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Abstract—This paper studies a specific class of multiobjective
combinatorial optimization problems (MOCOPs), namely the
permutation-based MOCOPs. Many commonly seen MOCOPs,
e.g., multiobjective traveling salesman problem (MOTSP),
multiobjective project scheduling problem (MOPSP), belong to
this problem class and they can be very different. However, as
the permutation-based MOCOPs share the inherent similarity
that the structure of their search space is usually in the shape of
a permutation tree, this paper proposes a generic multiobjective
set-based particle swarm optimization methodology based on
decomposition, termed MS-PSO/D. In order to coordinate with
the property of permutation-based MOCOPs, MS-PSO/D utilizes
an element-based representation and a constructive approach.
Through this, feasible solutions under constraints can be gener-
ated step by step following the permutation-tree-shaped struc-
ture. And problem-related heuristic information is introduced
in the constructive approach for efficiency. In order to address
the multiobjective optimization issues, the decomposition strat-
egy is employed, in which the problem is converted into multiple
single-objective subproblems according to a set of weight vectors.
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Besides, a flexible mechanism for diversity control is provided
in MS-PSO/D. Extensive experiments have been conducted to
study MS-PSO/D on two permutation-based MOCOPs, namely
the MOTSP and the MOPSP. Experimental results validate that
the proposed methodology is promising.

Index Terms—Combinatorial optimization, decomposition,
multiobjective optimization, permutation-based, particle swarm
optimization (PSO), set-based.

I. INTRODUCTION

COMBINATORIAL optimization [1] has been a promi-
nent research topic in computer science and applications.

There are a considerable number of combinatorial optimiza-
tion problems (COPs) that are ubiquitous in reality but lack
a polynomial-time solution. In practice, several conflicting
objectives are usually expected to be optimized simultane-
ously, thus resulting in the development of multiobjective
COPs (MOCOPs). Since many MOCOPs tend to be nonde-
terministic polynomial complete, even nondeterministic poly-
nomial hard [2], it is often difficult to design exact algorithms
to find all optimal solutions for an MOCOP. Instead, most of
recent studies have focused on introducing stochastic methods
to find a set of near-optimal solutions. Among these meth-
ods, multiobjective evolutionary algorithms (MOEAs) have
attracted increasing attention [3]–[9] because of their effec-
tiveness in solving continuous multiobjective optimization
problems (MOPs) [10].

In this paper, we focus on a special class of MOCOPs,
i.e., the permutation-based MOCOPs. Specifically,
a permutation-based MOCOP is a problem with a finite
set of elements in its problem model, and a solution
to this problem always includes a permutation of these
elements that satisfies certain constraints. This kind of
problems is notable mainly due to two reasons. First,
a number of widely researched MOCOPs are essentially
permutation-based MOCOPs, e.g., the multiobjective travel-
ing salesman problem (MOTSP) [11]–[14], the multiobjective
project scheduling problem (MOPSP) [15]–[18], the
multiobjective vehicle routing problem (MOVRP) [19]–[25],
and the multiobjective flow-shop scheduling
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problem (MOFSSP) [26]–[30]. Second, although MOCOPs
can be very different in constraints and objectives,
permutation-based MOCOPs actually have the similar
search space of permutation tree structure as shown in
Fig. S1 in supplementary material available online at
http://ieeexplore.ieee.org and the same requirement for
permutation construction during the solution generation.

Therefore, although many algorithms have been developed
specifically for each permutation-based MOCOP, it should
be rational to develop a general method owing to their
inherent similarities. To develop an MOEA for permutation-
based MOCOPs, there are two main issues to be addressed:
1) encoding and evolution operator and 2) multiobjective
techniques.

From the aspect of encoding and evolution operator, var-
ious evolutionary algorithms (EAs) with different encodings
and evolution operators have been employed in MOEAs for
different permutation-based MOCOPs. Particularly, genetic
algorithms (GAs) and ant colony optimization (ACO) are
quite popular. GAs, with problem-related encodings and dif-
ferent evolution operators, have been adopted in MOEAs
for MOTSP [12], MOPSP [16], [18], MOVRP [19], [22],
and MOFSSP [27]. ACO, featured with a constructive
approach for solution generation with embedded heuris-
tic information, has recently seen an increasing popularity
in solving MOTSP [13], MOPSP [17], MOVRP [23], and
MOFSSP [28]. Besides, multiobjective particle swarm opti-
mizations (PSOs) have been proposed for problems such
as MOVRP [25] and MOFSSP [29]. Furthermore, there are
MOEAs based on estimated distribution algorithm (EDA) [11],
memetic algorithm [21], differential evolution (DE) [30], and
quantum EA [24].

From the aspect of multiobjective techniques, two
types of techniques are often applied in MOEAs for
permutation-based MOCOPs, i.e., the Pareto-based and
the decomposition-based. The Pareto-based MOEAs such
as NSGA-II [31], tend to solve a multiobjective problem
as a whole mainly according to Pareto dominance and
Pareto optimality. Decomposition-based MOEAs such as
MOEA/D [32], usually decompose an MOP into a set of
single-objective subproblems. And we found that compared
with the Pareto-based MOEAs [14], [18], [19], [22], [23],
fewer decomposition-based MOEAs have been developed in
the field of permutation-based MOCOPs [13], [20].

Based on the above discussion, this paper intends to
develop a general method termed multiobjective set-based
PSO methodology based on decomposition (MS-PSO/D) for
permutation-based MOCOPs, by combining concepts in both
the set-based PSO (S-PSO) method [33] and MOEA/D [32].

First, S-PSO is a method for transforming PSO algo-
rithms from continuous space to discrete space so as to solve
COPs [33]. It is adopted to provide encoding and evolution
operators in MS-PSO/D due to the following reasons.

1) PSO algorithms are pretty popular and ease-of-
use [34]–[38]. However, since PSO is originally
proposed for continuous problems, special methods are
necessary to apply it to solve COPs, let alone MOCOPs.
To integrate S-PSO into MOEA/D, we are actually to

propose a method that can extend PSO algorithms into
multiobjective discrete space so as to solve MOCOPs.

2) A step-by-step constructive approach can be achieved
in S-PSO, which is quite intuitive to generate feasible
solutions following the search space structured in a per-
mutation tree, as shown in Fig. S2 in supplementary
material. In addition, problem-based heuristic informa-
tion can be easily brought into the approach to improve
its efficiency.

3) Compared with other EAs having a constructive
approach such as ACO, S-PSO has been proven promis-
ing for solving COPs such as traveling salesman
problem (TSP) [33]. Thus, the proposed MS-PSO/D is
also expected to be effective for solving MOCOPs.

Second, MOEA/D is chosen to tackle with multiobjective
issues for reasons that: 1) decomposition-based multiobjective
techniques have shown effectiveness when used in MOEAs
to solve continuous MOPs [39]. However, in the field of
permutation-based MOCOPs, they are much less researched
compared with other techniques and 2) scalar heuristic infor-
mation and scalar local search can be used in each subproblem
in a natural way in MOEA/D [39], which can simplify the
design of heuristic information in MS-PSO/D.

Furthermore, there are several noteworthy issues to tailor the
proposed MS-PSO/D for solving permutation-based problems
efficiently. First, the set-based representation in S-PSO should
be further refined for permutation-based MOCOPs. Second,
based on the specific set-based representation, a constructive
approach is expected to generate feasible solutions exploring
the search space in the shape of a permutation tree. Third, since
different problems can have significantly different objectives,
the introduction of problem-related heuristic information needs
to be formalized. Besides, a flexible mechanism for diversity
control is also required to preserve good performance under
given computing resources.

Finally, the effectiveness and efficiency of MS-PSO/D
will be studied on two typical permutation-based MOCOPs,
i.e., MOTSP and MOPSP. Particularly, we consider a general
extension of MOPSP, i.e., multiobjective multimode resource
constrained project scheduling problem (MMRCPSP).

The rest of this paper is organized as follows. Section II
introduces relevant background, including permutation-based
MOCOPs, the set-based PSO and MOEA/D. In Section III, the
proposed MS-PSO/D is presented in details. Sections IV and V
discuss the behaviors of MS-PSO/D on MOTSP and
MMRCPSP, respectively. Section VI draws a conclusion.

II. BACKGROUND

A. Multiobjective Combinatorial Optimization

Under the assumption of minimizing all objectives, an
MOCOP can be mathematically expressed as

minimize f1(X), f2(X), . . . , fm(X)

subject to X ∈ � (1)

where � is the discrete decision space, X is a feasible solu-
tion in �, m is the number of objectives, and fi(X) is the
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ith objective function. F(X) = (f1(X), f2(X), . . . , fm(X)) is the
objective vector corresponding to solution X.

To deal with independent and conflicted objective functions,
the Pareto dominance among solutions is defined [39].

Definition 1 (Pareto Dominance): Consider vectors u, v ∈
Rm. u is said to dominate v if and only if uj ≤ vj holds for
every j = 1, . . . , m, and uj < vj is true for at least one j.
A solution X∗∈ � is said to be Pareto optimal if there is no
other feasible solution X∈ � such that F(X) dominates F(X∗).
F(X∗) is hence termed a Pareto optimal objective vector. The
set of all the Pareto optimal solutions is called the Pareto set,
and the corresponding set of Pareto optimal objective vectors
is called the Pareto front (PF).

Based on this definition, an algorithm for MOPs is expected
to find a set of solutions that can make a good approximation
of the PF.

B. Permutation-Based MOCOPs

Many typical and widely researched MOCOPs are found to
be permutation-based, despite differences in their objectives
and constraints. Therefore, it is possible to develop a general
algorithm for such a class of MOCOPs.

Definition 2 (Permutation-Based MOCOPs): Given n dis-
tinct elements with the universal element set U = {0, . . . , n −
1}, a permutation of the n elements is defined as

P = (x0, . . . , xn−1), subject to

∀p, q ∈ {0, . . . , n − 1}, xp, xq ∈ U, xp �= xq if p �= q. (2)

The permutation space P consists of all possible permutations
of the n elements, i.e., |P| = n!. A COP or MOCOP is said to
be permutation-based if any candidate solution to the problem
must include a permutation of some certain elements.

To further illustrate this concept, MOTSP and MMRCPSP
are introduced as examples in the following.

1) MOTSP: Traveling salesman problem is a typical
permutation-based COP that aims to find a Hamiltonian circuit
with minimum cost in a graph. More specifically, given a set
of cities (elements) U = {0, . . . , n−1} in a graph, the goal of
a TSP is to find a permutation P of the n cities in the form
of (2), such that the salesman visits each city once and only
once following the permutation and returns to the initial city,
and finally the travel cost is minimized.

The cost function is usually defined based on the weights
of arcs in the graph. In the single-objective TSP, each pair of
arcs that connects two nodes j and k is associated with costs
cj,k and ck,j. Then, the cost of a city permutation P is f (P) =
∑n−1

d=0 cxd,x(d+1)%n . Accordingly, an MOTSP with m objectives
can be defined as

minimize fi(P) =
n−1∑

d=0

ci
xd,x(d+1)%n

, i = 1, . . . , m (3)

where fi(P) is the ith objective under the ith cost matrix,
i.e., C(i) = (ci

j,k)n×n. ci
j,k and ci

k,j are the ith kind of costs
associated with the arcs that connect nodes j and k.

2) MMRCPSP: The traditional resource constrained project
scheduling problem (RCPSP) is a problem to schedule the

tasks of a project so as to minimize project makespan con-
sidering task dependency and resource constraints. To solve
RCPSP, a common approach is to schedule the tasks based
on a task permutation [40]. That is, given a project with
a set of tasks (elements), an algorithm first finds a task
permutation in the form of (2). Then, a serial schedule gen-
eration scheme (SSGS) can be applied to generate a project
schedule [40]. The SSGS works by repeatedly picking the first
unassigned task from the task permutation, putting it to the
earliest possible start time that satisfies the constraints.

MRCPSP is a general extension of RCPSP, where each
task can be implemented in different alternative modes and
a mode usually has a shorter duration if it consumes more
resources. Also, researchers have recently considered that
other objectives in addition to project makespan, such as
minimization of task delay, should also be included in project
scheduling problems [40], [41]. Therefore, this paper con-
siders the MMRCPSP with three objectives following [41]:
project makespan, waiting time, and resource consumption,
defined as:

minimize Makespan = max{FT(j)|j ∈ U}

WT =
n−1∑

j=0

ST(j)

RC =
n−1∑

j=0

R∑

k=1

crk × rrk
j,mj. (4)

Project Makespan is defined by the largest finish time FT(j) of
all tasks j (j ∈ U), i.e., the time when the execution of all tasks
has finished. Waiting time WT is defined by the summation
of the start time ST(j) of all tasks j. Denote R as the number
of renewable resources considered, crk as the cost per unit of
the kth resource (k = 1, 2, . . . , R), mj as the selected mode
for the jth task, and rrk

j,mj as the number of the kth resource
required by the mjth mode of the jth task. Then, the resource
consumption RC is given by the sum of the resource costs of
each task.

As described above, MOTSP and MMRCPSP are both
permutation-based MOCOPs. However, these two problems
are actually with quite different objective functions and
constraints. Moreover, they have different characteristics in
permutation positioning and decision space. First, relative
permutation positioning is concerned in MOTSP since per-
mutations (x0, . . . , xn−1) and (x1, . . . , xn−1, x0) are indeed
identical. In contrast, absolute positioning is often concerned
in MMRCPSP, since a task appears earlier in the task permuta-
tion can have a higher priority to consume resources. Second,
the decision space of MOTSP is simply the permutation space
since a permutation is already a solution. But MMRCPSP has
a more complex decision space and extra decisions for mode
selection are required. Since MOTSP and MMRCPSP are two
representative permutation-based MOCOPs, we validate the
proposed method on these two problems in this paper.

C. Population-Based EAs

To deal with complex or difficult problems efficiently, many
EAs have been proposed to obtain optimal or suboptimal
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solution(s) in a reasonable time. In general, an EA evolves
a population iteratively to find the optima of problems to
be settled, where each individual in the population usually
represents a candidate solution.

The development of EAs dates back to 1950s [42] with
the emergence of algorithms such as evolutionary program-
ming and evolution strategy. Since then, more and more EAs
have been proposed and applied to solve theoretic and real-
istic problems, such as GAs [43], [44], DEs [45]–[47], PSO
algorithms [48]–[52], ACO algorithms [53]–[56], and hybrid
or memetic algorithms [57]–[58].

Most of the above mentioned EAs are originally devel-
oped for single-objective and continuous problems. However,
in reality, multiobjective and discrete problems are quite
common. To fill the gap, multiobjective techniques such
as MOEA/D [32] and discretization methods such as
S-PSO [33], have been proposed to extend the original EAs
to their multiobjective and discrete versions, respectively.

D. Set-Based Particle Swarm Optimization

S-PSO is a method proposed in [33], in which continuous
PSO algorithms can be implemented so as to solve COPs.
S-PSO is characterized by its set-based representation and set-
based way to update velocities and positions.

1) Representation: Many COPs can be formulated as “find
from a set U a subset X that satisfies some constraints and
optimizes the objective function” [33]. Thus in S-PSO, parti-
cle i’s position Xi is represented by a set of elements and its
velocity Vi is represented by a set with possibilities to indicate
the possibility of selecting any element into its position. The
concrete representation is problem-dependent. For instance,
particles are represented based on arcs between cities for
TSP, but based on items and 0-1 values for the 0-1 knapsack
problem (0-1 KP) [33]. However, by concentrating exclu-
sively on permutation-based problems, it is possible to define
a general set-based representation.

2) Velocity Update: In S-PSO, velocities are updated
according to the velocity update formula of a specific con-
tinuous PSO. However, mathematic operations in the original
formula need to be redefined on sets. For example, sup-
posing the global PSO (GPSO) is implemented in S-PSO,
i.e., S-GPSO, the velocity update formula is

Vi = ωVi + c1r1(pBesti − Xi) + c2r2(gBesti − Xi) (5)

where ω, c1r1, and c2r2 are real coefficients, pBest and gBest
are best-so-far positions found by a single particle and the
whole swarm respectively. Based on the above set-based rep-
resentation, Xi, pBesti, gBesti are crisp sets, Vi is a set with
possibilities, and (pBesti − Xi) and (gBesti − Xi) are also crisp
sets by set subtraction. To obtain the new Vi, operations such
as multiplication between a coefficient and a set with possibil-
ities, multiplication between a coefficient and a crisp set, and
addition of sets of possibilities, are defined in [33].

3) Position Update (Solution Construction): The elements
in the best-so-far positions are more promising and they tend
to be assigned larger possibility values in velocity update.
Thus, in position update, a particle preferentially learns from

its velocity by selecting elements whose possibilities values
excess some certain threshold, such that a more potential
position can be constructed. Moreover, heuristic information
can be embedded to guide the element selection. The con-
crete process of position update is also problem-dependent.
For example, in [33], the position is viewed as a whole
and updated in a single step when solving 0-1 KP, but for
solving TSP, a step-by-step constructive approach is applied
and only available elements are considered in each step. For
permutation-based problems such as TSP and MOTSP, the
constructive approach with embedded heuristic information is
quite intuitive, suitable, and practicable.

E. Decomposition and MOEA/D

To our best knowledge, fewer decomposition-based MOEAs
than Pareto-based MOEAs have been proposed for solving
permutation-based MOCOPs. However, decomposition-based
MOEAs should be quite potential for solving these problems
as scalar heuristic information can be easily used in them.

Decomposition strategy has been widely adopted to develop
MOEAs [59]–[63]. Generally, it is a fitness assignment
scheme to convert a vector into a scalar value, and the value
can be used for selection, diversity maintenance, and mat-
ing restriction. A decomposition-based MOEA decomposes
an MOP into a series of single-objective subproblems using
a set of weight vectors according to some certain aggrega-
tion approaches, among which the weighted-sum approach and
the Tchebycheff approach are simple and popular [64]. Other
approaches such as normal boundary intersection [65], have
also been adopted in [66] and [67].

MOEA/D is a popular decomposition-based multiobjective
evolutionary framework [32], characterized by subproblems
and neighborhood. It assigns each individual in the population
a specific weight vector, which corresponds to a subproblem.
A good approximation of the PF might depend on a good cov-
erage of the weight vectors. In addition to the widely used
evenly distributed weight vectors, some more sophisticated
weight vectors are also proposed [59], [68]. Furthermore, the
neighborhood B(i) of subproblem i consists of the closest T
subproblems in terms of the distances between weight vectors.
All subproblems in a neighborhood cooperate to evolve.

III. SET-BASED DISCRETE PARTICLE SWARM

OPTIMIZATION BASED ON DECOMPOSITION

In order to develop a general method for permutation-based
MOCOPs, a set-based discrete particle swarm optimization
based on decomposition is developed in this section. It is
essentially formed by the concepts of S-PSO and MOEA/D,
and is hence denoted as MS-PSO/D. This is rather a method
than an algorithm, in which PSOs with different learning
strategies can be implemented in order to solve different
permutation-based MOCOPs.

Fig. 1 illustrates the general framework of MS-PSO/D. The
“problem analysis” is necessary to identify the problem char-
acteristics, such as constraints and basic elements. Learners,
i.e., best-so-far positions, are updated in MOEA/D way and
archive is maintained according to Pareto dominance. In the
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Fig. 1. Overall framework of MS-PSO/D.

main “swarm update,” velocity update, solution construction,
and position update are performed successively by each parti-
cle. Velocity update and position update depend on the update
formulas and the representation of particles. In solution con-
struction, permutation construction is always essential and
necessary, and a solution completion process is performed only
when extra decisions are required.

In the following, we will demonstrate MS-PSO/D from four
respects: 1) representation scheme for particles and the related
operations; 2) solution construction scheme; 3) heuristic infor-
mation; and 4) MOEA/D issues.

A. Element-Based Representation Scheme and Operations

Although the concrete representation in S-PSO usually
needs to be specifically defined for different COPs, MS-PSO/D
manages to develop a general set-based representation for
permutation encoding and permutation construction of all
permutation-based MOCOPs. For permutation encoding, a per-
mutation can be obtained from the adjacent relationship of
elements within it. For permutation construction, the main
concern is indeed to find the potential adjacent elements to
a certain element. Therefore, contrary to the representation
in S-PSO which views all elements as a whole, MS-PSO/D
develops an element-based representation by defining a unique
set-based component for each element in position or velocity.

Given a problem with element set U = {0, . . . , n − 1},
to represent permutation P = (x0, . . . , xn−1), the position of
particle i is defined as an array of n crisp sets, i.e., Xi =
(X0

i , . . . , Xn−1
i ). Each component Xd

i (d ∈ U) is defined to
include adjacent elements to element d as

Xd
i = {

x(p−1+n)%n, x(p+1)%n
}
, d = xp. (6)

The permutation is thought to be circular and each element
hence has two adjacent elements. Element x(p−1+n)%n is prior
to xp in permutation P, and it will be xn−1 for x0. Element
x(p+1)%n is next to xp, and it will be x0 for xn−1.

Accordingly, the velocity of a particle is defined to indicate
the possibility that any element is adjacent to a certain element
in a permutation. That is, the velocity of particle i is repre-
sented as Vi = (V0

i , . . . , Vn−1
i ). Each component Vd

i (d ∈ U) is
related to element d and it is a set with possibilities defined as

Vd
i =

{
(e, pd

i (e))|e ∈ U, pd
i (e) ∈ [0, 1]

}
. (7)

Each integer-real pair (e, pd
i (e)) means that element e is adja-

cent to element d in a permutation with possibility pd
i (e). Since

the velocity is used to guide the step-by-step permutation con-
struction, pd

i (e) actually reflects the possibility of selecting
element e next to element d when constructing a permuta-
tion of elements. Thus, pd

i (e) and pe
i (d) are recommended to

always keep equal in some problems, e.g., in MOTSP, where
relative permutation positioning is concerned.

The above representation is merely defined for permuta-
tion encoding and construction. As mentioned in Section II, in
some problems such as MMRCPSP, the decision space is more
complex and a solution should include not only a permutation
of elements but also some problem-related extra decisions. For
these problems, the particles must be further represented for
the extra decisions. In the following, taking MMRCPSP for an
example, we demonstrate that an independent element-based
representation can also be realized for extra decisions.

Given an MMRCPSP where each task d has md modes with
mode set Md = {0, . . . , md − 1}, the position and velocity of
particle i are further defined as Si = {Xi, X̄i} and Wi = {Vi, V̄i},
respectively. For extra decisions required by multimode case,
the extra position X̄i = (X̄0

i , . . . , X̄n−1
i ) is defined to represent

results of mode selection, where each component X̄d
i is a crisp

set filled by the index of the mode selected for task d; the
extra velocity V̄i = (V̄0

i , . . . , V̄n−1
i ) is an array of sets with

possibilities to guide mode selection, with each component
defined as

V̄d
i =

{
(m, p̄d

i (m))|m ∈ Md, p̄d
i (m) ∈ [0, 1]

}
. (8)

Each pair (m, p̄d
i (m)) indicates the possibility of selecting

mode m for task d. Thus, Sd
i = {Xd

i , X̄d
i } and Wd

i = {Vd
i , V̄d

i }
form the components for task (element) d in particle i’s
position and velocity, respectively.

Based on the aforementioned representation, element-based
arithmetic operations are defined such that velocity can be
updated component by component. Recall that MS-PSO/D
is a methodology and the velocity update is related to the
specific PSO implemented within it. Different PSOs have
different learning strategies and velocity update formulas.
Fortunately, the various formulas share similar arithmetic oper-
ations. Specifically, the multiplication between a coefficient
and a velocity component (e.g., c × Vd

i ) is defined as (9) to
change the possibility values using the coefficient; the addi-
tion between velocity components (e.g.,Vd

i + Vd
j ) is defined

as (10) to merge pairs within them and obtain a set with pos-
sibilities; the subtraction between two position components
performs a normal set subtraction as (11); and the multiplica-
tion between a coefficient and a position component is defined
to convert a set into a set with possibilities using the coeffi-
cient as (12). Besides, to convert a velocity component into
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(a)

(b)

(c)

Fig. 2. Sample representation and operations for MMRCPSP. (a) MMRCPSP
instance. (b) Example of solution representation. (c) Example of velocity
update.

a crisp set of elements, operation α−cut is defined as (13)
according to a random real number α generated in [0, 1]

c × Vd
i =

{(
e, p′(e)

)|
(

e, pd
i (e)

)
∈ Vd

i

}

p′(e) = min {c × pd
i (e), 1} (9)

Vd
i + Vd

j =
{(

e, p′(e)
)|

(
e, pd

i (e)
)

∈ Vd
i or

(
e, pd

j (e)
)

∈ Vd
j

}

p′(e) =

⎧
⎪⎪⎨

⎪⎪⎩

max
(

pd
i (e), pd

j (e)
)
,
(
e, pd

i (e)
) ∈ Vd

i ,
(

e, pd
j (e)

)
∈ Vd

j

pd
i (e),

(
e, pd

i (e)
) ∈ Vd

i

pd
j (e),

(
e, pd

j (e)
)

∈ Vd
j

(10)

Xd
i − Xd

j = Xd
i,j =

{
e|e ∈ Xd

i , e /∈ Xd
j

}
(11)

c × Xd
i,j =

{(
e, p′(e)

)|x ∈ Xd
i,j

}
, p′(e) = min{c, 1} (12)

cutα
(

Vd
i

)
=

{
e|

(
e, pd

i (e)
)

∈ Vd
i , pd

i (e) > α
}
. (13)

In Fig. 2, we exemplify the element-based representation
and operations in an MMRCPSP instance. Fig. 2(a) illustrates
the instance of four tasks, where task 0 must be finished before
task 1 and task 2 start, task 1 and task 2 must be finished before
task 3 starts. Except task 1 has three modes, each task has two
modes. Fig. 2(b) shows a possible solution, where tasks are
scheduled in the permutation P = (0, 2, 1, 3) and mode 1,
mode 0, mode 2, and mode 1 are chosen for task 0, task 2,
task 1, and task 3, respectively. And a set-based position S can
be generated to represent the solution, where X1

i = {2, 3} and
X̄1

i = {1} since tasks 2 and 3 are adjacent to task 1 in P, and
mode 1 is chosen for task 1. And Fig. 2(c) exemplifies how
a velocity component can be updated according to velocity
update formula (5).

B. Solution Construction Scheme

For various permutation-based MOCOPs, a solution must
include a permutation of some certain elements and the goal
of solution construction in MS-PSO/D is to construct a feasible
and potential permutation-based solution.

1) The feasibility is promised by the step-by-step construc-
tive approach such that constraints can be easily satisfied
in each step. Owing to the element-based representation,

Algorithm 1 Permutation Construction
Input: position and velocity of particle i (Xi, Vi)
Output: a permutation P = (x0, . . . , xn−1)

1. UE = {0, 1, . . . , n − 1} //set of unchosen elements
2. for p = 0, 1, . . . , n − 1
3. E = CheckConstraints(UE); // available elements
4. clear set V and set X; // V and X should be empty
5. if p > 0 //obtain available elements in velocity and position
6. V = cutα(V

xp−1
i ) ∩ E; X = X

xp−1
i ∩ E;

7. end if
8. if V is not empty //learn from velocity in the highest priority
9. xp = ChooseOneFrom(V); //choose one element from set V
10. else if rand(0, 1) < plearnX and X is not empty
11. xp = ChooseOneFrom(X);
12. else
13. xp = ChooseOneFrom(E);
14. end if
15. delete xp from set UE; //delete the chosen element from UE
16. end for

a constructive approach can be well-defined for solution
construction.

2) The potential is promised by providing a flexible bal-
ance of convergence and diversity, which is achieved
by introducing a few parameters for diversity control in
MS-PSO/D.

For the same requirement for permutation construction of
various permutation-based MOCOPs, a general constructive
approach is formalized, where elements are chosen one by
one and each element is chosen by learning from the veloc-
ity component and position component corresponding to the
last chosen element. Pseudocode of the general permutation
construction is detailed in Algorithm 1, where only function
“CheckConstraints” needs modifications when dealing with
different problems. Set UE records all unchosen elements.
Permutation is constructed in a loop with n iterations and an
element is chosen to be xp in the pth iteration (lines 2–16). In
the loop, all unchosen elements are checked first to obtain a set
E of available elements that satisfy the constraints (line 3). If
p > 0, sets V and X are formed by available elements from
the xp−1th components of velocity and position of particle i
respectively (lines 5–7). Then, the particle chooses an element
as xp from sets V, X and E with decreasing priority (lines
8–14). Elements in V, i.e., velocity, are chosen in the high-
est priority because that the velocity of a particle is mainly
maintained according to good experiences of particles in the
swarm. If there is no available element in V, the particle tends
to check elements in X with probability plearnX (line 11) so
as to exploit the decision space near its old position. If noth-
ing found in X, the particle treats all available elements in E
impartially to explore new decision space (line 13).

In the above process, element selection is performed in
S-PSO way. But differing from the original S-PSO, MS-PSO/D
utilizes only the components rather than the whole of veloc-
ity and position owing to the element-based representation,
which can accelerate the computation of sets V and X in
each iteration. Moreover, in S-PSO, different levels of diver-
sity can only be achieved by implementing different PSOs. To
overcome the lack of mechanism for diversity control, param-
eters plearnX and pMax are introduced in element selection.
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Algorithm 2 Solution Completion Process for MMRCPSP
Input: task permutation P, position and velocity of particle i
Output: array MT[] to record results of mode selection

1. for p = 0, 1, . . . , n − 1 //mode selection following P
2. tid = xp; M = ModeNum(tid); //task tid has M modes
3. E = {0, 1, . . . , M − 1}; //set of modes of task tid
4. E = ResourceConstraint(E); //set of available modes
5. V = cutα(V̄tid

i ) ∩ E; X = X̄tid
i ∩ E;

6. if V is not empty
7. mid = ChooseOneFrom(V);
8. else if rand(0, 1) < plearnX and X is not empty
9. mid = ChooseOneFrom(X);
10. else
11. mid = ChooseOneFrom(E);
12. end if
13. MT[tid] = mid; // mode mid is selected for task tid
14. end for

plearnX is used to limit the probability of learning from X
(line 8). A smaller plearnX means that the particle learns
less from its old position and explores new space more by
learning from E, which should result in more diversity. In
“ChooseOneFrom,” instead of always choosing the element
with the best heuristic information, the best element can only
be chosen in a certain probability, i.e., pMax. Otherwise,
a roulette selection is applied. Thus, a larger pMax means
a lower probability to apply roulette selection and hence less
diversity.

After permutation construction, a solution completion pro-
cess needs to be performed only when extra decisions are
required. The process is problem-dependent since differ-
ent extra decisions can be required by different problems.
However, based on the element-based representation defined
for the extra decisions, it is also possible to formalize a con-
structive approach for the solution completion process akin to
the permutation construction. As a result, even for a problem
with a requirement for extra decisions, a constructive approach
can still be realizable so as to generate only feasible solutions.

Taking MMRCPSP for an example, we demonstrate the
completion process can also be formalized in a constructive
approach. Suppose a task permutation P = (x0, . . . , xn−1) has
been constructed by permutation construction. Solution com-
pletion process is formalized as Algorithm 2, where mode
selection is performed for each task following P according to
the velocity and position components defined for multimode
case. The mode selection is quite similar to the element
selection in permutation construction. In Algorithm 2, set E
contains all available modes of task tid that satisfy resource
constraint (line 4). And sets V and X are formed by avail-
able elements in velocity and position respectively (line 5).
Similarly, a mode is selected for task tid from sets V, X, and E
with decreasing priority (lines 6–12). Then, the selected mode
mid is recorded (line 13). Finally, the results of mode selec-
tion and task permutation constitute a complete solution and in
“position update,” it will be converted into an element-based
position.

C. Heuristic Information

For the sake of efficiency and convergence rate, heuristic
information is included in solution construction of MS-PSO/D

and it is designed to reflect the probability of choosing a cer-
tain element out of several available elements. In particular, for
permutation construction, given a problem with n elements, an
n · n heuristic matrix Heui should be provided for each parti-
cle i, where Heui[j][k] represents the probability of particle i
to choose element k after element j.

Generally, efficient offline heuristic information that needs
to be computed only once at the beginning, is preferred
in MS-PSO/D. But online heuristic information that must
be updated in real time, is also practicable owing to the
constructive solution construction. Furthermore, in order to
combine information of multiple objectives, strategies such as
decomposition and normalization are often necessary.

Here, we list the settings of heuristic information for
MOTSP and MMRCPSP in our experiments. For MOTSP,
the heuristic matrix is set according to Heui[j][k] = g(cj,k |λi),
where λi is the weight vector of particle i, g is the decom-
position function, and cj,k is the cost vector corresponding to
arc <j, k>. Normalization is necessary if values in the cost
vector are of different orders of magnitude. For MMRCPSP,
as for heuristic information used in permutation construction,
the latest finish time (LFT) [69] of each task k is computed
and used by the entire swarm, i.e., Heui[j][k] = LFT(k). As
for mode selection, real-time heuristic information is adopted
for efficiency. That is, a heuristic vector heui,j is computed
during mode selection of task j for particle i according to
heui,j(k) = g(cj,k |λi), where heui,j(k) represents the probabil-
ity for particle i to choose mode k for task j. The cost vector
cj,k = (ftj,k, stj,k, rcj,k) corresponds to objectives Makespan,
WT, and RC as defined in (4). rcj,k is the resource cost of the
kth mode of task j. stj,k and ftj,k are the earliest start time and
finish time of task j if executed in its kth mode, and they need
to be computed in real time.

D. MOEA/D Issues

To process multiobjective issues, in addition to the crucial
settings for MOEA/D, learner(s) update and fitness evaluation
in S-PSO must also be adjusted in the context of MOEA/D.

For settings of MOEA/D, weight vectors and the partition of
neighborhood are important. Weight vectors are used to con-
vert an MOP into a set of single-objective subproblems. A set
of static weight vectors is often employed, although dynamic
and adaptive weight vectors can also be found [68]. The evenly
distributed weight vectors are implemented for simplicity in
this paper. Besides, neighborhood B(i) of particle i is defined as
in [32] based on the distances between weight vectors, which
consists of the T closest particles to particle i.

Learners update that is used to take place in the whole
swarm in S-PSO, is restricted in neighborhood in MS-PSO/D.
Suppose GPSO is implemented in MS-PSO/D, i.e., MS-
GPSO/D. After every particle has finished constructing its
new solution, the global learner of particle i, i.e., best-so-far
solution gBesti, is updated according to all newly constructed
solutions in its neighborhood B(i). Besides, to control the
dominion of a very good solution, a parameter MaxUsedT is
introduced to limit the times of the new solution to be gBest.
A new solution is flagged as used after it has been used for
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MaxUsedT times. Thus, based on fitness values of all unused
newly constructed solutions in B(i), the best one is chosen to
update gBesti.

As for fitness evaluation, decomposition strategy is used to
transform an objective vector into a scalar fitness. However,
decomposition in MOEA/D is performed on the assumption
that the values of different objectives are of a similar order of
magnitude, which may not hold in many permutation-based
MOCOPs. Thus, normalization is necessary in MS-PSO/D and
decomposition-based fitness evaluation is performed only after
normalization has been completed in each objective dimen-
sion. Generally, a uniform normalization based on the upper
bound (max) and the lower bound (min) suffices. That is, in
each objective dimension o, two values, i.e., maxo and mino,
are maintained to represent the maximum and minimum objec-
tive values of solutions found so far. Once new solutions have
been generated in each iteration, each objective value xo of
these solutions in dimension o should be used to update maxo

or mino, if it is larger than maxo or smaller than mino, respec-
tively. After that, an objective value xo can be normalized into
a value in [0, 1] using (xo − mino)/(maxo − mino), and it will
be used in fitness evaluation.

E. Overall MS-PSO/D

All in all, the proposed MS-PSO/D mainly makes use of the
set-based representation and solution construction of S-PSO,
and the decomposed neighborhood of MOEA/D. Specifically,
element-based representation is defined for permutation-based
MOCOPs, which facilitates the formalization of a step-by-step
constructive approach for solution construction. Owing to the
constructive approach, not only offline but also online heuris-
tic information can be easily brought into MS-PSO/D. On
the other hand, decomposition approach is employed to
obtain scalar fitness and heuristic information. It is worth
noting that normalization can be necessary before scalar-
ization. Besides, neighborhood in MS-PSO/D plays a role
in restricting the scope to update learners of particles.
Furthermore, parameters are introduced in the process of solu-
tion construction and learners update to control diversity of
MS-PSO/D.

In particular, to solve a permutation-based MOCOP of n
elements and m objectives, the overall execution process of
MS-PSO/D can be detailed as follows.

Step 1 (Initialization): Initialize parameters. Generate even
weight vectors and assign each weight vector to a particle.
Extract heuristic information of each objective and set heuris-
tic matrix using the weight vectors. For each particle, initialize
its velocity to include all feasible elements with the possibil-
ities set as 1.0, and then construct a solution for its position
initialization.

Step 2 (Evaluation and Normalization): Evaluate all par-
ticles to obtain objective vectors. Update the upper bound
and lower bound of each objective. Accordingly, normalize
the objective vector of each particle.

Step 3 (Learner(s) and Archive Update): Update learners
for each particle in MOEA/D way using the particle’s weight
vector and all newly generated solutions in its neighborhood.

Use all new solutions to update archive based on Pareto
dominance.

Step 4 (Swarm Update): For each particle, update its
velocity by performing element-based arithmetic operations
in PSO’s velocity update formula, and then construct a new
solution to update its position.

Step 5 (Termination): If the stopping condition is met, stop
and output archive. Otherwise, go to step 2.

IV. BEHAVIORS ON MOTSP

Fifteen bi-objective and 6 tri-objective instances are con-
structed from TSPLIB [70] for experiments on MOTSP, and
the number of cities varies from 100 to 500. As shown
in Table SI in supplementary material available online at
http://ieeexplore.ieee.org, m is the number of objectives, n
is the number of cities, the column “units” lists the single-
objective TSP instances used to construct the corresponding
MOTSP instances.

A. Performance Metrics

We use the inverted generational distance (IGD) [71] and the
Hypervolume (HV) [72] as performance metrics in this paper.

The IGD [71] has been widely used as a performance metric
for multiobjective optimization. Let P be a PF approximated
by an algorithm, P∗ be a set of uniformly distributed points
in the actual PF of a multiobjective problem. The IGD from
P∗ to P is defined as

IGD(P∗, P) =
∑

v∈P∗ d(v, P)

|P∗| .

d(v, P) is the minimum Euclidean distance from point v to all
points in P. The lower the IGD is, the better is the approxima-
tion. In this paper, for lack of a prior PF, P∗ is always defined
as the set of all nondominated points in PFs approximated by
the algorithms to be compared and assessed.

The HV [72] measures the size of the space dominated by
a certain approximated PF. Let y* = (y1*, . . . , ym*) be a point
dominated by any point in the approximated PF P. Then, the
HV value of P with regard to the reference point y* is the
volume of the region which is dominated by P but dominates
y*. A larger HV value implies a larger dominated space of
the approximated PF as well as a better approximation. In
this paper, we adopt a fast way namely WFG [73] to calculate
exact HV. The worst objective values found by all compared
algorithms are used to maintain the reference point.

B. Comparative Analysis

MOEA/D-ACO has been proposed recently by combin-
ing ACO and MOEA/D, and its efficiency for MOCOPs has
been proven in experiments [13]. Thus, to some extent, com-
parison with MOEA/D-ACO can illustrate the efficiency of
MS-PSO/D. The source code of MOEA/D-ACO is available
online [74].

1) Basic Settings: Unless specified otherwise,
24*3000 solutions are generated in total by each run of
an algorithm and all experimental results are based on
30 independent runs as in [13].

http://ieeexplore.ieee.org


YU et al.: S-PSO BASED ON DECOMPOSITION FOR PERMUTATION-BASED MOCOPs 2147

TABLE I
IGD AND HV STATISTICS OF THE FINAL APPROXIMATIONS OBTAINED BY MOEA/D-ACOT AND MS-GPSO/DW

For comparison, GPSO is implemented in MS-PSO/D
with the weighted-sum decomposition approach, i.e., MS-
GPSO/DW . Population size ps = 45 for each instance.
Neighborhood size T = 10. About parameters for diversity
control, pMax = 1.0, MaxUsedT = 2, plearnX = 0.8 for
100-city instances, plearnX = 0.99 for the others. For param-
eters in GPSO, c1 = c2 = 2.0, ω changes linearly from
0.9 to 0.4.

Parameter settings of MOEA/D-ACO for bi-objective TSPs
have been recommended in [13]. For tri-objective TSPs, based
on substantial experiments to explore MOEA/D-ACO, we set
ps = 45, number of groups K = 6, and keep the other
parameters unchanged. Considering MOEA/D-ACO with the
Tchebycheff decomposition approach, i.e., MOEA/D-ACOT ,
performs better than MOEA/D-ACO with the weighted-sum
approach when dealing with MOTSP [13], only the results of
MOEA/D-ACOT are reported in this paper.

2) Compared Results: The IGD and HV statistics of
the final approximations obtained by MOEA/D-ACOT and
MS-GPSO/DW are compared in Table I. Better mean values of
IGD and HV are marked in bold. Results of Wilcoxon signed-
rank test of 5% significance level on IGD and HV are listed
in columns “W-test.” From Table I, we observe the following
phenomena.

(1) The comparative results on an IGD metric and an HV
metric are consistent. Except on instance euclidAB500,
each algorithm has a consistent performance in terms of
metric HV and metric IGD on all instances.

(2) Both the mean values and W-test results of IGD and
HV show that MS-GPSO/DW performs significantly bet-
ter than MOEA/D-ACOT on all 15 bi-objective and
6 tri-objective instances except that MOEA/D-ACOT

wins on euclidAB500 in terms of IGD. In fact, bet-
ter IGD requires that the estimated PF obtained by
an algorithm should be denser and closer to the true
PF, with fewer missing parts. And better HV requires
that the estimated PF of an algorithm should be gen-
erally wilder and farther from the reference point.
Thus, the results can illustrate that compared with
MOEA/D-ACOT , the final approximations obtained by
MS-GPSO/DW are both denser and wilder. And the
effectiveness of MS-GPSO/DW for MOTSP is hence
proven.

(3) Almost on all instances, quite obvious differences can be
observed between mean values of IGD and HV obtained
by MS-GPSO/DW and MOEA/D-ACOT . Particularly, on
many instances of smaller scale, such as 100-city ones,
the ratios of IGD values obtained by MS-GPSO/DW to
MOEA/D-ACOT ’s are nearly as low as 1/2. The dif-
ferences show MS-GPSO/DW ’s performance advantage
over MOEA/D-ACOT .

(4) MS-GPSO/DW obtains lower IGD deviation on 9 out
of 21 instances and lower HV deviation on 11 out
of 21 instances. Thus, it has no obvious superior-
ity to MOEA/D-ACOT as far as deviation is con-
cerned. However, although poor deviation is possible,
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MS-GPSO/DW can still achieve better IGD or HV in
a random run owing to its significantly better mean
values as stated above. Therefore, the robustness of
MS-GPSO/DW can be promised by its pretty good
performance.

3) Comparison Under More Evaluations: Meanwhile, final
approximations of MS-GPSO/DW and MOEA/D-ACOT are
further compared under more evaluations than 24*3000. That
is, available evaluations is tripled on tri-objective instances,
i.e., 24*9000, and on bi-objective instances, an algorithm stops
only when its approximation cannot be improved in 500 iter-
ations. Compared results are provided in Table SII in supple-
mentary material, where better performance of MS-GPSO/DW

can still be observed on every instance in terms of both
IGD and HV. Thus, the results show that the superiority of
MS-GPSO/DW to MOEA/D-ACOT can sustain even when
more computing resources are available.

4) Comparison of Time Complexity: In Table SIII in
supplementary material, we show the average time (in sec-
onds) of 30 runs of MOEA/D-ACOT and MS-GPSO/DW

on Intel Core i3-3240. For MS-GPSO/DW , we record the
time consumed for updating velocities (updateV) and solu-
tions (updateX); for MOEA/D-ACOT , we record the time
consumed for updating solutions (updateX), pheromone matri-
ces (Pheromone), and probability matrices (ProbMatrix). As
shown in bold, on each instance, MS-GPSO/DW consumes
less time compared with MOEA/D-ACOT , and the differences
are more obvious on larger-scale instances. Meanwhile, differ-
ences on time of updateX are consistent with the differences
on total consumed time, which implies that the way of updat-
ing solutions in MS-GPSO/DW mainly helps to reduce its time
complexity.

In fact, the above results are as expected. Regardless of the
common MOEA/D part in MS-PSO/D and MOEA/D-ACO,
the main difference of their time complexity should come from
the difference between S-PSO and ACO. When solving the
same problem, the time of maintaining velocities in S-PSO is
roughly equal to the time of maintaining pheromone matrix
in ACO. As for solution update, the worst case in S-PSO is
that all elements are learnt from the set E, but a more com-
mon case is that some elements are learnt from set V or set
X. Correspondingly, ACO generates a new solution according
to the probability matrix, which resembles the worst case in
S-PSO, but it needs to spend extra time to update the probabil-
ity matrix. Thus, theoretically, MS-PSO/D should have a sim-
ilar or lower time complexity compared with MOEA/D-ACO.

C. Parameter Investigation

1) Population Size: To explore the appropriate set-
ting of population size, we compare the performance of
MS-GPSO/DW with ps set as 24, 45, and 72 on bi-objective
instances. IGD statistics are given in Table SIV in supple-
mentary material, where we find that MS-GPSO/DW with
a larger population size is able to obtain better IGD.
MS-GPSO/DW (ps72) performs best on 8 out of 15 instances
and MS-GPSO/DW (ps45) performs best on 7 other instances.
Recall that an MOP can be more thoroughly solved by
more particles, but a smaller portion of the given computing

resources can be allocated to each particle. Thus, a faster
convergence is required by MS-PSO/D of a larger ps. Owing to
the good convergence of GPSO, MS-GPSO/DW with a larger
ps can have a better performance.

For the sake of fairness, MOEA/D-ACOT with ps set as 24,
45, and 72 are also compared on bi-objective instances, with
results reported in Table SV in supplementary material. We
observe that MOEA/D-ACOT with 45 ants can obtain the best
IGD on more instances. Therefore, it should be reasonable
to compare MOEA/D-ACO and MS-PSO/D on bi-objective
instances with ps set as 45.

2) Diversity Control: The diversity of MS-PSO/D is
expected in a reasonable range such that MS-PSO/D can con-
verge quickly as well as preserve the potential for finding more
efficient solutions. Taking parameter plearnX as an exam-
ple, we show efficiency of the diversity control mechanism
suggested in this paper.

First, to explain how plearnX affects diversity of MS-
PSO/D, we run MS-GPSO/DW with plearnX set as 0.6, 0.8,
and 0.99 separately and record the average percentage of ele-
ments chosen from velocity in each iteration on instances
kroAB100, euclidAB500, and kroABC100. As shown in
Fig. S3 in supplementary material, on each instance, the per-
centage converges to a smaller value as plearnX increases.
Since in S-PSO, a larger diversity implies more available ele-
ments in velocity [33], the results prove that a larger value of
plearnX leads to a lower diversity.

Then, we compare the final approximations obtained by
MS-GPSO/DW with plearnX set as 0.6, 0.8, and 0.99. IGD
statistics are given in Table SVI in supplementary material,
with the best IGD shown in bold. For bi-objective instances,
MS-GPSO/DW (plearnX = 0.8) obtain the best IGD on 100-
city instances, but MS-GPSO/DW (plearnX = 0.99) performs
best on almost all the other larger-scale instances. It seems
that faster convergence is expected when exploring larger deci-
sion spaces. For tri-objective instances, MS-GPSO/DW with
smaller plearnX, i.e., 0.6 or 0.8, performs better. The reason
may be that more diversity is needed to obtain an approx-
imated PF to cover a larger objective space under limited
evaluations.

In conclusion, above results reflect that the diversity control
mechanism of MS-PSO/D does work and different levels of
diversity can be provided to achieve a good performance with
given computing resources for different instances.

V. BEHAVIORS ON MMRCPSP

Fifteen MMRCPSP instances of 120, 150, and 200 tasks are
generated by project generator PROGEN [75], [76] using sam-
ple setup as shown in Table SVII in supplementary material.
Nonrenewable resources are not considered to avoid a need
for repair operations after solution construction. And different
resources are regarded as of equal importance, with the cost
per unit of each kind of resource set as 1. Three popular objec-
tives as defined in Section II are considered in tri-objective
MMRCPSP cases, and the first two objectives are considered
in bi-objective MMRCPSP cases.

Metrics IGD and HV are applied as well. Unless specified
otherwise, all experimental results are based on 30 independent
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TABLE II
IGD AND HV STATISTICS OF THE FINAL APPROXIMATIONS OBTAINED BY MOEA/D-ACOW

AND MS-GPSO/DW ON 15 BI-OBJECTIVE MMRCPSP INSTANCES

TABLE III
IGD AND HV STATISTICS OF THE FINAL APPROXIMATIONS OBTAINED BY MOEA/D-ACOW

AND MS-GPSO/DW ON 15 TRI-OBJECTIVE MMRCPSP INSTANCES

runs. Referring to [41], 10 000 solutions/schedules can be
generated in total by an algorithm in each run.

A. Comparative Analysis

There are only a few MOEAs specially developed for
MMRCPSP and most of them are simply built upon NSGA-II,
e.g., [16] and [77]. We have applied NSGA-II to solve
MMRCPSP instances generated in this paper, but it performs
much worse than MS-PSO/D. On the other hand, MOEA/D-
ACO has been adopted to solve a variant of MOPSP [17] and
there should be great potential to apply it to MMRCPSP. Thus,
we would like to still compare MS-GPSO/D with MOEA/D-
ACO in order to verify MS-PSO/D’s efficiency for
MMRCPSP. For comparison, MOEA/D-ACO is carefully
implemented by us for MMRCPSP, where solution repre-
sentation and heuristic information refer to our proposed
MS-PSO/D and pheromone design refers to [13].

1) Basic Settings: For both MS-GPSO/D and MOEA/D-
ACO, population size is set as 45 for bi-objective case and
tri-objective case, and neighborhood size is set as 1/6 of pop-
ulation size. For MS-GPSO/D, we set ω = 0.9, plearnX =
0.8, pMax = 0.9, and MaxUsedT = 1. The other param-
eters of MS-GPSO/D and MOEA/D-ACO refer to their
parameter settings for MOTSP. According to our experi-
ments, weighted-sum decomposition approach performs bet-
ter than Tchebycheff approach on both MOEA/D-ACO and
MS-PSO/D. Thus, only the results of MOEA/D-ACOW and
MS-GPSO/DW are considered.

2) Compared Results: IGD and HV statistics of the
final approximations obtained by MOEA/D-ACOW and
MS-GPSO/DW on bi-objective and tri-objective MMRCPSP
instances are shown in Tables II and III, respectively. The
results show the following.

(1) MS-GPSO/DW outperforms MOEA/D-ACOW on all
instances in terms of both Wilcoxon test and mean
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Fig. 3. Final Pareto fronts of 30 independent runs obtained by MS-GPSO/DW and MOEA/D-ACOW on bi-objective instances j120.1, j150.1, j200.1 and
j120.5, j150.5, j200.5.

values of IGD/HV, regardless of the number of objec-
tives or the scale of instances.

(2) On almost all instances, the ratio of mean IGD obtained
by MS-GPSO/DW to that obtained by MOEA/D-ACOW

is less than 1/2. On some tri-objective instances such as
j150_3.4 and j200_3.4, the ratio is smaller than 1/3 even
1/4. The great difference demonstrates MS-GPSO/D’s
performance advantage over MOEA/D-ACO.

(3) Smaller deviation values of IGD and HV are obtained
by MS-GPSO/DW on all instances, which implies the
stability of MS-GPSO/D when solving MMRCPSP.

For further insight into their performance, we show the final
PFs of 30 independent runs obtained by MOEA/D-ACOW and
MS-GPSO/DW on instances j120.1, j150.1, j200.1 and j120.5,
j150.5, j200.5 in Fig. 3. Recall that an approximated PF is
expected to be close to axes for multiobjective minimization
problems. For each case shown in Fig. 3, we find that the PF
of MS-GPSO/DW is closer to axes and generally denser with
fewer missing parts, compared with MOEA/D-ACOW ’s.

In conclusion, MS-GPSO/DW outperforms MOEA/D-
ACOW on MMRCPSP instances in terms of effectiveness,
efficiency, as well as robustness.

B. Parameter Investigation

Here, we discuss how the performance of MS-GPSO/DW on
MMRCPSP can be influenced by parameters ω and plearnX.

1) Inertia Weight ω: A larger or smaller ω corresponds to
a stronger focus on global search or local search, respectively.
Given a certain amount of computing resources, different lev-
els of global or local search should be expected by different
problems. Final approximations obtained by MS-GPSO/DW

(plearnX = 0.5) with ω = 0.4, linearly changed ω from
0.9 to 0.4, and ω = 0.9, are compared and the IGD statis-
tics are presented in Table SVIII (bi-objective instances)
and Table SIX (tri-objective instances) in supplementary
material.

The results show the following.
(1) For both bi-objective and tri-objective cases,

MS-GPSO/DW with ω = 0.4 obtains the worst
results, which means that a relatively higher ability of
global search is expected to solve MMRCPSP problems.

(2) For the bi-objective case, there is no obvious dif-
ference between MS-GPSO/DW (ω = 0.9) and
MS-GPSO/DW (linear ω) on most instances. However,
for the tri-objective case, the former performs better
on each instance. In fact, the different results on bi-
objective and tri-objective cases are as expected, since
the objective space grows exponentially as the number
of objectives increases and a stronger global search is
hence needed under limited computing resources.

2) Probability of Learning From X, plearnX: The dis-
cussions on MOTSP show that an appropriate setting of
plearnX can improve MS-PSO/D’s performance obviously. To
discover how plearnX influences MS-PSO/D when solving
MMRCPSP, we compare the final approximations obtained
by MS-GPSO/DW with ω = 0.9 under different values of
plearnX, i.e., 0.2, 0.5, and 0.8. IGD statistics are presented
in Table SX (bi-objective case) and Table SXI (tri-objective
case) in supplementary material.

MS-GPSO/DW (plearnX = 0.8) is observed to perform best
on each instance. Furthermore, MS-GPSO/DW performs better
as plearnX increases. Recall that a smaller value of plearnX
often causes a higher diversity of MS-PSO/D. Therefore, the
results reflect that MS-PSO/D is expected of more convergence
rather than diversity when dealing with MMRCPSP with the
given computing resources.

VI. CONCLUSION

In this paper, focusing on the permutation-based MOCOPs,
a generic methodology termed MS-PSO/D, has been devel-
oped by combining S-PSO with MOEA/D. To customize
MS-PSO/D for solving permutation-based MOCOPs, an
element-based permutation representation and a constructive
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approach for permutation construction are formalized. For
some problems with a more complex decision space, we
demonstrate that an element-based representation can also
be defined to represent extra decisions, and a constructive
solution completion process can be further formalized to
make extra decisions. Furthermore, owing to the construc-
tive approach for solution construction, both online and offline
heuristic information can be easily introduced into MS-PSO/D
for efficiency.

Two representative MOCOPs, i.e., MOTSP and MMRCPSP,
are extensively tested to verify the efficiency of the proposed
MS-PSO/D methodology. In the experiments, the effective-
ness of parameters for diversity control in MS-PSO/D has
been proven and the efficiency of MS-PSO/D as a generic
method has been verified through comparing with MOEA/D-
ACO, which is one of the best-so-far decomposition-based
MOEAs for solving MOCOPs.
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