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Abstract—Traditional cluster ensemble approaches have three limitations: (1) They do not make use of prior knowledge of the datasets

given by experts. (2) Most of the conventional cluster ensemble methods cannot obtain satisfactory results when handling high

dimensional data. (3) All the ensemble members are considered, even the ones without positive contributions. In order to address the

limitations of conventional cluster ensemble approaches, we first propose an incremental semi-supervised clustering ensemble

framework (ISSCE) which makes use of the advantage of the random subspace technique, the constraint propagation approach, the

proposed incremental ensemble member selection process, and the normalized cut algorithm to perform high dimensional data

clustering. The random subspace technique is effective for handling high dimensional data, while the constraint propagation approach

is useful for incorporating prior knowledge. The incremental ensemble member selection process is newly designed to judiciously

remove redundant ensemble members based on a newly proposed local cost function and a global cost function, and the normalized

cut algorithm is adopted to serve as the consensus function for providing more stable, robust, and accurate results. Then, a measure is

proposed to quantify the similarity between two sets of attributes, and is used for computing the local cost function in ISSCE. Next, we

analyze the time complexity of ISSCE theoretically. Finally, a set of nonparametric tests are adopted to compare multiple semi-

supervised clustering ensemble approaches over different datasets. The experiments on 18 real-world datasets, which include six UCI

datasets and 12 cancer gene expression profiles, confirm that ISSCE works well on datasets with very high dimensionality, and

outperforms the state-of-the-art semi-supervised clustering ensemble approaches.

Index Terms—Cluster ensemble, semi-supervised clustering, random subspace, cancer gene expression profile, clustering analysis

Ç

1 INTRODUCTION

RECENTLY, cluster ensemble approaches are gaining more
andmore attention [1], [2], [3], [4], due to its useful appli-

cations in the areas of pattern recognition [2], [3], [4], [5], data
mining [6], [7], bioinformatics [8], [9], [10], and so on. When
compared with traditional single clustering algorithms, clus-
ter ensemble approaches are able to integratemultiple cluster-
ing solutions obtained from different data sources into a
unified solution, and provide a more robust, stable and accu-
rate final result.

However, conventional cluster ensemble approaches have
several limitations: (1) They do not consider how to make use
of prior knowledge given by experts, which is represented by
pairwise constraints. Pairwise constraints are often defined as
the must-link constraints and the cannot-link constraints. The
must-link constraintmeans that two feature vectors should be

assigned to the same cluster, while the cannot-link constraints
means that two feature vectors cannot be assigned to the
same cluster. (2) Most of the cluster ensemblemethods cannot
achieve satisfactory results on high dimensional datasets. (3)
Not all the ensemblemembers contribute to the final result. In
order to address the first and second limitations, we first pro-
pose the random subspace based semi-supervised clustering
ensemble framework (RSSCE), which integrates the random
subspace technique [11], the constraint propagation approach
[12], and the normalized cut algorithm [13] into the cluster
ensemble framework to perform high dimensional data clus-
tering. Then, the incremental semi-supervised clustering
ensemble framework (ISSCE) is designed to remove the
redundant ensemble members. When compared with tradi-
tional semi-supervised clustering algorithm, ISSCE is charac-
terized by the incremental ensemble member selection
(IEMS) process based on a newly proposed global objective
function and a local objective function, which selects ensem-
blemembers progressively. The local objective function is cal-
culated based on a newly designed similarity function which
determines how similar two sets of attributes are in the sub-
spaces. Next, the computational cost and the space consump-
tion of ISSCE are analyzed theoretically. Finally, we adopt a
number of nonparametric tests to compare multiple semi-
supervised clustering ensemble approaches over different
datasets. The experiment results show the improvement of
ISSCE over traditional semi-supervised clustering ensemble
approaches or conventional cluster ensemble methods on six
real-world datasets from UCI machine learning repository
[14] and 12 real-world datasets of cancer gene expression
profiles.
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The contributions of the paper is fourfold. First, we pro-
pose an incremental ensemble framework for semi-
supervised clustering in high dimensional feature spaces.
Second, a local cost function and a global cost function are
proposed to incrementally select the ensemble members.
Third, the newly designed similarity function is adopted to
measure the extent to which two sets of attributes are simi-
lar in the subspaces. Fourth, we use non-parametric tests to
compare multiple semi-supervised clustering ensemble
approaches over different datasets.

The remainder of the paper is organized as follows. Sec-
tion 2 describes previous work related to semi-supervised
clustering and cluster ensemble. Section 3 presents the
incremental semi-supervised clustering ensemble frame-
work. Section 4 analyzes the proposed algorithm theoreti-
cally. Section 5 experimentally evaluates the performance of
our proposed approach. Section 6 describes our conclusion
and future work.

2 RELATED WORK

Cluster ensemble, also referred to as consensus clustering, is
one of the important research directions in the area of
ensemble learning, which can be divided into two stages:
the first stage aims at generating a set of diverse ensemble
members, while the objective of the second stage is to select
a suitable consensus function to summarize the ensemble
members and search for an optimal unified clustering solu-
tion. To attain these objectives, Strehl and Ghosh [1] first
proposed a knowledge reuse framework which integrates
multiple clustering solutions into a unified one. After that, a
number of researchers followed up Strehl’s work, and pro-
posed different kinds of cluster ensemble approaches [15],
[16], [17], [18], [19], [20], [21]. While there are different kinds
of cluster ensemble techniques, few of them consider how
to handle high dimensional data clustering, and how to
make use of prior knowledge. High dimensional datasets
have too many attributes relative to the number of samples,
which will lead to the overfitting problem. Most of the con-
ventional cluster ensemble methods do not take into
account how to handle the overfitting problem, and cannot
obtain satisfactory results when handling high dimensional
data. Our method adopts the random subspace technique to
generate the new datasets in a low dimensional space,
which will alleviate this problem.

There are also other research works which study the
properties of the cluster ensemble theoretically, such as the
stability of k-means based cluster ensemble [2], the effi-
ciency of the cluster ensemble [22], the convergence prop-
erty of consensus clustering [23], the scalability property of
the cluster ensemble [24], the effectiveness of cluster ensem-
ble methods [25], and so on. Cluster ensemble approaches
have been applied to different areas, such as bioinformatics
[26], [27], image segmentation [28], language processing
[29], Internet security [30], and so on.

Recently, some researchers realized that not all the
ensemble members contribute to the final result, and inves-
tigate how to select a suitable subset of members to obtain
better results [31], [32], [33], [34], [35]. For example, Yu et al.
[33], [34] treated the ensemble members as features, and
explored how to use suitable feature selection techniques to

choose the ensemble members. In summary, most of the
cluster ensemble approaches only consider using a similar-
ity score or feature selection technique to remove the redun-
dant ensemble members, and few of them study how to
apply an optimization method to search for a suitable subset
of ensemble members. In the current work, the proposed
ISSCE framework uses a newly designed incremental ens-
emble member selection process to generate an optimal set
of members.

In addition, conventional cluster ensemble methods do
not take into account how to make use of prior knowledge,
which is usually represented in the form of pairwise con-
straints or a very small set of labeled data. Single semi-
supervised clustering algorithms have the ability to handle
prior knowledge, and use them to guide the search in the
process of clustering. A number of semi-supervised cluster-
ing algorithms have been proposed [36], [37], [38], [39], [40],
[41], [42], [43], [44], [45], such as semi-supervised maximum
margin clustering [36], semi-supervised kernel mean shift
clustering [37], semi-supervised linear discriminant cluster-
ing [38], semi-supervised hierarchical clustering [39], active
learning based semi-supervised clustering [40], semi-
supervised affinity propagation [41], semi-supervised non-
negative matrix factorization [42], and so on. It is natural to
adopt a suitable single semi-supervised clustering method
as the basic clustering algorithm in the cluster ensemble. In
this paper, we consider the constraint propagation
approach (E2CP) proposed in [12], which propagate con-
straints in a more exhaustive and efficient way, as the basic
clustering algorithm in ISSCE. This approach has two

advantages: (1) The time complexity of E2CP is proportional
to the total number of all possible pairwise constraints,

which is OðKn2Þ (where K is the number of neighbors in
the K-NN graph, and n is the number of feature vectors in
the dataset). It is much smaller than that of conventional

constraint clustering approaches, which is Oðn4Þ. (2) E2CP
achieves good results on different real-world datasets, such
as image datasets, UCI datasets, cross-modal multimedia
retrieval, and so on. Greene and Cunningham [55] studied
constraint selection by identifying the constraints which are
useful for improving the accuracy of the clustering solution.
When compared with their work, our proposed incremental
semi-supervised clustering ensemble framework adopts the
more effective constraint propagation approach to convey
supervised information from the labeled data samples to
the unlabeled samples, and solve the label propagation
problem in parallel.

3 INCREMENTAL SEMI-SUPERVISED CLUSTERING

ENSEMBLE FRAMEWORK

We focus on semi-supervised clustering ensemble
approaches, which have been successfully applied to differ-
ent areas, such as data mining [46], bioinformatics [47], [48],
and so on. For example, Wang et al. [46] proposed the
constraint neighborhood projection based semi-supervised
clustering ensemble approach, and achieved good perfor-
mance on UCI machine learning datasets. Yu et al. repre-
sented prior knowledge provided by experts as pairwise
constraints, and proposed the knowledge based cluster
ensemble method [47] and the double selection based
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semi-supervised clustering ensemble approach [48]. Both of
them are successfully used for clustering gene expression
data. However, few of them consider how to handle high
dimensional datasets. In order to address this limitation, we
first propose the random subspace based semi-supervised
clustering ensemble approach, as shown in Fig. 1. RSSCE
first adopts the random subspace technique to generate B
random subspaces A1, A2, ..., AB. Then, the constraint prop-

agation approach (E2CP , [12]) is applied to perform cluster-
ing in the subspaces, and generate a set of clustering

solutions I1, I2, ..., IB. Next, a consensus matrix is con-
structed based on the set of clustering solutions. Finally, the
normalized cut algorithm (Ncut, [13]) is used to serve as the
consensus function, partition the consensus matrix, and
obtain the final result.

Specifically, given a very high dimensional dataset
P ¼ fp1; p2; . . . ; png, with each feature vector pi (i 2
f1; . . . ; ng) containing m attributes, RSSCE uses the random
subspace technique to generate a set of random subspaces
A ¼ fA1; . . .ABg in the first step. Specifically, a sampling
rate t 2 ½tmin; tmax� of the number of attributes in the sub-
space over the total number of attributes in the original
space is first generated as follows:

t ¼ tmin þ b&1ðtmax � tminÞc; (1)

where &1(&1 2 ½0; 1�) is a uniform random variable. Then, the
attribute is selected by RSSCE one by one, whose index is
determined as follows:

j ¼ b1þ &2mc; (2)

where j is the index of the selected attribute, and &2 is a uni-
form random variable. The above operation will continue
until tm attributes are selected. The new subspace is con-
structed by these selected attributes. Finally, RSSCE will
generate a set of random subspaces A1, A2, ..., AB by repeat-
ing the process B times. The advantage of the random sub-
space technique is to provide multiple ways to explore the
underlying structure of the data in a low dimensional space.

In the second step, the constraint propagation approach
[12] is adopted to serve as the semi-supervised clustering
model x to generate a set of clustering solutions. E2CP con-
siders a limited number of must-link and cannot-link con-
straints between pairs of feature vectors given by experts,
and decomposes a constraint propagation problem into a
set of semi-supervised classification problems. The dataset
P ¼ fp1; p2; . . . ; png can be modeled by an undirected
weighted graph GðP;XÞ, in which P is a set of feature vec-
tors corresponding to the vertices, and X denotes the simi-
larity matrix with a weight value xij associated with the
edge between pi and pj:

xij ¼ %ij if pi 2 N qðpjÞ or pj 2 N qðpiÞ
0 otherwise;

�
(3)

%ij ¼ exp � pi � pj
�� ��2

d
2

 !
; (4)

where d is set to the average Euclidean distance between
all pairs of q-nearest neighbors, and N qðpiÞ denotes the
q-nearest neighbor set for pi.

Given a set of initial must-link constraints M ¼ fðpi; pjÞ :
yi ¼ yj; 1 � i; j � ng and a set of initial cannot-link con-
straints N ¼ fðpi; pjÞ : yi 6¼ yj; 1 � i; j � ng (where yi is the
label of the feature vector pi), the constraint matrix
R ¼ frijgn�n can be constructed as follows:

R ¼
þ1; ðpi; pjÞ 2 M
�1; ðpi; pjÞ 2 N
0; otherwise:

8<
: (5)

The goal of E2CP is to propagate supervised information
from labeled data samples to unlabeled ones, which can be
solved by label propagation based on q-nearest neighbor
graphs. The propagation procedure in the j-th column(or
row) of F (F is an n� n propagation matrix, whose initial
values are set to R) can be viewed as a semi-supervised
binary classification subproblem with respect to pj. The
semi-supervised classification problem with respect to pj in
the vertical direction can be formulated as minimizing a
Laplacian regularized objective function according to [54]:

min
F�j

1

2
F�j �R�j
�� ��2

2
þm

2
FT
�j LF�j; (6)

where F�j denotes the j-th column of F , and L is the Lapla-
cian matrix of the dataset P . The first term in the above
equation denotes the fitting error, which penalizes large
changes between the propagated pairwise constraints and
the initial ones, and the second term measures how far the
points in the dataset differ from each other with respect to
the similarity. By integrating all these subproblems with
respect to each column, the constraints propagation prob-
lem in the vertical direction can be formulated as follows:

min
F

1

2
F �Rk k22þ

m

2
FTLF: (7)

Only choosing the vertical direction to propagate might not
be enough to fully utilize the prior knowledge, since some
columns of R do not have any pairwise constraints.

Fig. 1. An overview of the random subspace based semi-supervised
clustering ensemble approach.
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Fortunately, the problem can be fixed by propagating both
in the horizontal direction and vertical direction iteratively
using the method in [12]. The pairwise constraint propaga-
tion with respect to pj in the horizontal direction can be for-
mulated as follows:

min
Fj�

1

2
Fj� �Rj�
�� ��2

2
þm

2
Fj�LFT

j� ; (8)

where Fj� denotes the j-th row of F . If all the horizontal
propagation subproblems are merged together, the follow-
ing objective function can be defined:

min
F

1

2
F �Rk k22þ

m

2
FLFT ; (9)

E2CP takes into account the propagation process in the
horizontal and vertical directions together, and optimizes
the following objective function [12]:

min
F

F �Rk k2Fþ
b1
2
trðFTLF þ FLFT Þ; (10)

where b1 is a pre-defined parameter. The advantage of the
above formulation is that we can perform the constraint
propagation in the two directions at the same time. A closed-
form solution of F � can be derived, which is as follows:

F � ¼ ð1� b2Þ2ðI � b2
�LÞ�1RðI � b2

�LÞ�1; (11)

where b2 ¼ b1=ðb1 þ 1Þ and �L ¼ I � L. F � is used to adjust
the similarity matrixX of the dataset P as follows:

exij ¼ 1� ð1� f�
ijÞð1� xijÞ; f�ij 	 0

ð1þ f�
ijÞxij; f�

ij < 0;

�
(12)

E2CP applies a spectral clustering algorithm to the adjusted

similarity matrix eX of the dataset P to obtain a clustering
solution.

Finally,E2CP will obtain a set of corresponding clustering

solutions I ¼ fI1; I2; . . . ; IBg in terms of different ensemble

members bG ¼ fðA1;x1Þ; ðA2;x2Þ; . . . ; ðAB;xBÞg.
In the third step, RSSCE generates a consensus matrix O

by summarizing the clustering solutions fI1; I2; . . . ; IBg
generated by the semi-supervised clustering model E2CP .

Each clustering solution Ib (b 2 f1; . . . ; Bg) can first be trans-

formed to an adjacency matrix Ob with entries obij as follows:

obij ¼
1 if ybi = ybj,
0 if ybi 6=ybj,

�
; (13)

where ybi and ybj denote the predicted labels of the data sam-
ples pi and pj in the b-th clustering solution, respectively.
An n� n consensus matrix O is then constructed by com-

bining all the adjacency matrices (O1; O2; . . . ; OB) as follows:

O ¼ 1

B

XB
b¼1

Ob: (14)

In the fourth step, RSSCE adopts the normalized cut algo-
rithm (Ncut, [13]) as the consensus function to partition the

feature vector set P based on the consensus matrix O. We
construct a graph (G ¼ ðP;OÞ) whose vertices denote the fea-
ture vectors, and whose edges correspond to the values of oij
in O, which represent the probability that the feature vectors
belong to the same cluster. Ncut partitions the graph G into
two subgraphs recursively until k subgraphs are obtained.
The cost function VðP1; P2Þ of Ncut, which is used to maxi-
mize the association within the cluster andminimize the dis-
association between the clusters, is defined as follows:

VðP1; P2Þ ¼ FðP1; P2Þ
CðP1; P Þ þ

FðP1; P2Þ
CðP2; P Þ ; (15)

FðP1; P2Þ ¼
X

pi2P1;pj2P2
oij; (16)

CðP1; P Þ ¼
X

pi2P1;ph2P
oih; (17)

where VðP1; P2Þ is a dissimilarity measure between P1 and
P2, and oij is the ij-th entry of O. The above cost function
can be converted to an alternative form as follows:

VðP1; P2Þ ¼
P

ðvi > 0;vj < 0Þ �oijvivjP
vi > 0 #i

þ
P

ðvi < 0;vj > 0Þ �oijvivjP
vi < 0 #i

;

(18)

where v ¼ ½v1; . . . ; vn�T is an n-dimensional indicator vector
(n is the number of feature vectors in P ), vi (i 2 f1; . . . ; ng)
takes on values in f�1; 1g, vi ¼ 1 if the i-th vertex belongs to
P1. Otherwise, vi ¼ �1, and #i ¼

P
j oij.

The corresponding optimization problem is defined as
follows [13]:

min
v

VðvÞ ¼ min
a

aT ðU �OÞa
aTUa

; (19)

a ¼ ð1þ vÞ � ið1� vÞ; (20)

i ¼
P

vi > 0 #iP
vi < 0 #i

; (21)

with the constraints:

ai 2 f�i; 1g;aTUI ¼ 0; (22)

where U is an n� n diagonal matrix with #i (i 2 f1; . . . ; ng)
on its diagonal, I denotes the identity matrix, and hi is the
i-th component of a.

However, the above optimization problem in its exact
form is NP-complete. One possible way to solve the problem
is to search for an approximate solution in the real value
domain. Since the above equation is in the form of a Rayleigh
quotient, the above optimization problem can be solved
through the following generalized eigenvalue system when
a is relaxed to take on real values, which is as follows:

ðU �OÞa ¼ LUa; (23)

where L denotes the eigenvalues. The second smallest
eigenvector of the generalized eigenvalue system is the
solution to the normalized cut problem [13].
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Fig. 2 shows an overview of the incremental semi-
supervised clustering ensemble framework, and Algo-
rithm 1 provides a flowchart of the approach. When com-
pared with RSSCE, ISSCE adopts the incremental ensemble
member selection process based on a local cost function and
global cost function to generate the new ensemble set
G ¼ fðA1;x1Þ; ðA2;x2Þ; . . . ; ðAB0 ;xB0 Þg (where B0 < B) from

the original ensemble bG. There are two reasons for our pro-
posed incremental process: (1) The global objective function
is useful for performing global search, while the local objec-
tive function is suitable for local search. Our proposed incre-
mental process will improve the efficiency by using both
search modes. (2) The local objective function takes into
account the similarity of two subspaces and the cost func-
tion of the clustering solutions, which will increase the
adaptivity of the process.

4 INCREMENTAL ENSEMBLE MEMBER SELECTION

Algorithm 2 provides an overview of the incremental
ensemble member selection process. The input is the origi-
nal ensemble, while the output is a newly generated ensem-
ble with smaller size. Specifically, IEMS considers the
ensemble members one by one, and calculates the objective
function DðIbÞ for each clustering solution Ib generated by

E2CP with respect to the subspace Ab in the first step. In the

second step, it sorts all the ensemble members in bG in

ascending order according to the corresponding D values.
The first ensemble member ðAt;xtÞ (where t ¼ 1) is picked
up and inserted into the new ensemble G ¼ fðAt;xtÞg. At
the same time, ðAt;xtÞ is removed from the original ensem-

ble bG as follows:

bG ¼ bGnfðAt;xtÞg: (24)

In the third step, each ensemble member ðAb;xbÞ in bG is con-
sidered in turn, and the local objective function zb with respect
to the ensemble member ðAt;xtÞ in G is calculated. All the

ensemble members in bG are sorted in ascending order accord-
ing to the corresponding local objective function zb in the

fourth step. IEMS will consider the ensemble member in bG
one by one in the fifth step. It generates the new ensemble

G0 ¼ Gþ fðAb;xbÞg (where ðAb;xbÞ 2 bG), and calculates the
global objective functionDðI 0Þ andDðIÞfor the clustering solu-
tions I 0 and I generated by G0 and G, respectively. If
DðI 0Þ � DðIÞ, the ensemble member ðAb;xbÞ is inserted into
the new ensemble: G ¼ Gþ fðAb;xbÞg, and removed from the

original ensemble bG: bG ¼ bG� ðAb;xbÞ. IEMS sets the ensemble
member ðAt;xtÞ to ðAb;xbÞ, and proceeds to the third step. It
will perform the above last three steps repeatedly until B0

(B0 < B) ensemblemembers are selected.

Algorithm 1. Incremental Semi-Supervised Clustering
Ensemble Approach

Require:

Input: a high dimensional dataset P ;
Ensure:
1: Original ensemble generation;
2: Generate B random subspaces fA1; A2; . . . ; ABg;
3: Generate the semi-supervised clustering models

x1;x2; . . . ;xB using E2CP;
4: Call incremental ensemble member selection process in

Algorithm 2;
5: New ensemble generation;
6: Generate B0 random subspaces fA1; A2; . . . ; AB0 g

(B0 < B);
7: Generate semi-supervised clustering models

x1;x2; . . . ;xB0 using E2CP;
8: Obtain consensus matrix O by summarizing the clustering

solutions fI1; I2; . . . ; IB0 g generated by the semi-super-
vised clustering models;

9: Consensus function for the final results using the normal-
ized cut approach;
Output: the labels of the samples in P .

The incremental ensemble member selection process
makes use of the global objective function D and the local
objective function z. Assume that (1) M and N are the sets of

must-link and cannot-link pairs, respectively. (2) WM ¼
fwM

ij g and WN ¼ fwN
ijg denote the weight sets which contain

weights corresponding to the must-link and cannot-link con-
straints, respectively. (3) Y ¼ fy1; y2; . . . ; yng are the set of
labels for the feature vectors inP . (4) The cost of violating con-
straints is specified by the generalized Potts metric. Given a
clustering solution I, the global objective function DðIÞ
of IEMS, which is motivated from the cost function of
PC-Kmeans [49], is defined as follows:

Fig. 2. An overview of the incremental ensemble member selection
approach.
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DðIÞ ¼ 1

2

X
pi2P

Xk
h¼1

uðyi ¼ hÞdðpi;mhÞ

þ
X

pi;pj2M
wM

ij uðyi 6¼ yjÞ þ
X

pi;pj2N
wN

ij uðyi ¼ yjÞ;
(25)

mh ¼
Ph

i¼1 uðyi ¼ hÞpiPh
i¼1 uðyi ¼ hÞ ; (26)

where dðpi;mhÞ denotes the Euclidean distance between the
feature vectors pi and mh, u denotes an indicator function,
uðtrueÞ ¼ 1 and uðfalseÞ ¼ 0. The objective of the cost func-
tion is to optimize the squared distances of the feature vec-
tors from the centers, such that as many constraints are
satisfied as possible.

Algorithm 2. Incremental Ensemble Member Selection

Require:
Input: the sample set P ¼ ðp1; p2; . . . ; plÞ;
the must-link setM ;
the cannot-link setN ;
a set of random subspaces A ¼ fA1; . . .ABg;
a set of semi-supervised clustering models x ¼ fx1; . . . ;xBg;
a set of ensemble members bG ¼ fðA1;x1Þ; ðA2;x2Þ; . . . ;
ðAB;xBÞg;
the empty ensemble G;

Ensure:
1: For b in 1; . . . ; B
2: Calculate the objective function DðIbÞ using Eq. 25 for

each clustering solution Ib generated by E2CP ;
3: Set t ¼ 1;
4: Sort ensemble members in ascending order according to the

corresponding D, and pick up the first ensemble member
ðAt;xtÞ;

5: Add to new ensemble: G ¼ fðAt;xtÞg, bG ¼ bG� fðAt;xtÞg;
6: Repeat
7: t=t+1;
8: For each ðAb;xbÞ in bG
9: Calculate the local objective function zb;
10: Sort ensemble members in bG in ascending order

according to the corresponding local objective function zb;
11: Set b ¼ 0;
12: Repeat
13: Set b ¼ bþ 1;
14: Generate new ensemble G0 ¼ Gþ fðAb;xbÞg (where

ðAb;xbÞ 2 bG );
15: Calculate the global objective function DðI 0Þ and

DðIÞfor the clustering solutions I 0 and I generated by G0

and G respectively;
16: Until DðI 0Þ � DðIÞ;
17: Add to new ensemble: G ¼ Gþ fðAb;xbÞg,bG ¼ bG� fðAb;xbÞg;
18: Until t 	 B0 or bG ¼ ;;

Output: the new ensemble G.

Given the original ensemble bG and the new ensemble G,
the local objective function zb for the local b-th ensemble

member ðAb;xbÞ 2 bG with respect to the ensemble member
ðAt;xtÞ 2 G is defined as follows:

zb ¼
X
8At2G

SðAb;AtÞ
DðIbÞ ; (27)

where DðIbÞ denotes the global objective function for the

clustering solution Ib, and SðAb;AtÞ denotes the similarity
function between two subspaces Ab and At.

Given the subspaces Ab and At, the set of attributes in
these subspaces can be represented by Gaussian mixture

models (GMMs) Vb ¼ fFb
1 ¼ ðwb

1;m
b
1;S

b
1Þ;Fb

2 ¼ ðwb
2; m

b
2;S

b
2Þ;

. . . ;Fb
k1

¼ ðwb
k1
;mb

k1
;Sb

k1
Þg and Vt ¼ fFt

1 ¼ ðwt
1;m

t
1; S

t
1Þ;Ft

2 ¼
ðwt

2;m
t
2;S

t
2Þ; . . . ;Ft

k2
¼ ðwt

k2
;mt

k2
;St

k2
Þg respectively (where

wb
h1
, mb

h1
and Sb

h1
, (h1 2 f1; . . . ; k1g) denote the weight value,

the mean vector and the covariance matrix for the h1-th

component Fb
h1

of Vb, respectively. wt
h2
, mt

h2
and S

t
h2
, (h2 2

f1; . . . ; k2g) denote the weight value, the mean vector and

the covariance matrix for the h2-th component Ft
h2

of Vt,

respectively). The expectation-maximization approach (EM)
is adopted to perform clustering on the set of attributes in
the subspace, and determine the optimal parameter values
of GMMs.

Algorithm 3 provides a flowchart of the similarity func-
tion (SF) for SðAb;AtÞ. The input of SF is two Gaussian mix-

ture models Vb and Vt, while the output is the similarity
value SðAb;AtÞ between two subspaces Ab and At. Specifi-
cally, the similarity function first considers the similarity of

all the pairs of components in Vb and Vt. The Bhattacharyya

distance ’ðFb
h1
;Ft

h2
Þ is used to calculate the similarity bet-

ween two components Fb
h1

in Vb and Ft
h2

in Vt, which is as

follows:

’ðFb
h1
;Ft

h2
Þ ¼ 1

8
ðmb

h1
� mt

h2
ÞT
�
Sb
h1

þ St
h2

2

��1

ðmb
h1

� mt
h2
Þ

þ 1

2
ln

j S
b
h1

þSt
h2

2 jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jSb

h1
jjSt

h2
j

q :

(28)
Then, SF sorts all the component pairs ðFb

h1
;Ft

h2
Þ in ascend-

ing order according to the corresponding Bhattacharyya
distance values, and inserts them into a queue. Next, it sets
SðAb;AtÞ ¼ 0, performs a de-queue operation, and consid-

ers the component pair ðFb
h1
;Ft

h2
Þ one by one. If wb

h1
> 0

and wt
h2

> 0, the minimum weight w between the two is

selected in the first step, which is as follows:

w ¼ minðwb
h1
; wt

h2
Þ: (29)

In the second step, the similarity value SðAb;AtÞ is assigned
a new value as follows:

SðAb;AtÞ ¼ SðAb;AtÞ þ w’ðFb
h1
;Ft

h2
Þ: (30)

The weights wb
h1

and wt
h2

are updated in the third step as fol-
lows:

wb
h1

¼ wb
h1

� w;wt
h2

¼ wt
h2

� w (31)

Finally, the similarity value SðAb;AtÞ will be obtained by

considering all the component pairs ðFb
h1
;Ft

h2
Þ in the queue.
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Algorithm 3. Similarity Function

Require:
Input: the Gaussian mixture model Vb ¼ fFb

1 ¼ ðwb
1;

mb
1;S

b
1Þ; . . . ;Fb

k1
¼ ðwb

k1
;mb

k1
;Sb

k1
Þg;

the Gaussian mixture model Vt ¼ fFt
1 ¼ ðwt

1;m
t
1;S

t
1Þ;

. . . ;Ft
k2

¼ ðwt
k2
;mt

k2
;St

k2
Þg;

Ensure:
1: For h1 in 1; . . . ; k1
2: For h2 in 1; . . . ; k2
3: Calculate the Bhattacharyya distance ’ðFb

h1
;Ft

h2
Þ

using Eq. 28 ;
4: Sort all the component pairs ðFb

h1
;Ft

h2
Þ in ascending order

according to the corresponding Bhattacharyya distance
values, and insert them into a queue;

5: SðAb; AtÞ ¼ 0;
6: For j in 1; . . . ; k1k2 (where k1k2 is the number of component

pairs)
7: Perform a de-queue operation and obtain the component

pair ðFb
h1
;Ft

h2
Þ;

8: If wb
h1

> 0 and wt
h2

> 0
9: w ¼ minðwb

h1
; wt

h2
Þ ;

10: SðAb;AtÞ ¼ SðAb;AtÞ þ w’ðFb
h1
;Ft

h2
Þ;

11: wb
h1

¼ wb
h1

� w;
12: wt

h2
¼ wt

h2
� w;

Output: the similarity value SðAb;AtÞ.

5 THEORETICAL ANALYSIS

We also perform a theoretical analysis of ISSCE in terms of
its computational cost. The corresponding time complexity
TISSCE is estimated as follows:

TISSCE ¼ TOE þ TIEMS þ TFR; (32)

where TOE, TIEMS, and TFR denote the computational costs
for the original ensemble generation step, the incremental
ensemble member selection step, and the final result genera-
tion step using the new ensemble, respectively. TOE is related
to the number of feature vectors n, the number of attributes
m, the number of random subspaces B, and the number of

neighborsK in the K-NNgraph inE2CP as follows:

TOE ¼ OðBKn2Þ: (33)

TIEMS will be affected by the number of feature vectors n,
the number of attributes m, the number of random subspa-
ces B, the number of selected subspace B0, and the number
of clusters k in the clustering solution as follows:

TIEMS ¼ OðBkn2 þBlogBþB0nm2Þ: (34)

TFR is related to the number of feature vectors n and the
number of clusters k in the clustering solution as follows:

TFR ¼ Oðkn3Þ: (35)

Since B, B0, K and k are constants, which are significantly

smaller than n3 or nm2, the computational cost of ISSCE is

approximately Oðe3Þ, where e ¼ maxðn;mÞ.
The space consumption of ISSCE is composed of the con-

sumption of the original ensemble OðBnmÞ, the new

ensemble OðB0nmÞ, and the consensus matrix Oðn2Þ. As a

result, the overall space consumption of ISSCE is Oðe2Þ.

6 EXPERIMENT

The performances of ISSCE and other semi-supervised clus-
tering approaches are evaluated using 18 real-world datasets
as shown in Table 1 (where n denotes the number of data
samples, m denotes the number of attributes, and k denotes
the number of classes), which includes six datasets fromUCI
machine learning repository and 12 high dimensional data-
sets of cancer gene expression profiles. The preprocessing
process for the cancer datasets is the same as that in [49].

Normalized mutual information (NMI, [51]) and
adjusted Rand index (ARI, [51]) are used to evaluate the
performances of ISSCE and its competitors. The perfor-
mance of the proposed approach is evaluated by the aver-
age value and the corresponding standard deviation of
NMI and ARI, respectively, after 10 runs.

Given the ground truth result I with k clusters
I ¼ fC1; C2; . . . ; Ckg, and the result I 0 obtained by ISSCE
with k0 clusters I 0 ¼ fC0

1; C
0
2; . . . ; C

0
k0 g, we use NMI [51] to

evaluate the quality of the final clustering result, which is
defined as follows:

NMIðI; I 0Þ ¼ 2H1ðI; I 0Þ
H2ðIÞ þH2ðI 0Þ ; (36)

H1ðI; I 0Þ ¼
X
h

X
l

jCh \ C0
l j

n
log

njCh \ C0
l j

jChjjC0
l j

; (37)

H2ðIÞ ¼ �
X
h

jChj
n

log
jChj
n

; (38)

H2ðI 0Þ ¼ �
X
l

jC0
l j

n
log

jC0
l j

n
; (39)

TABLE 1
A Summary of Real-World Datasets (Where n Denotes the

Number of Data Samples,m Denotes the Number of Attributes,
and k Denotes the Number of Classes)

Dataset Source n m k

Iris [14] 150 4 3
Movement libras [14] 360 90 15
RobotExecution1 [14] 88 90 4
RobotExecution2 [14] 47 90 5
RobotExecution4 [14] 117 90 3
Syntheticcontro [14] 600 60 6
Alizadeh-2000-v3 [50] 62 2,093 4
Armstrong-2002-v2 [50] 72 2,194 3
Bredel-2005 [50] 50 1,739 3
Dyrskjot-2003 [50] 40 1,203 3
Liang-2005 [50] 35 1,411 3
Alizadeh-2000-v3(o) [50] 62 4,026 4
Nutt-2003-v1 [50] 50 1,377 4
Pomeroy-2002-v2 [50] 42 1,379 5
Ramaswamy-2001 [50] 190 1,363 14
Risinger-2003 [50] 42 1,771 4
Su-2001 [50] 174 1,571 10
Tomlins-2006-v1 [50] 104 2,315 5
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where h 2 f1; . . . ; kg, l 2 f1; . . . ; k0g, n is the total number of
data samples, and j � j denotes the cardinality of the cluster.
The larger the NMI value is, the better the quality of clusters
becomes.

The adjusted Rand index ARIðI; I 0Þ [51] is defined as fol-
lows:

ARIðI; I 0Þ ¼
Pk

h¼1

Pk0
l¼1

jCh\C0
l
j

2

� �
� %3

1
2 ð%1 þ %2Þ � %3

; (40)

%1 ¼
Xk
h¼1

jChj
2

� �
; %2 ¼

Xk0
l¼1

jC0
l j
2

� �
; %3 ¼ 2%1%2

nðn� 1Þ : (41)

A higher ARI value corresponds to a higher clustering solu-
tion quality.

In the following experiments, we first study the effect of
the parameters. Then, the effect of the incremental ensem-
ble member selection process is explored. Next, the
proposed approach ISSCE is compared with single semi-
supervised clustering methods and semi-supervised clus-
tering ensemble approaches on the real-world datasets.
Finally, a set of nonparametric tests are adopted to compare
multiple semi-supervised clustering ensemble approach
over different datasets.

6.1 The Effect of the Parameters

We conduct experiments on six cancer gene expression data
with respect to the average NMI values to investigate the
effect of the parameters, which include the sampling rate in
the random subspace technique, the number of pairwise
constraints, and the number of nearest neighbors used.

In order to explore the effect of the sampling rate t, we
vary its value from 0:1 to 0:5with an increment 0:05. Fig. 1 in
the supplementary file shows the effectiveness of the sam-
pling rate in the random subspace technique. It is observed
that when t ¼ 0:3, ISSCE achieves good performance on
most of the datasets, such as the Armstrong-2002-v2 dataset,

the Dyrskjot-2003 dataset, the Liang-2005 dataset and the
Ramaswamy-2001 dataset. A possible reason could be that
when t ¼ 0:3, the underlying structure of the datasets can be
adequately captured by the subspace generated by the ran-
dom subspace technique. As a result, t is set to 0:3 in the fol-
lowing experiments.

We also vary the number of pairwise constraints from
0:5 to 2n with an increment 0:5n to study its effect. As
shown in Fig. 2 in the supplementary file, when the num-
ber of pairwise constraints increases, the average NMI val-
ues increase gradually on most of the datasets, such as the
Armstrong-2002-v2 dataset, the Liang-2005 dataset the
Su-2001 dataset, and so on. The possible reason is that
more number of pairwise constraints will provide addi-
tional useful information, which will improve the final
results. However, a large number of pairwise constraints
require more efforts from experts. In order to keep a bal-
ance between the workload of the experts and the perfor-
mance of the algorithm, we set n as the default value for
the number of pairwise constraints.

In order to explore the effect of the number of nearest
neighbors in Eq. (3), we vary q from 3 to 11 with an incre-
ment of two. The performance of ISSCE is not sensitive to q
as shown in Fig. 3 in the supplementary file. As a result, q is
set to 3 to avoid additional computational cost.

6.2 The Effect of the Incremental Ensemble Member
Selection Process

In order to investigate the effect of the incremental ensemble
member selection process, we compare ISSCE and PCKE-
IEMS with E2CPE and PCKE with respect to NMI on all the
datasets in Table 1. PCKE-IEMS denotes ISSCE with the
selection process incorporated and using PC-Kmeans [50]

as the basic semi-supervised clustering model. E2CPE
denotes ISSCE without using the selection process and

applying E2CP [12] as the basic semi-supervised clustering
model. PCKE denotes ISSCE without the selection process
and using PC-Kmeans as the basic semi-supervised
clustering model.

Fig. 3. The comparison of semi-supervised clustering ensemble approaches on six real-world datasets from the UCI machine learning repository in
Table 1 (where P1, ..., P7 denote the semi-supervised clustering ensemble method based on the random subspace technique and PC-Kmeans (P1),
the cluster ensemble approach based on the random subspace technique and K-means (P2), the cluster ensemble approach based on the bagging
technique and K-means (P3), the cluster ensemble approach based on hierarchical clustering (P4), the semi-supervised clustering ensemble method
based on the constraint propagation approach (P5), the incremental semi-supervised clustering ensemble approach (P6), and the semi-supervised
kernel based K-means clustering ensemble algorithm (P7), respectively.)
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Table 2 shows the results obtained by ISSCE and E2CPE,
while Table 3 shows the results obtained by PCKE-IEMS

and PCKE. It can be seen that ISSCE outperforms E2CPE on
all of the datasets, and PCKE-IEMS obtains better results on
13 out of 18 datasets when compared with PCKE. For exam-
ple, the NMI values 0:9050, 0:7330, 0:6720, 0:9396, 0:5666,
0:7345, 0:4749, 0:6408 and 0:6557 obtained by ISSCE on the
Iris, RobotExetcution1, RobotExecution4, Syntheticcontro,
Bredel-2005, Dyrskjot-2003, Nutt-2003-v1, Pomeroy-2002-v2
and Tomlins-2006-v1 datasets, respectively, are 0:2404,
0:0655, 0:1005, 0:0761, 0:1241, 0:0725, 0:0766, 0:0720, 0:0787

larger than those obtained by E2CPE. This indicates that

ISSCE is significantly better than E2CPE on the above nine
datasets with a significance level of 0:05. ISSCE is suitable
for the datasets with an underlying subspace structure,
such as the Iris, RobotExecution4 and Bredel-2005 . The pos-
sible reasons could be that IEMS make use of the local and
global objective functions to select the useful ensemble
members and remove the redundant members. As a whole,
the incremental ensemble member selection process is a
general technique which can be incorporated into different
ensemble methods to improve their performance.

Another interesting observation from Tables 2 and 3 is
that ISSCE outperforms PCKE-IEMS on 17 out of 18 data-
sets. This indicates that the basic semi-supervised clustering

model E2CP plays an important role in ISSCE. Once E2CP is
replaced by PC-Kmeans, the performances of ISSCE on
most of the datasets become less satisfactory.

6.3 The Comparison of Single Semi-Supervised
Clustering Approaches

We have also compared ISSCE with the pairwise constraints
based K-means algorithm (PC-Kmeans, [50]), the constraint
propagation approach (E2CP, [12]), and the semi-supervised
kernel based K-means algorithm (SSKK, [56]) based on NMI
on all the datasets in Table 1. The possible reason for the
selection of PC-Kmeans [50] is that it is one of the most pop-
ular semi-supervised clustering algorithms. It will serve as
the baseline for the comparison of other semi-supervised
clustering algorithms.

Table 4 shows the results obtained by ISSCE and single
semi-supervised clustering approaches with respect to the
average value and standard deviations of NMI on all the
real-world datasets. As shown in Table 4, ISSCE outperforms
other semi-supervised clustering algorithms, such as E2CP,
on 17 out of 18 datasets. Since most of them are high dimen-
sional datasets, this indicates that ISSCE is able to alleviate
the effect of high dimensionality. The possible reasons are as
follows: (1) The random subspace technique is able to reduce
the dimension of the original space, which is useful for dis-
covering the underlying structure of the dataset in the low
dimensional space. (2) ISSCE integrates multiple clustering
solutions generated from different subspaces into a unified
clustering solution, which provides more accurate, robust
and stable final results. While the computation time is longer
for ISSCE when compared with single semi-supervised clus-
tering algorithms, it generates final results of higher quality,
which represents a worthwhile tradeoff.

6.4 The Comparison of Semi-Supervised Clustering
Ensemble Approaches

In the following experiments, ISSCE (P6) is compared with a
number of state-of-the-art cluster ensemble algorithms and
semi-supervised clustering ensemble algorithms, which
include the semi-supervised clustering ensemble method
based on the random subspace technique and PC-Kmeans
(RSPCKE, P1, [50]), the cluster ensemble approach based on
the random subspace technique and K-means (RSKE, P2,
[8]), the cluster ensemble approach based on the bagging
technique and K-means (BAGKE, P3, [2]), the cluster ensem-
ble approach based on hierarchical clustering (HCCE, P4,
[15]), the semi-supervised clustering ensemble method
based on the constraint propagation approach (E2CPE, P5,
[12]), and the semi-supervised kernel based K-means clus-
tering ensemble algorithm (SSKKE, P7, [56]).

Figs. 3 and 4 show the performance of seven semi-
supervised clustering methods or clustering ensemble
approaches in terms of the average value and standard

TABLE 2
The Comparison of ISSCE with Selection and E2CPE without
Selection (Where the Best Values Are Highlighted in Bold)

Datasets E2CPE ISSCE Difference

Iris 0.6646 
 0.0100 0.9050 
 0.0200 0.2404
Movemen libras 0.6626 
 0 0.6946 
 0.0100 0.0320

RobotExetcution1 0.6675 
 0.0316 0.7330 
 0.0265 0.0655

RobotExecution2 0.3946 
 0.0224 0.4433 
 0.0283 0.0487

RobotExecution4 0.5715 
0 0.6720 
 0.0707 0.1005

Syntheticcontro 0.8635 
0 0.9396
 0.0224 0.0761

Alizadeh-2000-v3 0.6985 
 0 0.7210 
 0.0141 0.0225

Armstrong-2002-v2 0.8389
0.0100 0.8536 
 0.0141 0.0147

Bredel-2005 0.4425 
 0 0.5666 
 0.0300 0.1241

Dyrskjot-2003 0.6620 
 0 0.7345 
 0.0836 0.0725

Liang-2005 0.5950 
 0.0173 0.6270 
 0.0458 0.0320

Alizadeh-2000-v3(o) 0.7884 
 0 0.8221 
 0.0265 0.0337

Nutt-2003-v1 0.3983 
 0.0173 0.4749 
 0.0400 0.0766

Pomeroy-2002-v2 0.5688 
 0.0224 0.6408 
 0.0671 0.0720

Ramaswamy-2001 0.6527 
 0 0.6719 
 0.0141 0.0192

Risinger-2003 0.5018 
 0.0600 0.5240 
 0.0141 0.0222

Su-2001 0.7273 
 0 0.7408 
 0.0200 0.0135

Tomlins-2006-v1 0.5770 
 0.0100 0.6557 
 0.0245 0.0787

TABLE 3
The Comparison of PCKE-IEMS with Selection and PCKE

without Selection

Datasets PCKE PCKE-IEMS

Iris 0.7398 
 0.1797 0.6558 
 0.2241
movemen libras 0.5499 
 0.0265 0.5516 
 0.0224
RobotExetcution1 0.3725 
 0.0374 0.3560 
 0.0529
RobotExecution2 0.3344 
 0.0424 0.3680 
 0.0775
RobotExecution4 0.4137 
0.0400 0.4556 
0.0374
syntheticcontro 0.7239 
0.0316 0.7134 
 0.0265
Alizadeh-2000-v3 0.4774 
 0.1649 0.4987 
 0.1575
Armstrong-2002-v2 0.6400 
 0.1523 0.6867 
 0.1404
Bredel-2005 0.5280 
 0.0922 0.5401 
0.2278
Dyrskjot-2003 0.5835 
0.1523 0.6192 
 0.2198
Liang-2005 0.3799 
 0.1200 0.4458 
 0.1476
Alizadeh-2000-v3(o) 0.6274 
 0.1140 0.6157 
 0.0970
Nutt-2003-v1 0.4463 
 0.1049 0.4862 
 0.0889
Pomeroy-2002-v2 0.4904 
 0.0995 0.6181 
 0.0877
Ramaswamy-2001 0.4823 
0.0316 0.4390 
 0.0436
Risinger-2003 0.4111 
 0.0616 0.4438 
 0.0954
Su-2001 0.6060 
 0.0954 0.6118 
 0.1049
Tomlins-2006-v1 0.4162 
 0.0995 0.4305 
 0.0480
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deviation of NMI on six real-world datasets from the UCI
machine learning repository, and 12 high dimensional data-
sets of cancer gene expression profiles in Table 1. Three

interesting observations can be obtained from these figures.
First, ISSCE (P6) achieves the best performance on 5 out of 6
datasets in Fig. 3 and nine out of 12 datasets in Fig. 4. The

TABLE 4
The Comparison with Single Semi-Supervised Clustering Approaches

(Where the Best Values Are Highlighted in Bold)

Datasets ISSCE PC-kmeans E2CP SSKK

Iris 0.9050 
 0.0200 0.6644 
 0.2005 0.6646 
 0.0100 0.4454 
 0.0624
Movement libras 0.6946 
 0.0100 0.5455 
 0.0316 0.604 
 0 0.4328 
 0.0173
RobotExecution1 0.7330 
 0.0265 0.4034 
 0.0860 0.7177 
 0 0.6668 
 0.0728
RobotExecution2 0.4433 
 0.0283 0.3532 
 0.0480 0.4293 
 0.0173 0.4008 
 0.0671
RobotExecution4 0.6720 
 0.0707 0.4863 
 0.0100 0.4829 
 0.0265 0.5002 
 0
Syntheticcontro 0.9396 
 0.0224 0.7078 
 0.0283 0.9234 
 0 0.5649
 0.0387
Alizadeh-2000-v3 0.7210 
 0.0141 0.5210 
 0.1565 0.7084 
 0 0.3487 
 0.0728
Armstrong-2002-v2 0.8536 
 0.0141 0.6244 
 0.1217 0.8424
 0 0.5752 
 0.2848
Bredel-2005 0.5666 
 0.0300 0.5426 
 0.0693 0.3763 
 0 0.2126 
 0.0100
Dyrskjot-2003 0.7345 
 0.0837 0.6402 
 0.1212 0.6891 
 0 0.2585 
 0.0332
Liang-2005 0.6270 
 0.0458 0.4519 
 0.1442 0.6011 
 0.0245 0.2869 
 0
Alizadeh-2000-v3(o) 0.8221 
 0.0265 0.6213 
 0.1020 0.8138 
 0.0141 0.3531 
 0.0361
Nutt-2003-v1 0.4749 
 0.0400 0.5490 
 0.1105 0.4426 
 0.0245 0.2387 
 0.0906
Pomeroy-2002-v2 0.6408 
 0.0671 0.4340 
 0.1364 0.6198 
 0.0469 0.2989 
 0.0837
Ramaswamy-2001 0.6719 
 0.0141 0.5229 
 0.0224 0.6637 
 0.0100 0.4428 
 0.0510
Risinger-2003 0.5240 
 0.0141 0.4255 
 0.1389 0.4962 
 0 0.3332 
 0.0721
Su-2001 0.7428 
 0.0200 0.6203 
 0.0860 0.7050 
 0.0100 0.3043 
 0.1158
Tomlins-2006-v1 0.6557 
 0.0245 0.4269 
 0.0854 0.6203 
 0.0100 0.5678 
 0.0283

Fig. 4. The comparison of semi-supervised clustering ensemble approaches on 12 high dimensional datasets from cancer gene expression profiles in
Table 1.

710 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 3, MARCH 2016

Authorized licensed use limited to: Hanyang University. Downloaded on November 16,2023 at 02:24:13 UTC from IEEE Xplore.  Restrictions apply. 



main reasons are as follows: (1) The random subspace tech-
nique is useful for ISSCE to alleviate the effect of high
dimensionality. (2) The incremental ensemble member selec-
tion process removes the redundant members in ISSCE, and
improves its performance. (3) The normalized cut algorithm
is effective for partitioning the consensus matrix and obtain-

ing the final result. Second, E2CPE (P5) obtains satisfactory
results on most of the datasets. The possible reason could be
that the constraint propagation approach is good at convey-
ing information encapsulated in the pairwise constraints to
the unlabeled samples such that the overall quality of the
final result could be improved. Third, the results obtained by
the cluster ensemble approaches, such as RSKE (P2), BAGKE
(P3) and HCCE (P4) are less satisfactory than those by semi-
supervised clustering approaches. This indicates that prior
knowledge, which is represented by the pairwise con-
straints, is useful for improving the performance of the
ensemble approaches. In summary, ISSCE is the best choice
when dealing with different kinds of real-world datasets,
especially the high dimensional datasets.

6.5 Nonparametric Tests

We adopt a set of nonparametric tests [52], [53] to compare
multiple semi-supervised clustering ensemble approaches,
which include ISSCE, PCKE, RSPCKE, PCKE-IEMS, RSKE,
BAGKE, HCCE, E2CP, SSKKE, and E2CPE, over 18 real-
world datasets in Table 1, in order to identify the significant
difference among the results obtained by the different
approaches in Figs. 3 and 4. Tables 1, 2, and 3 in the supple-
mentary file show the results of multiple comparison of the
semi-supervised clustering ensemble approaches using dif-
ferent nonparametric statistical procedures, which include
the Bonferroni-Dunn test, the Holm test, the Hochberg test
and the Hommel test. The average ranking of the classifier
ensemble approaches is shown in Table 1 in the supplemen-
tary file. It is observed that ISSCE attains the highest aver-
age ranking, when compared with other semi-supervised
clustering ensemble approaches. In general, the results
show the extent of improvement of ISSCE over other semi-
supervised clustering ensemble approaches.

7 APPLICATIONS ON MORE REAL-WORLD

DATASETS

To further evaluate the performances of the proposed
approach, we apply ISSCE onmore large real-world datasets,
which are shown in Table 6. These include the cane-9 docu-
ment dataset (Cane-9), the Mfeat handwritten digit dataset
(Mfeat1), the Semeion handwritten digit dataset (Semeion),
the multiple feature handwritten digit dataset (Mfeat2), and
the USPS handwritten digit dataset (USPS). Most of them are
image datasets. Tables 7 and 8 show the results obtained by
different semi-supervised clustering ensemble approaches on
the new datasets with respect to the average value and the
corresponding standard deviation of NMI and ARI respec-
tively. It can be seen that ISSCE outperforms other approaches
on four out of five datasets with respect to NMI, and all of the
datasets based on ARI, which indicates that ISSCE is effective
for handling high dimensional datasets.

We also adopt the adjusted Rand index to evaluate the
performance of the approaches. Tables 5 and 8 show the
results obtained by different semi-supervised clustering
ensemble approaches with respect to the average values
and the corresponding standard deviations of ARI on the
datasets in Tables 1 and 6 respectively.

8 CONCLUSION AND FUTURE WORK

In this paper, we propose a new semi-supervised clustering
ensemble approach, which is referred to as the incremental

TABLE 6
A Summary of the Real-World Datasets (Where n Denotes the
Number of Data Samples,m Denotes the Number of Attributes,

and k Denotes the Number of Classes)

Dataset Source n m k

Cane-9 [14] 1,080 856 9
Mfeat1 [14] 2,000 649 10
Semeion [14] 1,593 256 10
Mfeat2 [14] 2,000 520 10
USPS [14] 400 256 10

TABLE 5
The Comparison with Semi-Supervised Clustering Ensemble Approaches on the Datasets in Table 1

with Respect to ARI (Where the Best Values Are Highlighted in Bold)

Datasets RSPCKE RSKE BAGKE HCCE E2CPE ISSCE SSKKE

Iris 0.8519 
 0.1651 0.8661 
 0.1303 0.9216 
 0.0076 0.955 
 0.0543 0.9549 
 0.0495 1 
 0 0.8324 
 0.0884
Movement libras 0.3157 
 0.0084 0.3053 
 0.0195 0.2865 
 0.0343 0.1149 
 0.0379 0.3757
 0 0.3572 
 0.0196 0.1227 
 0.013

RobotExecution1 0.1612 
 0.0326 0.1112 
 0.0917 0.2545 
 0.0797 0.0833 
 0.1521 0.4827 
 0.0015 0.6968
 0.0499 0.4464 
 0.0629

RobotExecution2 0.2959 
 0.0986 0.2866 
 0.1089 0.1545 
 0.0939 0.3248 
 0.1612 0.2172 
 0.0255 0.2976 
 0.087 0.2721 
 0.101

RobotExecution4 0.356 
 0.0171 0.3725 
 0.0344 0.2299 
 0.0276 0.2391 
 0.1142 0.3378 
 0.0001 0.2604 
 0.103 0.4251 
 0

Syntheticcontro 0.5653 
 0.0248 0.5503 
 0.026 0.5086 
 0.02 0.3141 
 0.2346 0.7464 
 0.0014 0.9357 
 0.0821 0.2832 
 0.0297

Alizadeh-2000-v3 0.266 
 0.1093 0.373 
 0.069 0.4155 
 0.093 0.1487 
 0.0723 0.4634 
 0 0.4928 
 0.0705 0.1477 
 0.0273

Armstrong-2002-v2 0.6506 
 0.1352 0.5796 
 0.1573 0.6427 
 0.1253 0.0271 
 0.067 0.8431 
 0 0.8442 
 0.0434 0.6922 
 0.1708

Bredel-2005 0.4309 
 0.1225 0.3206 
 0.0333 0.2706 
 0.0645 0.0109 
 0.0333 0.4873 
 0.0479 0.4975 
 0.0244 0.0513 
 0.0222

Dyrskjot-2003 0.5209 
 0.0933 0.543 
 0.0542 0.4251 
 0.1142 0.3865 
 0.0842 0.4924 
 0.0722 0.6674 
 0.0569 0.1837 
 0.0487

Liang-2005 0.1436 
 0.0616 0.1573 
 0.0032 0.1104 
 0.1936 0.1274 
 0.056 0.1431 
 0 0.3767 
 0.0213 0.0109 
 0.0028

Alizadeh-2000-v3(o) 0.4086 
 0.0863 0.4205 
 0.0354 0.3253 
 0.0583 0.1626 
 0.0906 0.7545 
 0 0.5981
 0.0119 0.2536 
 0.0318

Nutt-2003-v1 0.3391 
 0.0605 0.3805 
 0.0295 0.3171 
 0.0346 0.1325 
 0.0724 0.2597 
 0.0143 0.2719 
 0.0747 0.2646 
 0.0106

Pomeroy-2002-v2 0.3541 
 0.159 0.3422 
 0.0865 0.2409 
 0.0803 0.0606 
 0.0418 0.3471 
 0 0.3627 
 0.0375 0.0482 
 0.093

Ramaswamy-2001 0.1577 
 0.0532 0.1205 
 0.028 0.2275 
 0.0382 0.0652 
 0.0332 0.4431 
 0.0047 0.465 
 0.0887 0.1421 
 0.073

Risinger-2003 0.3216 
 0.0.0812 0.3017 
 0.0638 0.221 
 0.0907 0.0815 
 0.1062 0.3309 
 0 0.3475 
 0.0426 0.2278 
 0.1428

Su-2001 0.4607 
 0.1043 0.5283 
 0.0702 0.5344 
 0.0552 0.1763 
 0.0932 0.587 
 0.0135 0.6643 
 0.0416 0.2599 
 0.0593

Tomlins-2006-v1 0.2354 
 0.0.064 0.2842 
 0.0662 0.2436 
 0.0537 0.1045 
 0.0558 0.5523 
 0.0348 0.4815 
 0.0317 0.1527 
 0.046
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semi-supervised clustering ensemble approach. Our major
contribution is the development of an incremental ensemble
member selection process based on a global objective
function and a local objective function. In order to design
a good local objective function, we also propose a new
similarity function to quantify the extent to which two
sets of attributes in the subspaces are similar to each
other. We conduct experiments on six real-world datasets
from the UCI machine learning repository and 12 real-
world datasets of cancer gene expression profiles, and
obtain the following observations: (1) The incremental
ensemble member selection process is a general technique
which can be used in different semi-supervised clustering
ensemble approaches. (2) The prior knowledge repre-
sented by the pairwise constraints is useful for improving
the performance of ISSCE. (3) ISSCE outperforms most
conventional semi-supervised clustering ensemble
approaches on a large number of datasets, especially on
high dimensional datasets. In the future, we shall perform
theoretical analysis to further study the effectiveness of
ISSCE, and consider how to combine the incremental
ensemble member selection process with other semi-
supervised clustering ensemble approaches. We shall also
investigate how to select parameter values depending on
the structure/complexity of the datasets.
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