
578 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 4, AUGUST 2018

A Level-Based Learning Swarm Optimizer
for Large-Scale Optimization

Qiang Yang, Student Member, IEEE, Wei-Neng Chen, Senior Member, IEEE, Jeremiah Da Deng, Member, IEEE,
Yun Li, Senior Member, IEEE, Tianlong Gu, and Jun Zhang, Fellow, IEEE

Abstract—In pedagogy, teachers usually separate mixed-level
students into different levels, treat them differently and teach
them in accordance with their cognitive and learning abilities.
Inspired from this idea, we consider particles in the swarm as
mixed-level students and propose a level-based learning swarm
optimizer (LLSO) to settle large-scale optimization, which is still
considerably challenging in evolutionary computation. At first, a
level-based learning strategy is introduced, which separates par-
ticles into a number of levels according to their fitness values
and treats particles in different levels differently. Then, a new
exemplar selection strategy is designed to randomly select two
predominant particles from two different higher levels in the cur-
rent swarm to guide the learning of particles. The cooperation
between these two strategies could afford great diversity enhance-
ment for the optimizer. Further, the exploration and exploitation
abilities of the optimizer are analyzed both theoretically and
empirically in comparison with two popular particle swarm
optimizers. Extensive comparisons with several state-of-the-art
algorithms on two widely used sets of large-scale benchmark
functions confirm the competitive performance of the proposed
optimizer in both solution quality and computational efficiency.
Finally, comparison experiments on problems with dimension-
ality increasing from 200 to 2000 further substantiate the good
scalability of the developed optimizer.

Index Terms—Exemplar selection, high-dimensional prob-
lems, large-scale optimization, level-based learning swarm opti-
mizer (LLSO), particle swarm optimization (PSO).

Manuscript received December 2, 2016; revised March 14, 2017, May 30,
2017, and August 3, 2017; accepted August 14, 2017. Date of publication
September 5, 2017; date of current version July 27, 2018. This work was
supported in part by the National Natural Science Foundation of China under
Grant 61622206, Grant 61379061, and Grant 61332002, in part by the Natural
Science Foundation of Guangdong under Grant 2015A030306024, in part by
the Guangdong Special Support Program under Grant 2014TQ01X550, and in
part by the Guangzhou Pearl River New Star of Science and Technology under
Grant 201506010002. (Corresponding authors: Wei-Neng Chen; Jun Zhang.)

Q. Yang is with the School of Computer Science and Engineering,
South China University of Technology, Guangzhou 510006, China, and also
with the School of Data and Computer Science, Sun Yat-sen University,
Guangzhou 510006, China.

W.-N. Chen and J. Zhang are with the School of Computer Science and
Engineering, South China University of Technology, Guangzhou 510006,
China (e-mail: cwnraul634@aliyun.com; junzhang@ieee.org).

J. D. Deng is with the Department of Information Science, University of
Otago, Dunedin 9054, New Zealand.

Y. Li is with the School of Computer Science and Network Security,
Dongguan University of Technology, Dongguan 523808, China.

T. Gu is with the School of Computer Science and Engineering, Guilin
University of Electronic Technology, Guilin 541004, China.

This paper has supplementary downloadable multimedia material available
at http://ieeexplore.ieee.org provided by the authors. This consists of a PDF
file containing relevant material not included within the paper itself. This
material is 4.07 MB in size.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2017.2743016

I. INTRODUCTION

PARTICLE swarm optimization (PSO) has been exten-
sively researched and also has been widely applied to

solve real-world problems [1]–[4], since it was first proposed
by Eberhart and Kennedy [5] and Kennedy and Eberhart [6].
Imitating the swarm behaviors of social animals, such as
bird flocking, particles in the swarm traverse the whole solu-
tion space to find the global optimum of the problem to be
optimized.

Specifically, each particle in the swarm represents a candi-
date solution and is denoted by two attributes: position and
velocity, which are updated as

vd
i ← wvd

i + c1r1

(
pbestdi − xd

i

)
+ c2r2

(
nbestdi − xd

i

)
(1)

xd
i ← xd

i + vd
i (2)

where Xi = [x1
i , . . . , xd

i , . . . , xD
i] and Vi =

[v1
i , . . . , vd

i , . . . , vD
i] are the position vector and

the velocity vector of the ith particle, respectively.
pbesti = [pbest1i , . . . , pbestdi , . . . , pbestDi] is its personal
best position and nbesti = [nbest1i , . . . , nbestdi , . . . , nbestDi]
is the best position of its neighbors, which are determined
by the adopted topology [7], [8]. As for the parameters, D
is the dimension size, w is termed as the inertia weight [9],
c1 and c2 are two acceleration coefficients [5], and r1
as well as r2 is uniformly randomized within [0, 1].
Kennedy and Eberhart [6] considered the second part and the
third part in the right of (1) as the cognitive component and
the social component, respectively.

By means of (1), one particle in the swarm learns from
its own experienced knowledge and the social knowledge to
traverse the search space to seek the global optimum of the
optimized problem. However, researchers found that the above
learning strategy is not an efficient way to tackle compli-
cated multimodal problems, because this strategy easily leads
to stagnation or premature convergence [10].

To further improve the efficacy of PSO in handling com-
plicated problems, many researchers sought inspirations from
nature and human society and have proposed an ocean of novel
learning or updating strategies for PSO [11]–[17]. To name
a few, enlightened from the social learning in animal society,
an incremental social learning strategy was put forward in [12]
by adopting a population size increasing approach; inspired by
the phenomenon that the interactive learning behavior takes
place among different groups in human society, Qin et al. [16]
developed an interswarm interactive learning strategy, where

1089-778X c© 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:cwnraul634@aliyun.com
mailto:junzhang@ieee.org
http://ieeexplore.ieee.org
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

YANG et al.: LLSO FOR LARGE-SCALE OPTIMIZATION 579

two swarms dynamically learn from each other when stag-
nation is detected; inspired from the orthogonal experimental
design, an orthogonal learning PSO [13] was designed by con-
ducting orthogonal experimental design on pbest and gbest
(or nbest) to obtain more efficient exemplars for particles.
In addition, Liang et al. [11] developed a comprehensive
learning PSO (CLPSO) and further Lynn and Suganthan [18]
devised heterogeneous CLPSO to enhance the exploration and
exploitation of CLPSO.

Although these PSO variants show better performance
than the classical PSO, they remain effective only in
low-dimensional space. When encountering high-dimensional
problems, their performance deteriorate drastically [19]–[22].
This phenomenon is usually a result of “the curse of dimen-
sionality” [20]. On the one hand, as the dimension size grows,
the search space increases exponentially. Such huge and wide
space greatly challenges the search efficiency of the current
PSO variants [21], [23]. On the other hand, increasing dimen-
sionality may also bring in the explosively increased number
of local optima surrounded by capacious local areas, which
is especially common for large-scale multimodal problems.
Such phenomenon may give rise to great chance of premature
convergence. Therefore, to solve high-dimensional problems
effectively, high diversity preservation is highly required for
EAs to escape from local traps.

Taking inspirations from nature and human society as well,
some researchers have proposed novel learning strategies for
PSO [21], [23], [24] to deal with large-scale optimization.
Generally, these PSO variants can preserve higher diversity
than the former PSO variants [11]–[16]. For consistency, they
will be elucidated in detail in the following section. Although
these PSO variants are promising for large-scale optimization,
premature convergence is still the main challenge.

To solve large-scale optimization problems more efficiently,
this paper proposes a level-based learning (LL) swarm opti-
mizer (LLSO) based on two motivations.

First, in education, it is common that different students
have different cognitive or learning abilities, and thus teach-
ers should treat their students differently in accordance with
their aptitude [25], [26]. In particular, in the mixed-level learn-
ing methodology which has been widely used in education
practice [25], [26], it is suggested that students should be
grouped into different levels with tiered teaching and learn-
ing methods. Similarly, in one swarm, particles are usually in
different evolution states, and particles in different states gen-
erally have different potential in exploring and exploiting the
search space. Thus, they should be treated differently as well.
Inspired from this, a LL strategy is introduced into LLSO,
which groups particles into different levels based on their
fitness values and treats those in different levels differently.

Second, instead of using the historically best positions (such
as pbest, gbest, or nbest) to update particles, two popular and
recent PSO variants, competitive swarm optimizer (CSO) [23]
and SL-PSO [21], directly adopt predominant particles in the
current swarm to guide the learning of particles. Since parti-
cles in the swarm are generally updated in each generation,
the diversity of these two optimizers is greatly promoted and
thus they show good performance in dealing with large-scale

optimization. However, these two optimizers utilize only one
predominant particle to replace one exemplar in (1) to guide
the learning of particles, while the other exemplar is the mean
position of the swarm, which is shared by all particles and
thus is not beneficial for further diversity enhancement. In the
developed LL strategy, since particles in different levels have
diverse potential in exploration and exploitation, they possess
diverse evolutionary information to evolve the swarm and thus
could be utilized as candidates to, respectively, replace the two
exemplars in (1) to direct the learning of particles. To this
end, a new exemplar selection method is incorporated into the
learning strategy, which first randomly selects two different
higher levels and then selects one exemplar from each level,
so that two diverse predominant particles in the swarm could
be selected to guide the learning of particles. In this way, the
search diversity is likely promoted.

Together, the proposed LLSO directly utilizes two predom-
inant particles in the current swarm to guide the learning of
particles. In this manner, this learning strategy can enhance the
diversity of the swarm. In particular, it can compromise explo-
ration and exploitation to search the space in two levels: 1) the
particle level and 2) the swarm level. In the particle level,
one particle can enhance its potential in exploiting the space
by learning from the superior one between the two selected
exemplars and consolidate its potential in exploring the space
via learning from the relatively inferior one. In the swarm
level, particles in different levels have different numbers of
exemplars in higher levels to learn from, resulting in that
particles in lower levels focus on exploring the space, while
those in higher levels concentrate on exploiting the space. The
exploration and exploitation abilities of LLSO are both ana-
lyzed theoretically and verified empirically in comparison with
GPSO [6] and CSO [23].

To verify the efficiency and effectiveness of LLSO, exten-
sive experiments are conducted by comparing LLSO with sev-
eral state-of-the-art large-scale algorithms on CEC’2010 [27]
and CEC’2013 [28] large-scale benchmark sets. Furthermore,
experiments on the CEC’2010 [27] benchmark problems with
dimensionality increasing from 200 to 2000 are performed to
testify the scalability of LLSO.

The rest of this paper is organized as follows. Various
related EAs dealing with large-scale optimization are reviewed
in Section II. Section III elucidates the whole frame-
work of LLSO in detail, following which is the theoretical
analysis about its exploration and exploitation abilities in
Section IV. Then, extensive experiments are conducted in
Section V to verify the effectiveness, efficiency, and good scal-
ability of LLSO. Finally, the conclusion and discussion are
given in Section VI.

II. RELATED WORK ON LARGE-SCALE

OPTIMIZATION

Without loss of generality, in this paper, we consider the
minimization problems defined as follows:

min f (X), X =
[
x1, x2, . . . , xD

]
(3)

580 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 4, AUGUST 2018

where D is the number of variables to be optimized. In addi-
tion, the function value is taken as the fitness value of each
particle.

With D increasing, the above defined problem becomes
more and more difficult to optimize, because on the one
hand, the search space is exponentially increased; on the other
hand, the number of local optima surrounded by wide local
areas may be also explosively increased [20], [21], [23], espe-
cially for multimodal problems [29], [30]. So far, to locate
the global optima of high-dimensional problems efficiently,
researchers attempted to seek solutions from two perspectives:
1) proposing cooperative coevolutionay algorithms (CCEAs),
which divide the whole decision vector into several groups and
evolve each variable group separately and 2) proposing novel
updating strategies for traditional EAs, which evolve all vari-
ables as a whole and preserve high diversity to escape from
local areas.

A. Cooperative Coevolutionary Algorithms

Since Potter [31] proposed the cooperative coevolution (CC)
framework, which adopts the divide-and-conquer technique
to decompose problems into smaller subproblems, vari-
ous CCEAs have come into being by combining CC
with different EAs, such as cooperative coevolutionary
PSO (CCPSO) [32], [33], and cooperative coevolutionary
DE (DECC) [34].

Van den Bergh and Engelbrecht [32] first combined CC
with PSO and proposed CCPSO-SK , which randomly divides
the whole decision vector into D/K subcomponents with each
containing K variables and then utilizes the canonical PSO to
separately optimize each subcomponent. Following CCPSO-
SK , they further developed CCPSO-HK , where the classical
PSO and CCPSO-SK update the swarm in an alternative man-
ner. However, for different problems, the optimal number of
subcomponents is usually different. To ameliorate this issue,
Li and Yao [33] proposed CCPSO2 by designing a group size
pool, which contains different group sizes.

Since in CCEAs, each variable group is individually opti-
mized, the interdependent variables should be placed into the
same group and optimized simultaneously [20]. This indicates
that the decomposition strategy is the most crucial component
for CCEAs to achieve good performance. As a consequence,
the research on CCEAs mainly concentrates on devising
a good decomposition strategy and thus, many decomposi-
tion strategies have shown up [20], [35]–[38]. Among these
strategies, differential grouping (DG) [20] and its variants,
XDG [37] and GDG [38] are the most popular ones because
they can detect variable dependency and thus can separate
variables into groups more accurately.

Though CCEAs are promising for large-scale optimization,
they encounter two limitations, which restrict their wide appli-
cation. For one thing, the performance of CCEAs seriously
relies on the decomposition strategy, and to detect the interde-
pendency among variables, a good decomposer usually con-
sumes a large number of function evaluations [20], [37], [38].
For another, a good CCEA usually costs plenty of function
evaluations, particularly when the number of variable groups

is large. This is because not only the adopted decomposition
strategy consumes a large number of function evaluations, but
also the optimization process consumes a lot of function eval-
uations to evolve variables so that satisfactory performance
can be obtained.

B. Novel Learning or Updating Strategies for EAs

From the other perspective, some researchers are devoted
to developing new learning or updating strategies, which can
preserve high diversity, to aid traditional EAs to cope with
large-scale optimization problems.

Liang and Suganthan [39] proposed a dynamic multiswarm
PSO, where the swarm is randomly divided into multiple small
subswarms and then the local version PSO [40] is utilized
to evolve each subswarm. Enlightened from the competition
in human society, Cheng and Jin [23] and Cheng et al. [41]
developed a novel competitive learning strategy. First, they
applied this strategy into a multiswarm PSO [41], where pair-
wise competition is performed between two particles randomly
selected from two swarms. After the competition, the loser
is updated by a convergence strategy, while the winner is
updated through a mutation strategy. Subsequently, they intro-
duced a CSO [23], where the pairwise competition is executed
among particles in a single swarm, and only the loser in
one competition is updated, while the winner enters the next
generation directly. Specifically, the loser is updated as

vd
l ← r1vd

l + r2

(
xd

w − xd
l

)
+ φr3

(
x̄d − xd

l

)
(4)

xd
l ← xd

l + vd
l (5)

where Xl = [x1
l , . . . , xd

l , . . . xD
l] and Vl = [v1

l , . . . , vd
l , . . . vD

l]
are the position and speed of the loser, respectively; Xw =
[x1

w, . . . , xd
w, . . . xD

w] is the position of the winner; x =
[x1, . . . , xd, . . . xD] is the mean position of the swarm, r1, r2,
and r3 are three random variables within [0, 1], and φ is one
parameter controlling the influence of x.

Inspired from the social learning behavior among social ani-
mals, a social learning PSO (SL-PSO) [21] was developed. In
this algorithm, all particles are sorted according to their fitness
values and then for each particle, the first exemplar in (1) is
randomly selected from all better particles, while the second
exemplar is also the mean position of the whole swarm as CSO
displayed in (4). Taking further observation on SL-PSO and
CSO, we find that these two optimizers neither utilize pbest
nor gbest (or nbest) to guide the learning of particles. Instead,
they directly adopt predominant particles in the current swarm
and the mean position of the swarm to lead particles to find
the global optima.

In addition, taking advantage of the invasive weed opti-
mization algorithm [42] and the quantum-behaved PSO
algorithm [43], Lian et al. [44] developed a quantum-behaved
invasive weed optimization algorithm, which correspondingly
adjusts and improves the quantum models of these two
algorithms.

Except for PSO variants in handling large-scale optimiza-
tion, many other EA variants were also developed. Since too
many works exist, we cannot review them all. Here, to save

YANG et al.: LLSO FOR LARGE-SCALE OPTIMIZATION 581

space, we only list some typical and recent works on large-
scale optimization. For a comprehensive review of large-scale
optimizers, readers can refer to [22] and [45].

Hansen and Ostermeier [46] proposed an algorithm named
CMA-ES, which makes use of adaptive mutation parameters
through computing a covariance matrix and correlated step
sizes in all dimensions to preserve high diversity. Although it
is promising for high-dimensional problems, it is very time-
consuming owing to the computation of the covariance matrix
with time complexity O(D2), where D is the dimension size. To
relieve the high-computational burden, its variant called sep-
CMA-ES [47] came up, which only computes the diagonal
elements of the covariance matrix, leading to the reduction of
complexity from O(D2) to O(D).

Subsequently, Molina et al. [48] proposed a memetic algo-
rithm named MA-SW-Chains, which combines a steady-state
GA with a local search method. LaTorre et al. [49], [50]
developed a multiple offspring generation framework, named
MOS, via hybridizing different algorithms to deal with differ-
ent large-scale optimization problems. Brest and Mauèec [51]
developed a self-adaptive DE named jDElscop to solve large-
scale problems, which employs three mutation strategies and
a population size reduction mechanism to evolve the popula-
tion. Zhao et al. [52] proposed another self-adaptive DE called
SaDE-modified multitrajectory search (MMTS) by hybridizing
the mutation strategy in JADE [53] with an MMTS algorithm.
Then, Ali et al. [54] introduced a multipopulation DE called
mDE-bES to tackle large-scale optimization. In this algo-
rithm, the population is divided into independent subgroups,
and different subgroups are evolved with different mutation
strategies.

Even though numerious works exist in dealing with large-
scale optimization, falling into local optima and permature
convergence are still the main challenges in large-scale opti-
mizaiton. In this paper, we propose an LLSO to try to alleviate
the above issue.

III. LEVEL-BASED LEARNING SWARM OPTIMIZER

A. Motivation

When the dimension size D becomes larger and larger (more
than 500 [23]), optimization problems become more and more
difficult to optimize. On the one hand, with D increasing, the
computational complexity of the problem becomes higher and
higher and the search space of the problem also increases
exponentially, which takes an optimizer a larger number of fit-
ness evaluations to locate the optima [21], [23]. On the other
hand, for high-dimensional multimodal problems, the number
of local optima is generally explosively increased and it is
likely that these local optima are surrounded by wide local
areas, which may easily cause local traps or premature con-
vergence for optimizers [22], [45]. Thus, to tackle this kind of
problems efficiently, an optimizer is especially required to pre-
serve high diversity, so that local traps can be avoided. At the
same time, fast convergence is also a necessity for the opti-
mizer, so that with limited resources, such as the restricted
number of fitness evaluations, the global optimum can be fast
located. However, these two requirements conflict with each

other [23], [55]. As a consequence, a good optimizer should
make a good compromise between these two aspects to fast
traverse the search space.

In order to figure out an effective learning strategy, we seek
inspirations from nature and human society. In particular, in
pedagogy, different students generally have different cogni-
tive or learning abilities, and thus teachers should treat these
students differently in accordance of their aptitude [25], [26].
In particular, in the mixed-level learning methodology which
has been widely used in education practice [25], [26], students
should be grouped into different levels with tiered teaching and
learning methods. Similarly, during the evolution, particles are
usually in different evolution states and have different poten-
tial in exploring and exploiting the search space. Thus, they
should be treated differently as well.

Moreover, taking close observation on SL-
PSO [21] and CSO [23], we find that these two optimizers
neither utilize pbest nor gbest (or nbest) to guide the learning
of particles. Instead, they directly adopt predominant particles
in the current swarm to update particles and show good
potential in dealing with high-dimensional problems due to
the enhanced diversity. However, these two optimizers utilize
only one predominant particle to replace one exemplar in (1)
to guide the learning of particles, while the other exemplar
is the mean position of the swarm, which is shared by
all particles and thus is not beneficial for further diversity
enhancement. Since particles in different evolution states pos-
sess diverse potential in exploring and exploiting the search
space, they could own diverse evolutionary information to
guide the swarm to seek the optima and thus could be utilized
as candidates to replace the two exemplars in (1) to update
the swarm, so that the diversity could be further enhanced.

Motivated by the above phenomenon and observation, we
propose a LL strategy for PSO, leading to LLSO, which sep-
arates particles into different levels, treats them differently
and utilizes two predominant particles in the current swarm
to guide the learning of particles to find the global optima.
Accompanying with this learning strategy, a new exemplar
selection method is also developed to aid LLSO. The concrete
elucidation of each component is presented as follows.

B. Level-Based Learning

During the evolution, particles are usually in different evo-
lution states, and have different potential in exploring and
exploiting the search space. To tell them apart, we first par-
tition particles into different levels according to their fitness
values.

Assume that NP particles are divided into NL levels with
each level denoted by Li(1 ≤ i ≤ NL). Before the partition,
particles in the swarm are first sorted in ascending order of
fitness as in SL-PSO [21]. Then, better particles belong to
higher levels and the higher the level is, the smaller level index
it has. So, L1 is the highest level, and LNL is the lowest level.
To make it simple, we assume that all levels have the same
number of particles. This number is called “level size” and
denoted by LS. Clearly, LS = NP/NL.1

1Note that the whole swarm may not be equally partitioned by NP/NL. In
this situation, we just add the NP%NL particles into the lowest level.

582 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 4, AUGUST 2018

Fig. 1. Framework of the LL strategy. First, particles in the swarm are sorted
in ascending order of fitness and then they are equally partitioned into four
levels (L1–L4). Then, particles in L4 learn from those in L1–L3, particles in
L3 learn from those in L1 and L2, and particles in L2 learn from those in L1.
It should be noticed that in order to protect the most promising particles from
being wrongly updated, particles in L1 are not updated and directly enter the
next generation.

Subsequently, we take deep insight into particles in dif-
ferent levels. On the one hand, more promising positions
usually can be found around better particles in the current
swarm [21], [23], [56]. In other words, particles in higher lev-
els usually hold more beneficial information to guide the
swarm toward the global optimum area. Consequently, par-
ticles in higher levels should guide those in lower levels to
search the whole solution space, so that fast convergence can
be achieved and promising positions can be located. This is
the first idea behind the LL strategy.

On the other hand, observing particles in different higher
levels, we find that the higher the level that a particle belongs
to, the more likely the particle may be close to the global opti-
mum area. That is, particles in different levels have different
strength in exploitation. Likewise, particles in different levels
have different strength in exploration. In general, exploration
and exploitation are in the opposite direction [21]. In other
words, particles having more potential in exploitation usually
have less potential in exploration, and vice versa. So a parti-
cle from a lower level should learn from those from different
higher levels to make a compromise between exploration and
exploitation. This is the second idea behind the LL strategy.

Combining the above two together, the framework of LL is
displayed in Fig. 1. From this figure, we can see that particles
in lower levels can potentially learn from all those in higher
levels, and the number of candidate exemplars for particles in
different levels is different. Specifically, as the level that a par-
ticle belongs to goes higher, this particle has fewer particles
in the higher levels in total to learn from, which matches the
expectation that better particles should do more exploitation
rather than exploration.

Overall, this level-based mechanism may encourage more
exploration among particles in lower levels and more exploita-
tion among those in higher levels. The effectiveness of the LL
strategy will be further reinforced by the random selection
mechanism for exemplars to be presented next.

C. Exemplar Selection

Besides the learning strategy, another key component for
PSO is the exemplar selection strategy. As aforementioned,
particles in different levels perform different roles in the

evolution process. Generally, superior particles show more
potential in exploitation, so they should be used to guide the
search direction. While for inferior particles, even though they
perform relatively badly in exploiting, they usually show more
potential in exploring more directions and larger space, which
is potentially profitable for dragging particles away from local
areas. Enlightened by these, we propose a new exemplar selec-
tion method to select two different exemplars to replace pbest
and nbest in (1) to update particles.

To utilize the property that particles in different levels have
different strength in exploration and exploitation, we allow
each particle in level Li to learn from two particles Xrl1,k1

and Xrl2,k2 randomly selected from two different higher levels
Lrl1 and Lrl2 , respectively, where rl1 and rl2 are randomly
selected from [1, i − 1] and k1 and k2 are randomly selected
from [1, LS]. Then, to take advantage of the property that
superior particles have more potential in guiding the search
direction while inferior ones have more potential in helping
particles escape from local traps, with the assumption that rl1
is higher than rl2, we use the superior one between Xrl1,k1

and Xrl2,k2 , namely Xrl1,k1 to replace pbest in (1) and use the
inferior one, namely Xrl2,k2 to substitute nbest in (1).

Note that, in order to further promote the potential in
enhancing the diversity, we use randomness on both selec-
tion of two different higher levels (rl1 and rl2) and selection
of exemplars from the selected levels (k1 and k2).

On the one hand, this exemplar selection strategy provides
two exemplars from different higher levels for each parti-
cle in lower levels, offering a potential compromise between
exploration and exploitation. On the other hand, the ran-
domness embedded in the level selection and the exemplar
selection may contribute to enhancing diversity, which plays
a significant role in large-scale optimization [23].

D. LLSO

Combining the above two strategies together, LLSO is
developed with the update of particles defined as follows:

vd
i,j ← r1vd

i,j + r2

(
xd

rl1,k1
− xd

i,j

)
+ φr3

(
xd

rl2,k2
− xd

i,j

)
(6)

xd
i,j ← xd

i,j + vd
i,j (7)

where Xi,j = [x1
i,j, . . . , xd

i,j, . . . , xD
i,j] is the posi-

tion of the jth particle from the ith level Li

and Vi,j = [v1
i,j, . . . , vd

i,j, . . . , vD
i,j] is its speed.

Xrl1,k1 = [x1
rl1,k1

, . . . , xd
rl1,k1

, . . . , xD
rl1,k1

] randomly selected
from level Lrl1 and Xrl2,k2 = [x1

rl2,k2
, . . . , xd

rl2,k2
, . . . , xD

rl2,k2
]

randomly selected from level Lrl2 are the two selected
exemplars with rl1 and rl2 denoting two different higher level
indexes selected within [1, i− 1], and k1 and k2 representing
two particle indexes randomly selected within [1, LS]. r1,
r2, and r3 are three random variables ranging within [0, 1]
and φ is the control parameter within [0, 1] in charge of
the influence of the second exemplar. Note that rl1< rl2< i,
which indicates that Lrl1 is higher than Lrl2 , and both are
higher than Li, and also suggests that Xrl1,k1 is better than
Xrl2,k2 and both are better than Xi,j.

YANG et al.: LLSO FOR LARGE-SCALE OPTIMIZATION 583

Algorithm 1 Framework of LLSO
Input: swarm size NP, number of levels NL, level size LS, maximum

number of fitness evaluations MAX_FES, control parameter φ.
Output: The final solution x and its fitness f (x)

1: fes = 0;
2: Initialize the swarm randomly and calculate the fitness values of

particles;
3: fes + = NP;
4: x is the best particle of the swarm and f (x) is its fitness;
5: While fes < MAX_FES do
6: Sort particles in ascending order of fitness and divide them

into NL levels;
//Update particles in LNL, . . . , L3;

7: For i = {NL, . . . , 3} do
8: For j = {1, . . . , LS} do
9: Select two levels from the top (i-1) levels: rl1, rl2;

10: If (rl2 < rl1) then
11: Swap (rl1, rl2);
12: End If
13: Randomly select two particles from rl1, rl2:

Xrl1,k1 , Xrl2,k2 ;
14: Update particle Xi,j according to Eq. (6) and Eq. (7);
15: Calculate the fitness value f (Xi,j) of this particle;
16: If (f (Xi,j) < f (x)) then
17: x = Xi,j;
18: End If
19: End for
20: fes + = LS;
21: End for

//Update the second level
22: For j = {1, . . . , LS} do
23: Select two particles from the first level: X1,k1 , X1,k2 ;
24: If (f (X1,k2) < f (X1,k1)) then
25: Swap (X1,k1 , X1,k2);
26: End If
27: Update particle X2,j according to Eq. (6) and Eq. (7);
28: Calculate the fitness value f (X2,j) of this particle;
29: If (f (X2,j) < f (x)) then
30: x = X2,j;
31: End If
32: End for
33: fes + = LS;
34: End While

Generally, superior particles have more potential in exploit-
ing the search space, while inferior particles have more
potential in exploring the search space. Thus, the learning
strategy displayed in (6) gives rise to a potential compromise
between exploration and exploitation for each particle. This is
because the second part in the right hand of (6) allows one par-
ticle to promote its potential in exploitation by learning from
a superior exemplar, while the third part enables the particle
to enhance its potential in exploration through learning from
a relatively inferior exemplar, and the degree of such learning
is controlled by the parameter φ.

Additionally, both second and third parts in the right hand
of (6) can be seen as the cognitive parts like in PSO (1).
Though there is no obvious social learning part in LLSO, actu-
ally, the social part is embedded in these two items because,
on the one hand, the two levels where the selected exem-
plars come are randomly chosen from all higher levels; on
the other hand, the two exemplars are randomly selected from

the corresponding levels. Such two random selections possibly
offer a special kind of social learning.

Obviously, (6) is not directly suitable for the update of par-
ticles in the first and second levels. To deal with this situation,
we adopt different extra techniques for the two levels.

First, since the particles in the first level are the best of the
whole swarm in the current generation and better solutions
are usually found near these ones, we just leave these particles
unchanged to preserve the most useful information and protect
them from being weakened. Thus, the particles in the first level
directly enter the next generation.

Second, as for the particles in the second level, a similar
adaption follows. Instead of randomly choosing two exemplars
from two randomly selected higher levels, the two exemplars
for these particles are both randomly selected from the first
level. Then, the superior one acts as the first exemplar and the
inferior one acts as the second exemplar in (6).

The pseudo code of LLSO is outlined in Algorithm 1, which
is simple to implement due to the maintenance of the classi-
cal PSO framework. In this algorithm, lines 7–21 are for the
update of particles in levels LNL to L3, while lines 22–32 are
for the update of particles in the second level.

E. Differences Between LLSO and Other PSO Variants

The main unique property of LLSO is the LL mechanism
along with the exemplar selection method. It treats particles
differently and directly utilizes two predominant particles from
two different higher levels in the swarm to guide the learn-
ing of particles in lower levels by taking advantage of their
different strength in exploration or exploitation. Specifically,
the following characteristics make it distinguishable from the
current PSO variants.

1) Particles are grouped into different levels and those in
different levels are treated differently via learning from
different numbers (in total) of particles in higher levels.
Specifically, the lower the level one particle belongs to,
the more the candidate exemplars [both exemplars in (6)]
this particle could learn from, and vice versa. Through
this, particles in lower levels could focus on explor-
ing the search space, while those in higher levels could
concentrate on exploiting the search space. However, in
most PSO variants [11]–[14], [41], [57]–[59], particles
have the same number of candidate exemplars to learn
from and thus are treated equally.

2) Two current superior particles act as the exemplars
to guide the learning of inferior particles, which is
beneficial for exploration enhancement. Instead of learn-
ing from pbest, nbest, or gbest in most PSO vari-
ants, such as hierarchical PSO [59], multiswarm PSO
variants [41], [57], [58], and new learning strategy-
based PSOs [11]–[14], particles in LLSO learn from the
superior ones in the current swarm. pbest, nbest, or gbest
may easily lead to premature convergence [23], because
they may remain unchanged for many generations, espe-
cially when the evolution goes into late stages on
multimodal problems. However, particles in the swarm
are usually updated at each generation. Thus LLSO

584 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 4, AUGUST 2018

may preserve higher diversity and thus has relatively
less probability to fall into local areas. In addition,
different from CSO [23] and SL-PSO [21] which only
adopt one superior particle and the mean position of
the swarm (shared by all particles) to guide the learn-
ing of particles, LLSO directly utilizes two superior
particles randomly selected from two different higher
levels to guide the learning of particles, leading to higher
diversity preservation than these two optimizers.

3) Two kinds of compromises between exploration and
exploitation exist in LLSO. Observing (6) and (7),
we can find LLSO could compromise exploration and
exploitation to search the space in two aspects.

a) Particle-Level Compromise: Each particle in lower
levels can enhance its potential in exploitation
by learning from the better one between the two
superior exemplars, and at the same time consol-
idate its potential in exploration by learning from
the relatively worse one. Thus, a compromise in
exploring and exploiting the search space exists in
the learning process of each particle.

b) Swarm-Level Compromise: Particles in different
levels have different numbers of candidate exem-
plars to learn from. More specifically, particles in
the lowest level have the most candidate exem-
plars to learn from, while particles in the second
level have the fewest candidate exemplars to learn
from and particles in the highest level (namely the
first level) are not updated and directly enter the
next generation for preserving the best information.
Thus, we can see that particles in the lower levels
mainly concentrate on exploring the search space,
while particles in the higher levels mainly focus on
exploiting the search space. Thus, a compromise in
exploring and exploiting the search space exists in
the whole swarm, which many other PSO variants
do not have.

4) Last but not at least, two hierarchical randomness exists
in the exemplar selection. First, two higher levels are
randomly selected. Then, based on the selected levels,
one random particle is selected from each level and thus
two different particles in total are randomly selected.
Together, the randomness of the level selection and that
of the particle selection cooperate with each other, and
can potentially provide particles with diverse exemplars,
which benefits the diversity promotion.

F. Complexity Analysis

Given a fixed number of fitness evaluations, the time com-
plexity of an EA [14], [21], [23] is generally calculated by
analyzing the extra time in each generation without consid-
ering the time of function evaluations, which is problem-
dependent.

Thanks to the maintenance of the algorithmic simplicity
of PSO in LLSO, it is straightforward to compute the time
complexity of LLSO. From Algorithm 1, we can see that it
takes O(NPlog(NP) + NP) to rank the swarm and divide the

swarm into NL levels at each generation in line 6. During
the update of particles in all levels, except for those in the
first level that directly enter the next generation, it takes
O(NP× D) (lines 7–32). Overall, we can see that LLSO only
takes extra O(NPlog(NP)+NP) in each generation compared
with PSO, which takes O(NP× D) in each generation.

As for the space complexity, LLSO needs much smaller
space than PSO, because it does not store the personal best
position of each particle, which takes O(NP× D) space.

In conclusion, LLSO remains computationally efficacious
in time and is relatively more efficient in space in comparison
with the classical PSO.

G. Dynamic Version of LLSO

Comparing LLSO (6) with PSO (1), we find that LLSO only
introduces two parameters that need fine-tuning, namely the
number of levels NL and the control parameter φ.

Given the population size is NP, a small NL gives rise to
a large number of particles in each level. This may bring two
consequences: 1) promoting diversity in the exemplar selec-
tion conducted on the two selected levels, owing to the large
number of particles in each level and 2) reducing diversity in
the level selection owing to the small number of levels. On
the contrary, a large NL brings two opposite consequences:
1) enhancing diversity in the level selection, on account of
the large number of levels and 2) reducing diversity in the
exemplar selection, due to the small number of particles in
each level.

Comparing these two kinds of diversity, we consider that
they play different roles in the evolution process. Compared
with the diversity in the exemplar selection, the diversity in
the level selection is more important when the swarm explores
the search space or when the swarm falls into local areas
and thus needs to jump out. This is because compared with
the diversity in the exemplar selection, the diversity in the
level selection can provide particles to be updated with more
diverse exemplars that preserve diverse potential in exploration
and exploitation. On the contrary, when exploiting the search
space, the diversity in the exemplar selection becomes more
important, which is beneficial for the swarm to exploit the
search space more intensively without serious loss of diversity.

Therefore, we can see that for a single problem, the proper
NL may vary during the evolution process. Let alone that the
proper NL for different problems with different features is
different. This motivates us to design a dynamic setting for NL.

In this paper, for simplicity, we design a pool containing
different integers to realize the dynamism of NL, which is
denoted as S = {l1, . . . , ls} with s different candidate numbers
of levels. Then, at each generation, LLSO will select a number
from the pool based on their probabilities, and at the end of the
generation, the performance of LLSO with this level number
is recorded to update the probability of this number. With this
mechanism, LLSO can select a proper NL despite of different
features of different problems or different evolution stages for
a single problem.

In order to compute the probabilities of different level num-
bers in S, we define a record list Rs = {r1, . . . , rs}, where each

YANG et al.: LLSO FOR LARGE-SCALE OPTIMIZATION 585

ri ∈ Rs is associated with each li ∈ S, to record the relative
performance improvement under the selected li. At the initial-
ization stage, each ri ∈ Rs is set to 1, and then, each ri is
updated at each generation as follows [36]:

ri = |F − F̃|
|F| (8)

where F is the global best fitness of the last generation, while
F̃ is the global best fitness of the current generation. Then the
probability Ps = {p1, . . . ,ps} is computed as in [36]

pi = e7∗ri

∑s
j=1 e7∗rj

. (9)

Based on Ps, we conduct the roulette wheel selection to
select a number from S as the level number in each generation.

Observing (8) and (9), we can notice that: 1) the value of
each ri is within [0, 1] since (8) calculates the relative per-
formance improvement using the global best fitness values
between two consecutive generations and 2) if the global best
fitness value differs a lot between two consecutive generations,
ri is close to 1. This indicates that the selected level number
in this generation is very appropriate and thus should have
a high probability to be selected in the next generation, which
is implied by the probability computed in (9). On the contrary,
when the global best fitness value differs little between two
consecutive generations, ri is close to 0. This indicates that the
selection of the level number in this generation is not so advis-
able and thus the probability of this selection should be small,
which can be implied by the probability computed in (9) as
well. In this way, LLSO can potentially make an appropriate
choice of NL for different problems or for a single problem
at different stages.

As for our algorithm, when NL is fixed, it is denoted as
LLSO; and when it uses a dynamic NL, we denote it as
DLLSO. As shown later in Section V-C, the performance
comparison between these two versions favors DLLSO.

IV. THEORETICAL ANALYSIS

In this section, we take investigation about LLSO by ana-
lyzing its exploration and exploitation abilities via making
comparisons with the global PSO (GPSO) [6] and one recent
and popular PSO variant named CSO [23].

A. Exploration Ability

Exploration plays an important role when the swarm
explores the search space. Enhancing the exploration ability
of an EA is to promote the diversity of the swarm, so that it
can escape from local areas and find the global or promising
areas easily. In particular, the exploration ability is consider-
ably important when EAs tackle multimodal problems or when
the swarm needs to jump out of local areas, so that stagna-
tion or premature convergence can be avoided. The exploration
ability of EAs can be implied by the diversity of the exem-
plars used to guide the learning or updating of particles or
individuals [23].

To investigate the exploration ability of LLSO, we rewrite
(6) as follows:

vd
i,j ← r1vd

i,j + θ1

(
p1 − xd

i,j

)
(10)

θ1 = r2 + φr3 (11)

p1 = r2

r2 + φr3
xd

rl1,k1
+ φr3

r2 + φr3
xd

rl2,k2
. (12)

Similarly, we can also rewrite the update formula of GPSO
[utilizing gbest to replace nbest in (1)] into (13) and that of
CSO (4) into (16)

vd
i ← wvd

i + θ2

(
p2 − xd

i

)
(13)

θ2 = c1r1 + c2r2 (14)

p2 = c1r1

c1r1 + c2r2
pbestdi +

c2r2

c1r1 + c2r2
gbestd (15)

vd
l ← r1vd

1 + θ3(p3 − xd
l) (16)

θ3 = r2 + φr3 (17)

p3 = r2

r2 + φr3
xd

w +
φr3

r2 + φr3
x̄d. (18)

From (10), (13), and (16), we can see that the difference
between pi(i = 1, 2, 3) and the particle to be updated pro-
vides the main source of diversity. First, comparing (10) with
(13) and (16), we can see that LLSO has potential to preserve
higher diversity. On the one hand, as for the first part in p1, p2,
and p3, the randomly selected exemplar Xrl1,k1 offers chances
for each particle in lower levels to learn from various better
particles in LLSO. However, in GPSO, pbest of each particle
is updated only when the particle finds a better position, which
indicates that it is possible that pbest of the particle may be
unchanged for many generations. In CSO, the loser can only
learn from its corresponding winner. Therefore, in terms of
the first part, LLSO and CSO preserve competitive or compa-
rable diversity and both potentially own higher diversity than
GPSO.

On the other hand, as for the second part of pi(i = 1, 2, 3),
gbest in GPSO is updated only when the swarm finds a bet-
ter position. It is more likely that gbest remains unchanged
than pbest. In addition, gbest is shared by all particles. These
two limitations do great harm to the diversity maintenance
for GPSO [23]. For CSO, though the mean position of the
swarm x is updated at each generation, it is also shared by
all particles. However, in LLSO, the second exemplar Xrl2,k2

is randomly selected for each particle. Thus, in terms of the
second part, LLSO probably possesses higher diversity.

In addition, compared with other PSO variants that use nbest
to guide the learning of particles [7], [8] or that divide the
swarm into subswarms and then use gbest or the center of
the subswarm to guide the updating of particles [58], LLSO
still potentially preserves better exploration ability, because
nbest or gbest of a subswarm may remain unchanged for many
generations as well.

In short, we can see that the diversity of the exemplars used
to guide the learning of particles in LLSO is potentially higher,
which may benefit for strengthening the exploration ability.
Thus, LLSO can potentially find the promising areas faster
and have greater chance to jump out of local optimum areas.

586 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 4, AUGUST 2018

B. Exploitation Ability

With limited computational resources, such as function eval-
uations, exploitation is necessary when the swarm exploits
the searching areas. Enhancing the exploitation ability of
an EA is to fully exploit the found promising areas fast,
so that better solutions can be located as fast as possible.
The exploitation ability is very important when an EA deals
with simple unimodal functions or when the swarm finds the
global optimum areas. Generally, the exploitation ability can
be indicated by the difference between the exemplar and the
updated particle [23]. The smaller the difference is, the more
the particle focuses on exploiting the area.

To analyze the exploitation ability of LLSO, we assume
that for the jth particle Xi,j from the ith level Li, two random
exemplars Xrl1,k1 and Xrl2,k2 are selected from two randomly
selected higher levels Lrl1 and Lrl2 (rl1< rl2< i). Then, we
have

f
(
Xrl1,k1

) ≤ f
(
Xrl2,k2

) ≤ f
(
Xi,j

)
. (19)

Comparing Xrl1,k1 and Xrl2,k2 with pbest and gbest defined
in PSO, we have the following formula:

⎧⎨
⎩

f (gbest) ≤ f
(
pbesti,j

) ≤ f
(
Xi,j

)
f (gbest) ≤ f

(
pbestrl1,k1

) ≤ f
(
Xrl1,k1

)
f (gbest) ≤ f

(
pbestrl2,k2

) ≤ f
(
Xrl2,k2

) (20)

where pbesti,j, pbestrl1,k1
and pbestrl2,k2

are the personal best
positions of Xi,j, Xrl1,k1, and Xrl2,k2 , respectively.

When it reaches the late stages where all particles may
converge together, the following relationship holds:

pbestrl1,k1
≈ pbestrl2,k2

≈ pbesti,j ≈ gbest. (21)

Therefore, for GPSO, we have

�FGPSO =
∣∣ f

(
Xi,j

)− f (gbest)
∣∣

=
∣∣∣∣ f

(
Xi,j

)− f

(
gbest+ gbest

2

)∣∣∣∣

≈
∣∣∣∣ f

(
Xi,j

)− f

(
gbest+ pbesti,j

2

)∣∣∣∣
= ∣∣ f

(
Xi,j

)− f
(
p′2

)∣∣ (22)

where p′2 is the expected value of p2 in (15).
Similarly, for CSO and LLSO, we can derive the following:

�FCSO =
∣∣ f

(
Xi,j

)− f
(
Xwi,j

)∣∣
= ∣∣ f

(
Xi,j

)− f
(
p′3

)∣∣ (23)

�FLLSO =
∣∣ f

(
Xi,j

)− f
(
Xrl1,k1

)∣∣
= ∣∣ f

(
Xi,j

)− f
(
p′1

)∣∣ (24)

where Xwi,j is the corresponding winner of Xi,j in CSO, p′3 is
the expected value of p3 with φ = 0 for CSO in (18), and
p′1 is the expected value of p1 with φ = 0 for LLSO in (12).
Since Xrl1,k1 is selected from level Lrl1 , which is higher than
Li, where Xi,j comes, the expected value of Xrl1,k1 is better
than that of Xwi,j , which is only better than Xi,j. Therefore, we
have f (Xrl1,k1) ≤ f (Xwi,j).

Combining the above formula together, we can derive

�FLLSO ≤ �FCSO ≤ �FGPSO. (25)

Such formula indicates that compared with GPSO and CSO,
LLSO potentially has a better exploitation ability to refine
solutions within a smaller gap between two positions whose
fitness values are very similar.

The above analysis has separately demonstrated that LLSO
can preserve good exploration and exploitation abilities.
However, during the evolution process, these two abilities
usually conflict with each other. Thus, during evolution, an
EA generally needs to make a compromise between these
two abilities to search the space [16], [60], [61]. It should
be mentioned that such a compromise should not be fixed,
but be dynamically adjusted according to different features of
the problems to be optimized or different requirements in the
evolution process. In Section V-A, the good exploration and
exploitation abilities of LLSO will be verified empirically in
comparison with GPSO [6] and CSO [23].

V. EXPERIMENTS

To verify the feasibility and efficiency of the proposed
LLSO, a series of experiments are conducted on two
widely used sets of large-scale optimization problems: the
CEC’2010 [27] and the CEC’2013 [28] benchmark sets. The
latter is the extension of the former through introducing new
features, such as overlapping functions. Consequently, func-
tions in the latter set are much more complicated and harder
to optimize. The main properties of these two function sets
are summarized in Tables SI and SII in the supplementary
material, respectively. For details of these functions, readers
are referred to [27] and [28].

In this section, we first empirically substantiate the good
exploration and exploitation abilities of LLSO in Section V-A.
Then, we investigate the key parameter settings for DLLSO
in Section V-B and the influence of the dynamism of NL
on LLSO in Section V-C, respectively. After all the prelim-
inary investigation, we make comparisons between DLLSO
and other state-of-the-art algorithms dealing with large-scale
optimization in Section V-D. In Section V-E, the scalability
comparison between DLLSO and the compared algorithms
is conducted on the CEC’2010 benchmark functions with
dimensionality increasing from 200 to 2000. At last, the com-
putational time comparison is made between DLLSO and
some compared algorithms on the CEC’2010 problems with
the dimensionality increasing from 200 to 2000 as well.

In addition, unless otherwise stated, the maximum number
of fitness evaluations is set to 3000×D (where D is the dimen-
sion size). What is more, for fair comparisons, median, mean,
and standard deviation (Std) values over 30 independent runs
are used to evaluate the performance of different algorithms. In
the comparisons between two different algorithms, Wilcoxon
rank sum test is performed at a significance level of α= 0.05.

Additionally, it is worth mentioning that all algorithms are
conducted on a PC with four Intel Core i5-3470 3.20-GHz
CPUs, 4-GB memory and Ubuntu 12.04 LTS 64-bit system.

A. Exploration and Exploitation Investigation in LLSO

Before experiments, it should be noted that exploration
and exploitation generally conflict with each other. Thus, an

YANG et al.: LLSO FOR LARGE-SCALE OPTIMIZATION 587

EA generally needs to make a compromise between these two
aspects to search the space. In general, such a compromise
should be dynamically adjusted according to different fea-
tures of problems or different requirements in the evolution
process [16], [60]. Besides, this compromise does not mean
that exploration and exploitation should be the same or similar
during all evolution stages or on all problems either.

When coping with unimodal problems, exploitation should
be put properly more emphasis to seek fast convergence.
However, when tackling multimodal problems, exploration
should be properly biased to avoid falling into local areas. For
a single problem, when most particles locate in local areas,
exploration should be appropriately biased to let the swarm
jump out of local areas. Nevertheless, when the swarm finds
promising areas, exploitation should be appropriately biased
to refine the obtained solutions [16], [60].

Then, to verify that LLSO can preserve good exploration
and exploitation abilities and could compromise these two
abilities properly, we conduct comparison experiments among
LLSO, CSO, and GPSO on four CEC’2010 benchmark func-
tions (fully separable and unimodal F1, partially separable
and multimodal F5, partially separable and unimodal F7, and
partially separable and multimodal F10) with 200 dimenisons
in regard to swarm diversity along with the global best fit-
ness value. These functions are selected because we want to
make a comprehensive comparsion on various kinds of func-
tions, like fully separable, partially separable, unimodal, or
multimodal.

In this paper, the diversity is measured as follows [23], [62]:

D(X) = 1

NP

NP∑
i=1

√√√√
D∑

d=1

(
xd

i − x̄d
)2

(26)

x̄d = 1

NP

NP∑
i=1

xd
i (27)

where D(X) represents the diversity of the swarm X, and x is
the mean position of the swarm.

Fig. 2 shows the comparison results of the three algorithms
on the four functions with the maximum number of fitness
evaluations set as 3000×D = 6× 105. For fairness, the pop-
ulation size is set 300 for all algorithms. From this figure, we
can obtain the following findings.

First, for unimodal functions, exploitation should be put
a little more emphasis, so that fast convergence can be
achieved. From Fig. 2(a) and (c), we can see that on the uni-
modal functions F1 and F7, the exploitation is properly biased,
so that LLSO converges much faster than GPSO and CSO
with better solutions simultaneously. Specifically, on F1 [see
Fig. 2(a)], the exploitation is biased much more obviously in
LLSO. GPSO maintains the highest diversity but obtains the
worst performance because of the stagnation of the swarm.
CSO perserves higher diversity but slower convergence than
LLSO, because the exploitaiton is less empahsized. On F7 [see
Fig. 2(c)], exploitation is appropriately biased without serious
loss of exploration in LLSO, resulting in its good performance.
However, the exploitation is overemphasized in GPSO and

thus the exploration is seriously ignored, leading to its infe-
rior performance. For CSO, the exploitation is less biased and
thus slower convergence is obtained than LLSO.

Second, when it arrives at multimodal functions, explo-
ration should be dynamically and properly biased without
serious loss of exploitation, so that premature convergence
and stagnation can be avoided. From Fig. 2(b) and (d), we
can find that on multimodal functions F5 and F10, LLSO still
achieves better peformance than GPSO and CSO with respect
to both convergence speed and solution quality. This is because
LLSO can compromise exploration and exploitation better
than GPSO and CSO. Specifically in GPSO, the exploita-
tion is overbiased and thus the exploration is seriously lost
on both functions, leading to its poor performance. For CSO,
the exploration is overemphasized and thus its exploitation is
very poor, resulting in its poor performance in refining the
solutions.

Overall, we can see that LLSO can preserve good explo-
ration and exploitation abilities and can particulaly compro-
mise these two well to search the space during the evolution.
Such a good ability benefits from the proposed LL strategy,
which can offer two kinds of compromises between explo-
ration and exploitation: 1) the particle-level compromise and
2) the swarm-level compromise as stated in Section III-E.

B. Parameter Settings

In LLSO, only two extra parameters are introduced: 1) the
number of levels NL and 2) the control parameter φ. Since
we have proposed a dynamic selection strategy for NL in
Section III-G, the fine-tuning of the sensitive NL can be
saved by setting the pool S with a wide range. In the
preliminary experiments, we find DLLSO is not so sensitive
to S, if we keep S in a wide range. In this paper, we set
S = {4, 6, 8, 10, 20, 50}.

Then, we turn to the setting of the control parameter
φ and the swarm size NP, the common parameter in all
EAs [6], [21], [23], [56], which is hard to set, owing to its
dependency on the complexity of problems. Thus, to see the
effect of φ and NP on DLLSO, we conduct experiments on
DLLSO with NP varying from 200 to 600 and φ varying from
0.1 to 0.6.

Table SIII in the supplementary material displays the exper-
imental results of DLLSO with different combinations of
φ and NP on six 1000-D benchmark functions from the
CEC’2010 set: fully separable and unimodal function F1,
fully separable and multimodal function F3, partially separable
and unimodal function F7, partially separable and multimodal
function F8, partially separable and unimodal function F12,

and partially separable and unimodal function F17. These func-
tions are selected, because we want to investigate the influence
of parameters on almost all kinds of problems: fully separable,
partially separable, unimodal, and multimodal.

From this table, we can see the following.
1) The smaller the swarm size is, the larger value φ has.

This is because a small swarm size cannot offer high
diversity for the swarm, thus a large φ is needed to
promote the diversity by enhancing the influence of

588 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 4, AUGUST 2018

(a) (b)

(c) (d)

Fig. 2. Swarm diversity and the global best fitness value comparison among LLSO, CSO, and GPSO on four functions F1, F5, F7, and F10 with
200 dimensions. Please note that for F1, the fitness value of LLSO is not plotted after the number of fitness evaluations reaches about 5×105. This is because
the global best fitness value becomes 0, arriving at the global optimum of F1. (a) f1: fully separable and unimodal. (b) f5: partially separable and multimodal.
(c) f7: partially separable and unimodal. (d) f10: partially separable and multimodal.

the second exemplar, which owns more potential in
exploration than the first one in (6).

2) For large swarm sizes, the proper φ seems to consistently
stay at 0.4 as indicated by the results of DLLSO with
NP within [400, 600].

3) When NP is within [400, 600], it seems that φ makes
no significant difference on DLLSO when it is within
[0.1, 0.5]. However, when φ is within [0.1, 0.5], it seems
that NP has great influence on DLLSO, especially for F3
and F7.

In conclusion, NP = 500 and φ = 0.4 is adopted for
DLLSO on 1000-D problems, which also makes it fair to
compare DLLSO with CSO that adopts the same setting of
NP [23].

C. Effect of Dynamic Level Numbers

To investigate the effect of the dynamic selection of NL on
DLLSO, we conduct comparison experiments on two versions
of the proposed optimizer: LLSO with a fixed NL and LLSO
with a dynamic NL, namely DLLSO. The former version of
LLSO is represented as “LLSO-NL,” such as LLSO with four
levels can be denoted as “LLSO-4.”

Fig. S1 in the supplementary material shows the compari-
son results between the two versions of LLSO on eight 1000-D
benchmark functions from the CEC’2010 set including the six
functions used in the last section (adding two extra functions
F10 and F15). In this experiment, NP = 500 and φ = 0.4
is adopted and the maximum number of function evaluations
varies from 5 × 105 to 5 × 106. For LLSO-NL, the fixed
numbers of levels are set to be the members in S.

From this figure, first, we can find that on some functions,
such as F10, F12, and F17, LLSO is not sensitive to NL,
while on some functions, such as F3, F7, F8, and F15, LLSO
is very sensitive to NL. Second, the optimal NL is different for

different problems, such as the optimal NL is 8 for F7, while
that number is 50 for F15. Third, comparing these two ver-
sions, we find that DLLSO can make a good compromise to
obtain competitive solutions on almost all the eight problems
and even on some functions, such as F10 and F15, DLLSO can
obtain better solutions than the LLSO with the optimal NL.

All in all, we can find that the dynamic selection strategy
for NL is promising for the proposed optimizer.

D. Comparisons With State-of-the-Art Methods

Subsequently, to comprehensively verify the efficiency and
effectiveness of DLLSO, we compare it with various state-
of-the-art algorithms dealing with large-scale optimization.
Specifically, four popular algorithms, namely three PSO vari-
ants (CSO [23], SL-PSO2 [21], and DMS-L-PSO3 [39]), and
a memetic algorithm named MA-SW-Chains4 [48], concentrat-
ing on the second aspect in handling large-scale optimization
(Section II-B), and four CCEAs, namely CCPSO2 [33],
DECC-DG5 [20], DECC-G [35], and MLCC6 [36], focusing
on the first aspect in large-scale optimization (Section II-A),
are selected to make comparisons. For fairness, the key param-
eters in each algorithm are set as recommended in the corre-
sponding papers. We conduct the comparison experiments on
both CEC’2010 benchmark set [27] and CEC’2013 benchmark
set [28].

2The codes of CSO and SL-PSO can be downloaded from http://
www.surrey.ac.uk/cs/research/nice/people/yaochu_jin/.

3The code of DMS-L-PSO can be downloaded from http://
www.ntu.edu.sg/home/epnsugan/.

4The code of MA-SW-Chains can be downloaded from
http://sci2s.ugr.es/EAMHCO#Complementary.

5The codes of CCPSO2 and DECC-DG can be downloaded from
https://titan.csit.rmit.edu.au/∼e46507/publications.php.

6The codes of DECC-G and MLCC can be downloaded from
http://staff.ustc.edu.cn/∼ketang/codes/.

http://www.surrey.ac.uk/cs/research/nice/people/yaochu_jin/
http://www.surrey.ac.uk/cs/research/nice/people/yaochu_jin/
http://www.ntu.edu.sg/home/epnsugan/
http://www.ntu.edu.sg/home/epnsugan/
http://sci2s.ugr.es/EAMHCO#Complementary
https://titan.csit.rmit.edu.au/~e46507/publications.php
http://staff.ustc.edu.cn/~ketang/codes/

YANG et al.: LLSO FOR LARGE-SCALE OPTIMIZATION 589

TABLE I
COMPARISON RESULTS OF THE COMPARED ALGORITHMS ON 1000-D CEC’2010 FUNCTIONS WITH 3× 106 FITNESS EVALUATIONS

Tables I and II, respectively, show the comparison
results among different algorithms on the two bench-
mark sets with 1000-D. The highlighted p values mean
that DLLSO is significantly better than the correspond-
ing algorithms. Additionally, the symbols, “+,” “−,” and

“=,” above the p values represent that DLLSO is signifi-
cantly better than, significantly worse than, and equivalent
to the compared algorithms on the associated functions.
Furthermore, w/l/t in the last row represents that DLLSO
wins on w functions, loses on l functions and ties on t

590 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 4, AUGUST 2018

TABLE II
COMPARISON RESULTS OF THE COMPARED ALGORITHMS ON 1000-D CEC’2013 FUNCTIONS WITH 3× 106 FITNESS EVALUATIONS

functions in total in the competitions with the counterpart
methods.

As for the CEC’2010 set, from Table I, we can see that
DLLSO outperforms the compared algorithms on most of
the 20 functions. In details, compared with CSO, SL-PSO,
MA-SW-Chains, and DMS-L-PSO, DLLSO shows its great
superiority on 13, 12, 11, and 13 functions, respectively.
Compared with these algorithms, DLLSO only loses the
competition on 6, 4, 6, and 6 functions, respectively. In com-
parison with the four CCEAs (CCPSO2, DECC-G, MLCC,
and DECC-DG), DLLSO defeats them on 16, 19, 19, and
16 functions, respectively. Besides, DLLSO only loses on
2, 1, 1, and 3 functions, respectively, competing with these
algorithms.

When it arrives at the CEC’2013 set where the func-
tions are more difficult to optimize than those in the former
set, DLLSO consistently shows its dominance according to
Table II. Compared with DMS-L-PSO and the four CCEAs,

DLLSO shows its significant superiority on at least ten func-
tions. In comparison with CSO and SL-PSO, DLLSO defeats
them down on eight and seven functions, respectively, and only
loses the competitions on three and four functions, respec-
tively. Unfortunately, on this set, DLLSO is slightly worse
than MA-SW-Chains. However, compared with this algorithm,
DLLSO is easier to understand and simpler to implement, due
to its maintenance of the framework of the classical PSO,
which leads to its superior performance to MA-SW-Chains in
computational efficiency that will be verified in the following
sections.

Further, we also conduct convergence behavior com-
parison between DLLSO and the compared algorithms
on the two benchmark sets to testify the superiority of
DLLSO with respect to convergece speed. Figs. S2 and S3
in the supplementary material present the comparison
results on the CEC’2010 and CEC’2013 benchmark sets,
respectively.

YANG et al.: LLSO FOR LARGE-SCALE OPTIMIZATION 591

TABLE III
PARAMETER SETTINGS OF DLLSO IN DEALING WITH

PROBLEMS WITH DIFFERENT DIMENSION SIZES

On the CEC’2010 benchmark set, from Fig. S2, in the
supplementary material, we can observe the following.

1) DLLSO converges faster with better solutions than all
eight compared methods on four (F3, F6, F10, and F15)
functions.

2) DLLSO achieves faster convergence with higher qual-
ity solutions than seven compared methods (except for
only one compared algorithm out of the eight com-
pared methods) on six functions (F1, F5, F7, F11, F12,
and F14).

3) Concretely, DLLSO can apparently defeat CSO,
SL-PSO, MA-SW-Chains, DMS-L-PSO, CCPSO2,
DECC-G, MLCC, and DECC-DG with both faster con-
vergence and better solutions on 14, 12, 10, 20, 15, 17,
16, and 14 functions, respectively.

Similarly, on the CEC’2013 benchmark set, from Fig. S3,
in the supplementary material, we can obtain the following.

1) DLLSO achieves great superiority to all eight compared
algorithms in both convergence and solution quality on
six functions (F4, F7, F8, and F13 − F15).

2) Besides, on F1 and F5, DLLSO achieves both better
solutions and faster convergence than seven compared
algorithms.

3) DLLSO converges faster with higher solution qual-
ity than CSO, SL-PSO, MA-SW-Chains, DMS-L-PSO,
CCPSO2, DECC-G, MLCC, and DECC-DG on 9, 9, 8,
11, 9, 9, 8, and 12 functions, respectively.

In conclusion, we can see that compared with these state-of-
the-art large-scale algorithms, DLLSO can achieve competitive
or even better performance in both solution quality and con-
vergence speed. The superiority of DLLSO can be attributed to
the proposed LL strategy and the proposed exemplar selection
strategy. LL groups particles into different levels and treats
particles in different levels differently. The exemplar selection
strategy allows particles in different levels to learn from var-
ious superior particles from different higher levels. From the
two selected superior exemplars, one particle could improve
its potential in exploitation by learning from the better one,
and at the same time consolidate its potential in exploration
by learning from the inferior one. In this way, each updated
particle may compromise exploration and exploitation in the
evolution.

Besides, the cooperation between these two strategies makes
particles in different levels learn from different numbers of
exemplars. That is, particles in lower levels have more supe-
rior particles and a wider range to learn, which is beneficial for
exploration, while particles in higher levels have fewer supe-
rior particles and a narrower range to learn, which is profitable
for exploitation. In this manner, the whole swarm can make
a compromise in exploring and exploiting the search space

via letting particles in higher levels concentrate on exploiting
while letting particles in lower levels focus on exploring.

In short, these two kinds of compromises in exploration and
exploitation make DLLSO achieve good performance.

E. Scalability Comparisons With State-of-the-Art
Methods

The above comparison experiments have exhibited the supe-
riority of DLLSO to several state-of-the-art methods in dealing
with 1000-D problems. To further substantiate the scalability
of DLLSO to solve higher dimensional problems, we perform
experiments on the CEC’2010 problems with dimensionality
increasing from 200 to 2000.

In this series of experiments, the parameters of DLLSO are
set as shown in Table III. As for the compared algorithms,
the parameters are set as recommended in the corresponding
papers. For fairness, the maximum number of fitness evalu-
ations is set as 3000 × D when conducting experiments on
problems with different dimension sizes. In addition, due to
the page limit, we attach all the comparison results to the
supplementary material.

1) Comparsion Results on 200-D Problems: Table SIV in
the supplementary material presents the comparison results on
the CEC’2010 problems with 200 dimensions. From this table,
we can see that DLLSO displays its great potential and abil-
ity in dealing with 200-D problems. Specifically, DLLSO can
achieve the global optimum of F1 in each run and is much
superior to CSO, SL-PSO, and the four CCEAs (CCPSO2,
DECC-G, MLCC, and DECC-DG) on at least 16 functions.
Besides, DLLSO also wins the competition with MA-SW-
Chains on 12 functions. Compared with DMS-L-PSO, DLLSO
is competitive and comparable to this algorithm by defeating
it on nine functions.

2) Comparison Results on 500-D Problems: Table SV
in the supplementary material shows the comparison results
among different algorithms on 500-D problems. Observing
this table, we can find that DLLSO, respectively, domi-
nates the eight compared algorithms on at least 11 functions.
Compared with CSO, DLLSO outperforms it on 13 functions
and only loses the competition on three functions. In compar-
ison to MA-SW-Chains and DMS-L-PSO, DLLSO performs
better than them both on 11 functions. In particular, DLLSO
obtains the global optimum of F1 in each run as well and
is much better than SL-PSO and the four CCEAs on at least
15 functions.

3) Comparison Results on 800-D Problems: Table SVI in
the supplementary material displays the comparison results on
800-D problems. From this table, we can observe that DLLSO
is, respectively, superior to the eight compared algorithms on at
least 12 functions. Particularly, DLLSO dominates CSO, SL-
PSO, and DMS-L-PSO on 13 functions, respectively, and is
especially better than the four CCEAs on at least 17 functions.

4) Comparison Results on 2000-D Problems: Table SVII
in the supplementary material presents the comparison results
among all the compared algorithms on 2000-D problems,
which are particularly harder to optimize than the aforemen-
tioned problems. From this table, we can see that DLLSO

592 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 4, AUGUST 2018

is still much better than the compared algorithms in deal-
ing with such complicated problems. Specifically, DLLSO,
respectively, wins the competition with the eight compared
methods on at least 13 functions. In particular, DLLSO is sig-
nificantly superior to SL-PSO, and the four CCEAs on at least
15 functions.

5) Overall Comparisons: From the above comparison
results, we can see that DLLSO has a good scalability in tack-
ling problems with different dimension sizes. Particularly, as
the dimensionality increases, the number of functions on which
DLLSO can, respectively, dominate the eight compared algo-
rithms increases as well (for 200-D, 500-D, 800-D, 1000-D,
and 2000-D problems, this number is 9, 11, 12, 11, and 13,
respectively).

To have a better view of the comparison results, we plot
the changes of the averaged fitness value of each algorithm on
each function with the dimensionality increasing from 200 to
2000. The result is shown in Fig. S4 in the supplementary
material.

From this figure, we can find that as expected, on most
functions, the performance of all algorithms degrades with
the dimensionality increasing, which results from the exponen-
tially increased search space. However, we find that on F1, F3,
and F10, DLLSO always achieves the best performance as the
dimensionality increases in comparison with other algorithms
as shown in Fig. S3(a), (c), and (j) in the supplementary mate-
rial. Besides, on F5 − F7, with the dimensionality increasing,
the ability of DLLSO does not degrade but instead is improved
via the proper parameter settings, which can be clearly seen
from Fig. S3(e)–(g) in the supplementary material.

Overall, we can conclude that DLLSO preserves good scal-
ability to solve higher dimensional problems. Such superior
scalability of DLLSO could be ascribed to the following
aspects: 1) first, in LLSO, particles are divided into different
levels and are treated differently; and 2) second, the proposed
exemplar selection strategy affords two different superior
exemplars for each particle to learn, so that the potential in
exploitation of one particle may be promoted via learning
from the better one and the potential in exploration may be
enhanced by learning from the inferior one. In addition, par-
ticles in different levels have different numbers of superior
particles to learn from, resulting in that particles in lower levels
have a wider range to learn, which is beneficial for explo-
ration, and particles in higher levels have a narrower range
to learn, which is beneficial for exploitation. Thus, LLSO can
compromise exploration and exploitation to search the space
from both particle level and swarm level, which benefits for
achieving competitive performance with the state-of-the-art
methods.

F. Time Comparisons With State-of-the-Art Methods

The above experiments have demonstrated the superiority of
DLLSO to other algorithms with respect to solution quality. To
further validate the competitive efficiency of DLLSO in tack-
ling large-scale optimization, we conduct computational cost
comparison between DLLSO and three compared algorithms,
namely CSO, SL-PSO, and MA-SW-Chains. These algorithms

are selected because on the one hand, they were all imple-
mented with C codes; on the other hand, they all contribute
to the second aspect in handling large-scale optimization as
stated in Section II-B. By this means, fair comparison can be
obtained.

In the experiments, we record the computing time of
each compared algorithm on the CEC’2010 benchmark func-
tions with the dimensionality increasing from 200 to 2000.
Table SVIII and Fig. S5 in the supplementary material present
the time comparison results among the four algorithms on each
function with different dimension sizes.

From Table SVIII and Fig. S5, in the supplementary mate-
rial, we can see that both DLLSO and CSO are much more
efficient than the other two algorithms (SL-PSO and MA-SW-
Chains). In details, the computational cost of MA-SW-Chains
is the highest. This is because MA-SW-Chains employs many
complicated local search methods. Compared with DLLSO
and CSO, SL-PSO needs much more time, because it needs
to compute the mean position of the swarm, to sort the swarm
and to compute the learning probability for each particle, the
combination of which leads to its higher computational cost
than CSO and DLLSO.

Compared with CSO, we find that DLLSO takes nearly
the same time as CSO. However, it is interesting to find
that when dealing with low-dimensional problems, CSO is
slightly more efficient than DLLSO. Nevertheless, with the
dimensionality increasing, the difference between the compu-
tational cost of DLLSO and CSO becomes less and less, and
even when it comes to 2000-D, DLLSO is a bit more effi-
cient than CSO. This is because CSO needs to compute the
mean position of the whole swarm, which takes O(NP × D)

at each generation. Thus, as the dimensionality increases,
except for the computation time of fitness functions, the
extra computational cost of CSO increases faster than that of
DLLSO.

Together, we can see that with respect to the computational
cost, DLLSO is also very competitive or even superior to state-
of-the-art algorithms, due to its maintenance of the classical
PSO framework, which is very easy to understand and simple
to implement.

To summarize, we can conclude that the proposed DLLSO
is competitive, effective and efficient in dealing with large-
scale optimization in both solution quality and computational
cost.

VI. CONCLUSION

In this paper, we have proposed a LL strategy and an
exemplar selection strategy, the combination of which leads
to a new optimizer named LLSO. Besides, to deal with
the challenge that the optimal number of levels is problem-
dependent, we further added a dynamic selection strategy for
the number of levels, leading to DLLSO, a dynamic ver-
sion of LLSO. Various experiments have been conducted
to demonstrate the efficiency and effectiveness of DLLSO
in tackling large-scale optimization with respect to solu-
tion quality, convergence speed, scalability, and computational
cost.

YANG et al.: LLSO FOR LARGE-SCALE OPTIMIZATION 593

Though DLLSO shows good performance in coping with
large-scale optimization, the obtained solutions to some func-
tions are still far from the global optima, which is the common
issue for the state-of-the-art algorithms as well, as seen in
Tables I and II. Therefore, how to further improve DLLSO
to obtain solutions as near the global optima as possible
is the first direction for future investigation. In addition,
since dividing the whole swarm into levels is only associ-
ated with the population, whether the proposed LL strategy
and the exemplar selection strategy are promising for other
population-based EAs, such as DE, is another direction for
future investigation.

REFERENCES

[1] L.-Y. Chuang, C.-H. Yang, J.-H. Tsai, and C.-H. Yang, “Operon predic-
tion using chaos embedded particle swarm optimization,” IEEE/ACM
Trans. Comput. Biol. Bioinformat., vol. 10, no. 5, pp. 1299–1309,
Sep./Oct. 2013.

[2] P. Faria, J. Soares, Z. Vale, H. Morais, and T. Sousa, “Modified par-
ticle swarm optimization applied to integrated demand response and
DG resources scheduling,” IEEE Trans. Smart Grid, vol. 4, no. 1,
pp. 606–616, Mar. 2013.

[3] X. Wen et al., “A maximal clique based multiobjective evolutionary algo-
rithm for overlapping community detection,” IEEE Trans. Evol. Comput.,
vol. 21, no. 3, pp. 363–377, Jun. 2017.

[4] Y.-H. Jia et al., “A dynamic logistic dispatching system with set-based
particle swarm optimization,” IEEE Trans. Syst., Man, Cybern., Syst.,
to be published.

[5] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proc. Int. Symp. MHS, Nagoya, Japan, 1995, pp. 39–43.

[6] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Netw., vol. 4. 1995, pp. 1942–1948.

[7] J. Kennedy and R. Mendes, “Population structure and particle swarm
performance,” in Proc. IEEE Congr. Evol. Comput., Honolulu, HI, USA,
2002, pp. 1671–1676.

[8] J. Kennedy, “Small worlds and mega-minds: Effects of neighborhood
topology on particle swarm performance,” in Proc. IEEE Congr. Evol.
Comput., Washington, DC, USA, 1999, pp. 1931–1938.

[9] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proc.
IEEE Congr. Evol. Comput., Anchorage, AK, USA, 1998, pp. 69–73.

[10] K. E. Parsopoulos and M. N. Vrahatis, “On the computation of all global
minimizers through particle swarm optimization,” IEEE Trans. Evol.
Comput., vol. 8, no. 3, pp. 211–224, Jun. 2004.

[11] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive
learning particle swarm optimizer for global optimization of multimodal
functions,” IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 281–295,
Jun. 2006.

[12] M. A. M. de Oca, T. Stutzle, K. V. den Enden, and M. Dorigo,
“Incremental social learning in particle swarms,” IEEE Trans. Syst.,
Man, Cybern. B, Cybern., vol. 41, no. 2, pp. 368–384, Apr. 2011.

[13] Z.-H. Zhan, J. Zhang, Y. Li, and Y.-H. Shi, “Orthogonal learning par-
ticle swarm optimization,” IEEE Trans. Evol. Comput., vol. 15, no. 6,
pp. 832–847, Dec. 2011.

[14] Z. Ren, A. Zhang, C. Wen, and Z. Feng, “A scatter learning particle
swarm optimization algorithm for multimodal problems,” IEEE Trans.
Cybern., vol. 44, no. 7, pp. 1127–1140, Jul. 2014.

[15] J. Li, J. Zhang, C. Jiang, and M. Zhou, “Composite particle swarm opti-
mizer with historical memory for function optimization,” IEEE Trans.
Cybern., vol. 45, no. 10, pp. 2350–2363, Oct. 2015.

[16] Q. Qin, S. Cheng, Q. Zhang, L. Li, and Y. Shi, “Particle swarm optimiza-
tion with interswarm interactive learning strategy,” IEEE Trans. Cybern.,
vol. 46, no. 10, pp. 2238–2251, Oct. 2016.

[17] W.-N. Chen et al., “Particle swarm optimization with an aging leader and
challengers,” IEEE Trans. Evol. Comput., vol. 17, no. 2, pp. 241–258,
Apr. 2013.

[18] N. Lynn and P. N. Suganthan, “Heterogeneous comprehensive learning
particle swarm optimization with enhanced exploration and exploita-
tion,” Swarm Evol. Comput., vol. 24, pp. 11–24, Oct. 2015.

[19] Y. Liu, X. Yao, Q. Zhao, and T. Higuchi, “Scaling up fast evolutionary
programming with cooperative coevolution,” in Proc. IEEE Congr. Evol.
Comput., Seoul, South Korea, 2001, pp. 1101–1108.

[20] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-evolution
with differential grouping for large scale optimization,” IEEE Trans.
Evol. Comput., vol. 18, no. 3, pp. 378–393, Jun. 2014.

[21] R. Cheng and Y. Jin, “A social learning particle swarm optimization
algorithm for scalable optimization,” Inf. Sci., vol. 291, pp. 43–60,
Jan. 2015.

[22] S. Mahdavi, M. E. Shiri, and S. Rahnamayan, “Metaheuristics in large-
scale global continues optimization: A survey,” Inf. Sci., vol. 295,
pp. 407–428, Feb. 2015.

[23] R. Cheng and Y. Jin, “A competitive swarm optimizer for large
scale optimization,” IEEE Trans. Cybern., vol. 45, no. 2, pp. 191–204,
Feb. 2015.

[24] Q. Yang et al., “Segment-based predominant learning swarm optimizer
for large-scale optimization,” IEEE Trans. Cybern., vol. 47, no. 9,
pp. 2896–2910, Sep. 2017.

[25] T. O’Brien and D. Guiney, Differentiation in Teaching and Learning:
Principles and Practice. London, U.K.: Wiley, 2001.

[26] J. C. Richards and W. A. Renandya, Methodology in Language Teaching:
An Anthology of Current Practice. Cambridge, U.K.: Cambridge Univ.
Press, 2002.

[27] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise, “Benchmark
functions for the CEC’2010 special session and competition on large-
scale global optimization,” Nat. Inspired Comput. Appl. Lab., Univ. Sci.
Technol. China, Anhui, China, Tech. Rep., 2010.

[28] X. Li, K. Tang, M. N. Omidvar, Z. Yang, and K. Qin, “Benchmark
functions for the CEC’2013 special session and competition on large-
scale global optimization,” Evol. Comput. Mach. Learn. Group, RMIT
Univ., Melbourne, VIC, Australia, Tech. Rep., 2013.

[29] Q. Yang et al., “Multimodal estimation of distribution algorithms,” IEEE
Trans. Cybern., vol. 47, no. 3, pp. 636–650, Mar. 2017.

[30] Q. Yang et al., “Adaptive multimodal continuous ant colony opti-
mization,” IEEE Trans. Evol. Comput., vol. 21, no. 2, pp. 191–205,
Apr. 2017.

[31] M. A. Potter, “The design and analysis of a computational model
of cooperative coevolution,” Ph.D. dissertation, Dept. Comput. Sci.,
George Mason Univ., Fairfax, VA, USA, 1997.

[32] F. Van den Bergh and A. P. Engelbrecht, “A cooperative approach to
particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3,
pp. 225–239, Jun. 2004.

[33] X. Li and X. Yao, “Cooperatively coevolving particle swarms for
large scale optimization,” IEEE Trans. Evol. Comput., vol. 16, no. 2,
pp. 210–224, Apr. 2012.

[34] Y.-J. Shi, H.-F. Teng, and Z.-Q. Li, “Cooperative co-evolutionary dif-
ferential evolution for function optimization,” in Advances in Natural
Computation. Heidelberg, Germany: Springer, 2005, pp. 1080–1088.

[35] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary opti-
mization using cooperative coevolution,” Inf. Sci., vol. 178, no. 15,
pp. 2985–2999, 2008.

[36] Z. Yang, K. Tang, and X. Yao, “Multilevel cooperative coevolution
for large scale optimization,” in Proc. IEEE Congr. Evol. Comput.,
Hong Kong, 2008, pp. 1663–1670.

[37] Y. Sun, M. Kirley, and S. K. Halgamuge, “Extended differential group-
ing for large scale global optimization with direct and indirect variable
interactions,” in Proc. Conf. Genet. Evol. Comput., Madrid, Spain, 2015,
pp. 313–320.

[38] Y. Mei, M. N. Omidvar, X. Li, and X. Yao, “A competitive divide-
and-conquer algorithm for unconstrained large-scale black-box optimiza-
tion,” ACM Trans. Math. Softw., vol. 42, no. 2, pp. 1–24, 2016.

[39] J. J. Liang and P. N. Suganthan, “Dynamic multi-swarm particle swarm
optimizer with local search,” in Proc. IEEE Congr. Evol. Comput.,
Edinburgh, U.K., 2005, pp. 522–528.

[40] J. Kennedy and R. Mendes, “Population structure and particle swarm
performance,” in Proc. IEEE Congr. Evol. Comput., vol. 3. Honolulu,
HI, USA, 2002, pp. 1671–1676.

[41] R. Cheng, C. Sun, and Y. Jin, “A multi-swarm evolutionary framework
based on a feedback mechanism,” in Proc. IEEE Congr. Evol. Comput.,
Cancún, Mexico, 2013, pp. 718–724.

[42] A. R. Mehrabian and C. Lucas, “A novel numerical optimization algo-
rithm inspired from weed colonization,” Ecol. Informat., vol. 1, no. 4,
pp. 355–366, 2006.

[43] J. Sun, W. Xu, and B. Feng, “A global search strategy of quantum-
behaved particle swarm optimization,” in Proc. IEEE Conf. Cybern.
Intell. Syst., Singapore, 2004, pp. 111–116.

[44] K. Lian, X.-Y. Peng, and A. Ouyang, “An efficient and effective algo-
rithm for large scale global optimization problems,” Int. J. Pattern
Recognit., vol. 29, no. 4, pp. 1–22, 2015.

[45] A. LaTorre, S. Muelas, and J.-M. Peña, “A comprehensive compari-
son of large scale global optimizers,” Inf. Sci., vol. 316, pp. 517–549,
Sep. 2015.

[46] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evol. Comput., vol. 9, no. 2,
pp. 159–195, 2001.

[47] R. Ros and N. Hansen, “A simple modification in CMA-ES achieving
linear time and space complexity,” in Parallel Problem Solving From
Nature—PPSN X. Heidelberg, Germany: Springer, 2008, pp. 296–305.

[48] D. Molina, M. Lozano, and F. Herrera, “MA-SW-chains: Memetic algo-
rithm based on local search chains for large scale continuous global
optimization,” in Proc. IEEE Congr. Evol. Comput., Barcelona, Spain,
2010, pp. 1–8.

594 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 4, AUGUST 2018

[49] A. LaTorre, S. Muelas, and J. M. Peña, “Multiple offspring sampling in
large scale global optimization,” in Proc. IEEE Congr. Evol. Comput.,
Brisbane, QLD, Australia, 2012, pp. 1–8.

[50] A. LaTorre, S. Muelas, and J.-M. Peña, “Large scale global optimization:
Experimental results with MOS-based hybrid algorithms,” in Proc. IEEE
Congr. Evol. Comput., 2013, pp. 2742–2749.

[51] J. Brest and M. S. Mauèčec, “Self-adaptive differential evolution algo-
rithm using population size reduction and three strategies,” Soft Comput.,
vol. 15, no. 11, pp. 2157–2174, 2011.

[52] S.-Z. Zhao, P. N. Suganthan, and S. Das, “Self-adaptive differential
evolution with multi-trajectory search for large-scale optimization,” Soft
Comput., vol. 15, no. 11, pp. 2175–2185, 2011.

[53] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution
with optional external archive,” IEEE Trans. Evol. Comput., vol. 13,
no. 5, pp. 945–958, Oct. 2009.

[54] M. Z. Ali, N. H. Awad, and P. N. Suganthan, “Multi-population differen-
tial evolution with balanced ensemble of mutation strategies for large-
scale global optimization,” Appl. Soft Comput., vol. 33, pp. 304–327,
Aug. 2015.

[55] M. Campos, R. A. Krohling, and I. Enriquez, “Bare bones particle swarm
optimization with scale matrix adaptation,” IEEE Trans. Cybern., vol. 44,
no. 9, pp. 1567–1578, Sep. 2014.

[56] R. A. Krohling and E. Mendel, “Bare bones particle swarm optimization
with Gaussian or Cauchy jumps,” in Proc. IEEE Congr. Evol. Comput.,
Trondheim, Norway, 2009, pp. 3285–3291.

[57] S.-Z. Zhao, J. J. Liang, P. N. Suganthan, and M. F. Tasgetiren, “Dynamic
multi-swarm particle swarm optimizer with local search for large scale
global optimization,” in Proc. IEEE Congr. Evol. Comput., Hong Kong,
2008, pp. 3845–3852.

[58] J. Kennedy, “Stereotyping: Improving particle swarm performance
with cluster analysis,” in Proc. IEEE Congr. Evol. Comput., 2000,
pp. 1507–1512.

[59] S. Janson and M. Middendorf, “A hierarchical particle swarm optimizer
and its adaptive variant,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 35, no. 6, pp. 1272–1282, Dec. 2005.

[60] Y. V. Pehlivanoglu, “A new particle swarm optimization method
enhanced with a periodic mutation strategy and neural networks,” IEEE
Trans. Evol. Comput., vol. 17, no. 3, pp. 436–452, Jun. 2013.

[61] C. Segura, C. A. C. Coello, E. Segredo, and A. H. Aguirre, “A novel
diversity-based replacement strategy for evolutionary algorithms,” IEEE
Trans. Cybern., vol. 46, no. 12, pp. 3233–3246, Dec. 2016.

[62] O. Olorunda and A. P. Engelbrecht, “Measuring exploration/exploitation
in particle swarms using swarm diversity,” in Proc. IEEE Congr. Evol.
Comput., Hong Kong, 2008, pp. 1128–1134.

Qiang Yang (S’14) received the M.S. degree from
Sun Yat-sen University, Guangzhou, China, in 2014,
where he is currently pursuing the Ph.D. degree.

He is currently a Research Assistant with the
School of Computer Science and Engineering, South
China University of Technology, Guangzhou. His
current research interests include evolutionary com-
putation algorithms and their applications on real-
world problems, large-scale optimization algorithms,
multimodal optimization algorithms, distributed evo-
lutionary algorithms, and their applications on
real-world problems.

Wei-Neng Chen (S’07–M’12–SM’17) received the
bachelor’s and Ph.D. degrees from Sun Yat-sen
University, Guangzhou, China, in 2006 and 2012,
respectively.

He is currently a Professor with the School
of Computer Science and Engineering, South
China University of Technology, Guangzhou. He
has published over 70 papers in international jour-
nals and conferences, including over 20 papers in
the IEEE TRANSACTIONS. His current research
interests include swarm intelligence algorithms and

their applications in cloud computing, operations research, and software
engineering.

Dr. Chen was a recipient of the IEEE Computational Intelligence Society
Outstanding Dissertation Award in 2016, and the National Science Fund for
Excellent Young Scholars in 2016.

Jeremiah Da Deng (M’00) received the B.E.
degree from the University of Electronic Science
and Technology of China, Chengdu, China, in
1989, and the M.Eng. and D.Eng. degrees from
the South China University of Technology (SCUT),
Guangzhou, China, in 1992 and 1995, respec-
tively, the latter co-supervised by the University of
Hong Kong, Hong Kong.

Since 1995, he has been a Lecturer with SCUT,
and then joined the University of Otago, Dunedin,
New Zealand, in 1999, as a Post-Doctoral Research

Fellow, where he is currently an Associate Professor with the Department of
Information Science. He has published around 100 refereed research papers
in international conference proceedings and journals. His current research
interests include machine learning, pattern recognition, and modeling and
optimization of computer networks.

Yun Li (S’87–M’90–SM’17) received the B.S.
degree in radio electronics science from Sichuan
University, Chengdu, China, in 1984, the M.Eng.
degree in electronic engineering from the University
of Electronic Science and Technology of China,
Chengdu, in 1987, and the Ph.D. degree in par-
allel processing for control engineering from the
University of Strathclyde, Glasgow, U.K., in 1990.

From 1989 to 1990, he was with the U.K. National
Engineering Laboratory, Glasgow, and Industrial
Systems and Control Ltd., Glasgow. He joined the

University of Glasgow, Glasgow, as a Lecturer in 1991. He served as the two-
year Founding Director of the University of Glasgow Singapore, Singapore,
from 2011 to 2013. He developed one of the world’s first 30 evolutionary
computation courses in 1995 and the popular online interactive courseware
GA demo in 1997. He has supervised over 30 Ph.D. students in computational
intelligence and has 250 publications.

Prof. Li established Evolutionary Computation Workgroups for the IEEE
Control System Society and the European Network of Excellence in
Evolutionary Computing (EvoNet) in 1998. He served on the Management
Board of EvoNet from 2000 to 2005. He is a Chartered Engineer in the U.K.

Tianlong Gu received the M.Eng. degree from
Xidian University, Xi’an, China, in 1987, and the
Ph.D. degree from Zhejiang University, Hangzhou,
China, in 1996.

From 1998 to 2002, he was a Research Fellow
with the School of Electrical and Computer
Engineering, Curtin University of Technology, Perth,
WA, Australia, and a Post-Doctoral Fellow with
the School of Engineering, Murdoch University,
Perth. He is currently a Professor with the School
of Computer Science and Engineering, Guilin

University of Electronic Technology, Guilin, China. His current research
interests include formal methods, data and knowledge engineering, software
engineering, and information security protocol.

Jun Zhang (M’02–SM’08–F’17) received the Ph.D.
degree in electrical engineering from the City
University of Hong Kong, Hong Kong, in 2002.

From 2004 to 2016, he was a Professor with
Sun Yat-sen University, Guangzhou, China. Since
2016, he has been with South China University
of Technology, Guangzhou, where he is currently
a Cheung Kong Chair Professor. His current research
interests include computational intelligence, cloud
computing, big data, high performance computing,
data mining, wireless sensor networks, operations

research, and power electronic circuits. He has authored seven research books
and book chapters, and over 100 technical papers in the above areas.

Prof. Zhang was a recipient of the China National Funds for Distinguished
Young Scientists from the National Natural Science Foundation of China in
2011, and the First-Grade Award in Natural Science Research from the
Ministry of Education, China, in 2009. He is currently an Associate
Editor of the IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,
the IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, and the IEEE
TRANSACTIONS ON CYBERNETICS. He is the Founding and Current
Chair of the IEEE Guangzhou Subsection, the IEEE Beijing (Guangzhou)
Section Computational Intelligence Society Chapters, and the ACM
Guangzhou Chapter.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

