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Abstract—The virtual machine placement (VMP) is a
significant technology in energy-saving field, which is an
increasingly important problem of cloud computing centers. Most
existing algorithms are difficult to handle the large-scale VMP
problems with heterogeneous resources and large demand of
virtual machines. In this paper, we propose the set-based
comprehensive learning particle swarm optimization (SCLPSO)
to solve the VMP problem. SCLPSO combines the set-based
particle swarm optimization framework (S-PSO) with the
comprehensive learning particle swarm optimizer. With the S -
PSO framework, SCLPSO is able to solve the VMP problem which
is defined on the discrete search space. With the redefined velocity
updating rule in SCLPSO, each dimension of a particle can
potentially learn from different exemplars. This strategy improves
the exploration of the algorithm. The algorithm also introduces a
heuristic factor to guide a virtual machine (VM) to be placed on a
more suitable physical machine (PM), which improves the
resource utilization of the PM. Based on the devised strategies,
large-scale VMP problems with heterogeneous resources can be
well resolved by SCLPSO. We conduct experiments on different
instances and compare SCLPSO with other classical algorithms.
The experimental results demonstrate that the proposed
algorithm is promising.

Keywords—Cloud computing, virtual machine placement (VMP),
set-based comprehensive learning particle swarm optimization
(SCLPSO), particle swarm optimization (PSO).

1. INTRODUCTION

The emergence of cloud computing satisfies people's
increasing demand for computing resources. With virtualization
technology, users can purchase various physical resources they
need (e.g., CPU and memory) and need not care about the
distribution and configuration of physical machine (PM). Cloud
computing centers provide users with three types of services:
Infrastructure as a Service (IaaS), Platform as a Service (PaaS)
and Software as a Service (SaaS) [1]. A virtual machine (VM)
can be assigned to a physical machine in the cloud computing
center according to users’ requirements of resources.

With the expanding of cloud computing centers, the number
of physical machines continues to increase, and the amount of
consumed energy to power and cool physical machines is also
increasing. Nearly half of the power consumption in cloud
computing centers is used for the cooling of physical machines
[2]. Even idle physical machines consume up to 66% of the peak
power to maintain operating devices and other hardware
resources [3]. Therefore, the key to solve the energy
consumption problem is to reduce the number of active physical

machines as much as possible and shut down idle physical
machines.

Virtualization technology allows multiple virtual machines
to be distributed on the same physical machine to share physical
resources without affecting each other, which is called the
virtual machine placement (VMP) problem. How to map all
virtual machines to suitable physical machines is a NP-hard
problem [4]. The solution space grows exponentially as the scale
of the problem increases, making the enumeration impossible.

As the VMP problem is challenging, considerable amount of
research efforts has been devoted to VMP. From the perspective
of problem model, Aggarwal et al. [5] studied the important
layout goals and constraints of VMP problem, and designed
heuristics algorithms. As for disk placement, Hbaieb et al. [6]
proposed a decomposition and local search method. Xia ez al. [7]
proposed a hierarchical decomposition and mixed integer
programming (MIP) approach to solve the problem that restricts
the VM virtual disk from being distributed over the PM physical
disk. While some scholars proposed virtual machine migration
technology to achieve server consolidation and minimize the use
of low-utility servers [8]-[11]. During the placement process, the
position of VM will be migrated to another PM for better
assignment. On the other hand, from the perspective of the
algorithm, Alboaneen et al [12] introduced metaheuristic
methods for VMP, including individual-based algorithms like
simulated annealing (SA), reproductive population-based
algorithms like genetic algorithm (GA), and non-reproductive
population-based  algorithms  like  biogeography-based
optimization (BBO). Ajiro et al. [13] proposed another heuristic
algorithm called First-Fit Decreasing (FFD) to solve VMP.
Through these heuristics, a feasible solution can be found in a
short time using the greedy search method. But as the problem
scale increases, the quality of the solutions found by simple
heuristics degenerates. As for meta-heuristics, Gao et al. [14]
proposed a solution based on the ant colony algorithm to solve
VMP problem, which is able to generate more promising
solutions. Based on GA, Jamali et al. [15] proposed an improved
grouping-based genetic algorithm (IGGA) to minimize the
number of physical machines and maximize the utilization of
resources as well.

In order to develop a more effective approach to VMP, this
paper puts forward the SCLPSO algorithm combining both set-
based discrete particle swarm optimization framework (S-PSO)
[16] and the velocity updating rule in comprehensive learning
PSO (CLPSO) [17] We also pay attention to the allocation and
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utilization of both CPU and memory resources. The main
contribution of this work can be summarized as follows:

1) SCLPSO combines both the S-PSO framework and the
velocity updating strategy of CLPSO. S-PSO framework
extends the original PSO to discrete space, so that we can use
PSO to solve discretization problems. Comprehensive learning
strategy maintains a good searching diversity so that the
proposed approach can achieve good performance on the
considered problem.

2) In order to measure the connection of the VM and PM,
we design the heuristic which can improve the utilization of
different resources and provide a better assignment.

The remainder of the paper is organized as follows. Section

II will introduce the background of the PSO, S-PSO and CLPSO.

Section III will formulate the VMP problem. Section IV will
introduce the proposed SCLPSO algorithm. Experimental
studies on large-scale problems in both homogeneous and
heterogeneous environments are presented in Section V.
Conclusion is drawn in Section VI.

II.  BACKGROUND

A. The Original PSO

Particle swarm optimization (PSO) was proposed by
Kennedy and Eberhart in 1995 [18]-[22]. It is a population-
based heuristic algorithm and is often used to solve problems in
continuous space. PSO sets M particles to find the globally
optimal solution in a n-dimensional continuous space. The
algorithm initializes a population of swarm randomly at the
beginning and evaluates their fitness values. Then it uses (1) and
(2) to update the position and velocity of each particle, where

v is the d-th dimension of the velocity of the i-th particle, and

1
xl.d is the d-th dimension of the position of the i-th particle. With

the guidance from the personal historically best position (pbest)
and the globally historically best position (gbest) of the whole
swarm, particles update their positions iteratively to seek for the
optimal solution in the search space.

vlfi =wvl.d + c]rl(pbestid —xl.d) + czrz(gbestd — x;j), (€))
xid :xl.d+vl.d . 2)

B. The Set-Based PSO Framework

The original PSO cannot be used in discrete space directly
because both (1) and (2) are defined in continuous space. To
solve this problem, Chen ef al. [16] proposed a novel set-based
particle swarm optimization (S-PSO) method for discrete
optimization problems [23]. S-PSO [24], [25] adopts the concept
of crisp set and redefines the representation of “position” and
“velocity” as well as other related operations, so that the
updating rules (1) and (2) can be applied to solve discretization
problems. The framework can be well applied to other PSO
variants [16]. In S-PSO, the position of particle 7 is defined as a
crisp set Xiand the velocity of particle i is defined as a set of
probabilities Vi, as shown in (3). The element in each velocity
set is associated with a probability p(e). p(e) is the probability

that determines whether particle ; will learn from the element e
to build a new position.

V.={e/ple)|lec L} . 3)

C. CLPSO

In order to enhance the searching diversity of PSO, Liang et
al. [17] proposed a comprehensive learning PSO employing a
novel learning strategy to update the velocity. Any particle can
learn from other particles’ previous best positions and each
dimension of a particle can potentially learn from a different
exemplar. The updating strategy is defined as follows:

Vid =w* Vid +c*randid *(pbestjﬁl(d) —Xf]) , 4)

where ¢ is a parameter, rand,-d is a random number in [0,1],
and pbestjﬂl(d) is the d-th dimension of the pbest position of

particle fi(d) . fi(d) is given as follows. First, a random

number ran € [0,1] is generated. If 7an is larger than a parameter
Pc, then fi(d)=1i . Otherwise, the algorithm applies the
tournament selection on two randomly selected particles. The
particle with better fitness will be selected. We do this process
in each dimension for each particle, so that each particle and
each dimension can learn from different particles. The parameter
Pc for the i-th particle is defined as follows:

(exp[Péﬁ(;};?_J-lJ
ED=T

CLPSO has shown excellent performance for complex
multimodal optimization problems [17]. Therefore, in this paper,
we combine this updating strategy and the S-PSO framework
together to improve the performance of PSO in solving VMP.

Pc; =0.05+0.45*

)

III.  PROBLEM DEFINITION

Virtualization technology is the core part of cloud computing.
The cloud computing center receives user's requests and creates
a virtual machine that meets user's requirements, including a
specific number of CPUs, memory, hard disks, etc. Then the
cloud computing center assigns VMs to PMs that have enough
remaining physical resources. A reasonable allocation scheme
can reduce the number of active physical machines, and thus can
save energy consumption of cloud computing centers.

The purpose of the VMP problem is to find an optimal VM
allocation scheme that uses the minimum number of PMs to
place all the VMs, and ensures that the resource requirements of
each VM are satisfied. We assume that the resource
requirements of each VM will not exceed the resource capacity
of one PM, and each VM is placed on only one PM, which
means that VM cannot be further subdivided. VMs can share
resources on the same PM without affecting each other. If one
or more VMs are assigned to a PM, the PM needs to be turned
on. In this paper, we consider the allocation of both CPU and
memory resources. We assume that there are N PMs and N VMs.
LetV={1,2...,N} beasetof VMsand P= {1, 2, ..., N} a set
of PMs. The notation is summarized in Table 1.

We formulate the allocation scheme as a 0-1 matrix whose
element x;; represents the assignment of physical machines. The
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TABLE.L. NOTATION OF THE VMP PROBLEM

Notation Definition
PM;(1<i<N) Physical machine i
pCi CPU of PM;
pmi Memory of PM;
VM; (1 <j<N) Virtual machine ;
ve; CPU of VM;

vm; Memory of VM;
Xij Allocation matrix

row represents PM and the column represents VM. If VA7 is

assigned to PM,, then Xy = 1, otherwise X; = 0,ie.,

L, if VM, is assigned toPM,
= VieP and VjeV. (6)

X
’ 0, otherwise

We need to ensure that every VM should be assigned, i.e.,

N
D=1 VjeV. (7
i=1

The objective is to optimize the number of required PMs, which
are calculated as follows:

Minimize f(s) = ﬁ:yi , ()
where .
N
v, = : lféx”'ZI VieP. 9
0, otherwise

The resource allocation should also follow the following
constraints

N
zvcl. X; S pe;y, VieP, (10)
—

J

=

vaj-xl.jﬁpml.'yi VieP. arn
j=1

Studies have shown that the energy consumption of PM is

linearly related to the CPU usage of PM [20]. However, an open

but idle PM can also consume 50%-70% of the energy

consumption in full load condition [21]. Therefore, the energy

consumption model in this paper is as follows:
Pu)=k-P  +(1-k)P_  u, 12)
where P is the maximum energy consumption of a PM under

full load conditions. k indicates the idle energy consumption
ratio of an opened PM. u indicates the CPU usage of a PM.

IV. SCLPSO FOR VMP

A. Encoding of SCLPSO

The VMP problem is a combinatorial optimization problem
defined in discrete space. Therefore, the encoding scheme
needs to meet the discretization requirement and the constraints
of VMP. According to the S-PSO framework, the set-based
encoding scheme in the proposed SCLPSO is defined as
follows.

1) Position

A position X represents a feasible assignment scheme. Each
particle’s position is an N-tuple X = (X1, X, ..., X,;) where n is
the number of active PMs. Each element X; in the N-tuple is a
set which represents the VMs assigned on this PM. Different
PMs may have different number of VMs on it. For example, a
position X is given as
X = (VM VM 3, VM3, VM, VM5 3, (VMg },...) - It means

that VM, , VM, are assigned on PM,, VM ;,VM,,,VM,s are

il>

assigned on PM,,VM 4 is assigned on PM, and so on. If the

element set )X; is empty, if means that no VM is assigned on the
PM..

i

2) Velocity

In S-PSO, velocity V is also an N-tuple V = (V1, V2, ...,
Vn), where each element Vi is a set with probabilities. The
probability determines the chance that the particle will learn
from the element e to build a new position.

For example, the following velocity V is given

V=({VM; /0.5VM;, /0.4},{VM;3/0.7,VM,, /0.6},{},...). It
means that VM, has the probability of 0.5 to be assigned to
PM,, VM, has the probability of 0.4 to be assigned to PM,,
VM . has the probability of 0.7 to be assigned to PM,, and so
forth.

For convenience, here we use V/ to describe the

1

probability that VM ; will be assigned on PM; .

B. The Velocity Updating

Following the S-PSO framework defined in [16] and the
velocity updating rule of CLPSO [17] given in (4), the proposed
SCLPSO updates velocities of particles using the following
operators:

1) Coefficient X Velocity
The coefficient can be a constant or a random number which
is a nonnegative real number. According to the S-PSO
framework, the operator is defined as follows:
cxV={e/p'le)|ecE},

, 13
p(e>={1’ .

if cx p(e)>1
cx p(e), otherwise
2) Position — Position
In S-PSO framework, a position is given by a crisp set, and
the minus operator between two crisp set is the difference set.

Given two position sets 4 and B, the operator is defined as
follows:
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A-B={e|lec AandegB}. 14)
It should be noticed that the minus operation is executed in each
element set. For example, we assume that the number of VMs
and PMs is 5. Given X =({1},{2,3},{4,5}.{}.{}) and
GBest = ({1},{2,4},{3,5},{},{}) ., we then
GBest — X =({},{4},{3},{},{}) . In fact, the effect of
PBest — X or GBest — X is to find out the elements used by
better positions but not used by the current position. We figure
out the difference set, and its elements are valuable to improve
the current position. Just like the example, VM, should be
assigned on PM,, and VM should be assigned on PMj;.

3) Coefficient X (Position - Position)

The result of “Position-Position™ is also a crisp set. The
multiplication operator between a coefficient and a crisp set is
to generate a new velocity. The operation is defined as follows:

cxE ={e/p'(e)|e€E},
1, ifecE andc>1

pe)=1c, ifecE and0<c<1. (15)
0, ifegkE

have

For example, suppose the coefficient ¢=0.5 and
GBest — X =({},44},{3},{},{}) , the c*(GBest—X) will be
GBest — X =({},{4/0.5},{3/0.5},{},{}). It

V,b=05and 75 =0.5.
4) Velocity + Velocity
Finally, we define the addition operator between two sets
with possibilities.
Vi+V, ={e/max(p(e), py(e))|e € E}. 16)
We choose the larger probability between two crisp sets to
generate a new velocity.

implies that

C. Heuristic Factor

In traditional allocation strategies, algorithms seldom take
the relationship between VM and PM into account. However, if
such relationship can be utilized, we can better guide the
distribution. For example, when a VM is placed on a PM, the
current resource utilization of the PM can be greatly improved.
Then we can choose this assignment scheme in priority. In this
paper, we introduce the heuristic factors 7 to increase the
resource utilization of PM and balance the usage of different
physical resources of PM at the same time.

The heuristic factor adopts the greedy strategy to improve
the assignment schemes. In order to reduce the number of final
PMs, each PM needs to host as many VMs as possible, which
can increase the utilization rate of PM resources. Balancing the
use of various physical resources can avoid the situation that
some resources are fully used while other resources are at idle.
Based on this, heuristic factor is designed to increase the
utilization of different resources and balance the use of different
resources on the same PM, resulting in a higher and similar
utilization of different resources.

The heuristic factor is related to VMs and PMs. It is
calculated by the resource utilization that can be brought to the

PM after the VM is assigned to the PM. The heuristic factor with
a smaller value indicates that the VM is more suitable for placing
on this PM. The heuristic factor in this paper is defined as
follows:

pe; —uc; —vc;

j pml.—uml.—vm,|

J

Pe; pm; |
pe; —uc; —ve,

n@, j) = a7)

pm; —um; —vm;

pe; pm;
In (17), pcis the CPU capacity of PM;, ucis the CPU usage,
pm andum is the information of memory. vc and vin are the

CPU requirements and memory requirements for VA7 ;. The

denominator of (17) measures the utilization in both CPU and
memory resources. The numerator of (17) considers the

remaining resources on the physical machine. If VA7 could
increase the resource utilization of PM; as well as balance the

usage of different physical resources of PM; , 17 will be smaller.

This selection strategy will reduce the number of active PMs,
which can further improve the quality of solutions.

D. Position Updating with the Step-by-Step Strategy

We can use the (4) and the operators defined on crisp sets to
update velocities. When generating new positions, we use the
step-by-step strategy, which considers each VM and generates
the new position by placing VMs one by one.

Each VM has its own velocity subset, which represents the
probabilities to be placed on every PM. Firstly, a random

number ¢ € (0,1) is generated in each iteration, and then a cut
set is generated according to (18).

cut,, (Vl.]) ={ele/ p(e) e Vl.j and p(e) > a}. (18)
For each element in the cut set, (17) is used to calculate the
heuristic factor between the current VM and the PM to find the
most suitable assignment. The candidate PMs are sorted in
ascending order according to the heuristic factor, and then the
PM with smaller heuristic factor is selected. If a suitable PM can
be found successfully during this process, the allocation of the
VM is completed. If not, the VM is added to a reassignment set.
This process is repeated for each VM until all VMs have been
considered.

During reassignment, the elements in the reassignment set
represent unsuccessfully allocated VMs, and then we use (17) to
calculate the heuristic factors between it and the PMs that have
been turned on. Then sort all the heuristic factors and select the
PM with smallest heuristic factor. If there is a suitable PM,
allocate and complete the allocation of this VM. If we cannot
find a suitable PM, then turn on a new PM to place this VM.
Repeat this process until the reassignment set is empty. The
above is the process of building a solution step by step. When
this process finishes, we can obtain a new feasible solution.

E. Complete SCLPSO Algorithm

The complete flowchart of SCLPSO is shown in Fig. 1.
Firstly, we initialize the population and each VM is placed on a
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Fig. 1. Flowchart of the SCLPSO algorithm.

PM, which means X ={{1},{2},...{N}} .The number of

available PMs is equal to the number of VMs. Each element in
the velocity set is assigned a random value in [0,1].

SCLPSO uses the updating rule of CLPSO in (4) and S-PSO
to update velocities. Then we enter the process of solution
construction. For each VM, we will generate a cut set using (18).
And we will calculate the heuristic factors 7 for every PM in cut

set and current VM using (17). If we can find the most suitable

PM number

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
FEs
Fig. 2. The convergence curves of SCLPSO on instances B3-B7.

PM according to 7, then we finish this VM assignment.

Otherwise, we add it to the reassignment set. We will do this
process for all VMs.

Then we check the reassignment set. If there still exist
unassigned VMs, we go into the reassignment process and find
suitable PMs to hold the VMs until the set is empty. Finally, we
update the PBest and GBest .

We will repeat this process until the algorithm reaches the
maximum number of fitness evaluations.

V. EXPERIMENTS AND COMPARISONS

We conduct experiments to test and verify the effectiveness
of SCLPSO. All compared algorithms are implemented in C++
and the operating environment is CPU i7 and 4.0 GB RAM.

The experiment will use the standard test set given in [26]
(i.e., Test A) and we design two other scenarios, Test B and Test
C, to test the resource bottlenecks and the heterogeneity of
physical machines. We compare SCLPSO algorithm with Ant
Colony Optimization (ACO) based algorithm [27], [28] multi-
objective algorithm (MACO) [29], HACOPSO [30] algorithm,
and FFD [13] heuristic method. The ACO algorithm is suitable
for solving discrete problems, [28] is based on max-min ant
colony algorithm to solve the problem. [29] proposed multi-
objective algorithm MACO and has certain advantages for
solving multi-resource optimization in VMP problems. [30]
proposed HACOPSO which combines ACO and PSO together.
Its experimental results have shown superiority to most existing
algorithms. The FFD sorts the VMs in descending order, first
considering the CPU factor, and then considering the memory
factor to be allocated on the first suitable PM. The FFD
algorithm obtains better results than other deterministic
algorithms [13]. Therefore, FFD is considered as a
representative heuristic deterministic algorithm.

In the experiments, we set the number of populations
POPSIZE to 10, and MAX FES is the maximum number of
iterations, which set to 150. Parameter ¢; and ¢, are both 2.0.
As for o, we use the linear decrement strategy in (19) ,

180

160  [E=scLPso
XXNaco
140 + |[IIMAcO .
E=3Hacorso
=
120 | (EEEEFFD
s
2 I .
£ 100
o= |
c
= 80f
= e N

60

i

100

40

2

Q

T

T

(=]

VM number

Fig. 3. The histogram of Test C.
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TABLE.Il. EXPERIMENTAL RESULT COMPARISONS IN TEST A

Instance | No. VM optimum SCLPSO ACO MACO HACOPSO FFD
Al 1363 112 115.00 116.50 130.26 117.56 133.00
A2 2314 191 196.00 199.03 222.16 204.03 229.00
A3 2639 216 221.00 225.33 251.13 238.93 258.00
A4 2972 241 247.00 25143 282.00 263.93 288.00
A5 3289 267 274.00 278.76 312.26 322.83 320.00

TABLE.III . EXPERIMENTAL RESULT COMPARISONS IN TEST B
Instance | No. VM SCLPSO SCLPSO ACO MACO HACOPSO FFD
(without 77)
B1 100 16.00 16.00 16.00 16.00 17.00 18.00
B2 200 32.00 32.40 33.10 33.10 34.30 37.00
B3 300 46.00 46.70 46.73 47.20 47.10 53.00
B4 400 63.40 64.50 64.54 66.00 65.33 74.00
B5 500 78.00 80.86 79.10 82.23 81.50 92.00
B6 600 94.80 96.03 97.10 99.16 100.20 111.00
B7 1000 160.00 162.10 162.86 169.86 175.66 184.00
TABLE IV . EXPERIMENTAL RESULT COMPARISONS IN TEST C
Instance No. VM SCLPSO ACO MACO HACOPSO FFD
Cl 100 21.63 23.33 28.35 24.56 32
C2 200 48.10 55.56 68.26 57.85 75
C3 300 72.90 79.44 106.90 79.40 102
C4 400 96.86 103.56 137.20 115.50 131
C5 500 113.46 127.56 178.50 134.60 167
(a) max— o min) expansion of scale, the performance of other algorithms
W=@_ max—-—— = *T, 19) continues to decline, and the efficiency of resource utilization

MAX FES
where @ _max is 0.9, @ _minis 0.4, and T is the current

generation. The parameters of RGGA, ACO, MACO and
HACOPSO are set according to their authors’ recommendation.
Each test runs 30 times and we compare the average results.

A. Test A: Large-Scale Homogeneous Test

The experimental data comes from [26] and the test scale is
from 1000 to 3000. Each PM has 500 CPUs and 500 GB of
RAM. The CPU demand for the VM is between [1,128] and the
memory requirement is between [0,100]. The CPU and memory
demand ratio are close to 1:1. The experimental results are
shown in Table II.

From the experimental results, we can see that SCLPSO
performs better than the other algorithms. The result of the
solution is closer to the theoretical optimal solution. Even in the
case of increasing data size, the good performance can be
maintained. This is due to the use of comprehensive learning
strategy to update the velocity. It can make particles have more
exemplars to learn and avoid the premature. The rest of the
algorithms are slightly inadequate, and the quality of solutions
decreases as the data scale increases, the distance between the
optimal solution and the theoretical solution continues to widen.
FFD has a poor performance on large-scale solutions. With the

for physical machines continues to decline as well.

B. Test B: Bottleneck Resource Test

In order to better test the performance of SCLPSO, we
designed a bottleneck resource test. In this experiment, the data
size ranged from 100 to 1000. We specify that each PM has 16
CPUs and 32 GB of RAM. The CPU requirement for each VM
is between [1,4], the memory requirement is between [1,8], and
the VM requirements follow a uniform distribution. The ratio of
CPU demand to memory demand in the experiment is close to
1:2 with an obvious resource bottleneck. The results of this
experiment are shown in Table III.

The data of this experiment is a resource bottleneck.
SCLPSO has better performance than other compared
algorithms. When the demand of VM is small, all algorithms can
obtain good solutions. However, with the expansion of VM
demand, how to properly deal with the bottleneck of virtual
machine resources has become a major problem, and the quality
of solutions from other algorithms has declined. To demonstrate
the function of the heuristic factor, we design a SCLPSO version
without heuristic factor and select PM randomly. As the demand
increases, the gap with complete SCLPSO becomes more
pronounced.
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From the convergence curves in Fig. 2, we find that SCLPSO
can converge to a high-quality at early iterations and have a
slight improvement at later iterations. Combined with the
heuristic factor, the step-by-step solution construction can find
suitable PM for each VM and well use physical resources. This
will increase the utilization of PMs and obtain high-quality
solutions in a few iterations.

SCLPSO uses the heuristic factor 77 and cut sets to build a

solution step by step, and dynamically calculates the relationship
between the current VM and the available PMs. In constructing
new solutions, SCLPSO tries to find the most suitable physical
machine and balance the resource utilization of physical
machines at the same time. This strategy can help converge to a
high-quality solution in a few calculations.

C. Test C: Hetergeneous Test

Both of the above experiments are tested on the same PMs.
In this experiment, we considered heterogeneous PMs, that is,
PMs have different physical resources. The data size ranges
from 100-500. 10% PMs are configured with 32 CPUs and 128
GB of memory, and 90% PMs are configured with 16 CPUs and
32 GB of memory. The CPU demand for VMs is in [1,8] and the
memory requirement is in [1,32], which follows a uniform
distribution. The experimental results are presented in Table IV.

From the histogram in Fig. 3, we can find that SCLPSO has
a great advantage in solving heterogeneous physical machines.
With the expansion of the data scale, the advantages become
more obvious. This is because SCLPSO considers the
relationship between the current VM and the PMs that can be
placed when arranging each VM, including CPU and memory,
so it can arrange virtual machines relatively well. Compared to
FFD, sorting and prioritizing one dimension can easily lead to a
situation where the utilization of one resource is high while the
other resources are low.

The experimental results show that SCLPSO algorithm
performs better than the other comparison algorithms for large-
scale VM demand, resource bottleneck or server heterogeneity.
S-PSO framework and comprehensive learning strategy can
handle large-scale problems well. With the devised heuristic
factor and cut set, the solution is constructed step by step. The
relationship between current VM and available PMs can be
dynamically calculated to ensure each VM is reasonably
arranged on the appropriate PM.

VI. CONCLUSION

In this paper, based on the S-PSO framework and
comprehensive learning strategy, we propose SCLPSO to solve
the VMP problem which extends the original PSO to discrete
searching space. The experimental results show that SCLPSO
algorithm can solve large-scale optimization problems well, and
it can also have better results on resource bottlenecks and
heterogeneous situations. In future researches, we will try to
apply SCLPSO in solving other discrete combinatorial problems,
such as cloud workflow scheduling and insurance investment
planning [31].

ACKNOWLEDGEMENT

This work was supported in part by the National Natural
Science Foundation of China under Grant 61622206 and Grant
61332002, the Natural Science Foundation of Guangdong under
Grant 2015A030306024, and the Open Project Program of the
State Key Laboratory of Mathematical Engineering and
Advanced Computing (Corresponding Author: Wei-Neng
Chen).

REFERENCES

[11 Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art
and research challenges,” Journal of Internet Services & Applications, vol.
1, no. 1, pp. 7-18, 2010.

[2] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consumption
modeling: a survey,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 1, pp. 732-794, 2017.

[3] G. Chen, S. Nath, and F. Zhao, “Energy-aware server provisioning and
load dispatching for connection-intensive internet services,” in
Proceedings of the Usenix Symposium on Networked Systems Design and
Implementation, pp. 337-350, 2008.

[4] R. K. Gupta and R. K. Pateriya, “Energy efficient virtual machine
placement approach for balanced resource utilization in cloud
environment,” International Journal of Cloud-Computing and Super-
Computing, vol. 2, no. 1, pp. 9-20, 2015.

[51 A. Aggarwal and S. Malhotra, “Goals and constraints for devising
efficient heuristics in virtual machine placement plan,” in Proceedings of
the Second International Conference on Advances in Computing and
Communication Engineering, 2015, pp. 98-103.

[6] A.Hbaieb, M. Khemakhem, and M. B. Jemaa, “Using decomposition and
local search to solve large-scale virtual machine placement problems with
disk anti-colocation constraints,” in Proceedings of the 14th International
Conference, 2017, pp. 688-695.

[7] Y. Xia, M. Tsugawa, J. Fortes, and S. Chen, “Large-scale VM placement
with disk anti-colocation constraints using hierarchical decomposition
and mixed integer programming,” IEEE Transactions on Parallel &
Distributed Systems, vol. 28, no. 5, pp. 1361-1374, 2017.

[8] Y. Chang, C. Gu, and F. Luo, “Energy efficient virtual machine
consolidation in cloud datacenters,” in Proceedings of the International
Conference on Systems and Informatics, 2017, pp. 401-406.

[91 R.Kashyap, S. Chaudhary, and P. M. Jat, “Virtual machine migration for
back-end mashup application deployed on openstack environment,” in
Proceedings of the International Conference on Parallel, Distributed and
Grid Computing, 2014, pp. 214-218.

[10] T.H. Duong-Ba, T. Nguyen, B. Bose, and T. T. Tran, “A dynamic virtual
machine placement and migration scheme for data centers,” [EEE
Transactions on Services Computing, doi: 10.1109/TSC.2018.2817208,
2018.

[11] S. Telenyk, E. Zharikov, and O. Rolik, “An approach to virtual machine
placement in cloud data centers,” in Proceedings of the Radio Electronics
& Info Communications (UkrMiCo), 2016 International Conference, pp.
1-6, 2016.

[12] D. A. Alboaneen, H. Tianfield, and Y. Zhang, “Metaheuristic approaches
to virtual machine placement in cloud computing: a review,” in

Proceedings of the International Symposium on Parallel and Distributed
Computing, 2016, pp. 214-221.

[13] Y. Ajiro and A. Tanaka, “Improving packing algorithms for server
consolidation,” in Proceedings of the International Computer
Measurement Group Conference, 2007, pp. 399-406.

[14] C. Gao, H. Wang, L. Zhai, Y. Gao, and S. Yi, “An energy-aware ant
colony algorithm for network-aware virtual machine placement in cloud
computing,” in Proceedings of the IEEE International Conference on
Parallel and Distributed Systems, 2017, pp. 669-676.

[15] S. Jamali and S. Malektaji, “Improving grouping genetic algorithm for
virtual machine placement in cloud data centers,” in Proceedings of the
International Econference on Computer and Knowledge Engineering,
2014, pp. 328-333.

Authorized licensed use limited to: Hanyang University. Downloaded on 2svember 16,2023 at 00:54:30 UTC from IEEE Xplore. Restrictions apply.



[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

W. N. Chen, J. Zhang, H. S. H. Chung, W. L. Zhong, W. G. Wu, and Y.
H. Shi, “A novel set-based particle swarm optimization method for
discrete optimization problems,” [EEE Transactions on Evolutionary
Computation, vol. 14, no. 2, pp. 278-300, 2010.

J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive
learning particle swarm optimizer for global optimization of multimodal
functions,” IEEE Transactions on Evolutionary Computation, vol. 10, no.
3, pp. 281-295, 2006.

Q. Yang, W. N. Chen, J. D. Deng, Y. Li, T. L. Gu, and J. Zhang, “A level-
based learning swarm optimizer for large scale optimization,” [EEE
Transactions on Evolutionary Computation, vol. 22, no. 4, pp.578-584,
2018.

Q. Yang, W.N. Chen, T. L. Gu, H. X. Zhang, J. D. Deng , Y. Li, and et
al., “Segment-based predominant learning swarm optimizer for large-
scale optimization,” IEEE Transactions on Cybernetics, vol. 47, no. 9, pp.
2896-2910, 2017.

X. Fan, W. D. Weber, and L. A. Barroso, "Power provisioning for a
warehouse-sized computer,” ACM Sigarch Computer Architecture News,
vol. 35, no. 2, pp.13-23, 2007.

A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a cloud:
research problems in data center networks,” ACM Sigcomm Computer
Communication Review, vol. 39, no. 1, pp. 68-73, 2008.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of the International Conference on Neural Networks, 2002,
pp. 1942-1948.

X.Y. Wen, W. N. Chen, Y. Lin, T. L. Gu, H. X. Zhang, Y. Li, et al., “A
maximal clique based multiobjective evolutionary algorithm for
overlapping community detection,” IEEE Transactions on Evolutionary
Computation, vol. 21, no. 3, pp. 363-377, 2017.

Y. H. Jia, W. N. Chen, T. L. Gu, H. X. Zhang, H. Q. Yuan, Y. Lin, et al.,
“A dynamic logistic dispatching system with set-based particle swarm

[25]

[26]

[27]

[28]

[29]

[30]

[31]

optimization,” I[EEE Transactions on Systems, Men and Cybernetics:
Systems, vol. 48, no. 9, pp. 1607-1621, 2018.

X. Yu, W.N. Chen, T. L. Gu, H. X. Zhang, H. Q. Yuan, S. Kwong, et al.,
“Set-based discrete particle swarm optimization based on decomposition
for permutation-based multiobjective combinatorial optimization
problems,” IEEE Transactions on Cybernetics, vol. 48, no. 7, pp. 2139-
2153,2018.

D. Wilcox, A. Mcnabb, and K. Seppi, “Solving virtual machine packing
with a reordering grouping genetic algorithm,” Evolutionary
Computation, vol. 30, pp. 362-369, 2011.

Q. Yang, W. N. Chen, Z. T. Yu, T. L. Gu, Y Li, H. X. Zhang, et al.,
“Adaptive multimodal continuous ant colony optimization,” [EEE
Transactions on Evolutionary Computation, vol. 21, no. 2, pp. 191-205,
2017.

M. H. Ferdaus, M. Murshed, R. N. Calheiros, and R. Buyya, “Virtual
machine consolidation in cloud data centers using ACO metaheuristic,”
in Proceedings of the European Conference on Parallel Processing, 2014,
pp. 306-317.

M. A. Tawfeek, A. B. EI-Sisi, A. E. Keshk, and F. A. Torkey, “Virtual
machine placement based on ant colony optimization for minimizing
resource wastage,” in Proceedings of the International Conference on
Advanced Machine Learning Technologies and Applications, 2014, pp.
153-164.

B. B. J. Suseela, “A multi-objective hybrid ACO-PSO optimization
algorithm for virtual machine placement in cloud computing,”
International Journal of Research in Engineering and Technology, vol. 3,
no. 4, pp. 474-476, 2014.

W. Shi, W. N. Chen, Y. Lin, T. L. Gu, S. Kwong, and J. Zhang, “An
adaptive estimation of distribution algorithm for multi-policy insurance

investment planning,” /EEE Transactions on Evolutionary Computation,
doi: 10.1109/TEVC.2017.2782571, 2018.

Authorized licensed use limited to: Hanyang University. Downloaded on 2&¥ember 16,2023 at 00:54:30 UTC from IEEE Xplore. Restrictions apply.



