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Abstract—The virtual networking embedding (VNE) problem 

is a core issue in network virtualization. This is also a challenging 

problem as it contains different kinds of constraints, and its 

complexity becomes even higher in an online VNE problem with 

thousands of virtual network (VN) requests. In this paper, we 

proposed an ant colony system based VNE algorithm, called 

ACS-VNE, for the online VNE problem. The benefits of ACS-

VNE are threefold. First, it is an ACS based algorithm so it can 

take full advantage of the dynamically changing heuristic 

information and pheromone to improve the quality of a solution. 

Second, different from previous work that only considers the 

resource of nodes in node mapping phase, we take the distance 

message related to links into consideration so that we can reduce 

the cost of VN requests. The last but not least, the algorithm tries 

to reduce the cost for every single VN and it helps to increase the 

possibility of accepting more future VN requests. The proposed 

method is tested on both the single VN request VNE problem and 

the online VNE problem. Experimental results show that the 

proposed algorithm outperforms some previous approaches in 

terms of average revenue and acceptance ratio, and the results 

also have a relatively low cost.   

Keywords—virtual networking embedding (VNE), ant colony 

system (ACS), ant colony optimization (ACO) network 

virtualization  

I. INTRODUCTION 

The Internet has been improved rapidly in recent decades. 
But it is difficult for the existing network architecture to satisfy 
new applications that spring up one after another, and this 
results in Internet impasse problems. Network virtualization [1] 
allows multiple heterogeneous virtual networks to coexist on a 
shared infrastructure so that it can overcome the resistance of 
the current Internet to architecture change. In a network 
virtualization environment, multiple service providers (SPs) 
provide service for customers by creating heterogeneous virtual 
networks (VNs). All these VNs are embedded in the substrate 
networks (SNs) possessed by the infrastructure providers 
(InPs). And then SPs need to pay InPs. Usually, the main 
purpose of InPs is increasing revenue and reducing cost.  

In network virtualization, the core issue is virtual network 
embedding (VNE). VNE aims to map VN requests on one or 
more SNs, and there are two phases of mapping, node mapping 
and link mapping. Node mapping is NP-hard [2], and the link 
mapping procedure after node mapping is also NP-hard [2]. In 
order to reduce the complexity of VNE, many previous studies 
neglect some important constraints [3, 4] or only consider the 
offline VNE problem [3, 5]. Chowdhury et al. [6] model a 
VNE problem as a mixed integer programming (MIP) and their 
algorithm can solve the online VNE problem with kinds of 
constraints. However, the algorithm is time consuming on a 
large-scale problem. In this paper, we use an integer liner 
programming (ILP) proposed by [2]. 

Since ILP is a NP-hard problem, traditional mathematical 
approaches such as branch and bound and cutting plane cannot 
solve problems with large scale. So we are looking for help 
from metaheuristic techniques. Metaheuristic algorithms such 
as genetic algorithm (GA) [7], simulated annealing (SA) [8], 
particle swarm optimization (PSO) [9] and ant colony 
optimization (ACO) [10, 11, 12] have been improved efficient 
in NP-hard problems and the improved algorithms of them can 
solve large-scale problems efficiently. The authors in [2] try to 
solve the ILP using a unified enhanced PSO-based algorithm, 
but they only consider the resource of substrate nodes in node 
mapping. And some ACO based algorithms [13, 14] do not 
make full use of the knowledge of SN in node mapping.  

ACO is a robust algorithm and suitable for complex 
practical problems [15, 16, 17] such as the traveling salesman 
problem (TSP). In ACO, each ant can build a solution by 
waking on the searching space. Every ant is guided by two 
factors: pheromone and heuristic information. Pheromone 
records the searching experience of ants, while heuristic 
information is problem-specific knowledge. The performance 
of ACO is significantly influence by heuristic information and 
a good design of heuristic information can make the best use of 
the knowledge of the problem. In VNE, if we design the 
heuristic information by using several kinds of message of SN, 
we can get a near optimal solution fast. Therefore, ACO is 
suitable for the VNE problem. However, the basic ACO has a 
slow convergence and the solution of basic ACO is likely to be 
trapped in local optimal. So we need an improved ACO 
algorithm to be applied on the VNE problem. 

In response to all the deficiencies above, this paper 
proposed a novel algorithm, the ant colony system based 
virtual network embedding algorithm, referred as VNE-ACS 
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for the VNE problem. Ant colony system (ACS) [18] is an 
ACO-based algorithm and it has all the advantages of ACO. 
Furthermore, ACS has a unique state transition rule which can 
accelerate the convergence. To improve search diversity, a 
local pheromone update rule in some improved ACO 
algorithms is also used in ACS in case the solution stuck in a 
local optimal value. And the contributions we make to a 
revenue-aware VNE problem are as follows: 

 We take the distance message of links as a part of 
heuristic information in node mapping stage and the 
results show this can cause less resource cost to the 
substrate network. 

 We aim to minimize the resource cost of every single 
VN request so that we can leave more resource for SN 
in order to increase the possibility of accepting more 
future VN requests. 

The experimental results show that the proposed algorithm 
performs significantly better than some other algorithms in 
terms of average revenue, acceptance ratio and the ratio of 
revenue to cost for the online VNE problem. 

The rest of this paper is organized as follows. Section Ⅱ 
describes the network model and problem descriptions. Section 
Ⅲ introduces the proposed algorithm VNE-ACS. Section Ⅳ 
presents the experimental results. Section Ⅴ concludes this 
paper and gives an outlook of our future work. 

II. NETWORK MODEL AND PROBLEM DESCRIPTION  

 In this section, we first give the network models for 

substrate networks and virtual networks. Then we give a brief 

description of the VNE problem. In the last three subsections, 

we describe more details of the VNE problem according to the 

algorithm we proposed in this paper. TABLE Ⅰ shows the 

notations and their descriptions we used in this section. 

TABLE I.  NOTATIONS AND THE DESCRIPTIONS 

Notation Description 

nS, ni, nj Substrate nodes. 

nV, nx, ny Virtual nodes. 

lS, lij Substrate links, lij is the specific link between node ni and nj. 

lV, lxy Virtual links, lxy is the specific link between node nx and ny. 

pS A path in substrate network, it contains one or more links. 

ne(nV,nS) Its value is 1 if nV is mapped to nS, and 0 otherwise. 

le(lV,lS) Its value is 1 if lV is routed on lS, and 0 otherwise. 

CPU(n) The CPU capacity of a node n, n can be substrate or virtual. 

UC(nS) The used CPU capacity of substrate node nS. 

RC(nS) The remaining CPU capacity of substrate node nS. 

BW(l) The bandwidth of link l, l can be substrate or virtual. 

RB(lS) The remaining bandwidth of substrate link lS. 

A. Network Model 

We denote the substrate network as a weighted undirected 

graph ( , )S S SG N L , where NS  is the set of substrate nodes and 

LS is the set of substrate links. Every substrate node S Sn N   

has attributes such as memory storage, CPU capacity and 
location. In this paper, we only take CPU capacity into 

consideration, and ( ) ( ) ( )S S SRC n CPU n UC n  . 

The attribute of each substrate link
S Sl L is the bandwidth 

between two substrate nodes and RB(lS)=BW(lS)-UB(lS). 
Furthermore, we denote the set of all the paths in the substrate 

network as PS. Every S Sp P  contains one or more links, so 

( ) min{ ( ) | }S S S SRB P RB l l P  . 

Similarly, each virtual network request is denoted by a 

weighted undirected graph ( , )V V VG N L , where NV is the set 

of virtual nodes and LV is the set of virtual links. Every virtual 

node
V Vn N has a requirement of CPU capacity and every link 

V Vl L has a requirement of bandwidth. We denote the CPU 

capacity requirement of virtual node nV as CPU(nV) and the 
bandwidth requirement of virtual link lV as BW(lV). 

B. Virtual Network Embedding Problem 

The VNE problem aims to find a proper mapping 

method V SM   , which can embed one or more VN requests in 

a SN. Usually, the mapping process can be divided into two 
steps, node mapping and link mapping. Node mapping assigns 
each virtual node to a substrate node which can meet the CPU 

capacity requirement, i.e. ( ) ( )S VRC n CPU n .Link mapping 

embeds every virtual link in a substrate path.  Each virtual link 
must choose the path with enough bandwidth, 

i.e. ( ) ( )S SRB p BW l . 

 

Fig. 1. An  example of VNE 

Fig. 1 shows an example of virtual network embedding. 
There are two VN requests in Fig. 1. The node mapping 

solution of the VN request 1 is { , , ,a C b H c B d     

A}, and the solution for VN request 2 is { , ,e A f D g   

H }. As for link mapping, the solution for VN request 1 is 

{ ( , ) ( , , , ), ( , ) ( , , , ), ( , ) ( , ),a b C D G H b c H F E B c d B A    

( , ) ( , )d a A C } and the solution for VN request 2 is 

{ ( , ) ( , , ), ( , ) ( , , )e f A C D f g D G H  }. 

C. Objectives 

1) Increasing Average Revenue 
We use the similar way of previous work [2] to define the 

revenue of a VN request GV:  

 ( ) ( ) ( )
V V V V

V V V

l L n N

Rev G BW l CPU n
 

    
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So the average revenue of the InP in a long run is defined as: 



( )

lim V

V

G SE

T

Rev G

T






 

where SE is the set of VN requests that are successfully 
embedded. 

2)  Increasing the Ratio of Revenue to Cost 
The ratio of revenue to cost in the long run is denoted by 

Ratio (R/C). Firstly, the cost of allocating a VN to the SN is 
defined as:  

 ( ) ( , ) ( ) ( )
V V S S V V

V V S V V

l L l L n N

Cst G le l l BW l CPU n
  

   g  

Now we can give the formula of Ratio (R/C) in the long run: 



( )

( / ) lim
( )

V

V

V

G SE

T
V

G SE

Rev G

Ratio R C
Cst G












 

3) Increasing Request Acceptance Ratio 
The acceptance ratio, denoted by Ratio(AC), is the ratio 

between the number of  VN requests accepted and the total 
number of VN requests, i.e.     



| |

( ) lim
| |

V

V

V

G SE

T
V

G SR

G

Ratio AC
G












 

where SE is the set of VN requests that are embedded 
successfully and SR is the set of all the VN requests. 

This paper aims to propose an online VNE algorithm. The 
main objective is to increase the average revenue in the long 
run. We also want to increase Ratio (R/C) and Ratio (AC) at the 
same time. 

D. Constraints 

1) Capacity Constraints 
Capacity constraints include the node constraint and the 

link constraint, i.e. 


( , ) ( ) ( )     , ;

( , ) ( ) ( )     ,

x i x i i S x V

xy ij xy i j ij S xy V

ne n n CPU n RC n n N n N

le l l BW l RB l l L l L

    

    

g

g
  

2) Flow-Related Constraints 
When we embed a virtual link lxy in a substrate path pij, 

except for the substrate node ni and nj, every node on path pij 
should have equal amount of flow that enters and leaves it. We 
can use the following equation to describe such constraint: 



, ,

  1  ( ( , ) 1)

( , ) ( , ) 1  ( ( , ) 1)

  0  otherwise.
ij S ji S

i S xy V

x i

xy ij xy ji y i

l L l L

n N l L

if ne n n

le l l le l l if ne n n
 

   

 


   



 
 

3) Meta and Binary Constraints  
When we embed a single VN to a SN, every virtual node 

should find one and only one suitable substrate node, and every 
substrate node can only hold at most one virtual node i.e. 

 , ( , ) 1;  , ( , ) 1
i S x V

x V x i i S x i

n N n N

n N ne n n n N ne n n
 

       

But in an online VNE problem, a substrate node can hold more 
than one virtual node as long as these virtual nodes are not in 
the same VN. 

4) Domain Constrains 
The domain constraints are defined in (9): 


 , , ( , ) 0,1 ;

, , ( , ) {0,1}

i S x V x i

ij S xy V xy ij

n N n N ne n n

l L l L le l l

    

    
 

E. Problem Formulation 

Section Ⅱ.C gives the three objectives of the online VNE 
problem. But we need to find a solution for the single VNE 
problem at first. We aim to reduce the resource cost of VN 
request in this paper. Since the cost of CPU capacity is fixed, 
we can only minimize the bandwidth cost of links. Thus the 
objective function of the VNE-ACS algorithm is 

    min ( , ) subject to( )   6 - 9 
xy V ij S

xy ij xy

l L l L

le l l BW l
 

  g  

III. PROPOSED VNE-ACS ALGORIYHM 

In this section, we first give the solution of node mapping 
using VNE-ACS and then gives the algorithm of link mapping. 
At last, we give the overall algorithm for the VNE-ACS. 

A. ACS for Node Mapping 

An ant is a solution of node mapping, and the kth ant is 

denoted by
1 2{ , ,..., }V

k k k kA a a a . The value of 
v

ka  is the order 

number of a substrate node, and the vth virtual node is mapped 

to node
v

ka . We usually embed virtual nodes with more 

resource requirement earlier in case of resource shortage. NR 
value can represent the resource amount of a node, and for a 
virtual node nx it is defined as: 


( )

( ) ( ) ( )
V x

x x V

l L n

NR n CPU n BW l


 g  

where ( )xL n is the set of all the links which are adjacent to 

node nx. NR value for a substrate node ni is defined as: 


( )

( ) ( ) ( )
S i

i i S

l L n

NR n RC n RB l


 g  

In (12), ( )iL n  is the set of all the links adjacent to node ni.  

There are two rules to update pheromone, the global rule in 
(13) and the local rule in (15). At the end of each iteration, 

 ( 1) (1 ) ( )j j jt t        g g  

where j is the additional pheromone amount. The value 

of j is calculated by (14) 


/ ( )   if  

0                    otherwise

best j best

j

Q f S n S



  


 

where Q=100 ( )VRev Gg  and f(Sbest) is the fitness value of Sbest. 

Once an ant chooses nj, the pheromone ( )j t will be updated as: 
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 0( ) (1 ') ( ) 'j jt t      g g  

'  is the local evaporation parameter.  

In VNE-ACS the heuristic information contains both 
resource message and link distance message. So we define the 
heuristic information as: 


( ) /      if  ( ) ( )

0                                otherwise  

k

j ij j v

i Ant
j

NR n dis RC n CPU n
 

 


 



 

In (17), nv is the virtual node being mapped now and
k

ij

i Ant

dis


  

is the sum of shortest distance between node nj and every 
substrate nodes which are already in Antk. Specifically, 

k

ij

i Ant

dis


 is 0 for the first node of any ant. Notice that we set 

the initial distance of every two different node as 1 if they are 
adjacent directly, otherwise infinity. 

Now we can give the state transition rule. Antk chooses a 
node nj for mapping the next virtual node nv by applying: 

 0arg max {( ) ( ) }    if    

                                         otherwise

u S u u q q
j

J

  
 

 


g
 

where S is the set of substrate nodes that can satisfy the 

resource requirement of nv. When 0q q , the possibility of 

choosing nj is defined as: 

 ( ) ( ) / ( ) ( )j j j u u

u S

p       


 g g  

Algorithm 1 Link Mapping and Feasibility Checking 

1: Remove a link lxy from LV then LV = LV-lxy 

2: Find the two nodes ni and nj which nx and ny are embedded in 

3: Remove the substrate links without enough bandwidth for lxy from GS 

4: Find a shortest path between ni and nj as the link mapping solution for lxy 

5: if no path can be found then 

6: return UNFEASIBLE 

7: end if 

8: if LV is empty then 

9:         return FEASIBLE 

10: else 

11:         go to Step3 

12: end if 

B. Link Mapping and Feasibility Check Method for an Ant 

An ant can only represent the node mapping result, and we 
cannot promise it is a feasible solution. Similar to [2], we use 
Algorithm 1 for link mapping and feasibility checking.  

Once we find that a solution is unfeasible, we don’t discard 
it at once. We only use a simple way to construct a new one 

and this can increase the diversity of the solutions set. 
Algorithm 2 gives the method to reconstruct a new ant. 

C. VNE-ACS Description 

Algorithm 3 shows the overall procedure of the proposed 
VNE-ACS algorithm. TABLE Ⅱ gives the descriptions of 
some notations we use in Algorithm 3. 

TABLE II.  NOTATIONS USED IN ALGORITHM 3 

Notation Description 

Sbest The global best solution so far 

BestFitness The fitness value of Sbest 

ITE The iteration times of the algorithm 

ANT The number of ants 

Ak The kth ant 

V The number of VN nodes 

C The maximum counts of reconstructing an ant 

f(Ak) The fitness value of Ak 

 
 

Algorithm 3 VNE-ACS Algorithm 

1: ,bestS  BestFitness   

2: for [1, ]t ITE do 

3: for [1, ]k ANT do 

4: 
kA  , FAIL=0 

5: for [1, ]v V do 

6: generate a random (0,1)q  

7: if q>q0 then 

8: compute pj for every jn S using (18) 

9: end if 

10: choose a substrate node nj for nv to embed in using (17) 

11: if there is no suitable nj then 

12: FAIL=1 

13: go to Step 22 

14: end if 

15: { }k k jA A n   

16: apply local pheromone update rule in (15) on nj 

17: end for 

18: check the feasibility of Ak using Algorithm 1 

19:  if Ak is UNFEASIBLE then 

20: FAIL =1 

21: end if 

22: if FAIL =1 then 

23: for [1, ]c C  do 

24: Reconstruct Ak using Algorithm 2  

25:  if Ak is FEASIBLE then 

26: FAIL =0 

27: go to Step 31 

28: end if  

29: end for 

30: end if 

31: if f(Ak)< BestFitness then 

32: Sbest=Ak 

33: BestFitness=f(Ak) 

34: end if 

35: end for 

36: apply global pheromone update rule in (13) on all substrate nodes 

37: end for 

38: If BestFitness   , Sbest is the optimal solution of node mapping and 

we use Algorithm 1 to obtain the link mapping result. Otherwise, the 

VN request is rejected. 

 

Algorithm 2 Reconstruct a New Solution for Node Mapping 

1: 
kA   

2: for (1, )v V do 

3: Using roulette method to choose a node nj for nv to embed, the  

possibility of choosing nj is ( ) / ( )
u

j u

n S

NR n NR n


  where S is the set 

of suitable substrate nodes for nv 

4:       { }k k jA A n U  

5: end for 

6: Output Ak. 
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IV. PERFORMANCE EVALUATION 

In this section, we evaluate two kinds of VNE problems, 
one is for single VN request and the other is for online VN 
requests. Section Ⅳ.A describes the simulation settings. For 
single VN request, Section Ⅳ.B compare VNE-ACS with two 
other algorithms [2, 13] in terms of the cost of VN request. 
And Section Ⅳ.C shows that, in the online VNE problem, our 
algorithm is better than the other two algorithms [2, 13] using 
the metrics we proposed in Section Ⅱ.C. 

A. Simulation Settings 

All the network topologies used in this paper are generated 
by the Georgia Tech Internet Topology Modeling (GT-ITM) 
tool [2]. There are two kinds of substrate network we use in 
this paper, one 100 nodes and the other has 200 nodes. The 
connectivity of both of the two substrate networks is 0.1. The 
CPU capacity of a substrate node is an integer uniformly 
distributed between 50 and 100. And the bandwidth for a 
substrate link is also a uniform distribution integer. When the 
resource is sufficient, the bandwidth is between 50 and 100. 
But when the resource is not so adequate, the value is between 
0 and 100. 

In the online VNE problem, for each VN request, the 
number of virtual nodes is an integer between 2 and 20 and the 
connectivity is 0.5. Both the CPU requirement of virtual nodes 
and the bandwidth of virtual links are integers between 0 and 
50. All the random variables mentioned in VN request follow 
uniform distribution.  

For our algorithm VNE-ACS, we perform many times of 
experience to find out the best assignments for its parameters 
and other settings and the results are listed in TABLE Ⅲ. 

TABLE III.  SOME ASSIGNMENTS ABOUT VNE-ACS 

Notation Description Assignment 
  The importance parameter of pheromone 1 

  The importance parameter of heuristic information 0.9 

  The global pheromone evaporation parameter 0.1 

'  The local pheromone evaporation parameter 0.1 

q0 The probability using in (17) 0.9 

0  The initial pheromone value 100 

K The number of ants 5 

ITE The iteration times 20 

C The maximum counts of reconstructing an ant 50 

We choose two algorithms to make comparisons for both 
single VN request and online VN requests. The first algorithm 
[2] is a PSO-based algorithm which is called VNE-UEPSO. 
VNE-UEPSO only considers the NR value for node mapping. 
The other algorithm [13] is an ACO-based algorithm called E-
ACO-SNP which also only considers the resource of a node in 
node mapping. And E-ACO-SNP uses the model of ACO but 
not ACS. 

B. Evaluation for Single VN Request 

We choose 6 VN requests randomly for our simulation as 6 
test cases, and the substrate network we use has 100 nodes.  

TABLE Ⅳ shows the comparison result of the three 
algorithms. We run each algorithm 30 times for every test case 

and record results for these 30 experiments. Then we give the 
average number (Ave), the standard deviation (Std) and the 
minimum value (Best) of the 30 results. We also give the tow-
tailed test for these results at the 0.05 level. That is to say if the 
absolute value of t-test is larger than a certain value, then we 
can be at least 95% sure that the difference between the two 
groups of results we tested is significantly different. 

TABLE IV.  THE COMPARISON RESULT OF SINGLE VN REQUEST 

Test Case Algorithm Ave Std Best T-test 

1 VNE-ACS 862.60 32.83 818  

 VNE-UEPSO 1105.07 40.85 1030 -22.07* 

 E-ACO-SNP 1125.93 39.65 1029 -31.12* 

2 VNE-ACS 868.07 27.28 818  

 VNE-UEPSO 1145.07 42.29 1058 -31.51* 

 E-ACO-SNP 1148.00 43.95 1065 -31.62* 

3 VNE-ACS 5840.53 218.52 5260  

 VNE-UEPSO 6048.93 144.58 5680 -3.73* 

 E-ACO-SNP 6102.17 135.24 5804 -5.85* 

4 VNE-ACS 5596.03 201.93 5157  

 VNE-UEPSO 5791.47 133.02 5456 -3.88* 

 E-ACO-SNP 5808.47 159.28 5405 -4.62* 

5 VNE-ACS 6670.07 167.71 6296  

 VNE-UEPSO 6667.43 152.83 6363 0.06 

 E-ACO-SNP 6723.80 122.22 6419 -1.38 

6 VNE-ACS 5895.03 184.28 5539  

 VNE-UEPSO 6172.57 127.32 5943 -6.74* 

 E-ACO-SNP 6217.63 133.93 5838 -7.41* 

 

From TABLE Ⅳ, we can see that except for test case 5, the 
average and minimum fitness values of VNE-ACS are better 
than the other two algorithms’. Even though the results of 
VNE-UEPSO are better than the results of VNE-ACS in test 
case 5, there is no significant difference between them 
according to the t-test value. Every t-test value tailed with 
asterisk (*) represents that the difference of the results of this 
algorithm is significant different from the results of VNE-ACS 
at the confidence level of 95%. And the absolute value of t-test 
value is larger, the confidence level is higher.  

To sum up, in the single VN request problem, the 
performance of VNE-ACS is significantly better than the two 
compared algorithms in most cases. 

C. Evaluation for Online VN Requests 

We first give the simulation description of online VN 
requests. There are 50,000 time units in total. The arrivals of 
VN requests follow a Poisson distribution, and there are 5 VN 
requests per 100 time units on average. We model the lifetime 
of a VN using an exponential distribution with a mean of 500 
time units. So it can be about 2,500 VN requests in the whole 
simulation. We simulate online VN requests on several kinds 
of SNs mentioned in Section Ⅳ.A. The results of these 
different simulations are similar, so we only show one of them 
in this paper. The SN we used has 100 nodes and the 
bandwidth of every link varies between 50 and 100.  

Fig. 2, Fig. 3 and Fig. 4 show the comparison results of 
average revenue in the long run, the ratio of revenue to cost in 
the long run, and the request acceptance ratio respectively.We 
can see from these figures that the values of three metrics 
nearly come to stable states after 10,000 time units. So we 
evaluate these three algorithms according to the data after 
10,000 time units. It is obvious that VNE-ACS is better than 
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VNE-UEPSO and E-ACO-SNP in terms of three kinds of 
metrics mentioned in Section Ⅱ.C. 

 
Fig. 2. The Comparison Results for Average Revenue 

 

Fig. 3. The Comparison Results for R/C Ratio 

 

Fig. 4. The Comparison Results for Request Acceptance Ratio 

V. CONCLUTION 

The virtual network embedding problem is a core problem 
in network virtualization. It is an NP hard problem and has 
many constraints as well. Traditional algorithms cannot solve 
this problem when there are thousands of VN requests or more. 
In this paper, we proposed an ant colony system based 
algorithm VNE-ACS in order to increase average revenue of 
the online VNE problem in the long run. Different from the 
previous work, we take link distance message into 
consideration in node mapping phase. We compared our 
algorithm with VNE-UEPSO and E-ACO-SNP for both single 
VN request and online VN requests. The experimental results 
show that VNE-ACS outperforms the other two algorithms in 
some aspects. 

There are still many challenges in the VNE problem. Green 
computing is more and more important these days, but most 
work related to VNE aims to maximize the revenue or accept 
ratio without considering the energy cost. Security is also a 
factor we usually ignore in the VNE problem. So in our future 
work, we will define some new metrics and emphasize on 
objectives such as energy-saving and security enhancing. 
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