while

the average standard deviations of the comparison algorithms are

larger than 8.4. ANDE-NNE significantly outperforms or shows no

significant difference with the comparison algorithm. Besides, BP

and DE perform better than their corresponding NNE methods in
erms of average validation accuracy. BP-NNE and DE-NNE simply

ggregate NNs without considering their diversity, which impairs

he generation ability of their NNE methods. MCCS evolves three

eterogeneous populations in parallel, however the communica-

ion among the subpopulations emphasizes population fitness val-

es but ignores the population diversity. The proposed ANDE-NNE

dapts the population by considering the accuracy and diversity,

hich facilitates a strong NNE. Furthermore, Fig. 6 gives a more

ntuitive view of the percentage of improvements made by ANDE-

NE against DE-NNE, BP-NNE, and MCCS, respectively. As we can

bserve from the figure that ANDE-NNE performs the most out-

tanding results and the range of improvements gained by ANDE-

NE is excellent in most situations. The above observation vali-

ates the competitive performance of ANDE-NNE. 

Table 8 summarizes the average consumed time of different

NE methods. In the table, BP-NNE costs 0.72s, which is the

astest. For the EA-based methods, ANDE-NNE averagely consumes

.47s, while the other two methods, i.e., DE-NNE and MCCS, take

round 20 times longer than ANDE-NNE. This is because ANDE-

NE optimizes all NNs in a single execution while the other com-

arison methods require repeated executions to train each individ-

al NN. 

.4. Further analysis of ANDE-NNE 

.4.1. Investigation of NN size obtained by ANDE-NNE 

The average number of individual NNs obtained by ANDE-NNE

n all datasets is illustrated in Fig. 7 . First, it can be observed that,

n different cases, the number of NNs in ANDE-NNE is quite dif-

erent. ANDE-NNE adjusts the number of NNs in the training for

ifferent datasets. The NNs with unsuitable number may weaken

he overall effect for ensemble, as the excessive number of NNs

ill bring redundancy and the insufficient number of NNs can not

rovide enough generalization ability of voters. For example, the

umber of NNs produced by ANDE-NNE for Ionosphere dataset is

uch fewer than that of DE-NNE, BP-NNE, and MCCS, while the

erformance of ANDE-NNE is much better than that of the rival

NEs whose NN size is fixed at 20. Second, even when the number

f the generated NNs is close to 20 (the fixed NN number adopted

or the comparison methods), ANDE-NNE shows a more promising

erformance than the others. For example, the number of NNs pro-

uced by ANDE-NNE for Iris dataset is close to 20, and in this case

NDE-NNE still performs better than the other methods with 20

xed NNs (see Fig. 6 ). This owes much to the powerful multimodal

ptimization ability of ANDE, which guarantees the good accuracy

nd diversity of the produced NNs. 

.4.2. Investigation of NN topology of ANDE-NNE 

The weak NNs are assembled to yield a strong NNE. The topol-

gy of base NNs affects the performance NNE. We investigate the

ffect among various NN topologies: a hidden layer with three

eurons, a hidden layer with five neurons, a hidden layer with ten

eurons, two hidden layers with three neurons each, and two hid-

en layers with five neurons each. Table 9 reports the validation

ccuracy of the five different topologies and their significance test

esults. The significance is summarized with a triplet in the form

f “a / b / c ”, where “a” denotes the number of cases that the ANDE-

NE with default setting (i.e., one hidden layer with five neurons)

ignificantly outperforms the competitor, “b” indicates the number

f cases that the difference of the results between the compared

lgorithms is insignificant, and the last “c” suggests the number of

ases that the default ANDE-NNE performs significantly worse than

he other. From the table, we can see that ANDE-NNE variants have

imilar validation accuracy values. The results indicate that, owing

o the good generalization ability of ensemble learning, ANDE-NNE

s not very sensitive to the topologies of individual NNs. As the
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Table 7 

Validation accuracy measures on the different datasets (average and standard deviation). 

ANDE-NNE BP-NN BP-NNE DE-NN DE-NNE MCCS 

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. 

Haberman 77.10 5.98 70.97 ( + ) 5.89 69.68 ( + ) 6.31 73.55 ( ≈ ) 4.51 70.97 ( ≈ ) 6.97 71.94 ( ≈ ) 8.74 

Heart 82.22 9.21 71.85 ( ≈ ) 16.02 74.44 ( ≈ ) 7.29 77.78 ( ≈ ) 9.07 80.37 ( ≈ ) 8.74 87.04 ( ≈ ) 6.36 

Diabetes 76.75 4.08 76.10 ( ≈ ) 4.55 75.84 ( ≈ ) 5.55 66.62 ( + ) 4.74 68.70 ( + ) 5.14 71.69 ( + ) 4.69 

Ionosphere 90.56 5.59 71.67 ( + ) 8.86 74.44 ( + ) 14.57 63.89 ( + ) 6.55 72.50 ( + ) 9.39 83.33 ( + ) 6.28 

Wisconsin 97.39 2.25 69.71 ( + ) 10.92 85.22 ( + ) 15.12 97.10 ( ≈ ) 2.05 97.83 ( ≈ ) 1.71 97.54 ( ≈ ) 2.06 

Wine 95.56 7.31 92.78 ( ≈ ) 8.71 95.56 ( ≈ ) 6.83 63.89 ( + ) 15.77 79.44 ( + ) 20.80 82.22 ( + ) 16.10 

Balance 90.16 4.78 87.94 ( ≈ ) 4.04 88.89 ( ≈ ) 4.43 86.98 ( ≈ ) 2.97 86.35 ( ≈ ) 4.31 89.52 ( ≈ ) 4.56 

Hayes-roth 70.00 12.05 66.43 ( ≈ ) 8.28 69.29 ( ≈ ) 11.19 47.86 ( + ) 15.81 50.00 ( + ) 15.79 50.71 ( + ) 17.96 

Iris 97.33 3.44 94.00 ( ≈ ) 8.58 96.00 ( ≈ ) 7.17 71.33 ( + ) 14.07 77.33 ( + ) 14.47 71.33 ( + ) 19.89 

Seeds 96.19 3.76 42.86 ( + ) 20.20 90.48 ( ≈ ) 12.30 82.86 ( + ) 9.04 73.81 ( + ) 15.75 91.43 ( + ) 3.76 

Car 83.18 1.53 71.79 ( + ) 3.26 67.46 ( + ) 3.36 76.53 ( + ) 4.07 71.56 ( + ) 3.65 77.63 ( + ) 2.23 

Zoo 81.82 10.50 85.45 ( ≈ ) 10.67 88.18 ( ≈ ) 7.48 56.36 ( + ) 16.49 46.36 ( + ) 15.72 70.91 ( + ) 9.39 

Overall 86.52 5.87 75.13 9.16 81.29 8.47 72.06 8.76 72.94 10.20 78.77 8.50 
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Fig. 6. The percentage of improvements made by ANDE-NNE against DE-NNE, BP-NNE, and MCCS (figures in the horizontal axis demonstrate the different datasets: 1- 

Haberman, 2- Heart, 3- Diabetes, 4- Ionosphere, 5- Wisconsin, 6- Wine, 7- Balance, 8- Hayes-roth, 9- Iris, 10- Seeds, 11- Car, 12- Zoo). ANDE-NNE shows improvement over 

other NNE optimization methods on most datasets. 
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Fig. 7. The average number of individual NNs used in ANDE-NNE (figures in the horizontal axis demonstrate the different datasets: 1- Haberman, 2- Heart, 3- Diabetes, 4- 

Ionosphere, 5- Wisconsin, 6- Wine, 7- Balance, 8- Hayes-roth, 9- Iris, 10- Seeds, 11- Car, 12- Zoo). ANDE-NNE applies a flexible number of NNs for different datasets. 

Table 8 

Average execution time of NNE methods. 

Algorithm ANDE-NNE BP-NNE DE-NNE MCCS 

Time (s) 3.47 0.72 61.31 56.16 

s  

t  

l

 

N  

c

Table 9 

Validation accuracy of ANDE-NNE with different topologies. 

Hidden layer (3) (5) (10) (3, 3) (5, 5) 

Validation accuracy 88.01 87.98 88.19 85.25 86.51 

Validation significance 1/11/0 – 0/12/0 7/5/0 4/8/0 

b  

l  

d  

e  

p  
imple NN topology endows ANDE-NNE with sufficient capability

o vote in NNE, we suggest simple NN topology, i.e., one hidden

ayer with three to ten hidden neurons. 

In practice, a complex NN is more preferred when only one

N is utilized to accomplish the machine learning task. On the

ontrary, the ensemble learning integrates multiple “simple/weak”
ase learners to obtain a strong ensemble learner. In the ensemble

earning, diverse base learners enable to reduce the dependency on

ata distribution and enhance the generalization capability of the

nsemble learner. In this aspect, adopting base learners with com-

lex structure is contrary to the original intention of learning en-
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semble. Therefore, the simple NN is generally adopted in ensemble

learning. 

6. Conclusion 

This paper develops an adaptive niching differential evolution

algorithm named ANDE for tackling MMOPs and training NNEs.

Three novel strategies are proposed to enhance the performance

of the algorithm: (1) the heuristic clustering method that divides

the population into non-overlapping subpopulations; (2) the dy-

namic population adaptation mechanism that contributes to im-

proving diversity for the stagnating population and saving the un-

necessary computational budget by removing the overlapping sub-

populations, and F and CR adaptation mechanism for fine-tuning

the parameters along the evolution; (3) the auxiliary movement

scheme for an equilibrium between exploration and exploitation. 

Based on these novel techniques, the experimental results of

ANDE have shown the powerfulness. The first experiment part is

conducted on 20 multimodal test functions of the CEC2013 bench-

mark suite. ANDE outperforms the state-of-the-art niching EAs in

terms of PR, SR, and CS. Besides, we carry out an investigation

of effectiveness of ANDE’s components. The components of ANDE

play different roles and together contribute a powerful optimiza-

tion ability. Subsequently, in part two, ANDE is adopted to train

NNE, that is ANDE-NNE, on a twelve classification instances of UCI

repository. ANDE-NNE shows promising performance when com-

pared with other five NNE training methods in terms of validation

accuracy measure. Furthermore, we provide a deep investigation

of the obtained NN size. The results indicate that ANDE-NNE offers

tailored NN size on the specific dataset. 

In this study, the concurrent optimization of multiple NNs con-

siders the weight parameters only. In the future, it would be inter-

esting to encode the hyperparameters, such as the network topol-

ogy, for optimization. In addition, the base NNs are homogeneous

in the ANDE-NNE. It remains a challenging task to train an en-

semble with heterogeneous base learners in a concurrent way. The

proposed method can also bring benefits to a wide range of ap-

plications that require the diversity of models, such as developing

ensemble methods to tackle the concept drift problem in an incre-

mental learning environment 
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