
An Ant Colony System Based Virtual Network

Embedding Algorithm

Jia-Bin Wang

Sun Yat-sen University

Guangzhou, China

Wei-Neng Chen, Hao Cong, Zhi-Hui Zhan, Jun

Zhang

South China University of Technology

Guangzhou, China

cwnraul634@aliyun.com

Abstract—The virtual networking embedding (VNE) problem

is a core issue in network virtualization. This is also a challenging

problem as it contains different kinds of constraints, and its

complexity becomes even higher in an online VNE problem with

thousands of virtual network (VN) requests. In this paper, we

proposed an ant colony system based VNE algorithm, called

ACS-VNE, for the online VNE problem. The benefits of ACS-

VNE are threefold. First, it is an ACS based algorithm so it can

take full advantage of the dynamically changing heuristic

information and pheromone to improve the quality of a solution.

Second, different from previous work that only considers the

resource of nodes in node mapping phase, we take the distance

message related to links into consideration so that we can reduce

the cost of VN requests. The last but not least, the algorithm tries

to reduce the cost for every single VN and it helps to increase the

possibility of accepting more future VN requests. The proposed

method is tested on both the single VN request VNE problem and

the online VNE problem. Experimental results show that the

proposed algorithm outperforms some previous approaches in

terms of average revenue and acceptance ratio, and the results

also have a relatively low cost.

Keywords—virtual networking embedding (VNE), ant colony

system (ACS), ant colony optimization (ACO) network

virtualization

I. INTRODUCTION

The Internet has been improved rapidly in recent decades.
But it is difficult for the existing network architecture to satisfy
new applications that spring up one after another, and this
results in Internet impasse problems. Network virtualization [1]
allows multiple heterogeneous virtual networks to coexist on a
shared infrastructure so that it can overcome the resistance of
the current Internet to architecture change. In a network
virtualization environment, multiple service providers (SPs)
provide service for customers by creating heterogeneous virtual
networks (VNs). All these VNs are embedded in the substrate
networks (SNs) possessed by the infrastructure providers
(InPs). And then SPs need to pay InPs. Usually, the main
purpose of InPs is increasing revenue and reducing cost.

In network virtualization, the core issue is virtual network
embedding (VNE). VNE aims to map VN requests on one or
more SNs, and there are two phases of mapping, node mapping
and link mapping. Node mapping is NP-hard [2], and the link
mapping procedure after node mapping is also NP-hard [2]. In
order to reduce the complexity of VNE, many previous studies
neglect some important constraints [3, 4] or only consider the
offline VNE problem [3, 5]. Chowdhury et al. [6] model a
VNE problem as a mixed integer programming (MIP) and their
algorithm can solve the online VNE problem with kinds of
constraints. However, the algorithm is time consuming on a
large-scale problem. In this paper, we use an integer liner
programming (ILP) proposed by [2].

Since ILP is a NP-hard problem, traditional mathematical
approaches such as branch and bound and cutting plane cannot
solve problems with large scale. So we are looking for help
from metaheuristic techniques. Metaheuristic algorithms such
as genetic algorithm (GA) [7], simulated annealing (SA) [8],
particle swarm optimization (PSO) [9] and ant colony
optimization (ACO) [10, 11, 12] have been improved efficient
in NP-hard problems and the improved algorithms of them can
solve large-scale problems efficiently. The authors in [2] try to
solve the ILP using a unified enhanced PSO-based algorithm,
but they only consider the resource of substrate nodes in node
mapping. And some ACO based algorithms [13, 14] do not
make full use of the knowledge of SN in node mapping.

ACO is a robust algorithm and suitable for complex
practical problems [15, 16, 17] such as the traveling salesman
problem (TSP). In ACO, each ant can build a solution by
waking on the searching space. Every ant is guided by two
factors: pheromone and heuristic information. Pheromone
records the searching experience of ants, while heuristic
information is problem-specific knowledge. The performance
of ACO is significantly influence by heuristic information and
a good design of heuristic information can make the best use of
the knowledge of the problem. In VNE, if we design the
heuristic information by using several kinds of message of SN,
we can get a near optimal solution fast. Therefore, ACO is
suitable for the VNE problem. However, the basic ACO has a
slow convergence and the solution of basic ACO is likely to be
trapped in local optimal. So we need an improved ACO
algorithm to be applied on the VNE problem.

In response to all the deficiencies above, this paper
proposed a novel algorithm, the ant colony system based
virtual network embedding algorithm, referred as VNE-ACS

This work was supported in part by the National Natural Science

Foundation of China under Grant 61622206, Grant 61379061, and Grant

61332002, the Natural Science Foundation of Guangdong under Grant

2015A030306024, the Guangdong Special Support Program No.

2014TQ01X550, and the Guangzhou Pearl River New Star of Science and

Technology No. 201506010002. (Corresponding Author: Wei-Neng

Chen).

2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
Banff Center, Banff, Canada, October 5-8, 2017

978-1-5386-1645-1/17/$31.00 ©2017 IEEE 1805

Authorized licensed use limited to: Hanyang University. Downloaded on November 16,2023 at 00:58:27 UTC from IEEE Xplore. Restrictions apply.

for the VNE problem. Ant colony system (ACS) [18] is an
ACO-based algorithm and it has all the advantages of ACO.
Furthermore, ACS has a unique state transition rule which can
accelerate the convergence. To improve search diversity, a
local pheromone update rule in some improved ACO
algorithms is also used in ACS in case the solution stuck in a
local optimal value. And the contributions we make to a
revenue-aware VNE problem are as follows:

 We take the distance message of links as a part of
heuristic information in node mapping stage and the
results show this can cause less resource cost to the
substrate network.

 We aim to minimize the resource cost of every single
VN request so that we can leave more resource for SN
in order to increase the possibility of accepting more
future VN requests.

The experimental results show that the proposed algorithm
performs significantly better than some other algorithms in
terms of average revenue, acceptance ratio and the ratio of
revenue to cost for the online VNE problem.

The rest of this paper is organized as follows. Section Ⅱ
describes the network model and problem descriptions. Section
Ⅲ introduces the proposed algorithm VNE-ACS. Section Ⅳ
presents the experimental results. Section Ⅴ concludes this
paper and gives an outlook of our future work.

II. NETWORK MODEL AND PROBLEM DESCRIPTION

 In this section, we first give the network models for

substrate networks and virtual networks. Then we give a brief

description of the VNE problem. In the last three subsections,

we describe more details of the VNE problem according to the

algorithm we proposed in this paper. TABLE Ⅰ shows the

notations and their descriptions we used in this section.

TABLE I. NOTATIONS AND THE DESCRIPTIONS

Notation Description

nS, ni, nj Substrate nodes.

nV, nx, ny Virtual nodes.

lS, lij Substrate links, lij is the specific link between node ni and nj.

lV, lxy Virtual links, lxy is the specific link between node nx and ny.

pS A path in substrate network, it contains one or more links.

ne(nV,nS) Its value is 1 if nV is mapped to nS, and 0 otherwise.

le(lV,lS) Its value is 1 if lV is routed on lS, and 0 otherwise.

CPU(n) The CPU capacity of a node n, n can be substrate or virtual.

UC(nS) The used CPU capacity of substrate node nS.

RC(nS) The remaining CPU capacity of substrate node nS.

BW(l) The bandwidth of link l, l can be substrate or virtual.

RB(lS) The remaining bandwidth of substrate link lS.

A. Network Model

We denote the substrate network as a weighted undirected

graph (,)S S SG N L , where NS is the set of substrate nodes and

LS is the set of substrate links. Every substrate node S Sn N

has attributes such as memory storage, CPU capacity and
location. In this paper, we only take CPU capacity into

consideration, and () () ()S S SRC n CPU n UC n  .

The attribute of each substrate link
S Sl L is the bandwidth

between two substrate nodes and RB(lS)=BW(lS)-UB(lS).
Furthermore, we denote the set of all the paths in the substrate

network as PS. Every S Sp P contains one or more links, so

() min{ () | }S S S SRB P RB l l P  .

Similarly, each virtual network request is denoted by a

weighted undirected graph (,)V V VG N L , where NV is the set

of virtual nodes and LV is the set of virtual links. Every virtual

node
V Vn N has a requirement of CPU capacity and every link

V Vl L has a requirement of bandwidth. We denote the CPU

capacity requirement of virtual node nV as CPU(nV) and the
bandwidth requirement of virtual link lV as BW(lV).

B. Virtual Network Embedding Problem

The VNE problem aims to find a proper mapping

method V SM  , which can embed one or more VN requests in

a SN. Usually, the mapping process can be divided into two
steps, node mapping and link mapping. Node mapping assigns
each virtual node to a substrate node which can meet the CPU

capacity requirement, i.e. () ()S VRC n CPU n .Link mapping

embeds every virtual link in a substrate path. Each virtual link
must choose the path with enough bandwidth,

i.e. () ()S SRB p BW l .

Fig. 1. An example of VNE

Fig. 1 shows an example of virtual network embedding.
There are two VN requests in Fig. 1. The node mapping

solution of the VN request 1 is { , , ,a C b H c B d   

A}, and the solution for VN request 2 is { , ,e A f D g 

H }. As for link mapping, the solution for VN request 1 is

{ (,) (, , ,), (,) (, , ,), (,) (,),a b C D G H b c H F E B c d B A  

(,) (,)d a A C } and the solution for VN request 2 is

{ (,) (, ,), (,) (, ,)e f A C D f g D G H  }.

C. Objectives

1) Increasing Average Revenue
We use the similar way of previous work [2] to define the

revenue of a VN request GV:

 () () ()
V V V V

V V V

l L n N

Rev G BW l CPU n
 

    

1806

Authorized licensed use limited to: Hanyang University. Downloaded on November 16,2023 at 00:58:27 UTC from IEEE Xplore. Restrictions apply.

So the average revenue of the InP in a long run is defined as:



()

lim V

V

G SE

T

Rev G

T






 

where SE is the set of VN requests that are successfully
embedded.

2) Increasing the Ratio of Revenue to Cost
The ratio of revenue to cost in the long run is denoted by

Ratio (R/C). Firstly, the cost of allocating a VN to the SN is
defined as:

 () (,) () ()
V V S S V V

V V S V V

l L l L n N

Cst G le l l BW l CPU n
  

   g  

Now we can give the formula of Ratio (R/C) in the long run:



()

(/) lim
()

V

V

V

G SE

T
V

G SE

Rev G

Ratio R C
Cst G












 

3) Increasing Request Acceptance Ratio
The acceptance ratio, denoted by Ratio(AC), is the ratio

between the number of VN requests accepted and the total
number of VN requests, i.e.



| |

() lim
| |

V

V

V

G SE

T
V

G SR

G

Ratio AC
G












 

where SE is the set of VN requests that are embedded
successfully and SR is the set of all the VN requests.

This paper aims to propose an online VNE algorithm. The
main objective is to increase the average revenue in the long
run. We also want to increase Ratio (R/C) and Ratio (AC) at the
same time.

D. Constraints

1) Capacity Constraints
Capacity constraints include the node constraint and the

link constraint, i.e.


(,) () () , ;

(,) () () ,

x i x i i S x V

xy ij xy i j ij S xy V

ne n n CPU n RC n n N n N

le l l BW l RB l l L l L

    

    

g

g
  

2) Flow-Related Constraints
When we embed a virtual link lxy in a substrate path pij,

except for the substrate node ni and nj, every node on path pij
should have equal amount of flow that enters and leaves it. We
can use the following equation to describe such constraint:



, ,

 1 ((,) 1)

(,) (,) 1 ((,) 1)

 0 otherwise.
ij S ji S

i S xy V

x i

xy ij xy ji y i

l L l L

n N l L

if ne n n

le l l le l l if ne n n
 

   

 


   



 
 

3) Meta and Binary Constraints
When we embed a single VN to a SN, every virtual node

should find one and only one suitable substrate node, and every
substrate node can only hold at most one virtual node i.e.

 , (,) 1; , (,) 1
i S x V

x V x i i S x i

n N n N

n N ne n n n N ne n n
 

       

But in an online VNE problem, a substrate node can hold more
than one virtual node as long as these virtual nodes are not in
the same VN.

4) Domain Constrains
The domain constraints are defined in (9):


 , , (,) 0,1 ;

, , (,) {0,1}

i S x V x i

ij S xy V xy ij

n N n N ne n n

l L l L le l l

    

    
 

E. Problem Formulation

Section Ⅱ.C gives the three objectives of the online VNE
problem. But we need to find a solution for the single VNE
problem at first. We aim to reduce the resource cost of VN
request in this paper. Since the cost of CPU capacity is fixed,
we can only minimize the bandwidth cost of links. Thus the
objective function of the VNE-ACS algorithm is

    min (,) subject to() 6 - 9
xy V ij S

xy ij xy

l L l L

le l l BW l
 

  g  

III. PROPOSED VNE-ACS ALGORIYHM

In this section, we first give the solution of node mapping
using VNE-ACS and then gives the algorithm of link mapping.
At last, we give the overall algorithm for the VNE-ACS.

A. ACS for Node Mapping

An ant is a solution of node mapping, and the kth ant is

denoted by
1 2{ , ,..., }V

k k k kA a a a . The value of
v

ka is the order

number of a substrate node, and the vth virtual node is mapped

to node
v

ka . We usually embed virtual nodes with more

resource requirement earlier in case of resource shortage. NR
value can represent the resource amount of a node, and for a
virtual node nx it is defined as:


()

() () ()
V x

x x V

l L n

NR n CPU n BW l


 g  

where ()xL n is the set of all the links which are adjacent to

node nx. NR value for a substrate node ni is defined as:


()

() () ()
S i

i i S

l L n

NR n RC n RB l


 g  

In (12), ()iL n is the set of all the links adjacent to node ni.

There are two rules to update pheromone, the global rule in
(13) and the local rule in (15). At the end of each iteration,

 (1) (1) ()j j jt t        g g  

where j is the additional pheromone amount. The value

of j is calculated by (14)


/ () if

0 otherwise

best j best

j

Q f S n S



  


 

where Q=100 ()VRev Gg and f(Sbest) is the fitness value of Sbest.

Once an ant chooses nj, the pheromone ()j t will be updated as:

1807

Authorized licensed use limited to: Hanyang University. Downloaded on November 16,2023 at 00:58:27 UTC from IEEE Xplore. Restrictions apply.

 0() (1 ') () 'j jt t      g g  

' is the local evaporation parameter.

In VNE-ACS the heuristic information contains both
resource message and link distance message. So we define the
heuristic information as:


() / if () ()

0 otherwise

k

j ij j v

i Ant
j

NR n dis RC n CPU n
 

 


 



 

In (17), nv is the virtual node being mapped now and
k

ij

i Ant

dis




is the sum of shortest distance between node nj and every
substrate nodes which are already in Antk. Specifically,

k

ij

i Ant

dis


 is 0 for the first node of any ant. Notice that we set

the initial distance of every two different node as 1 if they are
adjacent directly, otherwise infinity.

Now we can give the state transition rule. Antk chooses a
node nj for mapping the next virtual node nv by applying:

 0arg max {() () } if

 otherwise

u S u u q q
j

J

  
 

 


g
 

where S is the set of substrate nodes that can satisfy the

resource requirement of nv. When 0q q , the possibility of

choosing nj is defined as:

 () () / () ()j j j u u

u S

p       


 g g  

Algorithm 1 Link Mapping and Feasibility Checking

1: Remove a link lxy from LV then LV = LV-lxy

2: Find the two nodes ni and nj which nx and ny are embedded in

3: Remove the substrate links without enough bandwidth for lxy from GS

4: Find a shortest path between ni and nj as the link mapping solution for lxy

5: if no path can be found then

6: return UNFEASIBLE

7: end if

8: if LV is empty then

9: return FEASIBLE

10: else

11: go to Step3

12: end if

B. Link Mapping and Feasibility Check Method for an Ant

An ant can only represent the node mapping result, and we
cannot promise it is a feasible solution. Similar to [2], we use
Algorithm 1 for link mapping and feasibility checking.

Once we find that a solution is unfeasible, we don’t discard
it at once. We only use a simple way to construct a new one

and this can increase the diversity of the solutions set.
Algorithm 2 gives the method to reconstruct a new ant.

C. VNE-ACS Description

Algorithm 3 shows the overall procedure of the proposed
VNE-ACS algorithm. TABLE Ⅱ gives the descriptions of
some notations we use in Algorithm 3.

TABLE II. NOTATIONS USED IN ALGORITHM 3

Notation Description

Sbest The global best solution so far

BestFitness The fitness value of Sbest

ITE The iteration times of the algorithm

ANT The number of ants

Ak The kth ant

V The number of VN nodes

C The maximum counts of reconstructing an ant

f(Ak) The fitness value of Ak

Algorithm 3 VNE-ACS Algorithm

1: ,bestS  BestFitness 

2: for [1,]t ITE do

3: for [1,]k ANT do

4:
kA  , FAIL=0

5: for [1,]v V do

6: generate a random (0,1)q

7: if q>q0 then

8: compute pj for every jn S using (18)

9: end if

10: choose a substrate node nj for nv to embed in using (17)

11: if there is no suitable nj then

12: FAIL=1

13: go to Step 22

14: end if

15: { }k k jA A n 

16: apply local pheromone update rule in (15) on nj

17: end for

18: check the feasibility of Ak using Algorithm 1

19: if Ak is UNFEASIBLE then

20: FAIL =1

21: end if

22: if FAIL =1 then

23: for [1,]c C do

24: Reconstruct Ak using Algorithm 2

25: if Ak is FEASIBLE then

26: FAIL =0

27: go to Step 31

28: end if

29: end for

30: end if

31: if f(Ak)< BestFitness then

32: Sbest=Ak

33: BestFitness=f(Ak)

34: end if

35: end for

36: apply global pheromone update rule in (13) on all substrate nodes

37: end for

38: If BestFitness   , Sbest is the optimal solution of node mapping and

we use Algorithm 1 to obtain the link mapping result. Otherwise, the

VN request is rejected.

Algorithm 2 Reconstruct a New Solution for Node Mapping

1:
kA 

2: for (1,)v V do

3: Using roulette method to choose a node nj for nv to embed, the

possibility of choosing nj is () / ()
u

j u

n S

NR n NR n


 where S is the set

of suitable substrate nodes for nv

4: { }k k jA A n U

5: end for

6: Output Ak.

1808

Authorized licensed use limited to: Hanyang University. Downloaded on November 16,2023 at 00:58:27 UTC from IEEE Xplore. Restrictions apply.

IV. PERFORMANCE EVALUATION

In this section, we evaluate two kinds of VNE problems,
one is for single VN request and the other is for online VN
requests. Section Ⅳ.A describes the simulation settings. For
single VN request, Section Ⅳ.B compare VNE-ACS with two
other algorithms [2, 13] in terms of the cost of VN request.
And Section Ⅳ.C shows that, in the online VNE problem, our
algorithm is better than the other two algorithms [2, 13] using
the metrics we proposed in Section Ⅱ.C.

A. Simulation Settings

All the network topologies used in this paper are generated
by the Georgia Tech Internet Topology Modeling (GT-ITM)
tool [2]. There are two kinds of substrate network we use in
this paper, one 100 nodes and the other has 200 nodes. The
connectivity of both of the two substrate networks is 0.1. The
CPU capacity of a substrate node is an integer uniformly
distributed between 50 and 100. And the bandwidth for a
substrate link is also a uniform distribution integer. When the
resource is sufficient, the bandwidth is between 50 and 100.
But when the resource is not so adequate, the value is between
0 and 100.

In the online VNE problem, for each VN request, the
number of virtual nodes is an integer between 2 and 20 and the
connectivity is 0.5. Both the CPU requirement of virtual nodes
and the bandwidth of virtual links are integers between 0 and
50. All the random variables mentioned in VN request follow
uniform distribution.

For our algorithm VNE-ACS, we perform many times of
experience to find out the best assignments for its parameters
and other settings and the results are listed in TABLE Ⅲ.

TABLE III. SOME ASSIGNMENTS ABOUT VNE-ACS

Notation Description Assignment
 The importance parameter of pheromone 1

 The importance parameter of heuristic information 0.9

 The global pheromone evaporation parameter 0.1

' The local pheromone evaporation parameter 0.1

q0 The probability using in (17) 0.9

0 The initial pheromone value 100

K The number of ants 5

ITE The iteration times 20

C The maximum counts of reconstructing an ant 50

We choose two algorithms to make comparisons for both
single VN request and online VN requests. The first algorithm
[2] is a PSO-based algorithm which is called VNE-UEPSO.
VNE-UEPSO only considers the NR value for node mapping.
The other algorithm [13] is an ACO-based algorithm called E-
ACO-SNP which also only considers the resource of a node in
node mapping. And E-ACO-SNP uses the model of ACO but
not ACS.

B. Evaluation for Single VN Request

We choose 6 VN requests randomly for our simulation as 6
test cases, and the substrate network we use has 100 nodes.

TABLE Ⅳ shows the comparison result of the three
algorithms. We run each algorithm 30 times for every test case

and record results for these 30 experiments. Then we give the
average number (Ave), the standard deviation (Std) and the
minimum value (Best) of the 30 results. We also give the tow-
tailed test for these results at the 0.05 level. That is to say if the
absolute value of t-test is larger than a certain value, then we
can be at least 95% sure that the difference between the two
groups of results we tested is significantly different.

TABLE IV. THE COMPARISON RESULT OF SINGLE VN REQUEST

Test Case Algorithm Ave Std Best T-test

1 VNE-ACS 862.60 32.83 818

 VNE-UEPSO 1105.07 40.85 1030 -22.07*

 E-ACO-SNP 1125.93 39.65 1029 -31.12*

2 VNE-ACS 868.07 27.28 818

 VNE-UEPSO 1145.07 42.29 1058 -31.51*

 E-ACO-SNP 1148.00 43.95 1065 -31.62*

3 VNE-ACS 5840.53 218.52 5260

 VNE-UEPSO 6048.93 144.58 5680 -3.73*

 E-ACO-SNP 6102.17 135.24 5804 -5.85*

4 VNE-ACS 5596.03 201.93 5157

 VNE-UEPSO 5791.47 133.02 5456 -3.88*

 E-ACO-SNP 5808.47 159.28 5405 -4.62*

5 VNE-ACS 6670.07 167.71 6296

 VNE-UEPSO 6667.43 152.83 6363 0.06

 E-ACO-SNP 6723.80 122.22 6419 -1.38

6 VNE-ACS 5895.03 184.28 5539

 VNE-UEPSO 6172.57 127.32 5943 -6.74*

 E-ACO-SNP 6217.63 133.93 5838 -7.41*

From TABLE Ⅳ, we can see that except for test case 5, the
average and minimum fitness values of VNE-ACS are better
than the other two algorithms’. Even though the results of
VNE-UEPSO are better than the results of VNE-ACS in test
case 5, there is no significant difference between them
according to the t-test value. Every t-test value tailed with
asterisk (*) represents that the difference of the results of this
algorithm is significant different from the results of VNE-ACS
at the confidence level of 95%. And the absolute value of t-test
value is larger, the confidence level is higher.

To sum up, in the single VN request problem, the
performance of VNE-ACS is significantly better than the two
compared algorithms in most cases.

C. Evaluation for Online VN Requests

We first give the simulation description of online VN
requests. There are 50,000 time units in total. The arrivals of
VN requests follow a Poisson distribution, and there are 5 VN
requests per 100 time units on average. We model the lifetime
of a VN using an exponential distribution with a mean of 500
time units. So it can be about 2,500 VN requests in the whole
simulation. We simulate online VN requests on several kinds
of SNs mentioned in Section Ⅳ.A. The results of these
different simulations are similar, so we only show one of them
in this paper. The SN we used has 100 nodes and the
bandwidth of every link varies between 50 and 100.

Fig. 2, Fig. 3 and Fig. 4 show the comparison results of
average revenue in the long run, the ratio of revenue to cost in
the long run, and the request acceptance ratio respectively.We
can see from these figures that the values of three metrics
nearly come to stable states after 10,000 time units. So we
evaluate these three algorithms according to the data after
10,000 time units. It is obvious that VNE-ACS is better than

1809

Authorized licensed use limited to: Hanyang University. Downloaded on November 16,2023 at 00:58:27 UTC from IEEE Xplore. Restrictions apply.

VNE-UEPSO and E-ACO-SNP in terms of three kinds of
metrics mentioned in Section Ⅱ.C.

Fig. 2. The Comparison Results for Average Revenue

Fig. 3. The Comparison Results for R/C Ratio

Fig. 4. The Comparison Results for Request Acceptance Ratio

V. CONCLUTION

The virtual network embedding problem is a core problem
in network virtualization. It is an NP hard problem and has
many constraints as well. Traditional algorithms cannot solve
this problem when there are thousands of VN requests or more.
In this paper, we proposed an ant colony system based
algorithm VNE-ACS in order to increase average revenue of
the online VNE problem in the long run. Different from the
previous work, we take link distance message into
consideration in node mapping phase. We compared our
algorithm with VNE-UEPSO and E-ACO-SNP for both single
VN request and online VN requests. The experimental results
show that VNE-ACS outperforms the other two algorithms in
some aspects.

There are still many challenges in the VNE problem. Green
computing is more and more important these days, but most
work related to VNE aims to maximize the revenue or accept
ratio without considering the energy cost. Security is also a
factor we usually ignore in the VNE problem. So in our future
work, we will define some new metrics and emphasize on
objectives such as energy-saving and security enhancing.

REFERENCES

[1] Chowdhury, N. M. M. K., and R. Boutaba. "Network virtualization:
state of the art and research challenges." IEEE Communications
Magazine47.7(2009):20-26.

[2] Zhang, Zhongbao, et al. "A unified enhanced particle swarm
optimization-based virtual network embedding algorithm." International
Journal of Communication Systems 26.8(2013):1054–1073.

[3] Zhu, Y., and M. Ammar. "Algorithms for Assigning Substrate Network
Resources to Virtual Network Components." Proceedings - IEEE
INFOCOM (2006):1-12

[4] Fan, J., and M. H. Ammar. "Dynamic Topology Configuration in
Service Overlay Networks: A Study of Reconfiguration Policies."
Proceedings - IEEE INFOCOM 2.9(2006):1-12.

[5] Houidi, I., W. Louati, and D. Zeghlache. "A Distributed Virtual
Network Mapping Algorithm." IEEE International Conference on
CommunicationsIEEE, 2008:5634-5640.

[6] Chowdhury, N. M. M. K., M. R. Rahman, and R. Boutaba. "Virtual
Network Embedding with Coordinated Node and Link
Mapping."Proceedings - IEEE INFOCOM 20.1(2009):783-791.

[7] Davis, Lawrence. "Handbook of genetic algorithms." Handbook of
Genetic Algorithms (1991).

[8] Kirkpatrick, Scott. "Optimization by Simulated Annealing: Quantitative
Studies." Journal of Statistical Physics 34.5(2010):975-986.

[9] Kennedy, James, and R. Eberhart. "Particle swarm optimization." (1995).

[10] Colorni, Alberto, M. Dorigo, and V. Maniezzo. "Distributed
Optimization by Ant Colonies." European Conference on Artificial Life
1991.

[11] X.-M. Hu, J. Zhang, H. S.-H. Chung, Y. Li, and O. Liu, “SamACO:
variable sampling ant colony optimization algorithm for continuous
optimization,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), vol. 40, no. 6, pp. 1555-1566, 2010.

[12] Q. Yang, W.-N. Chen, Z. Yu, T. Gu, Y. Li, H. Zhang, and J. Zhang,
“Adaptive multimodal continuous ant colony optimization,” IEEE
Transactions on Evolutionary Computation, vol. 21, no. 2, pp. 191 - 205,
2017.

[13] Chang, Xiaolin, et al. "Green cloud virtual network provisioning based
ant colony optimization." Conference Companion on Genetic and
Evolutionary Computation 2013:1553-1560.

[14] Fajjari, Ilhem, et al. "VNE-AC: Virtual Network Embedding Algorithm
Based on Ant Colony Metaheuristic." Communications (ICC), 2011
IEEE International Conference on IEEE, 2011:1-6.

[15] W.-N. Chen, and J. Zhang, “An ant colony optimization approach to a
grid workflow scheduling problem with various QoS requirements,”
IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 39, no. 1, pp. 29-43, 2009.

[16] W.-N. Chen, and J. Zhang, “Ant colony optimization for software
project scheduling and staffing with an event-based scheduler,” IEEE
Transactions on Software Engineering, vol. 39, no. 1, pp. 1-17, 2013.

[17] W.-N. Chen, J. Zhang, H. S.-H. Chung, R.-Z. Huang, and O. Liu,
“Optimizing discounted cash flows in project scheduling—an ant colony
optimization approach,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), vol. 40, no. 1, pp. 64-
77, 2010.

[18] Dorigo, M., and L. M. Gambardella. "Ant colony system: a cooperative
learning approach to the traveling salesman problem." IEEE
Transactions on Evolutionary Computation 1.1(1997):53-66.

1810

Authorized licensed use limited to: Hanyang University. Downloaded on November 16,2023 at 00:58:27 UTC from IEEE Xplore. Restrictions apply.

