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Abstract—The multiobjective evolutionary algorithm (MOEA)
based on decomposition transforms a multiobjective optimization
problem into a set of aggregated subproblems and then opti-
mizes them collaboratively. Since these subproblems usually have
different degrees of difficulty, resource allocation (RA) strate-
gies have been reported to enhance performance, attempting to
dynamically assign proper amounts of computational resources
for the solution of each of these subproblems. However, existing
schemes for decomposition-based MOEAs fully rely on the rel-
ative improvement of the aggregated functions to do this. This
paper proposes a diversity-enhanced RA strategy for this kind of
MOEA, depending on both relative improvement on aggregated
function value and solution density around each subproblem
to assign computational resources. Thus, one subproblem sur-
rounded with fewer solutions in its neighboring area and more
relative improvement on the aggregated function value will be
allocated a higher probability for evolution. Our experimen-
tal results show the advantages of our proposed strategy over
two popular RA strategies available for decomposition-based
MOEAs, on tackling a set of complicated benchmark problems.

Index Terms—Decomposition, multiobjective optimization,
resource allocation (RA), solution density.

I. INTRODUCTION

MULTIOBJECTIVE optimization problems (MOPs)
widely arise in many application fields, such

as economics [1], [2] and engineering design [3], [4].
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Mathematically, an MOP without any constraint can be
modeled as follows:

minimize F(x) = (f1(x), . . . , fm(x))

subject to x ∈ � (1)

where x = (x1, . . . , xn) is a decision variables vector (n is the
number of decision variables), � = [li, ui]n is the decision
space (li and ui are, respectively, the lower and upper bounds
for the ith variable, i ∈ [1, n]), and F : � → Rm defines m
objective functions (Rm is the objective space).

Let x1, x2 ∈ �, x1 is said to dominate x2, denoted by
x1 ≺ x2, if and only if fi(x1) ≤ fi(x2) for ∀i ∈ {1, . . . , m}
and fj(x1) �= fj(x2) for ∃j ∈ {1, . . . , m}. A solution x∗ ∈
� is said to be a Pareto-optimal or nondominated solu-
tion when no other solution x ∈ � can dominate x∗. The
set of all Pareto-optimal (or nondominated) solutions com-
poses the Pareto-optimal set (PS), and its corresponding
set of objective function values is called the Pareto-optimal
front (PF) [5]. Due to the conflicts among the objectives, no
single solution is able to optimize them all at the same time.
Therefore, we aim for the best possible tradeoffs among all the
objectives.

Multiobjective evolutionary algorithms (MOEAs) have been
found to be an effective and efficient tool for solving
MOPs [6]. During the last decades, many competitive MOEAs
have been designed [7]–[19]. According to the selection cri-
teria, most MOEAs can be generally classified into three
categories, i.e., Pareto domination-based MOEAs [7]–[10],
indicator-based MOEAs [11]–[15], and decomposition-based
MOEAs [16]–[19]. Particularly, since the publication of
MOEA/D [16], decomposition-based MOEAs have become
a very popular evolutionary framework for tackling MOPs. In
this approach, an MOP is decomposed into a set of aggregated
subproblems and then each subproblem is optimized on a col-
laborative manner. Its evolutionary framework has triggered
a considerable amount of research [20]–[26].

There are several primary components in MOEA/D, e.g.,
weight vector generation, neighbor selection, subproblem
selection, evolutionary operators, and population update. These
components are frequently studied and have been enhanced
by many MOEA/D variants. Regarding the weight vec-
tor generation, UMOEA/D [27] and MOEA/D-UDM [28]
were proposed to produce the weight vectors with uniform
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distribution and an arbitrary number of weight vectors can be
generated to fit the population size. However, as pointed out
in [29], the uniformly distributed weight vectors cannot guar-
antee to produce solutions with a uniform distribution. Thus,
an evolutionary search strategy using uniformly distributed
directions was accordingly proposed to solve the above
problem [29]. Moreover, to fit the geometrical information of
the PF, two adaptive control strategies for generating weight
vectors were designed in [30] and [31], where the number
of weight vectors is dynamically adjusted. For the neigh-
bor selection mechanism, due to the significant impact of the
neighborhood sizes (NSs) on MOEA/D, an adaptive selection
strategy was presented in ENS-MOEA/D [32] to adaptively
choose the preferred value of NSs based on the former success-
ful experience. This way, different MOPs can be better solved
using certain setting of NSs. On the subproblem selection, this
can be modeled as a resource allocation (RA) strategy to assign
computational resources for the subproblems. A dynamic
RA (DRA) strategy was designed in MOEA/D-DRA [33].
This approach computes a utility function for each subproblem
based on the improvement of the aggregated function val-
ues during the last evolutionary period, and then dynamically
selects the subproblems for evolution based on this utility func-
tion. A generalized RA (GRA) strategy was further designed
in MOEA/D-GRA [34]. This approach introduces a proba-
bility of improvement (PoI) vector for the subproblems and
then assigns the computational resources according to this
PoI vector. With respect to the evolutionary operators, dif-
ferential evolution (DE) was introduced in MOEA/D-DE [35]
to substitute simulated binary crossover (SBX). This way,
the exploration capability of MOEA/D-DE is significantly
enhanced, especially in solving some complicated MOPs with
variable dependencies. Four DE search strategies were fur-
ther merged in MOEA/D-FRRMAB [36] and a bandit-based
adaptive operator selection strategy was designed to determine
the application rates of different DE strategies on an online
manner. Similarly, three DE strategies were also adopted
in ADEMO/D [37] and four DE composite operator pools
were used in MOEA/D-CDE [38], attempting to adaptively
select the preferred DE operators according to the quality of
historically found solutions. At last, considering the popu-
lation update in MOEA/D, a stable matching (STM) model
was reported in MOEA/D-STM [39] to match the subprob-
lems and the solutions. It is the first generational version of
MOEA/D and it also constitutes the first attempt to incor-
porate matching theory (a concept from economics) into the
design of MOEAs. This approach struggles to balance the con-
vergence and the population diversity during the evolutionary
process. More recently, an inter-relationship (IR) model was
built in MOEA/D-IR [40] based on the mutual-preferences
of the subproblems and the solutions. Essentially, this IR
model is a diversity first and convergence second strategy,
which is different from the STM model that tries to main-
tain the balance of convergence and diversity. In [41], the
replacement NS was also shown to be critical for population
update, and an approach for dynamically adjusting this size
was presented. Thus, it can spend much effort in maintaining
the population diversity at the early stages of the search

process and in speeding up convergence at the later phases of
the search. Moreover, a dominance-based selection approach
was further studied to be combined with a decomposition-
based approach in MOEA/DD [42]. This approach aims to
balance the convergence and the diversity when solving many-
objective optimization problems. A systematic approach was
proposed to generate widely spread weight vectors for a high-
dimensional objective space and a mating restriction scheme
was designed to fully exploit the mating parents chosen from
the neighboring subregions.

This paper mainly concentrates on the subproblem selec-
tion scheme and designs a diversity-enhanced RA strategy
for MOEA/D. As mentioned above, the RA strategies for
MOEA/D have already been studied in MOEA/D-DRA and
MOEA/D-GRA; however, they are completely dependent on
the relative improvement of aggregated function values when
computing the utility function in MOEA/D-DRA and the PoI
vector in MOEA/D-GRA. These approaches only exploit the
convergence status to allocate the computational resources
for the subproblems. In our opinion, besides the conver-
gence status, the diversity among the subproblems is also
an important indicator to design an effective and efficient
RA strategy [43]–[46]. For example, in some cases, the sub-
problems surrounded with numerous solutions should not
be assigned too many computational resources, even though
they may show significant improvement rates on aggregated
function values. Therefore, an improved (diversity-enhanced)
RA (IRA) strategy is proposed to consider both convergence
(relative improvement on aggregated function values) and
diversity (the solution density around the subproblem) of each
subproblem. This approach can reasonably balance the con-
vergence and the diversity for each subproblem when running
the RA strategy. After embedding this IRA strategy into the
framework of MOEA/D, a novel MOEA/D variant named
MOEA/D-IRA is presented. Some complicated test MOPs
are used to test the performance of MOEA/D-IRA, and the
experimental results indicate that MOEA/D-IRA outperforms
MOEA/D-DE [35], two MOEA/D variants with an RA strat-
egy (MOEA/D-DRA [33] and MOEA/D-GRA [34]), and one
recently proposed MOEA/D variant (MOEA/D-IR [40]).

The rest of this paper is organized as follows. In Section II,
we introduce some background knowledge including the
decomposition approach of MOEA/D and the two RA strate-
gies used in MOEA/D-DRA and MOEA/D-GRA. The details
of our proposed algorithm MOEA/D-IRA are described in
Section III, where our IRA strategy is introduced. All the
experimental studies are presented in Section IV, including
the parameters settings of the compared algorithms, the com-
parison of the results of our algorithm with respect to those of
several MOEA/D variants, and the parameter sensitivity anal-
ysis in our IRA strategy. Finally, this paper is concluded in
Section V with some future research topics.

II. BACKGROUND

A. Decomposition Approach

In MOEA/D, a decomposition approach is used to trans-
form an MOP into a number of single-objective optimization

Authorized licensed use limited to: Hanyang University. Downloaded on November 09,2023 at 07:17:42 UTC from IEEE Xplore.  Restrictions apply. 



2390 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 48, NO. 8, AUGUST 2018

subproblems and then they can be optimized collaboratively
to attain the entire PF. Several decomposition approaches
are commonly applied in many MOEA/D variants, such
as the weighted sum approach, the Tchebycheff approach,
and the boundary intersection method [16]. In this paper,
we use the Tchebycheff approach to construct the aggre-
gated functions, since this scheme is used in many MOEA/D
variants [32], [33], [36]. The Tchebycheff approach can be
defined as follows:

min
x∈�

gtch(x|λ, z∗) = max
1≤i≤m

{| fi(x) − z∗
i |/λi

}
(2)

where λ = (λ1, . . . , λm) is the weight vector (also the direc-
tion vector) with λi ≥ 0(i ∈ {1, . . . , m}) and

∑m
i=1 λi = 1.

In practice, λi is set to a very small number (e.g., 10−6),
in case λi = 0. z∗ = {z∗

1, . . . , z∗
m} is the ideal point with

z∗
i = {min fi(x)|x ∈ �} for each i = 1, . . . , m. For a solution

x∗ in PF of (1), there exists a weight vector λ that satisfies
that x∗ is also the optimal solution of the subproblem in (2),
such that, using a set of uniformly distributed weight vec-
tors, the optimal solutions for (2) can compose a number of
Pareto-optimal solutions for (1).

B. Resource Allocation Strategies for MOEA/D

In the original MOEA/D [16], all the subproblems are
treated equally and assigned with the same amounts of com-
putational resources. This equal assignment strategy is not
suitable for all kinds of MOPs, as the subproblems decom-
posed from various MOPs may have different difficulties. The
RA strategy in MOEA/D can alleviate the above problem, e.g.,
MOEA/D-DRA [33] and MOEA/D-GRA [34] were designed
following this direction. They are introduced below, respec-
tively.

1) MOEA/D-DRA: A DRA strategy was designed in
MOEA/D-DRA [33], which assigns the computational
resources according to the relative improvement of the aggre-
gated function values for each subproblem. In this approach,
the subproblems with high improvement rates in the previous
search phase will be allocated with more computational
resources, as this indicates that these subproblems can be
easily enhanced and can be further optimized. Otherwise,
subproblems which are found to have low improvement rates
in the previous search phase, may be very hard to improve
and, therefore, receive less computational resources. To
achieve the above purpose, a utility function π i is computed
in MOEA/D-DRA for the ith subproblem, as follows:

π i =
{

1 if �i > 0.001(
0.95 + 0.05 × �i

0.001

)
× π i otherwise

(3)

where �i is the relative improvement of the objective function
value in subproblem i, which is defined as

�i = gtch
(
xi

t−�t|λi, z∗)− gtch
(
xi

t|λi, z∗)

gtch
(
xi

t−�t|λ, z∗) (4)

where t is the current generation, �t is the updating period,
and gtch(·) is the decomposition approach as introduced in (2).
In (4), the utility function π i is updated with the period of �t

generations. xi
t−�t is the solution of ith subproblem before �t

generations and xi
t is the one at current generation t. Initially,

π i is set to 1, and then, if the computed value of �i is smaller
than 0.001, it indicates that the subproblem is hard to be
enhanced. Thus, the value of π i will be reduced in order to
save computational resources.

To pick a set I of subproblems for evolution, MOEA/D-
DRA first selects m indexes of the subproblems whose objec-
tives are, respectively, m objectives fi in order to form an initial
set I, and then other �N/5−m subproblems (N is the number
of weight vectors) are selected into I by using 10-tournament
selection based on π i.

2) MOEA/D-GRA: Following the work of MOEA/D-DRA,
a GRA strategy was designed in MOEA/D-GRA [34]. In this
approach, a PoI vector is maintained and each subproblem
is uniquely associated with a PoI element. A larger value of
PoI indicates a higher probability that the corresponding sub-
problem will be selected to be further improved. That is to
say, at each generation, the subproblems are selected using
the probabilities in this PoI vector. This way, the computa-
tional resources can be assigned to the subproblems with high
PoI values. The PoI vector is updated as follows:

pi = �i + ε

max
j=1,...,N

{
�j
}+ ε

(5)

where i = 1, . . . , N,�i is defined in (4), and ε is a small
value to avoid the numerator or denominator to be zero. It is
worth noting that once none of the subproblems can be further
improved during the previous �t generation, i.e., max{�j} =
0(j = 1, . . . , N), this PoI vector will be reinitialized with
pi = 1 for i = 1, . . . , N, so that all the subproblems will have
an equal probability of being selected for being evolved.

In MOEA/D-GRA, when selecting the subproblems for evo-
lution, uniformly distributed random values in the range [0, 1]
are generated to compare with the probabilities in the PoI
vector. That is to say, if the probability pi in the PoI vector is
larger than the uniformly distributed random number in [0, 1],
the corresponding subproblem i will be selected for evolu-
tion at this generation. During the evolution, this PoI vector
is updated with a period of �t generations using (5).

C. Short Discussion of MOEA/D-DRA and MOEA/D-GRA

The RA strategies in MOEA/D-DRA and MOEA/D-
GRA were all designed based on the relative improvement
�i of the aggregated function for each subproblem. The main
difference between MOEA/D-DRA and MOEA/D-GRA is the
formula to estimate the difficulties of the subproblems, i.e.,
π i used in MOEA/D-DRA and pi used in MOEA/D-GRA. In
MOEA/D-DRA, a set of subproblems is selected for evolu-
tion according to their utility functions π i at each generation.
This kind of selection in MOEA/D-DRA can also be real-
ized in MOEA/D-GRA by simply setting pi = 1 or pi = 0.
Therefore, MOEA/D-GRA can be seen as an extension of
MOEA/D-DRA.

It was experimentally validated that the relative improve-
ment on the aggregated function values is an effective and
efficient indicator to dynamically assign the computational
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Fig. 1. Solutions obtained by MOEA/D-GRA at the tenth generation.

resources for the subproblems [34]. However, the utility func-
tions used in DRA and GRA were naturally designed only
depending on the convergence aspect. This may lead to the
case that some subproblems are assigned with too many com-
putational resources when they are surrounded by numerous
solutions. Therefore, it is more reasonable to also consider the
assignment of computational resources from another aspect
(i.e., diversity), especially on some complicated problems.
Thus, an IRA (diversity-enhanced) strategy is designed in this
paper, which takes into account both convergence and diver-
sity of each subproblem. This way, computational resources
can be more reasonably assigned in MOEA/D. The details of
our IRA strategy will be described next.

III. PROPOSED MOEA/D-IRA

In this section, the details of MOEA/D-IRA are intro-
duced. First, the IRA strategy is presented and then the
pseudo-code of MOEA/D-IRA is also provided to facilitate
its implementation.

A. Diversity-Enhanced Resource Allocation Strategy

The allocation of computational resources in MOEA/D is
an important issue. Although MOEA/D-DRA and MOEA/D-
GRA have already been designed to alleviate the above
problem, they only adopt the relative improvement of aggre-
gated function values in (4) to dynamically assign the compu-
tational resources to the subproblems. Essentially, these two
strategies only consider the convergence ability and ignore
the distribution of solutions among the suproblems. In some
cases, the subproblems may be surrounded with numerous
solutions due to an uneven distribution in objective space,
which often happens at the early stages of the search. In
Fig. 1, the intermediate populations obtained by MOEA/D-
GRA at the tenth generation are plotted with a population size
of 300 when solving complex test problems, such as UF3 [47]
and F2 [35]. As many solutions were located in the central
area of the plots, most of them were evolved to further improve
the subproblems in this area. This search behavior improves
these subproblems quickly and thus assigns large amounts of
computational resources to them using the GRA approach,
which may significantly lower the population diversity. For
such cases, it is more reasonable to consider the diversity also
as an essential indicator in the RA strategy. It is worth men-
tioning that our IRA strategy is composed by two parts; one
is the convergence indicator using the relative improvement

Fig. 2. Solution density of the weight vectors.

on aggregated function values, and the other is the diversity
indicator based on the number of solutions around the sub-
problems. This way, the IRA strategy would like to assign
more computational resources to the subproblems surrounded
with less solutions, which helps to enhance these subprob-
lems. On the other hand, as the improvement of subproblems
under the framework of MOEA/D is mainly dependent on the
information of neighboring subproblems, by assigning more
computational resources to the subproblems with low solu-
tion density, their enhancement will in turn facilitate the better
solving of other subproblems.

Inspired by Li et al. [40], the solution density, sd, around
each subproblem is adopted here to estimate the diversity cir-
cumstance of each subproblem. Some well-known MOEAs,
such as MOEA/DD [42] and NSGA-III [48], also adopt the
similar solution association method to maintain population
diversity. As shown in Fig. 2, each subregion �i is associated
with the direction vector λi of a subproblem i. The solution x
belongs to the subregion �i only when the direction vector λi

is closest to the solution among all the direction vectors based
on the perpendicular distance in the following equation:

d⊥(x, λ) = F′(x) − λTF′(x)
λTλ

λ (6)

where F′(x) is the normalized objective vector of x, and its
normalized objectives f ′

k(x) (k = 1, 2, . . . , m, and m is the
total number of objectives) of x are obtained using

f ′
k(pi) = fk(pi) − fk min

fk max −fk min
(7)

where fk max and fk min are, respectively, the maximum and
minimum values of the kth objective found in the population.
Then, the sdi of subproblem i is the number of solutions in
subregion �i. For example, in Fig. 2, the direction vector clos-
est to the solutions x2, x6, and x7 is λ3, thus they belong to
the subregion �3 and the solution density of subproblem 3 is
3, i.e., sd3 = 3. By integrating the relative improvement on
aggregated function value and the solution density on each
subproblem, our IRA strategy is defined as

pi = β × �i + ε

max
j=1,2,...,N

{
�j
}+ ε

+ (1 − β) ×
⎛

⎜
⎝1 − sdi

max
j=1,2,...,N

{
sdj
}

⎞

⎟
⎠ (8)
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Algorithm 1 UPDATE_P (S, S′, λ)

Input: current solution set S = {x1, x2, . . . , xN}, previous solution set
S′ before �t generations, the weight vectors λ = {λ1, λ2, . . . , λN}
Output: selection probability vector P

1: for i = 1 to N do
2: sdi = 0;
3: end for
4: for i = 0 to N do
5: for j = 0 to N do
6: calculate the perpendicular distance d(i, j) = d⊥(xi, λj)

using (6);
7: end for
8: find the subproblem k as: k = argj=1,...,N min{d(i, j)};
9: sdk++;

10: calculate the relative improvement �i using (4);
11: S′ = S;
12: end for
13: for i = 0 to N do
14: compute selection probability pi for each subproblem

using (8);
15: end for
16: return P

where ε = 1.0 × 10−50 is a small value to guarantee a valid
division, �i is the relative improvement on aggregated func-
tion value as defined in (4), sdi is the solution density as
described above, N is the number of direction vectors, and β

is a control parameter to adjust the weights of the two parts.
A selection probability pi (i = 1, . . . , N) is associated with

each subproblem i and then the computational resources are
accordingly assigned based on this probability. That is to say,
once a randomly generated real value in [0, 1] is smaller than
pi, the subproblem i will be selected for evolution in this gen-
eration. Based on the observation of (8), it is easy to find out
that our IRA strategy is actually a weighted sum of the conver-
gence and diversity factors, as controlled by the parameter β.
According to (8), the subproblem, which has been improved
significantly over the last �t generations and has less sur-
rounding solutions, will be assigned with a higher selection
probability for evolution in the next generation. Moreover,
it is noted that when the parameter β is set to 1.0 in (8),
our IRA strategy degenerates into the GRA strategy in [34].
Therefore, our IRA strategy is more comprehensive than the
GRA strategy and it is an improvement of GRA, as the
diversity indicator is further exploited for RA.

The pseudo-code of the update of the selection probability
using our IRA strategy is given in Algorithm 1. Lines 1–3
in Algorithm 1 are used to initialize the solution density of
each subproblem to be zero. Then, for each solution index
i in line 4, the perpendicular distances between the solution
xi and all the weight vectors λj(j = 1, 2, . . . , N) are com-
puted in lines 5–7. After that, in lines 8 and 9, the weight
vector λk closest to the solution xi is found and the solution
density of subproblem k is increased by one. This way, the
solution density is an integer not smaller than zero. The rel-
ative improvement �i is calculated in line 10 based on the
solution set S′ before �t generations and the current solution
set S. In line 11, the solution set S′ is updated by the current
solution set S to compute the value �i for the next iteration.

Algorithm 2 MOEA/D-IRA

1: Initialize the population S = {x1, x2, . . . , xN}, the saved popula-
tion S′ = S, the weight vectors λ = {λ1, λ2, . . . , λN}, the ideal
point z∗ = {z1, z2, . . . , zN};

2: set e = 0, gen = 0, A = {1, 2, . . . , N}, pi = 0.5 for each i =
1, 2, . . . , N;

3: for i = 0 to N do
4: initialize neighbor B(i) = {i1, i2, . . . , iT } where

λi1 , λi2 , . . . , λiT are the T closet weight vectors to λi;
5: end for
6: for i = 0 to T do
7: compute the neighbor selection probability pni using (9);
8: end for
9: while e < max_evaluations do

10: for i = 0 to N do
11: if rand(0, 1) ≤ pi then
12: if rand(0, 1) ≤ δ then
13: E = B(i);
14: else
15: E = A;
16: end if
17: select two solutions xr1 , xr2 from E based on pn;
18: generate an offspring vi using xr1 , xr2 , xi by DE;
19: get a new solution yi by executing polynomial mutation

on vi;
20: evaluate the objective values of yi;
21: update the ideal point z∗;
22: update the population using yi;
23: e = e + 1;
24: end if
25: end for
26: gen = gen + 1;
27: if mod(gen, �t) == 0 then
28: update P = UPDATE_P(S, S′, λ) using Algorithm 1;
29: end if
30: end while

At last, line 14 updates the selection probability vector P
using both relative improvement �i and solution density sdi

as defined in (8).

B. Algorithmic Framework of MOEA/D-IRA

Based on the above IRA strategy, the algorithmic frame-
work of MOEA/D-IRA is introduced. The pseudo-code of
MOEA/D-IRA is given in Algorithm 2. Regarding the other
important parts of the algorithm, a detailed introduction is
given below.

1) Initialization: First, in line 1, an initial population S =
x1, x2, . . . , xN is randomly sampled in decision space and the
saved population S′ (used for computing the relative improve-
ment after �t generations) is initialized as S. As the exact
ideal point is unknown in advance, an approximated point is
used instead, which can be obtained as the minimum func-
tion value of each objective, i.e., z∗

i = min{fi(x)|x ∈ S} for
all i = {1, . . . , m}. The weight vectors λ = {λ1, λ2, . . . , λN}
are initialized as a set of evenly distributed vectors with the
constraints

∑m
j=1 λi

j = 1 and λi
j ≥ 0 for all i = {1, . . . , N}.

Second, in line 4, in order to initialize the neighbors of
weight vector λi, the Euclidean distances between λi and other
weight vectors are computed, and then the neighbors of λi are
included in a set B(i) = {i1, i2, . . . , iT}, where λi1 , λi2 , . . . , λiT

are the T closest weight vectors to λi. Based on this procedure,
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Fig. 3. Dynamic change of selection probability pn with different neighbor
ranks.

a neighbor rank is also obtained based on the Euclidean dis-
tances among the weight vectors. The closest neighbor for each
subproblem is λi1 with the neighbor rank 1, while its farthest
neighbor is λiT with the neighbor rank T. Then, a probability
pn is used to select the parent solutions for applying the DE
operator, as follows:

pni = pnmin

+ (
1 − pnmin

)
(

1 − 1

1 + 0.05 × exp
(−20 × i

T − 0.7
)

)

(9)

where pnmin is a minimum probability to ensure that each
neighbor has the opportunity to be selected; T is the neigh-
bor size; and i is the neighbor rank based on the Euclidian
distance of weight vectors. The closer neighbors have more
chance to be selected using (9), as shown in line 7. Fig. 3 illus-
trates the dynamic change of probability pn with different
neighbor ranks. It shows that the closer neighbors have higher
opportunity to participate in the DE evolution than the farther
neighbors.

2) Reproduction: Reproduction is an important compo-
nent to generate an offspring population. There are a lot of
reproduction operators, such as SBX [5] and DE [49], [50].
In lines 18 and 19 of Algorithm 2, the DE operator and
polynomial-based mutation [3] are used to generate new solu-
tions, as shown in (10)–(12). The main process of this
operation is introduced below.

At first, a subproblem i is selected for evolution according
to the selection probability pi. If this subproblem i is selected
for evolution, the candidate set E for selecting parent solutions
is set to the neighbor set B(i) or the entire population based on
the parameter δ. Then, in line 17, when a solution is randomly
selected from the candidate set E, a random real-value is further
produced to check if it is larger than the probability pn in (9). If
yes, this solution is selected as the parent solution for applying
the DE operator. Only the parents in the neighborhood have
to be selected with a probability pn, while the parents from
the entire population are all selected randomly for the sake of
keeping diversity. With two selected parent solutions and the
solution for current subproblem i, the DE operator is run to
generate a new solution vi = vi

1, . . . , vi
n, as follows:

vi
j =

{
xi

j + F ×
(

xr1
j − xr2

j

)
if rand < CR or j = jrand

xi
j otherwise

(10)

where CR and F are two control parameters of the DE oper-
ator, rand is a random real number uniformly sampled from
[0, 1], jrand is a random integer uniformly selected from [1, n],
and xr1 and xr2 are two selected solutions from E. After that,
polynomial-based mutation is further implemented on vi to
obtain the offspring solution yi, as follows:

yi
j =

{
vi

j + �j × (
uj − lj

)
if rand < pm

vi
j otherwise

(11)

with

�j

=

⎧
⎪⎪⎨

⎪⎪⎩

[
2r + (1 − 2r)

(
uj−vj
uj−lj

)η+1
]1/(η+1)

− 1 if r < 0.5

1 −
[

2 − 2r + (2r − 1)
(

vj−lj
uj−lj

)η+1
]1/(η+1)

otherwise

(12)

where j ∈ {1, . . . , n}, r is a random real number uniformly
sampled from [0, 1], η is the distribution index, pm is the muta-
tion probability, and lj and uj are, respectively, the lower and
upper bounds of the jth decision variable.

3) Updating: After generating a new solution, the popu-
lation should be updated by using a replacement strategy to
discard the inferior old solution and keep the good new one.
In MOEA/D [16] and some variants [33], [35], several solu-
tions in the neighbors or the entire population can be replaced
by the new one. In line 22 of Algorithm 2, the new solution
only replaces the solution of the matched subproblem based
on its relative improvement. By calculating the improvement
of this solution to each subproblem, the one with the largest
improvement rate will be replaced. Compared to the random
replacement strategy [16], this strategy is particularly effec-
tive when the subproblem that can be greatly improved by
the new solution is not in its neighbor set [34]. On the other
hand, in line 28, the selection probability P of each subprob-
lem is updated within a period of �t generations by using
Algorithm 1.

IV. EXPERIMENTS

In this section, the relevant experimental design for
performance analysis of the proposed algorithm is
provided. The test problems, parameters settings, and
performance measures used in our experiments are introduced
first. Then, the comparison of results of our proposed
MOEA/D-IRA with respect to four competitive MOEA/D
variants (i.e., MOEA/D-DE, MOEA/D-IR, MOEA/D-DRA,
and MOEA/D-GRA) are provided. Moreover, the contribu-
tions of two components [the IRA strategy and the mating
parent selection strategy using (9)] are experimentally studied
in MOEA/D-IRA, and two existing RA strategies (DRA
and GRA) are used to compare the IRA strategy, under
the framework of MOEA/D-IRA. At last, the impact of
the parameters settings in our algorithm is analyzed and
a suggestion for setting the parameter values is also provided
based on the experiments.

Authorized licensed use limited to: Hanyang University. Downloaded on November 09,2023 at 07:17:42 UTC from IEEE Xplore.  Restrictions apply. 



2394 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 48, NO. 8, AUGUST 2018

A. Test Problems and Parameters Settings

In our experiments, 19 unconstrained test MOPs
were used to assess the performance of our proposed
algorithm, including ten UF instances (UF1–UF10) from
the CEC2009 MOEA competition [47] and nine F
instances [35], which were widely used to test the
comprehensive performance of several MOEA/D vari-
ants [33], [34], [36], [39], [40]. The test instances
adopted in this paper have different features and their PS
shapes are very complicated. It is noted that UF1–UF7, F1–F5,
and F7–F9 are bi-objective problems, while UF8–UF10 and
F6 are three-objective problems. The number of decision
variables is set to 30 for F1–F5, F9 and all UF test problems,
and is set to 10 for F6–F8.

The parameters in all the compared algorithms are set as
follows.

1) MOEA/D-DE: The NS T = 20, the probability to select
the neighbors as the candidate set for evolution δ = 0.9,
and the updated size nr = 2. The other parameters are
set the same as in [35].

2) MOEA/D-DRA: The NS T = 0.1N (N is the number of
weight vectors), the probability to select the neighbors as
the candidate set for evolution δ = 0.9, and the updated
size nr = 0.01N. The other parameters are set the same
as in [33].

3) MOEA/D-IR: The NS T = 20, and the probability to
select the neighbors as the candidate set for evolution
δ = 0.9. The other parameters are set the same as
in [40].

4) MOEA/D-GRA: The NS T = 20, the probability to select
the neighbors as the candidate set for evolution δ = 0.8,
and the updating period �t = 20. The other parameters
are set the same as in [34].

5) MOEA/D-IRA: The NS T = 20, the probability to select
the neighbors as the candidate set for evolution δ = 0.8,
the updating period �t = 20, the weight parameterβ =
0.98 in (8), the minimum selection probability in (9)
pnmin = 0.05.

The population size N was set to 300 for all bi-
objective test MOPs and to 600 for all three-objective test
MOPs. The adopted weight vectors can be downloaded
from the website of Dr. K. Li (http://www.cs.bham.ac.uk/∼
likw/publications.html). The maximum allowable number of
function evaluations was set to 150 000 for F1–F5 and
F7–F9, and to 300 000 for F6 and UF1–UF10. All the com-
pared algorithms performed 51 independent runs on each test
problem.

B. Performance Measures

In this paper, in order to provide a comprehensive assess-
ment on the performance for the compared MOEA/D variants,
two widely used performance measures, i.e., inverted genera-
tional distance (IGD) [51] and hypervolume (HV) [52], were
adopted. They can simultaneously measure the convergence
and the population diversity of the obtained approximation
set. When calculating IGD, 1000 points were uniformly sam-
pled from the true PF for the bi-objective test problems,

while 10 000 points were sampled for the three-objective ones.
A lower value of IGD indicates that the obtained set is closer
to the true PF and more uniformly distributed along the true
PF. Regarding the computation of HV, it is more appropriate
to set the reference point slightly larger than the worst value of
each objective on the true PF, so that the convergence and the
diversity of the approximation set can be well balanced [52].
Thus, the reference point was set to (2.0, 2.0)T for bi-objective
UF and F instances, and set to (2.0, 2.0, 2.0)T for the three-
objective instances. A larger value of HV indicates a better
quality of P for approximating the entire true PF.

C. Performance Comparisons With Other
MOEA/D Variants

In this section, the performance of MOEA/D-IRA is com-
pared to four MOEA/D variants, i.e., MOEA/D-DE [35],
MOEA/D-DRA [33], MOEA/D-GRA [34], and MOEA/D-
IR [40] which is based on the framework of MOEA/D-
DRA. Tables I and II, respectively, provide the results of
all the algorithms on UF and F instances after perform-
ing 51 independent runs, regarding IGD and HV. The best
mean result for each problem is highlighted in boldface with
gray background. In order to have a statistically sound con-
clusion, Wilcoxon’s rank sum test with a 5% significance
level was conducted to compare the significance of difference
between the results obtained by MOEA/D-IRA and the other
algorithms. In Tables I and II, “−,” “+,” and “∼,” respec-
tively, denote that the results obtained by the corresponding
algorithm are worse than, better than or similar to those of
MOEA/D-IRA.

As observed from Table I, MOEA/D-IRA is found to be
advantageous when compared to its competitors with respect
to IGD. Among the 19 test instances, MOEA/D-IRA is able
to perform best on 16 test problems, while the other com-
pared algorithms could only obtain the best results on at most
two test problems. The comparisons of MOEA/D-IRA with
other algorithms are summarized in the last row of Table I,
where “−/∼/+” gives the total number of test problems
in which MOEA/D-IRA performs better than, similarly to,
and worse than the corresponding algorithm. Considering the
comparisons with MOEA/D-DE, MOEA/D-IR, and MOEA/D-
DRA, MOEA/D-IRA has shown an absolute advantage, as
it outperforms them on at least 17 test problems; whereas,
MOEA/D-IRA only performs worse than MOEA/D-IR on UF8
and F8, and worse than MOEA/D-DE on F8, as revealed by
the Wilcoxon’s rank sum test. When compared to MOEA/D-
GRA, MOEA/D-IRA performs better on 14 test problems and
obtains statistically similar results on three test problems as
indicated by Wilcoxon’s rank sum test, and it is outperformed
only on UF3 and F8.

Therefore, when considering all the test problems adopted,
it is reasonable to draw a conclusion that our algo-
rithm presents a superior performance over MOEA/D-DE,
MOEA/D-IR, MOEA/D-DRA, and MOEA/D-GRA with
respect to IGD. Such advantages of MOEA/D-IRA are mainly
brought by the IRA strategy combined with the convergence
and diversity indicators in (8).
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TABLE I
PERFORMANCE COMPARISON OF SEVERAL COMPETITIVE MOEA/D VARIANTS USING IGD VALUES ON UF AND F TEST INSTANCES

TABLE II
PERFORMANCE COMPARISON OF SEVERAL COMPETITIVE MOEA/D VARIANTS USING HV VALUES ON UF AND F TEST INSTANCES

Table II further lists the experimental results of all the
compared algorithms with respect to HV. As observed
from Table II, similar conclusions are drawn. First,
MOEA/D-IRA outperforms others as it performs best on most
of the test problems adopted. MOEA/D-IRA obtains the best
results on 15 out of 19 test problems, while MOEA/D-IR and
MOEA/D-GRA only achieve the best results on two test prob-
lems. Second, MOEA/D-IRA performs better on most cases
when, respectively, compared to MOEA/D-DE, MOEA/D-IR,
MOEA/D-DRA, and MOEA/D-GRA. Only MOEA/D-GRA
outperforms MOEA/D-IRA on UF3 and F8, while the
other competitors cannot surpass MOEA/D-IRA on any test
problem. Besides that, MOEA/D-IRA obtains statistically

similar results to MOEA/D-DE on F8, to MOEA/D-IR on UF8
and F1, to MOEA/D-DRA on F7, and to MOEA/D-GRA on
UF4. As summarized in the last row of Table II, our algorithm
performs better than or similarly to MOEA/D-DE, MOEA/D-
IR, MOEA/D-DRA, and MOEA/D-GRA on 19, 19, 19, and
17 out of 19 test problems. Therefore, it is further confirmed by
using HV that our algorithm shows advantages when tackling
the UF and F test problems.

In order to have a deeper understanding about the
performance of our algorithm, Figs. 4–6 provide the plots of
the approximation set obtained by MOEA/D-DE, MOEA/D-
IR, MOEA/D-DRA, MOEA/D-GRA, and MOEA/D-IRA on
UF2, UF9, and F5, respectively, in which the true PFs are
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Fig. 4. Comparison of approximation sets on UF2.

Fig. 5. Comparison of approximation sets on UF9.

Fig. 6. Comparison of approximation sets on F5.

also illustrated for comparison. These plotted solutions were
obtained from one run with the median IGD value from
51 runs. As observed from Fig. 4, MOEA/D-DE, MOEA/D-IR,
MOEA/D-DRA, and MOEA/D-GRA fail to find a set of uni-
formly distributed solutions to cover the entire true PF of UF2,
as they miss some Pareto-optimal solutions at one end of the
true PF. MOEA/D-IRA performs much better as it smoothly
covers the entire true PF of UF2. Regarding UF9 in Fig. 5, the
approximation set obtained by MOEA/D-IRA can also evenly
approximate the true PF, while MOEA/D-DE, MOEA/D-IR,
MOEA/D-DRA, and MOEA/D-GRA find some extreme solu-
tions far away from the true PF. In Fig. 6, MOEA/D-IRA also
provides more evenly distributed solutions, while the other
competitors fail to find some Pareto-optimal solutions on some
parts of the true PF. From these observations, it is clear that
the final solution sets found by MOEA/D-IRA are closer to
the true PFs and are more uniformly distributed along the true
PFs when compared to the other competitors. Moreover, to
provide an overview of the evolutionary progress for all the
competitors, their convergence curves regarding the mean IGD
values on all the UF problems are provided in Fig. S.1 of the
supplementary file. This information is not included in this
paper due to page limitations. From these plots, MOEA/D-IRA
outperforms the competitors on most cases, and is able to

gradually reduce the IGD values and get closer to the true
PF on most of UF problems as the search progresses.

To further study the performance of MOEA/D-IRA under
a limited computational load, one more experiment was
conducted with 20% of maximum function evaluations
(i.e., 30 000 for F1–F5 and F7–F9, and 60 000 for F6
and UF1–UF10) for all the compared algorithms. Due to
page limitations, the IGD and HV results are provided in
Tables S.I and S.II of the supplementary file. As the final
solutions in this case do not fully converge to the true PFs,
the advantages of MOEA/D-IRA over the other competitors
are not so obvious as shown in Tables I and II. This is
because all the subproblems still have the potential to be
further enhanced and an equal-probability selection for
them can also improve their aggregated function values.
However, our IRA approach still works effectively under this
limited computational load, as it performs better than all the
competitors from the one-by-one comparisons shown in the
last row of Tables S.I and S.II in the supplementary file.

The above comparisons clearly show us that
MOEA/D-IRA is a more effective algorithm to solve some
complicated test problems when compared to MOEA/D-DE,
MOEA/D-IR, MOEA/D-DRA, and MOEA/D-GRA.
The outstanding performance of MOEA/D-IRA is mainly
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT MOEA/D-IRA VARIANTS USING IGD AND HV VALUES ON UF AND F TEST INSTANCES

due to the utilization of a diversity-enhanced RA strategy,
which helps to assign the computational resources more
reasonably by considering both convergence and diversity for
each subproblem.

D. Comparisons With Different MOEA/D-IRA Variants

In order to analyze the contributions of the two compo-
nents (i.e., the IRA strategy and the mating parent selec-
tion strategy) proposed in MOEA/D-IRA, two variants of
MOEA/D-IRA (i.e., variant-I and variant-II) are used for
performance comparison. Variant-I is implemented by remov-
ing the mating parent selection strategy from MOEA/D-IRA
and only uses the original random selection of the mating par-
ents. Variant-II is designed by removing the IRA strategy from
MOEA/D-IRA and all the subproblems are equally evolved in
one generation. All the mean IGD and HV results of variant-I,
variant-II, and MOEA/D-IRA from 51 runs are, respectively,
listed in Table III.

From the IGD results in Table III, it is clear that
MOEA/D-IRA shows a superior performance when compared
to both variant-I and variant-II. Most of the best IGD values are
obtained by MOEA/D-IRA. Variant-I is best on four test prob-
lems, while variant-II cannot perform best on any test problem.
These results indicate that the two strategies are all effective
to enhance the performance of MOEA/D-IRA on most of the
test problems adopted. More specifically, MOEA/D-IRA out-
performs variant-I and variant-II on 10 and 16 out of 19 test
problems, respectively. The Wilcoxon’s rank sum test also
shows that MOEA/D-IRA performs similarly to variant-I and
variant-II on seven and three test problems, respectively. Only
variant-I is able to outperform MOEA/D-IRA on two test prob-
lems (i.e., UF3 and F6). Therefore, the effectiveness of the two
above strategies is validated using IGD.

Regarding the HV results in Table III, MOEA/D-IRA per-
forms best on 13 out of 19 test problems, while variant-I
is best on the rest six test problems. As revealed by the
Wilcoxon’s rank sum test, MOEA/D-IRA obtains statisti-
cally similar results to variant-I and variant-II on nine and
three test problems, and outperforms variant-I and variant-
II on 8 and 16 test problems, respectively. That is to say,
MOEA/D-IRA performs better than or similarly to variant-I
and variant-II on 17 and 19 out of 19 test problems. Thus, the
two proposed strategies still show their usefulness using HV,
as they improve performance on about half of the test prob-
lems, but only deteriorate it on two test problems. Therefore,
the advantage of using these two strategies in MOEA/D-IRA is
further confirmed by HV.

E. Comparisons of Different RA Strategies

To further analyze the advantages of different RA strate-
gies, such as DRA, GRA, and IRA, some experiments were
conducted here. MOEA/D-IRA has a different evolutionary
behavior with respect to MOEA/D-DRA and MOEA/D-GRA,
i.e., the mating parent selection when running DE. So, in order
to have a fair comparison of these different RA strategies,
DRA and GRA are also embedded into MOEA/D-IRA to
substitute our IRA strategy, making two new variants as
denoted by DRA-I and GRA-I. It is noted that, except for the
RA strategy, DRA-I and GRA-I share the same evolutionary
procedures as MOEA/D-IRA.

Table IV presents the comparison of results of DRA-I,
GRA-I, and MOEA/D-IRA using IGD and HV. Regarding the
IGD results in Table IV, it is clear that MOEA/D-IRA also
presents a superior performance over DRA-I and GRA-I.
MOEA/D-IRA achieves most of the best IGD values, while
DRA-I performs best on UF8 and F8, and GRA-I only
obtains the best performance on UF1. This also indicates
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TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT RA STRATEGIES USING IGD AND HV VALUES ON UF AND F TEST INSTANCES

that our IRA strategy is more effective than GRA and DRA,
to enhance MOEA/D on tackling most of the test MOPs
adopted. More specifically, MOEA/D-IRA outperforms DRA-I
and GRA-I on 17 and 10 out of 19 test problems, respec-
tively. The Wilcoxon’s rank sum test also indicates that
MOEA/D-IRA performs similarly to DRA-I and GRA-I on
one and nine test problems, respectively. DRA-I only beats
MOEA/D-IRA on F8. Therefore, the superior performance of
IRA over DRA and GRA is justified using IGD. As the only
difference of IRA from GRA and DRA is the extra diversity
indicator, this validates the statement that the combination of
convergence and diversity indicators in the RA strategy can
be more reasonable to assign the computational resources to
the subproblems.

Based on the HV results in Table IV, MOEA/D-IRA per-
forms best on 16 out of 19 test problems. GRA-I is best on
three test problems, while DRA-I cannot perform best on any
test problem. As revealed by the Wilcoxon’s rank sum test,
MOEA/D-IRA obtains statistically similar results to DRA-I
and GRA-I on three and nine test problems, and outperforms
DRA-I and GRA-I on 16 and 10 test problems, respectively.
That is to say, MOEA/D-IRA performs better than or similarly
to both DRA-I and GRA-I on all the 19 test problems. Thus,
the proposed IRA strategy is shown to be very effective as
it improves performance on about half of the test problems,
but does not deteriorate on any test problem. Therefore, the
advantage of our proposed IRA is also confirmed by HV.

F. Parameter Sensitivity Analysis of Our IRA Strategy

In the proposed IRA strategy, the selection of parameter β

will significantly affect the performance of MOEA/D-IRA, as
it is an important factor to control the weights of the conver-
gence indicator (i.e., the relative improvement of each sub-
problem) and the diversity indicator (i.e., the solution density

Fig. 7. Parameter sensitivity studies of β.

around each subproblem) when computing the selection prob-
ability of each subproblem. An appropriate setting of β can
properly balance the convergence and the diversity, which
benefits the performance enhancement of our algorithm.

To study the impact of parameter β in MOEA/D-IRA, we
adopted different β values (i.e., 0.7, 0.8, 0.9, 0.95, 0.98, and
1.0) for performance comparison. Since the convergence indi-
cator is still the main contributor to distinguish the difficulties
of the subproblems while the diversity indicator is only used
as a complement for enhancement, the values of β were set to
start from 0.7. The other parameters of MOEA/D-IRA were
set the same as mentioned in Section IV-A. For each value of
β, 19 test problems were independently run 51 times. Due to
page limitations, only the boxplots of the IGD values obtained
by six β values on some typical test problems, such as UF7,
UF8, UF10, F1, F4, and F5, are provided in Fig. 7.
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Fig. 8. Plots of final solutions obtained by MOEA/D-IRA with different β on F5.

Fig. 9. Plots of final solutions obtained by MOEA/D-IRA with different β on UF8.

As observed from Fig. 7, it is found that MOEA/D-IRA is
sensitive to the setting of β. Generally, the performance of
MOEA/D-IRA with a large β value is superior to that with
a small β value. The IGD values are generally reduced
when the values of β(β < 1.0) are increased. Particularly,
when the value of β is set to 1.0 (i.e., removing the diver-
sity indicator), the optimization performance would obviously
deteriorate, as its IGD value becomes larger when com-
pared to that obtained by a large value of β less than 1.0
(e.g., 0.98 and 0.95). To visually show their performance,
Figs. 8 and 9, respectively, plot the final solutions obtained
by MOEA/D-IRA with different values of β, in solving F5
and UF8. It is noted that these plotted solutions were obtained
from one run with the median IGD value from 51 runs. On
F5, only MOEA/D-IRA with β = 0.98 can fully approach the
true PF, while MOEA/D-IRA with other values of β may miss
some parts of the true PF. Regarding UF8, MOEA/D-IRA with
different β values may fail to approach some regions of the
true PF, as UF8 is more difficult and has three optimization
objectives. However, based on the observation of the plots,
MOEA/D-IRA with β = 0.98 covers more regions of the true
PF on UF8. This also indicates that the diversity indicator
plays an important role in MOEA/D-IRA as a supplement
for the convergence indicator. Based on the comparisons of
MOEA/D-IRA with different values of β, it is found that
a value in the range (0.9, 1.0) is more appropriate for setting
β in MOEA/D-IRA. This value makes the diversity indicator
work effectively in most cases without having a significant
negative effect on convergence, so as to properly keep the
balance between convergence and diversity.

G. More Discussion of Our IRA Strategy

Due to page limitations, further discussions of our IRA strat-
egy are provided in the supplementary file of this paper,
in order to study the effectiveness of our IRA strategy on

a generational version of MOEA/D (i.e., MOEA/D-STM [39])
and on solving other types of test problems (i.e., MOP test
problems [19]).

V. CONCLUSION

This paper proposes a diversity-enhanced RA strategy for
decomposition-based MOEAs. The convergence indicator, i.e.,
the relative improvement of aggregated function value, is still
the main factor in our IRA strategy, while the diversity indi-
cator, i.e., the solutions density around each subproblem, is
used as a complement to make the resource assignment more
reasonable. This way, more computational resources will be
assigned to search the sparse area and the subproblems around
this region will be enhanced. Such enhancement will also
help to improve the neighboring subproblems as MOEA/D is
essentially a co-evolutionary framework. Based on the combi-
nation of the two above indicators, the proposed IRA strategy
can properly balance the convergence and the diversity. After
assessed on 19 complicated test MOPs, our algorithm shows
advantages over four competitive MOEA/D variants, i.e.,
MOEA/D-DE, MOEA/D-IR, MOEA/D-DRA, and MOEA/D-
GRA, on solving most of the test problems adopted.

Different subproblems decomposed from MOPs may
emphasize convergence or diversity when allocating the com-
putational resources. In our future work, an adaptive RA strat-
egy will be further studied for MOEA/D algorithms, without
setting any extra parameters. On the other hand, some adap-
tive control approaches will also be studied in MOEA/D-IRA,
such as the multiple evolutionary operators that dynamically
allocate the computational resources to the preferred operator.
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