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Abstract—Through introducing the divide-and-conquer strat-
egy, cooperative co-evolution (CC) has been successfully
employed by many evolutionary algorithms (EAs) to solve large-
scale optimization problems. In practice, it is common that
different subcomponents of a large-scale problem have imbal-
anced contributions to the global fitness. Thus, how to utilize
such imbalance and concentrate efforts on optimizing impor-
tant subcomponents becomes an important issue for improving
performance of cooperative co-EA, especially in distributed com-
puting environment. In this paper, we propose a two-layer
distributed CC (dCC) architecture with adaptive computing
resource allocation for large-scale optimization. The first layer is
the dCC model which takes charge of calculating the importance
of subcomponents and accordingly allocating resources. An effec-
tive allocating algorithm is designed which can adaptively allocate
computing resources based on a periodic contribution calculating
method. The second layer is the pool model which takes charge of
making fully utilization of imbalanced resource allocation. Within
this layer, two different conformance policies are designed to
help optimizers use the assigned computing resources efficiently.
Empirical studies show that the two conformance policies and
the computing resource allocation algorithm are effective, and
the proposed distributed architecture possesses high scalability
and efficiency.
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I. INTRODUCTION

EVOLUTIONARY computation (EC) has shown to be
an effective technique for many difficult optimization

problems [1], [2]. However, as the size and complexity
of the problems grow rapidly, the performance of most
existing evolutionary algorithms (EAs) tends to deterio-
rate quickly [3], [4]. Large-scale global optimization (LSGO)
with high-dimensional decision variables and time-consuming
objective functions has been increasingly considered as one of
the most challenging issues in EC research.

To improve performance of EC algorithms for LSGO,
numerous methods were proposed [5]–[11]. One typical
approach is the cooperative co-evolution (CC) method
that decomposes the problem into several low-dimensional
subcomponents and handles them by several cooper-
ative optimizers [12]. The first CC evolutionary algo-
rithm (CCEA) was proposed by Potter and Jong [13], named
CCGA. Afterward, researchers took advantage of the method-
ology of CC architecture and proposed a large number of
CCEAs [14]–[26]. Since the interdependence between vari-
ables would greatly influence the performance of CCEAs
especially for LSGO problems, so far most researches about
CC concentrate on the scheme how to partition high-
dimensional variables into groups. Roughly, they can be
classified into three categories: 1) static grouping method
which partitions the variables into a fixed number of static
groups [4], [13], [14]; 2) random dynamic grouping method
which changes the grouping structure dynamically during
the optimization process [15]–[17]; and 3) learning-based
dynamic grouping method which partitions the variables
through interdependence detecting techniques [18]–[21].

The above works increase the accuracy of grouping by
proposing new decomposition techniques. But most of them
still use the traditional CC architecture which is an even round-
robin strategy that treats all subcomponents equally. Few
works considered the imbalance in the contribution of sub-
components to the objective value. In many real-world appli-
cations, different decision variables possess different priorities,
having unequal contributions to the objective value. Therefore,
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it is inappropriate to treat all subcomponents equally in
CC architecture. Seeing this drawback of traditional CC,
Omidvar et al. [27] proposed a contribution-based CC (CBCC)
framework. In CBCC, the subcomponent which has the largest
contribution to the global objective value will get extra times
of fitness evaluation to evolve. But the accumulative calcula-
tion of contributions makes it response to the local change of
objective value too slowly even incorrectly [28]. To make up
this shortcoming, they successively proposed three new ver-
sions, named CBCC1 [29], CBCC2 [29], and CBCC3 [30].
Yang et al. [28] also proposed a new CC framework, called
CCFR, which could detect whether a subcomponent was stag-
nant. Then it would gradually discard stagnant subcomponents
during the optimization process.

Though the above studies have further improved the
performance of CC, most of them were considered in the
serial computing environment. Due to the methodology of
divide-and-conquer, CC possesses intrinsic parallelism which
makes it easy to be implemented in distributed environment.
Meanwhile, the great scalability of distributed CC (dCC)
endows itself great ability to solve problems with much higher
dimensions and higher computational burden [31]. This is
especially meaningful in the age of big data. As point out
by Cevher et al. [32], there are three key pillars of the
optimization for big data: first-order methods, randomization,
and parallel and distributed computation. Developing dCC in
the EC field exactly corresponds to the latter two of them.
Moreover, Sabar et al. [33] utilized CC algorithms for big
data optimization problems recently and achieved very promis-
ing results, which verified the effectiveness of CC for big
data optimization. Cao et al. [34] proposed a dCC algorithm
for multiobjective large-scale optimization problems which
also had proven to be efficient and effective. Thus, it is both
necessary and meaningful to study the parallelization of CC
in distributed environments.

In this paper, we intend to study how to utilize the imbalance
in the contribution of subcomponents in distributed computing
environment, and propose a double-layer dCC with adap-
tive computing resource allocation (DCCA) to solve LSGO
problems. First, a two-layer hierarchical model is built by
realizing two levels of distribution, i.e., distribution of dimen-
sion where subcomponents of the problem are assigned to
different processors, and distribution of population where sub-
populations are assigned to different processors. Different from
other hybrid dEAs which only consider the same kind of
distribution model [35], [36], DCCA is designed with two
different kinds of models. In the first layer, dCC divides a high-
dimensional problem into low-dimensional subcomponents,
which is a dimension-distributed model. In the second layer,
pool model [37] divides a population of EAs into subpopu-
lations, which is a population-distributed model. In this way,
DCCA on one hand obtains the dCC’s scalability of dimension
division to deal with high-dimensional problems, and on the
other hand obtains the flexibility of pool model so that sub-
components can adapt to the changing of resource allocation
quickly and utilize the assigned computing resource efficiently.
Moreover, in the first layer, i.e., dCC, to measure the impor-
tance of subcomponents and reallocate computing resources,

(a)

(b)

Fig. 1. Population-distributed and dimension-distributed models. (a) Task
division manners. (b) Taxonomy.

an adaptive resource allocation scheme is designed which can
dynamically sense the changing of the contributions of dif-
ferent subcomponents toward the global fitness. Accordingly
it will reallocate computing resources periodically and adap-
tively in favor of the subcomponents with high priorities. In the
second layer, i.e., pool model, two conformance policies, pop-
ulation policy and generation policy, are designed for adapting
the applied EA to the reallocated computing resources. The
population policy adjusts the optimizer’s population size, and
the generation policy adjusts the number of generations.

To prove the ability of DCCA in allocating and utiliz-
ing distributed computing resources, the CEC’2013 large
scale benchmark functions [38] and 18 2000-D functions with
imbalanced contributions are tested in distributed computing
environment. Experimental results show that DCCA can sig-
nificantly improve the efficiency of dCC and accelerate the
optimization speed of CCEAs.

The rest of this paper is organized as follows. In Section II,
two dEA models used in DCCA, i.e., CC model and pool
model, are described. Then, Section III explains the proposed
DCCA from two layers in detail. Experiments are conducted
to verify the effectiveness of DCCA in Section IV. Finally, the
conclusions are drawn in Section V.

II. BACKGROUND

Basically, the state-of-the-art models of dEAs can be divided
into two classes according to the method used to split a task
into subtasks. As shown in Fig. 1(a), population-distributed
models distribute individuals or subpopulations to multiple
processors, while dimension-distributed models distribute the
partitions of problem dimensions to processors.
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Fig. 2. Pool model.

Taxonomy of these distributed EC models are shown
in Fig. 1(b). To our best knowledge, there are five fre-
quently used population-distributed models: 1) master–slave
model [39], [40]; 2) island model (also known as coarse-
grained model) [41], [42]; 3) cellular model (also known
as fine-grained model) [43], [44]; 4) hierarchical model
(also known as hybrid model) [35], [36]; and 5) pool
model [37], [45]. There are also two popular dimension-
distributed models: 1) the CC model [46] and 2) the multiagent
model [47].

Here, the pool model and the CC model which are related
to DCCA will be shown in detail. Further explanation about
other models can be found in [3].

A. Pool Model

As a population-distributed model, the pool model maintains
the population by setting a shared pool. All processors can
access the whole resource pool which contains the population.
However, each processor can only update a segment of the
pool assigned to it. Fig. 2 shows how a pool model works. In
the example, the pool is designed as an array with N elements
representing N individuals, and the array is partitioned into M
segments corresponding to M processors. Each processor can
read any individual from any segment, but is only allowed to
write individuals back to its own segment.

The advantage of the pool model is its high scalability and
flexibility. As all processors work on a same resource pool,
it is easy to add new processors by increasing the size of
the pool, or repartitioning the segments, and vice versa. Due
to the same reason, EAs based on pool model can realize
both synchronously and asynchronously easily. These features
would facilitate the dynamic allocation of computing resources
in DCCA.

B. Cooperative Co-Evolution

For any CCEA using the decomposition methods which
generate fixed subcomponents, the whole process to solve an
optimization problem consists of two steps: 1) decomposition
and 2) optimization [28], which are shown in Fig. 3(a). In
the first place, it decomposes a problem into several smaller
subcomponents. Then each subcomponent is associated with
a separate optimizer with its own population. These two steps
are relatively independent which means one can choose any
suitable decomposition method and EA according to the real

(a)

(b)

(c)

Fig. 3. Structure of CC. (a) Whole process of a CC approach which uses
fixed grouping method. (b) Optimization step of (b) serial CC and (c) dCC.

application. The decomposition step is executed in the same
way in both serial CC and dCC. In this paper, we focus on
the optimization step, utilizing the imbalance among subcom-
ponents to improve the performance. Meanwhile, what differs
dCC from serial CC is also the optimization step.

For serial CC, whenever a population is evolving, the others
are held fixed. Thus, it is a serial architecture because anytime
there is only one population evolving. Graphical representation
of the serial CC is shown in Fig. 3(b). In the example, a D-
dimensional problem C = {x1, x2, . . . , xD} is divided into M
subcomponents

C = C1 ∪ C2 ∪ . . . ∪ CM

where

for ∀i ∈ [1, M], Ci �= ∅
for ∀i, j ∈ [1, M] ∧ i �= j, Ci ∩ Cj = ∅. (1)

Usually the fitness of an individual in a population is cal-
culated by combining with the best individuals of other
populations. In the jth generation, denoting the best individual
in the ith population Si as bestji, the fitness of one individual
si in Si is calculated as

F(si) = f
(

si, Cj
i

)

where

Cj
i =

(
bestj1, . . . , bestji−1, bestj−1

i+1, . . . , bestj−1
M

)
. (2)
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Fig. 4. Structure of DCCA.

Since si has only the dimensions of Ci, it is not a complete
solution. Its fitness can only be calculated by assembling with

Cj
i. In each generation, each population evolves and updates its

own bestji meanwhile updates the corresponding subcomponent
of the global best solution gbest

gbest =
(

bestj1, . . . , bestji−1, bestji, bestj−1
i+1, . . . , bestj−1

M

)
.

(3)

In this way, every next population can immediately utilize the
improvements achieved by all previously evolved populations.

Taking advantage of the fundamental divide-and-conquer
methodology of CC, researchers naturally promoted serial
CC into large-scale problems and developed its distributed
version [20], [31], [34], [46], which is shown in Fig. 3(c). In
dCC, to make full use of the computing resources, subcom-
ponents are deployed onto different processors and evolve
simultaneously which is different from the serial structure.
Formula description will be shown in following sections.
Generally, to reduce the cost of the communication between
processors, the synchronization among subcomponents is not
performed every generation, but only at intervals of some gen-
erations. It means that in dCC, gbest is usually updated after
several generations of evolution. Thus, in Fig. 3(c), the word
“iteration” means several “generations.” In dCC, every pop-
ulation can only utilize the improvements achieved by other
populations in the previous iteration. It is also worth noting
that since dCC itself does not have the ability to coordi-
nate multiple processors to handle one subcomponent, usually
a subcomponent is assigned to only one processor in canoni-
cal dCC [31]. Even if multiple processors are assigned to one
subcomponent [34], there is not a mechanism to adjust the
resource allocation.

Studying the imbalance in the contribution of subcompo-
nents in distributed computing environment can be divided
into two mutually related problems. The first one is how to
partition a problem into subcomponents and assign processors

according to their imbalanced contributions. The second one
is how a subcomponent adapts to the changing of assigned
processors and fully utilizes them. With respect to these
two questions, dCC exactly has the scalability to divide
a high-dimensional problem into subcomponents, but it cannot
coordinate multiple unevenly allocated processors to handle
the subcomponents. On the contrary, pool model is gifted in
coordinating multiple processors to solve a task efficiently, but
it does not have the ability to partition a large-scale problem.
Combining these two models together and introducing a new
resource allocating scheme, DCCA can partition the problem,
analyze the imbalanced contribution and accordingly reallo-
cate processors in its first layer, i.e., dCC, meantime utilize
the assigned processors efficiently in its second layer, i.e.,
pool model.

III. DISTRIBUTED COOPERATIVE CO-EVOLUTION WITH

ADAPTIVE COMPUTING RESOURCE ALLOCATION

DCCA is demonstrated in a top-down way in this section.
First, the overall structure and implementation of DCCA is
shown. Then, key components, such as the adaptive resource
allocation scheme, conformance policy, are explained.

A. Structure

DCCA is composed of two different kinds of dEA mod-
els, which are the dCC model and the pool model. Given
a large-scale problem, DCCA first divides it into subcom-
ponents from the perspective of dimension. Then for each
subcomponent, a pool model is applied to divide the cor-
responding population into subpopulations. The structure of
DCCA is shown in Fig. 4. Since the decomposition procedure
has no difference in serial CC and dCC, it is omitted from
the figure, and only the optimization step is shown. From
Fig. 4, we can see that the problem has already been par-
titioned into M subcomponents. Without loss of generality,
any decomposition method which generates fixed groups can
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be applied in DCCA. Considering the grouping accuracy, the
global differential grouping method [21] is recommended.

From the perspective of population-distribution, each sub-
component Ci is related to a population Si. Each population
and the processors assigned to it form a pool model together
in DCCA

Pooli = (
Si, Pi)

Pi = {
Pj

∣∣Pj is assigned to Si
}
. (4)

Based on the framework of the pool model, population Si

will be divided into |Pi| subpopulations, and each subpopu-
lation corresponds to one processor. (Here, “subpopulation” is
conceptually the same as “segment” for the pool model.) In
the example shown in Fig. 4, there are totally N processors
{P1, P2, . . . , PN}. Two processors {P1, P2} are assigned to
the first population S1, thus S1 will be divided into two sub-
populations. Three processors {P3, P4, P5} are assigned to
the second population S2, thus S2 will be divided into three
subpopulations.

As introduced in Section II-A, generally we synchronize the
populations at intervals of a certain number of generations.
During synchronization, the contribution of each subcom-
ponent to the global objective is collected by the resource
allocator as well. Based on the contributions, the resource allo-
cator reallocates the computing resources through an allocation
algorithm which will be shown in the following sections.

B. Implementation

In accordance with the structure, the implementation of
DCCA is also composed of two layers. In the first layer, we
realize the dCC model through multiprocess techniques, where
a host-process is set to be the resource allocator, meanwhile
each subcomponent is handled by a subprocess corresponding
to a population. In the second layer, the pool model is realized
by multithread techniques, where a host-thread is set to main-
tain the shared pool, i.e., the population, and subthreads are
created to handle the subpopulations. This is a feasible way to
realize DCCA, but without loss of generality, DCCA can be
also implemented by other distributed or parallel techniques. In
order to prevent any potential confusion, the words “process”
and “thread” will be still adopted in the following description
of DCCA, respectively, corresponding to the dCC model and
the pool model. In addition, based on the distributed comput-
ing framework composed of CC model and pool model, any
EA can be employed in DCCA as the optimizer.

Fig. 5 shows the flowchart of DCCA. It consists of two dia-
grams. The left diagram represents the host-process; the right
one represents a subprocess; the dotted arrow between two
diagrams represents the interaction between the host-process
and subprocesses. At first, a problem is decomposed into sub-
components within the host-process and equal numbers of
subprocesses are created for subcomponents. Before evolv-
ing, each subcomponent Ci initializes its own populations Si.
Since the priorities of the subcomponents are still undeter-
mined at that point, processors are allocated evenly to all
subcomponents for the first time. Then, MaxItr iterations of
evolution will be executed. Within each iteration, subprocesses

Fig. 5. Flowchart of DCCA.

are first activated by the host-process to make a conformance
test to check whether the amount of the assigned processors
has changed. Afterward, each population evolves for MaxGen
generations. In the jth iteration (j ≥ 1), the best individual of
population Si, denoted as bestji, is collected

bestji = arg min
si∈Si

f

(
si, Cj−1

i

)

Cj−1
i =

(
bestj−1

1 , . . . , bestj−1
i−1, bestj−1

i+1, . . . , bestj−1
M

)
(5)

where si represents one individual in Si, Cj−1
i represents

the global best solution gbestj−1 without the dimensions of
Ci. Also the contribution of each population to the global
objective accumulates. After MaxGen generations, subpro-
cesses send their best individuals bestji and contributions to
the host-process, then suspend themselves. Host-process uses
the received best individuals to update the global best solution
gbestj

gbestj =
(

bestj1, bestj2, . . . , bestjM

)

=
(

arg min
s1∈S1

f

(
s1, Cj−1

1

)
, . . . , arg min

sM∈SM

f

(
sM, Cj−1

M

))
.

(6)
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Contributions are utilized to reallocate the processors accord-
ing to the allocation algorithm. If the stop criterion is not
met, the host-process will activate the subprocesses once again.
Otherwise, it will finally kill all subprocesses, end the present
optimization process, and return the global best solution gbest.

To implement DCCA on an existing CCEA, there are
also two corresponding steps: 1) decomposition mapping and
2) optimization mapping. Decomposition in serial CC is the
same as in dCC, thus the decomposition method used in the
CCEA can be directly mapped onto the decomposition pro-
cedure in the host-process of DCCA. As to the optimization
mapping, generally EAs have two basic parts: 1) initialization
and 2) iterative evolution. These two parts can be mapped onto
the “initialize population” and “evolve population” procedures
in the subprocess, respectively. But the applied EA should be
implemented in the form of the pool model.

C. Adaptive Computing Resource Allocation

Whether in distributed environment or not, the basic thought
to utilize the imbalance among subcomponents is to assign
more processors to the subcomponents which contribute more
to the global objective. The resource allocator of DCCA takes
charge of gathering contributions of all subcomponents in each
iteration, and accordingly reallocating processors. Its funda-
mental idea is to take limited computing resource from the
stagnant subcomponents which contribute less, and give them
to the subcomponents which contribute more. The contribution
of each subcomponent to the global objective is calculated in
its corresponding subprocess. It is initialized to 0 and accu-
mulates during each generation. Denoting the best individual
of the ith population in the kth generation (k ≥ 1) of the jth
iteration as bestj,ki , the contribution of the ith subcomponent
is calculated by

�c = f

(
bestj,k−1

i , Cj−1
i

)
− f

(
bestj,ki , Cj−1

i

)

contributioni = contributioni + �c. (7)

Then, the resource allocator adjusts the allocation in a moder-
ate way. Each time, two subcomponents are selected, and the
subcomponent with lower priority will donate a processor to
the other one. Priority is calculated in the host-process which
is defined as

priorityi = contributioni∣∣Pi
∣∣ (8)

representing the contribution brought by one processor.
Moreover, to avoid extreme imbalance of resource allocation,
a lower bound and an upper bound are set to limit the mini-
mum and the maximum number of processors a subcomponent
may own, respectively, denoted as rlb and rub. The pseudo
code of the resource allocation is shown in Algorithm 1.

D. Conformance Policy

“Conformance” in DCCA refers to the matching between
the strategy of evolution of a population and the number of
processors it owns, and “unconformity” only appears when the

Algorithm 1 Adaptive Computing Resource Allocation
Input: number of subcomponents M, contributions contribution,
every pool {Pool1, Pool2, . . ., PoolM}, lower and upper bound rlb
and rub.
1 priority = 01×M ;
2 for i = 1 to M do
3 calculate priorityi according to (8);
4 end for
5 sort {Pool1, Pool2, . . ., PoolM} based on priority in ascending

order;
6 receiver = −1, donor = −1;
7 for i = M to 1 do
8 if |Pi| < rub then
9 receiver = i; break;
10 end if
11 end for
12 for i = 1 to receiver – 1 do
13 if |Pi| > rlb then
14 donor = i; break;
15 end if
16 end for
17 if donor ! = −1 then
18 Pooldonor denotes a processor to Poolreceiver;
19 end if

number of processors assigned to a subcomponent changes,
which is defined as follows.

Definition 1: Given a pool Pooli, denoting the processors it
owns in the jth iteration as Pi,j, unconformity exists in Pooli if
and only if Pi,j �= Pi,j+1 and the conformance policy of Pooli
in the j+1th iteration has not been executed.

Once a subprocess senses the unconformity, it applies a con-
formance policy immediately to correct it in order to take full
advantage of the assigned computing resources. For most EAs,
the performance and the convergence behavior can be influ-
enced by two factors: 1) the population size and 2) the number
of generations. Based on these two factors, two conformance
policies are designed: 1) named population policy and 2) gen-
eration policy. Meanwhile the DCCA model which applies the
population model is denoted as DCCA-P; the other is denoted
as DCCA-G.

1) Population Policy: For most EAs based on swarm-
intelligence, increasing population size within a reasonable
range can improve the performance, and vice versa. Thus,
in DCCA-P, whenever a subcomponent gets more processors,
the size of its corresponding population will increase. On the
contrary, whenever a subcomponent loses processors, its pop-
ulation size will decrease. In the implementation of DCCA-P,
each processor is associated with a certain number of indi-
viduals. Denoting the number as inp, if the ith subcomponent
owns |Pi| processors, its population size |Si| is determined as

|Si| = inp × ∣∣Pi
∣∣. (9)

After the host-process scatters the allocation information to
subprocesses, each subprocess first checks whether the number
of assigned processors has changed. If the number increases,
the subprocess will create inp more individuals for its pop-
ulation. If the number decreases, the subprocess will remove
inp individuals from its population. To generate inp new indi-
viduals, the current minimum value and maximum value of
each dimension of the population are calculated at first. Then
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new individuals are generated randomly within these ranges.
To remove inp individuals, the population is sorted according
to the fitness at first. Then, based on the elitism, DCCA-P will
remove the worst inp individuals from the population.

Since every processor is associated with equal amount of
individuals and all individuals evolve for equal amount of gen-
erations in an iteration, theoretically no waste of computation
power will be caused by the imbalance of fitness calculation
amount in the population policy. Thus, the processors will be
fully utilized.

2) Generation Policy: Some EAs are not sensitive to the
population size, and may even get worse when the popula-
tion grows larger [11]. The generation policy is developed for
these EAs to adjust generation number rather than population
size to conform to the change of the quantity of processors.
In brief, populations with more processors can evolve more
generations. In DCCA-G, each processor is associated with
a certain number of generations. Denoting the number as gnp,
if the ith subcomponent owns |Pi| processors, its population
can evolve

MaxGeni = gnp × ∣∣Pi
∣∣ (10)

generations within one iteration. Still, individuals in the ith
population are divided into |Pi| parts corresponding to |Pi|
processors. In this way, the workload of each processor is
also balanced.

3) Theoretical Comparison Between Two Policies:
Compared with the population policy, the generation policy
is a more direct way to exhibit and utilize the imbalance in
the contribution of subcomponents. In DCCA-P, by increasing
the population size of the subcomponents with higher priori-
ties, more search diversity can be brought, but all populations
are still evolved by the same number of generations. In con-
trast, DCCA-G directly changes the number of generations. As
a consequence, the evolutionary level of the populations with
higher priorities will be higher than those with lower priorities.
Take a simple form of function f (x, y)=ax2+by2 where x and
y are two subcomponents as an example. Consider a situation
where a is equal to b and due to the unbalanced sampling of
the applied EA, x = 0.1 and y = 10 at the end of one iteration.
If not trapped in a local optima, generally y will have a longer
step length than x in the following iteration, thus it will con-
tribute more. In this situation, the generation policy will give
y more generations to evolve so that it can catch up with x.
Thus, the whole convergence speed will be accelerated. On the
contrary, if the population policy is applied, it will increase the
size of the population of y, which usually will not accelerate
the convergence speed of y too much. Consider another sit-
uation where a is much smaller than b, and x has the same
level of evolution with y at the end of one iteration. Clearly
y is more important than x now. Under the circumstance, the
population policy will give y more individuals to increase its
diversity, protecting the important subcomponent from prema-
ture. But the generation policy will unilaterally accelerate the
convergence speed of y, as a consequence y may be easy to be
trapped. To draw a conclusion, theoretically speaking, the gen-
eration policy is more capable of accelerating the convergence

speed of the optimization, and the population policy tends to
protect the optimization from premature.

IV. EXPERIMENT

Different from the previous works which focus on propos-
ing new algorithms to solve the LSGO problems in serial
computing environment, DCCA is a distributed evolution-
ary computing model, thus all of the following experiments
are conducted in distributed computing environment. In the
following experiments, the CEC’2013 LSGO problems are
chosen as the basic benchmark [38]. It consists of 15 1000-D
functions with three different types: 1) totally separable;
2) partially separable; and 3) overlapping. Compared with the
CEC’2010 benchmark, the imbalance in the contribution of
subcomponents is introduced in CEC’2013 LSGO problems.
Meanwhile, more overlapping functions are considered. These
characters can help us check the ability of DCCA in han-
dling the imbalanced case and allocating computing resources.
Moreover, as the imbalance in CEC’2013 benchmark func-
tions is only made by setting nonuniform subcomponent sizes
which is too simple to simulate practical applications, some
higher-dimensional functions with more complex imbalanced
situations are designed based on the CEC’2013 benchmark.

In DCCA, the self-adaptive differential evolution with
neighborhood search algorithm (SaNSDE) [48] is applied as
the optimizer. This algorithm has been applied in several CC-
based algorithms and achieved good performance [20], [28].
As DCCA is the first dCC model which considers the imbal-
anced contribution, there is not a similar model we can
compare with. Therefore, to examine the effectiveness of
DCCA, a dCC architecture without adaptive resource alloca-
tion is designed as the control group, named SCC (“S” stands
for “static resource allocation”). Totally three approaches:
1) DCCA-P; 2) DCCA-G; and 3) SCC are tested on the bench-
mark functions. Every approach is executed on the functions
for independent 30 times to get the mean value and the median
value of the objective. Moreover, a Wilcoxon rank sum test
is made to show whether DCCA brings significant improve-
ment to SCC. Max iteration number MaxItr is set to 250. Each
subcomponent is assigned with two processors initially for all
functions. For DCCA-P, inp is set to 30 which means each pro-
cessor is associated with 30 individuals. For DCCA-G, gnp
is set to 10 which means each processor is associated with
ten generations. Thus, for DCCA-P and SCC, each iteration
contains 20 generations, namely MaxGen = 20; for DCCA-
G and SCC, each population has 60 individuals, namely |S|=
60. rlb is set to 1 which means that each subcomponent at
least can own one processor. For fair comparison, parame-
ters of SaNSDE are set as in [48]. The CPU model is Intel
Core i7-4790 with 3.60 GHz. Multiprocess technique is real-
ized through MPI. Multithread technique is realized through
Pthreads.

First, we directly test DCCA on the CEC’2013 benchmark,
checking its performance and selecting a relatively better rub
setting. Then, according to the results, 18 2000-D functions
are designed to further test the DCCA’s ability in handling
the cases with varied imbalanced contributions. Afterward,
the situation of processor allocation and the corresponding



JIA et al.: DCCA FOR LARGE SCALE OPTIMIZATION 195

TABLE I
RESULTS ON CEC’2013 BENCHMARK FUNCTIONS

convergence behavior are analyzed in detail. Finally, the
scalability of DCCA is discussed by analyzing the time
consumption.

Moreover, due to the page limit, more experiments are
provided in the supplemental material, such as the discus-
sion about the adaptability and practicability of DCCA, the
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TABLE II
OPTIMIZING RANGE

analysis of time consumption of DCCA-G and DCCA-P,
the comparison between DCCA and some other models and
algorithms.

A. Performance on CEC’2013 Benchmark

Since different problems have different degrees of imbal-
ance, four values of rub are tested for each function: 4, 6, 8,
and 10. Results are shown in Table I. Minimum median value
and mean value of each test are highlighted.

1) Performance Analysis: From Table I, we can see that
DCCA-G performs significantly better than SCC on nine func-
tions according to the p-value of the Wilcoxon rank sum test.
Meanwhile, DCCA-P performs significantly better than SCC
on eight functions. Most of these functions are partially separa-
ble or overlapping, which implies that DCCA-P and DCCA-G
are useful in handling problems with imbalanced contributions.
However, there are still four functions where SCC gets bet-
ter objective values. In order to find the situation in which
DCCA can success, we randomly generate ten solutions and
calculating the mean of their function values, which is shown
in Table II. Also, the median values of SCC in Table I are
shown in Table II to make a clear sight how much the objective
value is optimized by the algorithm.

Checking the magnitude difference, we can find that, except
for f 2, DCCA successes on most functions that have been
optimized more or less. Its poor performance only appears
on the three barely optimized functions: f 3, f 6, and f 10. This
phenomenon tells us that as long as the optimization pro-
cess can move on, DCCA is able to facilitate solving the
problem and accelerate the speed of optimization. Because the
contributions of subcomponents can only be calculated along
with the progress of the optimization. If the CC methodol-
ogy and applied EA originally cannot handle the problem, just
like the three barely optimized functions, allocating processors
becomes meaningless.

2) Selection of Rub: Ignoring f 3, f 6, and f 10, the other
results show that the best rub setting depends on not only
the problem but also the conformance policy. For DCCA-G,
taking the median value as measurement, setting rub to 6 and
10 seems better than 4 and 8. For DCCA-P, setting rub to

TABLE III
2000-D FUNCTIONS

6 favors 6 functions. Other settings each favors 2 functions.
Although there is truly not a comprehensively best setting of
rub, in most cases, setting rub to 6 can lead to relatively better
result. Thus, in the following experiments, rub is moderately
set to 6.

B. 2000-Dimensional Functions With Dynamic Imbalance

Although the imbalance in the contribution of subcompo-
nents is considered in the CEC’2013 benchmark, it has two
unpractical shortcomings [38]. First, the imbalance is realized
by introducing nonuniform subcomponents which means the
contribution of one subcomponent is tied to its size. Second,
every function is only made by rotating or shifting only one
base function, such as the sphere function, the elliptic func-
tion, etc. Once the coefficients are determined, the proportion
of contributions to the global objective among all subcompo-
nents is actually fixed during the whole optimizing process,
so that the importance of subcomponents will be kept static
during the optimizing process. This is a coarse simulation of
real imbalanced cases.

In practical applications, not only the importance of differ-
ent components is different, but also the importance of a single
subcomponent is usually fluctuant and dynamic during the
optimizing process. In order to introduce such dynamism, 18
2000-D functions are made by adding two different functions
of the CEC’2013 benchmark, which are shown in Table III.
Taking F1 for instance, it is composed of two separable
functions f 1 and f 2. The optimizing range of f 1 is (XE-
22, YE+11) which contains the range of f 2 (XE+1, YE+5).
Theoretically, at the early stage of optimization, subcompo-
nents of f 1 are more important than subcomponents of f 2
because at that time, the function value of f 1 is much larger
than the value of f 2. However, at the later stage of the
optimization, the subcomponents of f 2 would become more
important since the function value of f 1 is easy to be opti-
mized lower than E + 1 but it is much harder to optimize the
function value of f 2 to the same level.
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TABLE IV
RESULTS ON 2000-D FUNCTIONS

Thus, by combining two elementary functions with inclusive
or intersecting range relation, not only the ties between the
subcomponent size and its importance is unlocked, but also the
dynamic importance can be realized. Following, the DCCA’s
ability of handling the dynamic importance is tested.

C. Performance on 2000-D Benchmark Functions

Still DCCA-G, DCCA-G, and SCC are tested on the 2000-D
benchmark. Other experimental settings are kept unchanged,
except that the resource upper bound rub is set fixed to
6 for two DCCA approaches. Numeric results are shown in
Table IV.

Mean values show that the two DCCA approaches perform
better on 17 functions out of these 18 functions. The sit-
uation reflected by the median values is even better where
two DCCA approaches get better results on all 18 func-
tions. According to the results of Wilcoxon rank sum test,
DCCA-G performs significantly better than SCC on 11 func-
tions. DCCA-P also performs significantly better than SCC on
11 functions. However, on F1, DCCA-P is worse than SCC,
owing to the inability in optimizing the elementary function f 2.

All values of these measurements exhibit the capability of
DCCA in dealing with the imbalanced case with dynamic
importance. Meanwhile, as on most functions DCCA per-
forms well, we can also make the conclusion that DCCA is
universally applicable for any function type and range relation.

D. Processor Allocation

In order to examine whether DCCA can sense the dynamic
changing of each subcomponent’s importance, the data about
how many processor an elementary function possesses dur-
ing each iteration is collected. The processor allocating ratio
between the number of processors of elementary function fx
and fy is calculated as:

ProcessorRatio =
Mx∑
i=1

pni/

My∑
j=1

pnj (11)

where Mx and My are the subcomponent amounts of fx and fy,
respectively. Incorporating with the convergence behavior of
each approach, we can clearly see how processors shift with
the changing of the global objective value. Fig. 6 shows the
results. Figures with odd number index display the results of
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processor allocation, such as Fig. 6(a1) and (b1), etc. Figures
with even number index display the results of convergence
behavior of the approaches, such as Fig. 6(a2) and (b2), etc.

In the first place, we classify the 18 functions according
to their range relations. For the three functions with dis-
joint range relation, F2, F14, and F15, theoretically computing
resources should shift to the elementary function whose value
of optimization range is larger. The fact shown in Fig. 6(b1),
(n1), and 6(o1) exactly fulfills our expectation.

For the eight functions with inclusive range relation: F1,
F3–F5, F7, F10, F17, and F18, there is not a comprehensively
suitable situation about how the processors should be allo-
cated, since there is overlapping optimization range between
two elementary functions and the optimizing speed on the two
functions is also different which leads to constantly changing
contributions. On F1, mass-migration of computing resources
has occurred three times shown in Fig. 6(a1). Similar situa-
tion also happens on F3 and F4, but the migration seems much
smaller than on F1. Although on F5, Fig. 6(e1) shows a dif-
ferent situation where most processors are assigned to its first
elementary function f 8 from beginning to end with only little
vibration on the allocation curve, we can still see that every
vibration is coming with a knee point in Fig. 6(e2), which
tells us both DCCA-P and DCCA-G have responded to the
changing of the optimizing speed of each subcomponent. For
F7, F10, and F17, similar scenes are shown in their allocation
figures where the vast majority of processors are assigned to
the elementary function whose lower limit of the optimization
range is larger.

For the rest seven functions with intersecting range rela-
tion: F6, F8, F9, F11–F13, and F16, basically there are two
scenarios about the processor allocation. The first one is sim-
ilar to the situation of the disjoint range relation, where most
computing resources will be allocated to the elementary func-
tion with larger value of optimization range, such as F8,
F13, and F16. The reason is that although the optimization
ranges of two elementary functions are intersecting, there are
still great differences between the two ranges. In the second
situation, there is not a big gap between two elementary func-
tions’ optimization range, thus processors will shift to and fro
between two elementary functions, and finally be biased to
the function whose lower limit of optimization range is larger,
such as F6, F9, F11, and F12.

Through observing the figures of resource allocation and the
figures of convergence behavior, we can find that the scheme
of the adaptive computing resource allocation of DCCA is
useful.

E. Guideline of Selection Between DCCA-G and DCCA-P

Throughout all figures of three approaches’ convergence
behavior, we can find that DCCA-G and DCCA-P improve the
performance of dCC in two different ways. By giving more
generations to evolve the populations with higher priorities,
DCCA-G gains a fast convergence speed at the beginning
of the optimization process. However, such strategy makes
the algorithm converges too fast that the optimization pro-
cess is easy to be trapped afterward. Contrary to DCCA-G,

by increasing the size of the populations with higher priori-
ties, the convergence speed of DCCA-P is actually decreased
in the beginning. Thus, we can find that in many cases, such
as Fig. 6(b2) and (c2), DCCA-P does a very poor job in the
early stage of the optimization. But through elevating the level
of diversity of important populations, DCCA-P successfully
protects the algorithm from premature convergence, and it
keeps a steady and valid convergence speed to optimize the
problem and finally surpasses the other two approaches. Thus,
the interests of two DCCA conformance policies are differ-
ent. DCCA-G focuses on improving the exploitation ability
of the algorithm, while DCCA-P focuses on improving the
exploration ability of the algorithm.

To select a suitable policy for a real-world application or
a specific CCEA, a general guideline is made by considering
three conditions.

1) Time of the Optimization: Short or long. If the problem
needs to be solved in a very short period, DCCA-G is
much preferred, because generally DCCA-G can accel-
erate the optimization speed. If enough time is prepared
for the optimization, we recommend DCCA-P because
maintaining a steady convergence speed and avoiding
premature will be more beneficial.

2) Complexity of the Problem: Complex or simple. If the
problem to be solved is very complex which contains
many local optima, we think DCCA-P may be better
because many researches have shown that the explo-
ration ability of the algorithm is more important than the
exploitation ability under the circumstance [11], [49]. If
the problem is relatively simple, such as the unimodal
function f 1, DCCA-G is preferred.

3) Character of the EA: Exploration or exploitation. We
can see from the experiments that the two policies are
both effective no matter the optimizer is SaNSDE or
Cauchy and Gaussian particle swarm optimization [17]
(shown in supplemental material). Thus, if one can select
a policy according to the former two conditions, this
condition can be taken as an auxiliary condition. If this
condition must be taken primarily, we recommend to
first check whether the EA can benefit from DCCA-
P. For some EAs like CMA-ES, where their population
sizes are determined by the dimensionality, and for some
EAs like CSO, where increasing their population sizes
may get negative effects, DCCA-P cannot be used. For
other EAs, a general idea provided is to make up the
deficiency. If the EA is good at exploitation, DCCA-P
is preferred. Otherwise DCCA-G is preferred.

F. Scalability

The scalability of DCCA should be embodied in two
aspects. The first aspect is the ability to handle the growing
size of target problems. The other is the efficiency to acceler-
ate the optimization process with more processors. For the first
aspect, since DCCA is proposed based on the CC architecture,
as long as the target problem can be handled by CCEAs, the
scalability of DCCA in dealing with the growth of the problem
size can be ensured. The above experimental results also have
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Fig. 6. Continued.

demonstrated this point. Thus, we only discuss the scalability
of DCCA in using computing resource here.

DCCA-G is applied to represent DCCA and the conven-
tional dCC [31] is set as the control group. In the first place,
we give each function of CEC’2013 LSGO benchmark a pre-
pared value according to the results got in Section IV-A. Since
the functions in CEC’2013 benchmark are relatively simple
that their execution time is too short to analyze the runtime
efficiency of DCCA for solving real world problems in dis-
tributed computing environments, we lift up their execution
time to the range (2E-3, 3E-3) seconds. Then dCC is tested

on each function to check how much time it needs to optimize
the fitness value of the target function to the prepared value.
(Essentially, the conventional dCC can be seen as a special
case of DCCA where rub and rlb are both set to 1.) Afterward,
we gradually increase the processor number and run DCCA on
each function to see how much time it needs to reach the pre-
pared value. Each case is tested 30 times independently. The
median values of the execution time are show in Fig. S1 in
the supplemental material.

Checking the results generally, except the three functions
which DCCA cannot handle: f 3, f 6, and f 10, we can see clear
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Fig. 6. Processor allocation and convergence behavior. Figures with odd number index show the results of processor allocation, such as (a1), (b1), etc.
Horizontal axis represents the iteration number. Ordinate axis represents the processor allocating ratio between the number of processors of f x and f y. The
black reference line represents the initial ratio. Figures with even number index show the results of convergence behavior, such as (a2), (b2), etc. Horizontal
axis represents the iteration number. Ordinate axis represents the objective value.

decline of the execution time of DCCA on the other test cases.
Specifically, for the totally seperable functions with evenly
distributed importance, DCCA shows nearly linear speedup
on f 1 and a little bit lower speedup on f 2. For the partially
seperable functions: f 4, f 5, f 7–f 9, f 11, DCCA shows superlin-
ear speedup. The reason of the superlinear speedup comes
from the imbalance in the contribution of subcomponents.
As in partially seperable functions of CEC’2013 benchmark,
always some subcomponents are more important than the oth-
ers. DCCA can focus major computing resources on them. The
number of processors assigned to them during the execution is
much more than evenly assigned. Using the extra assigned pro-
cessors, these subcomponents can accelerate the optimization
process in a superlinear way. Finally, for the overlapping
functions f 12–f 15, DCCA still shows about linear speedup.

Overall, for the problems which have imbalanced
subcomponents, DCCA can accelerate the optimizing

process superlinearly. For the problems with even contribu-
tion, DCCA is still efficient that the growth of the processor
quantity can bring nearly linear speedup.

V. CONCLUSION

In this paper, a distributed cooperation co-evolution archi-
tecture with adaptive computing resource allocation named
DCCA is proposed to solve LSGO problems. The fun-
damental idea of the adaptive allocation is to utilize the
imbalance of subcomponents’ contributions to the global
objective, and assign more processors to the subcomponents
which have higher priorities. Meanwhile, two conformance
policies named population policy and generation policy are
designed to accommodate to the changing of the computing
resource allocation. Experimental results show that DCCA is
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effective to improve the performance of dCC, and also scalable
and efficient in time consumption.

In future works, there are three main directions in which we
can further explore the usability of dCC. The first one is to cus-
tomize conformance policy for specific algorithm or problem.
Since different algorithm has different convergence behavior,
conformance policy in DCCA thus should be designed in
accordance with the characteristic of the algorithm. Certainly,
it also relates to the problem as shown in the experiment,
but what the relationship between conformance policy and the
type of the problem still remains an open issue that needs to
be further studied. The second direction is to develop other
ways to find and calculate the importance of subcomponents.
Although the approach proposed in this paper works well on
most of the benchmark functions, we find it highly depends
on the chosen optimizer. If the chosen EA fails in optimizing
some subcomponents, DCCA will consider them unimportant.
Thus, algorithm-independent method should be developed to
measure the importance of subcomponents. Third, as dynamic
grouping methods still have advantages in optimizing over-
lapping functions, they should be introduced into dCC and
corresponding computing resource allocation scheme should
be developed for them.
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